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Abstract
Individual differences in face identity recognition abilities are present across the lifespan but require developmentally 
differentiated methods of assessment. Here, we examine the empirical validity of a widely used face identity recognition 
measure, the Cambridge Face Memory Test for Children (CFMT-C). Logistic mixed-effects modelling of a large data 
set (607 children, 5–12 years) replicates and extends the findings of the only previous normative study of the CFMT-C 
(Croydon et al., Neuropsychologia, 62, 60–67, 2014). This novel, analytical approach enables us to take into account 
sources of variability typically overlooked in a classical analysis. We consider variability introduced by the task, alongside 
variability across children, to provide the first comprehensive characterisation of the interactive effects of factors inherent 
to participants (e.g. age, gender, and ethnicity), and the test (stage: face learning, simple recognition, harder recogni-
tion) on face memory performance. In line with past findings, we clearly observed age-related improvement in the task. 
Additionally, and for the first time, we report that this developmental effect is significantly more pronounced in the later, 
harder stages of the task; that there is an effect of gender, with females having better performance; and that consideration 
of participant ethnicity or testing context did not alter the best fitting model of these data. These results highlight the value 
of applying multilevel statistical models to characterise the factors driving performance variability, providing evidence 
of the divergence in recognition abilities across genders and confirming the stability of the CFMT-C in assessing face 
recognition abilities across variable experimental contexts and with diverse participant groups.
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Introduction

Identity recognition is crucial for successful everyday 
functioning, and is unsurprisingly one of the most studied 
aspects of face expertise. Researchers and clinical neuropsy-
chologists have developed a number of standardised tests to 
characterise these abilities (e.g. Benton Face Recognition 
Test, Benton & Van Allen, 1968; Warrington Recognition 
Memory Test, Warrington, 1984). Typically, these measures 
have been designed with young adults in mind, and most of 
the behavioural and neuroimaging studies investigating the 
underpinnings of expertise in this domain focus on these 
cohorts. Yet perceptual expertise with faces changes consid-
erably across developmental time (e.g. Germine et al., 2011) 
and the individual differences that are of interest to research-
ers during adulthood (Wilmer, 2017), are also prevalent dur-
ing childhood (Bennetts et al., 2017) and later adulthood 
(Boutet & Meinhardt-Injac, 2021). Clear characterisation of 
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the development of this vital social function and its determi-
nants is thus critically contingent upon reliable and sensitive 
psychometric tools that are appropriate to use with individu-
als across the lifespan.

The most widely used standardised test of face recogni-
tion ability is the Cambridge Face Memory Test (CFMT, 
Duchaine & Nakayama, 2006). It is a targeted measure of 
short-term, unfamiliar face memory developed for adults 
(see also Arrington et al., 2022; Dennett et al., 2012; Kho 
et al., 2023; McKone et al., 2011; McKone et al., 2017 
for examples of parallel forms of the test). The task was 
designed to be sensitive to individual differences in face 
recognition ability in neurotypical and neurodiverse popu-
lations, including in those with clinically impaired abilities 
(subsequent extensions further facilitate sensitivity to per-
formance differences in the upmost ‘super-recogniser’ range 
of ability, e.g. CFMT+ Russell et al., 2009). Within the face 
processing literature, performance on the CFMT (percent 
correct recognition accuracy) has been studied in its own 
right, e.g. when exploring differences in face expertise from 
adolescence to old age (12 to 70 years, Germine et al., 2011). 
It is also used extensively as an independent behavioural 
benchmark for other metrics, e.g. when probing associations 
with behavioural and neural processes predicted to function-
ally contribute to face selective expertise (e.g. Mares et al., 
2023; McGugin et al., 2016; Richler et al., 2011; Rhodes 
et al., 2014; Wilmer et al., 2012). Evaluations to date sup-
port its strong psychometric properties (Bowles et al., 2009; 
Cho et al., 2015; Herzmann et al., 2008; Wilmer et al., 2012) 
validating its wide use as a valid and reliable measure to 
study face recognition ability in adults.

Briefly, the CMFT introduces participants to a set of six 
novel/unfamiliar adult face identities to be learned and then 
recognised alongside foils in a series of three alternative 
forced-choice (3AFC) decisions. It comprises three ‘task 
stages’ that increase progressively in difficulty, each present-
ing participants with different challenges for face recogni-
tion. Stage 1 test images are identical to the studied target 
faces. Stage 2 test images must be recognised in novel view-
points and/or lighting conditions, which precludes a pictorial 
or ‘image-based’ processing strategy. Stage 3 test faces must 
be identified in novel views and with the addition of Gauss-
ian visual noise that particularly obscures featural informa-
tion and encourages reliance on specialised face processing 
mechanisms, e.g. holistic coding.

Despite being relatively brief and easy to complete for 
young and older adults (simple instructions, computerised 
administration, 10–15-min duration) the standard measure 
was not designed to be used with children. It presents a 
substantial cognitive challenge for them, which may par-
ticularly encourage the use of atypical/immature strategies 
(e.g. feature-based strategies, see O’Hearn et al., 2010). 
As a result, two alternate versions have been designed 

for children, each taking a slightly different approach to 
its developmental adaptation. The CFMT for Children 
(CFMT-C; Croydon et al., 2014) retains the original adult 
face stimuli, but requires participants of all ages (5–12 
years) to learn five identities (rather than six) and employs 
a simplified 2AFC trial format across all three task stages. 
The CFMT-Kids (CFMT-K; Dalrymple et al., 2014) rather 
opts to use child faces in line with its target sample and 
varies the number of faces to be learned based on partici-
pant age: four identities for younger children (9 years and 
under), and six for older children. While both approaches 
have successfully characterised face processing variability 
in developmental samples, the CFMT-C is of particular 
interest due to its methodological equivalence over a wider 
age range of middle childhood, and suitability for adult 
populations with impaired cognitive abilities given that it 
retains adult faces (see Farran et al., 2020).

A single detailed investigation of the psychometric 
properties of the CFMT-C supports its reliability and 
validity as a test of face identity recognition across middle 
childhood (5 to 12 years, Croydon et al., 2014). In a large 
group of primary and secondary school-aged neurotypi-
cal children, the measure yielded a spread of scores that 
avoided floor and ceiling effects, and was sensitive to age-
related gains across the targeted age range. The CFMT-C 
also characterised difficulties in face identity recognition 
in a separate group of autistic children. Notably, however, 
Croydon et al. (2014) did not identify any significant dif-
ferences between the performance of boys and girls on 
the CFMT-C. This finding is surprising given that gender 
differences in face identity recognition are reported con-
sistently in adults, i.e. an advantage in female participants 
relative to males (including on the CFMT, Wilmer et al., 
2012), as well as in children (see Herlitz & Lovén, 2013 
for a review). Moreover, this female advantage is reported 
to be of similar magnitude across child, adolescent, and 
adult samples (meta-analysis of studies with participants 
aged 4–11, 12–17, and 18–53 years, Herlitz & Lovén, 
2013), supporting an early developmental origin. Further 
investigation of the CFMT-C is warranted to establish if 
the lack of gender differences in identity recognition dur-
ing development replicates in a larger sample and with 
more comprehensive analysis.

We also note that the ethnicity of participants was not 
reported nor analysed with regards to CFMT-C scores in 
Croydon et al. (2014). Given that exclusively white faces are 
presented during the CFMT-C, expected differences in eth-
nicity within their sample (primary and secondary schools in 
England have diverse student populations) may have had an 
unknown impact on children’s reported recognition abilities 
(e.g. ‘other ethnicity effects’, see Meissner & Brigham, 2001 
for a review). Incorporating the potential inherent variability 
introduced by factors such as participant ethnicity in a single 
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analytic model should provide better characterisation of the 
underlying data.

Finally, in several recent studies with adult populations, 
researchers have questioned whether all three stages of the 
CFMT are equally informative in quantifying individual face 
recognition ability. This work has benchmarked ‘empirical 
utility’ by focusing on the extent to which scores from each 
section benefit the reliable and efficient identification of 
prosopagnosia (individuals with very low levels of exper-
tise). Studies report the measure’s sensitivity and specific-
ity to prosopagnosia is similar when including vs. omitting 
scores from this final, most challenging stage, due likely 
to the poorer performance of control as well as prosopag-
nosic subjects when presented with face stimuli in visual 
noise (Corrow et al., 2018; Murray & Bate, 2020). Thus, 
an abridged version might constitute an equally effective 
– but crucially more efficient – instrument for identifying 
very poor performing individuals (see also Cho et al., 2015). 
Whether this is similarly the case for the CFMT-C’s sensitiv-
ity to developmental effects is of empirical value to estab-
lish, since relatively poorer recognition abilities in young 
compared to older children could be masked in the third 
stage if performance is attenuated broadly. In their study, 
Croydon et al. (2014) reported a significant main effect of 
stage (with performance decreasing progressively in each 
later stage, as expected) and no interaction with age. This 
finding suggests there was no change in the age-related dif-
ferences in performance observed in each experimental 
stage. We revisit this question in the current study, to explore 
if age-related differences in the relative utility of the three 
task stages might emerge when applying a particularly sensi-
tive analytical approach.

Here, we set out to provide a comprehensive investigation 
of the potentially interacting effects of participant age (5–12 
years), participant gender, participant ethnicity, and stage of 
test (1: initial face learning, 2: simple recognition, 3: harder 
recognition) on task performance, alongside replicating the 
basic effects of the suitability of the CFMT-C as a measure 
for exploring development in face recognition performance 
with participant age. For the first time, we are also able to 
consider the potential contribution of testing context to per-
formance; having run the CFMT-C in a number of different 
studies that were conducted across variable locations. We 
will establish whether modelling of task performance data 
benefits from distinguishing between highly controlled lab-
based testing settings vs more ‘noisy’ community testing 
settings, such as in schools and museums.

Importantly, we go beyond the standard linear analysis 
used in the previous normative study of the CFMT-C by 
Croydon and colleagues (2014), which does not take into 
account the fact that individual participants typically exhibit 
different intercepts (a measure of their own ability), and 
that the effect of task stage may also differ in magnitude 

across participants. In other words, each individual will have 
higher/lower general performance compared to the mean of 
their age group (intercept), but the extent to which this per-
formance is impacted by the different stages may also vary 
across individuals. There is no a priori way of establishing 
whether the addition of noise, for instance, will result in a 
similar drop in performance across all participants, even at 
the same age.

Linear mixed-effects models have recently become an 
established technique to provide fine-grained insight into 
manual response data (e.g. Barr et al., 2013) including on 
face recognition tasks (e.g. Arrington et al., 2022; Childs 
et al., 2021), precisely because they allow, by means of 
structured random effects, to estimate participant-specific, 
stimulus-specific, and stage-specific parameters instead of 
treating the entire data set as though the effect is the same 
across all participants and stages. Using a suitable random 
effects structure effectively means attributing more of the 
variability in the data to these potentially relevant factors 
instead of treating any deviance from the mean as ‘error’. As 
a consequence, the final estimate of the fixed effects can be 
more precise. We therefore chose to apply this more complex 
modelling approach to our analysis, using binomial logistic 
mixed-effects models, which are suitable for accuracy (bino-
mial) data (Dixon, 2008)1.

Methods

Participants

Responses on the CFMT-C were collected as part of seven 
different data collection efforts with non-overlapping sam-
ples between 2014 and 2021 (in part previously published 
in Ewing et al., 2018, 2022; Farran et al., 2020; Mares et al., 
2020). The task was a constituent element of a number of 
different studies run by our research group based in a large 
and diverse UK city. These studies varied considerably in 
the specifics of the testing team (though all individuals were 
trained to conduct developmental testing by the same indi-
vidual), as well as the setting: science museum, laboratory, 
‘holiday camp’ program, school. Using an integrative data 
analysis approach (Curran & Hussong, 2009) these data were 
compiled to create a large sample of responses. Individuals 
who achieved below-chance accuracy (i.e. average accuracy 
<.5) on Stage 1 trials were excluded (N= 6; N = 1 at 5 years, 
N = 1 at 6 years, N = 1 at 7 years, N = 1 at 8 years, N = 2 at 

1  In addition, this approach eliminates issues with assumptions 
around heteroscedasticity inherent to the analysis of categorical data 
using ANOVAs (Agresti, 2002; Dixon, 2008; Jaeger, 2008) which 
may result in poorer characterisation of the data.
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9 years), since this suggests either a high level of inattention 
or a failure to understand the instructions, given the simplic-
ity of this part of the task (see below).

Each study had ethical approval (Reference Codes: 
161721, 131464/5/6, 161756/7) and included a similar con-
sent procedure: children provided verbal assent and parents 
provided written consent. The total number of participants 
was 607. Children were aged 5 to 12 years, 377 identifying 
as white and 117 identifying with other ethnicities, which 
were combined into a single category2, 358 girls and 249 
boys, see Table 1 for details (and Supplementary Materials 
Table 1 for the sample broken up into their separate study 
cohorts/testing contexts). Because face identity recognition 
ability is known to be impaired in individuals with some 
neurodevelopmental conditions, in lab-based experiments, 
we routinely pre-screen participants for neurotypical devel-
opment. However, in community testing settings, our policy 
is to be as inclusive as possible. Therefore, we only excluded 
data from any individuals who themselves or a family mem-
ber/caregiver disclosed having a diagnosed neurodevel-
opmental condition at the time of consent. For the same 
inclusivity reasons, and to maximise the large sample sizes 
required for well-powered analyses, attempts were not made 
to match males and females by variables such as ethnicity.

Stimuli and procedure

Detailed methods information about the CFMT-C is avail-
able elsewhere (e.g. Croydon et al., 2014). Briefly, the task 
involves learning a set of five adult male face identities, and 
then recognizing these individuals when they are presented 
alongside foils in a series of 2AFC decisions. The task com-
prises three stages that progressively increase in difficulty. 
First, the target identities must be identified when presented 
alongside faces that are identical to the learned images 
(Stage 1, 15 trials), then from images that vary in viewpoint 
and/or lighting (Stage 2, 25 trials), and then from images 
that have been additionally obscured with Gaussian visual 
noise (Stage 3, 20 trials). The 60 test trials are presented in 
a fixed order.

In the current study, all participants completed the upright 
version of the CFMT-C in conjunction with other face and 
object processing measures that varied depending on the 
specific study for which they were recruited. The position 
of the CFMT-C in the testing battery sequence (e.g. first, 
second, last, etc) was not controlled across studies, nor 
were specific supervision arrangements: though the maxi-
mum child-to-experimenter ratio was 3:1. Additionally, all 
experimenters were trained in the administration of the task 
by the same individual which ensured consistency in style 
(e.g. positive rapport was always established before com-
mencement, participant engagement was closely monitored 
and re-established if deemed to be wavering, and effort was 
encouraged and reinforced with enthusiastic praise).

Table 1   Mean performance (% correct accuracy) per age and gender on the different stages of the CFMT-C

Stage 1
(Intro)

Stage 2
(No noise)

Stage 3
(Noise)

Total

Age (years) Gender M SD M SD M SD M SD

5 F 82.7 12.5 64.8 17.1 64.0 13.0 69.0 11.1
M 94.7 8.7 63.2 16.1 57.0 28.0 69.0 13.6

6 F 88.4 11.8 75.2 13.6 66.0 15.7 75.4 11.4
M 90.6 11.1 70.5 15.1 61.0 14.9 72.4 11.7

7 F 92.0 10.7 80.1 13.9 67.5 14.3 78.9 10.6
M 90.0 10.2 74.2 13.3 62.0 14.2 74.1 9.6

8 F 93.8 7.7 80.1 12.0 70.7 11.3 80.4 9.0
M 94.8 6.9 82.0 12.2 71.9 16.9 81.8 9.9

9 F 95.3 8.7 83.2 12.9 71.2 11.8 82.2 9.1
M 94.1 9.0 76.8 15.0 66.4 12.1 77.7 9.2

10 F 96.4 5.7 85.3 11.1 74.1 15.1 84.3 9.2
M 97.0 5.3 80.8 14.1 65.1 15.8 79.6 10.4

11 F 97.9 5.6 89.2 11.2 77.7 14.8 87.6 9.3
M 96.1 6.4 81.6 12.2 68.1 15.0 80.7 10.2

12 F 99.2 2.3 79.8 21.9 76.3 18.8 83.4 14.4
M 96.7 8.5 84.4 11.5 69.5 15.2 82.5 9.7

2  Ethnicity data is not available for 113 participants.
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Results

Overall performance accuracy on the CFMT-C is typically 
calculated as percent correct, i.e. correct trials summed 
across all three task stages/total possible (= 60). For indi-
vidual stages, performance is calculated as a percentage of 
correct trials out of the trials in that stage (Stage 1: total 
possible = 15, Stage 2: 25, Stage 3: 20).

Ceiling effects

One sample t tests indicated that 5-year-olds were neither 
at chance nor ceiling for all Stages (all ps < .005), as were 
6-, 7-, 8-, 9-, 10- and 11-year-olds (all ps < .001). Only the 
12-year-olds in Stage 1 were at ceiling (t(25) = 1.66, p = 
.11), with their Stage 2 and 3 performances significantly 
below ceiling (ps < .001). Five-year-olds achieved a mean 
accuracy of 85.7% in Stage 1, 64.4% in Stage 2, and 62.3% 
in Stage 3 (69% overall). Twelve-year-olds’ average accuracy 
was 98.2% in Stage 1, 81.5% in Stage 2, and 73.7% in Stage 
3 (83.1% overall). This is comparable to data presented by 
Croydon et al., although they did not find ceiling effects in 
the oldest group even for Stage 1.

Linear regression and ANOVA

As a first step, we aimed to conduct an analysis identical 
to the one published by Croydon et al. (2014), i.e. to fit a 
simple regression line to the data with a fixed effect of age 
(without random effects or other fixed effects). This yielded 
an intercept of 79.5% accuracy and a slope of 1.837 meaning 
the model was defined as Y = 79.5 + 1.837 * age. This out-
come is broadly comparable to Croydon et al., who reported 
Y = 51.89 + 2.78 * age. The main difference appears to be 
within the youngest age groups, who tended to obtain rela-
tively higher scores in our experiments.

In parallel to Croydon et al., we then also conducted 
an ANOVA with factors age group (5, 6, 7, 8, 9, 10, 11, 
12 years), gender (female, male), and stage (1, 2, 3). As 

expected, this analysis yielded a main effect of age (F(7, 
591) = 10.88, p < .0001, η2 = .070 (for post hoc pairwise 
comparisons, see Table 2). In contrast to Croydon et al., we 
also observed a main effect of gender (F(1,591) = 6.668, p 
= .01, η2 = .007) with girls (M = 80.87, SD = 10.85) per-
forming better than boys (M = 77.81, SD = 10.53). There 
was also a significant main effect of Stage (F(1.96, 1159.13) 
= 628.909, p < .0001, η2 = .305, Greenhouse–Geisser cor-
rected). As we might expect, and consistent with Croydon 
et al. (2014), given the increasingly difficult task demands, 
performance was significantly superior in Stage 1 (M = 
93.79, SD = 9.18) compared to Stage 2 (M = 79.84, SD = 
14.3), which was also superior to Stage 3 (M = 68.69, SD 
= 14.97), all ts ≥ 13.0, all ps < .001. We observed a sig-
nificant interaction of stage x gender (F(1.96, 1159.13) = 
11.012, p = < .0001, η2 = .008, Greenhouse–Geisser), with 
females significantly outperforming males only in Stage 3 
(t(591) = 3.81, p = .002, Bonferroni-corrected, all others 
p > .51). There was no stage x age interaction, F(13.73, 
1159.13) = 1.470, p = .117, η2 = .007. We note that Croydon 
et al. (2014) report no interactions of stage with age or with 
gender. Finally, there was no interaction of age x gender 
(p = .281), and no three-way interaction of age, stage, and 
gender (p = .212).

Mixed‑effects modelling

For this more detailed analysis we fitted models to indi-
vidual trial-level data/responses, which facilitates a greater 
degree of sensitivity to systematic variability present in 
the data. Binomial logistic mixed-effects models were fit-
ted using the lme4 package in R (Bates et al., 2015), and 
random intercepts for participants and trials/items were 
included in all models. Random slopes for participants were 
also included in all models with a fixed effect of stage. We 
performed our analysis in two steps, determining first in a 
series of model comparisons which random effects, fixed 
effects (age, gender, stage) or interactions improved model 
fit and which did not. In the second step, we inspected the 
best-fitting model that resulted from this procedure. This 

Table 2   Pairwise post hoc comparisons of overall CFMT-C task performance for participant age (Bonferroni-corrected p values)

Pairwise post hoc comparisons of overall CFMT-C task performance for participant age (Bonferroni-corrected p values)

Age 6 7 8 9 10 11 12

5 1.0 0.346 = .001 = .004 < .001 < .001 < .001
6 1.0 < .001 0.003 < .001 < .001 0.002
7 0.032 0.132 0.001 < .001 0.047
8 1.0 1.0 1.0 1.0
9 1.0 0.136 1.0
10 1.0 1.0
11 1.0
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relatively conservative process of gradually increasing the 
complexity of the model ensures the inclusion in the final 
model of only those terms that are necessary in order to 
sufficiently capture the variability in the data. Essentially, 
for every fixed effect or interaction, the question is asked 
whether a model that includes this term provides a better 
explanation of the data than the previous model (without 
this term). If a specific fixed effect does not improve the 
model either when included as a main effect or included as 
part of an interaction, then that effect is not included in the 
final model because there is a simpler model that explains 
the data equally well. Goodness-of-fit is evaluated with chi 
square tests using the lrtest function from the lmtest package 
(Zeileis & Hothorn, 2002). Therefore, in this next section, 
χ2 statistics indicate the outcome of these comparisons, i.e. 
whether or not the addition of a fixed effect improves the 
model fit with significant scores indicating the value of an 
added effect.

Once the best-fitting model has been determined we 
report, given this model, which of the main effects or inter-
actions are found to be significant.

Ethnicity  Because ethnicity information was missing for 
113 participants, we first conducted a preliminary model 
comparison with only the 494 participants for whom ethnic-
ity information was available (coded as white, N = 377, vs. 
all other ethnic groups combined, N = 117). As described 
above, this first (baseline) model included factors of age, 
gender, stage, and associated interactions. We confirmed 
that adding a main effect of ethnicity or any of the interac-
tions involving ethnicity did not improve the model fit (all 
p > .22, cf. Supplementary Table 2). Given these results, 
we concluded that participants’ ethnicity did not play a 
significant role in participants’ performance on the CFMT, 
and proceeded with model comparisons using the full data 
set (i.e. including those participants with missing ethnicity 
information) without the factor ethnicity.

Model comparisons  The next step was a base model using 
all of the data (N = 607) including no fixed or random 
effects. Then we added random intercepts of trials/items 
and participants in order to assert that a model with those 
random effects is indeed a better fit than without, i.e. a mul-
tilevel approach is preferable. Following this, fixed effects 
of age, gender and stage were added in a stepwise fashion as 
well as their corresponding interactions.

Both, the addition of a random effect of trials/items on 
intercepts (χ2(1) = 3905.5, p < .0001), and the addition of a 
random effect of participants on intercepts (χ2(1) = 1458.3, 
p < .0001) improved the model fit, justifying a multilevel 
approach. We then added between-participants fixed effects 
of age (χ2(1) = 62.83, p < .0001) and gender (χ2(1) = 19.88, 
p = .0001), which also improved the model fit. However, 

the interaction of age x gender did not further improve the 
model (χ2(1) = 2.9452, p = .09).

By contrast, adding a main effect of stage did improve the 
model further (χ2(2) = 52.79, p < .0001), as did the addi-
tion of random slopes to take into account individual par-
ticipants’ differences in the effect of this predictor (χ2(5) = 
155.03, p < .0001). The interaction of age x stage improved 
the model further, χ2(2) = 51.41, p < .0001, but not the 
interaction of gender x stage or the three-way interaction 
between these factors (all p > .32).

All effects and interactions that did not improve the model 
further were removed (see Tables 3, 4, in Supplementary 
Materials for the revised model comparison statistics with 
only these effects). Finally, to address the possibility that 
the different experimental contexts in which these data were 
collected might have affected participants’ performance, we 
also tested whether the inclusion of a fixed between-subjects 
effect “Experiment” (with seven levels, see Supplementary 
Table 1) or any of its interactions with the remaining fac-
tors improved the model. This analysis (see Table 5 in Sup-
plementary Materials) confirmed that the addition of the 
main effect did not improve the model fit, nor any of the 
interactions (all ps > .1), so this variable was not considered 
further.

We concluded that the final best-fitting model was then 
the one including fixed effects of age, gender, and stage and 
a two-way interaction of age x stage3. This model is sum-
marised in Table 3.

Table 3   Estimated coefficients for best-fitting model (see Footnote 1)

Estimates provided with respect to base levels Gender = female, 
Stage = 1/Intro. The variable age was centred at the mean age 8.5 
years, and the estimate for the fixed effect age corresponds to the 
expected increment per year. The intercept indicates the model’s pre-
dicted accuracy at the mean age, 8.5 years. The estimates for fixed 
effects and interaction indicate the increment with regard to the inter-
cept that is predicted for the corresponding combination of parame-
ters (e.g. on average a difference of 1 year corresponds to a difference 
of .007 in accuracy, whereas for boys the average accuracy is .009 
below girls)

Estimate 
(accuracy)

Estimate (logit) Std. Error p

(Intercept) .976 3.69 0.20 < .0001
Age .007 0.36 0.04 < .0001
Gender (male) – .009 – 0.31 0.06 < .0001
Stage (2) – .110 – 1.83 0.24 < .0001
Stage (3) – .237 – 2.65 0.25 < .0001
Age x stage (2) – .005 – 0.19 0.04 < .0001
Age x stage (3) – .007 – 0.27 0.04 < .0001

3 glmer(Accuracy ∼ Age + Gender + Stage + Age ∶ Stage

+
(
1||TrialID

)
+ (Stage|subject), data = Data, family = ��binomial��

)
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Best‑fitting model

The best-fitting model confirms that all effects are present, 
i.e. fixed effects of age (p < .0001), gender (p < .0001) and 
stage (p < .0001) were significant, as was the interaction of 
age x stage (p < .0001). The model did not show a signifi-
cantly better fit when including an age x gender, gender x 
stage or age x gender x stage interaction (see Table 3, Sup-
plementary Material).

In Figs. 1, 2 and 3, we show, separately for each stage, 
the individual participant data alongside the correspond-
ing model predictions. In all cases, performance generally 
improves with age, but it plateaus earlier for Stage 1 com-
pared to Stage 2. The main effect of gender is also clearly 
visible in all three figures, with girls generally performing 
better than boys. Stage 1 performance was higher than in 
the other two (with accuracy in Stage 2 on average 11% 
lower than in Stage 1). Releveling demonstrated that Stage 
2 also had significantly higher performance than Stage 3 
(accuracy estimate: – 0.13, logit estimate: – 0.82, SE = 0.21, 
p = .0001; i.e. on average 13% lower accuracy in Stage 3 
compared to Stage 2).

Finally, we inspected the random effects coefficients cal-
culated by the model fit (on data from all three stages) to 

explore whether the CFMT-C task contains any individual 
trials for which performance differs drastically. A coefficient 
magnitude diverging far from the average would indicate 
that the data from this trial (across the whole data set) dif-
fered from the rest in a systematic way, which the model-fit-
ting process ‘compensates’ for by increasing the coefficient 
for this individual trial. Figure 4 shows item coefficients 
arranged by magnitude. All coefficients fell within 2 SD of 
the mean, except the first trial in Stage 1 and Stage 2, respec-
tively. That the first trials in a new section would lead to a 
higher number of errors is, however, unsurprising, and in 
particular, the first trials in those two stages introduce a new 
task (first overall trial and first trial where the target is non-
identical), whereas the task in Stage 3, while harder due to 
the addition of Gaussian noise, is similar to Stage 2. Overall 
it is therefore reassuring to confirm that there are no outliers 
of concern across the experimental trials.

Discussion

We set out to characterise age-related differences in face 
identity recognition abilities present in 5- to 12-year-olds 
as estimated by one of the most widely used measures of 

Fig. 1     Stage 1 (Intro): Mean accuracy data (box plots: horizontal 
black lines indicate medians, the box shows the interquartile range 
and whiskers show largest/smallest values within 1.5 times interquar-

tile range above 75th/below 25th percentile, black filled circles show 
outliers) and model predictions (line plots)
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face identity recognition for children: the CFMT-C. With 
a large sample and detailed approach to data analysis, our 
investigation yielded new insights into the development of 
face identity recognition abilities during middle childhood.

We broadly replicate the profile of age-related improve-
ments in recognition performance reported in the only prior 
investigation of this measure (Croydon et al., 2014). This 
developmental effect across the targeted age range was evi-
dent in the results of a basic linear regression analysis, as 
well as those of an ANOVA that contrasted the individual 
year groups represented in our cohort. Critically, this find-
ing was further confirmed with novel linear mixed effects 
modelling, which allowed us to account for variability across 
children, and across individual stimuli, in addition to more 
typically analysed fixed effects. These results contribute 
important independent support for the conclusion that total 
scores on the CFMT-C are sensitive to age-related differ-
ences in face recognition ability present between the ages of 
5 to 12 years (i.e. avoids floor or ceiling effects in this range 
when considering the complete task). In our sample, perfor-
mance levels reached ceiling only for the 12-year-olds (the 
oldest age group), in the first of the three stages (the easiest).

We also included Task Stage (1: Intro, 2: No noise, 3: 
Noise) as a factor in the linear mixed effects model in order 

to investigate whether these different components of the 
CFMT-C task are differentially informative about devel-
opmental effects. In line with their increasingly complex 
demands, participants were confirmed to have performed 
significantly better in the early compared to the more chal-
lenging later stages of the task. Moreover, critically, we 
identified novel evidence that age-related differences in 
performance are significantly more pronounced in Stages 
2 and 3 compared with Stage 1. In these later conditions, 
presenting novel images of the test identities forced partici-
pants to move beyond simple ‘image recognition’ and more 
directly encode/retrieve representations of identity. Thus, our 
results may indicate that we risk underestimating age-related 
differences when tasks do not present participants with the 
challenges of real-world face recognition. Future research-
ers should note that here, we probed performance only with 
highly controlled stimuli, and developmental differences 
could be amplified even further when assessed with more 
naturalistically varying/ambient images (see Zhou et al., 
2022). Our motivation to explore whether developmental 
effects might present differently across the three stages of the 
task stemmed partly from recent suggestions that Stage 3 of 
the adult CFMT is of limited utility in certain experimental 
contexts (see Corrow et al., 2018; Murray & Bate, 2020). 

Fig. 2   Stage 2 (no noise): Mean accuracy data (box plots: horizon-
tal black lines indicate medians, the box shows the interquartile range 
and whiskers show largest/smallest values within 1.5 times interquar-

tile range above 75th/below 25th percentile, black filled circles show 
outliers) and model predictions (line plots)
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Fig. 3   Stage 3. (Noise): Mean accuracy data (box plots: horizontal 
black lines indicate medians, the box shows the interquartile range 
and whiskers show largest/smallest values within 1.5 times interquar-

tile range above 75th/below 25th percentile, black filled circles show 
outliers) and model predictions (line plots)

Fig. 4   Coefficients for random effect of trials, sorted by magnitude. Horizontal lines show mean and mean ± 2 SD. Outlier labels indicate the 
trial’s stage followed by the index within the stage
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Obviously, the benefits of finding ways to streamline the 
administration of standardised tests are keenly felt in work 
with populations with limited cognitive resources (including 
children). Yet, our modelling leads us to conclude that there 
is no evidence that any stage of the task lacks sensitivity to 
age-related differences in ability during the middle child-
hood years.

For the first time, we have identified clear gender differ-
ences in performance on the CFMT-C. In line with findings 
from male and female adults completing the classic adult 
form CFMT (e.g. Wilmer et al., 2012), girls significantly 
outperformed boys. This early female advantage in identity 
recognition adds to broader reports of superior face process-
ing in girls (see Herlitz & Lovén, 2013 for meta-analysis). 
Our analysis of CFMT-C data did not yield clear evidence 
about whether the gender bias changes across developmental 
time, e.g. perhaps becoming amplified through differences 
in socialisation and experience (see Østergaard et al., 2021). 
The effect of gender did not interact significantly with age 
in the best-fitting model of the overall data, which supports 
the notion that the bias and its underlying mechanism/s are 
stable between 5 and 12 years of age.

The CFMT-C measures children’s recognition of unfa-
miliar, white, young adult, male faces. Although these 
stimuli did not fully constitute a ‘in group’ for any subset 
of our participants, the restricted nature of the stimuli is 
far from ideal. Future research could helpfully establish 
whether the participant characteristics investigated here 
might also interact with shared vs non-shared characteris-
tics of the stimuli. Such utilisation of a diverse set of faces 
could be of value across and also within tasks, given that 
gender differences – for example – may present differently 
when faces that appear male and female are intermixed 
(see Herlitz and Lovén, 2013). Given that the CFMT-C 
comprises only white faces, it is possible that “own ethnic-
ity effects” could have functioned to relatively attenuate 
perceptual ability for faces from unfamiliar backgrounds 
(Meissner & Brigham, 2001) and introduced systematic 
differences in performance among white children and our 
participant category comprising all other ethnic groups 
combined. We tested empirically whether any such biases 
obscured the developmental effects observed in our large, 
non-segregated sample. Critically, we found that the 
addition of ethnicity did not improve the fit of our linear 
mixed model as a main effect or interaction term. Thus, 
we conclude that the CFMT-C is sufficiently sensitive to 
robustly characterise group (age, gender) and individual 
differences in community samples that include individu-
als from different ethnicities. It is possible, of course, that 
more pronounced effects of ethnicity might be observed 
in other testing contexts – e.g. where individuals have had 
very limited exposure to faces from other backgrounds. 
However, in our cohort comprising individuals attending 

school and/or visiting a museum in a large and diverse UK 
city, these effects did not account for a significant amount 
of variance in performance on the CFMT-C.

We also found that experimental testing context did not 
significantly improve our modelling of the CFMT-C scores. 
Even though participants’ responses were collected as part of 
seven different studies, which took place in diverse settings, 
we found that considering this variability did not meaning-
fully affect the pattern of observed results. This finding is 
encouraging for developmental researchers like ourselves 
who are motivated to find creative solutions when address-
ing the challenge of collecting representative, large-scale 
developmental data sets. Such work benefits from being able 
to move outside the lab into community settings, which has 
been considered to be associated with some loss of desirable 
experimental control. Crucially, however, the current find-
ings support the robustness of the CFMT-C across diverse 
testing contexts, as well as the generalisability of the current 
results.

Inspecting the random effects coefficients for individual 
trials in the best-fitting multilevel model further demon-
strated that there are no unexplained outliers, with all coef-
ficients within 2 standard deviations of the overall mean 
magnitude. The only trials with unexpectedly large coeffi-
cients, which indicates that the pattern of responses was dif-
ferent compared to other trials, were the first trials in Stage 
1 and Stage 2, respectively. Naturally, the very first trial and 
the first trial in a changed task scenario are likely to incur 
a higher error rate than the remaining trials. This further 
confirms the suitability of the CFMT in its current form for 
investigating children’s face recognition skills. Together, the 
results of the current study replicate and extend the previous 
psychometric examination of the CFMT-C, and highlight the 
value of applying multilevel statistical models to character-
ise the factors driving performance variability. We confirm 
not only that there are age-related improvements in perfor-
mance on the task, but that all three stages of the measure 
are informative regarding these developmental effects – with 
the latter, more difficult stages, proving the most sensitive.

The reliability of the observed individual differences 
in children’s face processing will be an interesting avenue 
for future research, as will the selectivity of strengths and 
weaknesses in this domain. Having measured only face per-
ception, our results cannot speak to the extent to which the 
observed changes in recognition ability and its underlying 
processes are face selective vs more general (a subject of 
ongoing debate, see McKone et al., 2012 for review). Still, 
for the first time we have clearly identified gender differ-
ences in performance on this widely used measure of face 
identity recognition, which aligns with those observed on 
other measures and with other age groups (Herlitz & Lovén, 
2013) and is not observed for all object categories (see 
McGugin et al., 2012).
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We establish empirically that the CFMT-C is robust 
across participant ethnicity groups and testing environ-
ments (when administered by the same testing group). It 
is also robust across items – that is, there are no individual 
trials yielding aberrant levels of performance, which further 
speaks to the empirical quality of the measure. Thus, we 
can broadly conclude that the CFMT-C is an extremely use-
ful tool for researchers interested in group and individual 
differences in face identity recognition ability during the 
childhood years.
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