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Cobble motion characterisation with smart 1 

sensors through laboratory experiments for 2 

ground-based landslide monitoring 3 

Abstract  4 

Landslides often contain boulders on their surface or within the landslide body. Embedding sensors 5 

inside boulders within a landslide may help monitor its movement and dynamics.  In this study, smart 6 

sensors were tested for tracking movements of a cobble, estimating its magnitude and mode of 7 

movement in dedicated laboratory experiments. The cobble was embedded with a sensor equipped 8 

with accelerometers, gyroscopes, and magnetometers. The experiments consisted of letting the cobble 9 

travel down an inclined plane. By changing the angle of the inclined plane, the cobble showed different 10 

modes of movement such as rolling and, when embedded in a thin sand layer, sliding. While travelling 11 

down the slope, the cobble was tracked to infer its position from camera videos. Raw sensor data were 12 

used for motion detection and discerning the mode of movement. Sensor-based acceleration and 13 

camera-based position were fed to a Kalman filter to derive the cobble velocity and compute the total 14 

kinetic energy to characterise the motion magnitude. Furthermore, LoRaWAN wireless transmission 15 

was tested by burying the cobble in sand layers of different thickness. The experiments contributed 16 

to understanding how the sensor functions and may be applied in the field for landslide monitoring, 17 

modelling and early warning systems. 18 

 19 

Non-technical Summary  20 

Landslides often transport boulders and cobbles either on their surface or embedded within the 21 

landslide body. Thus, tracking the motion of boulders and cobbles can provide information about the 22 

movement of the landslide in which they are embedded. Smart sensors were inserted into a cobble 23 

and were rolled down an experimental hillslope in a laboratory.  By letting the cobble fall on an inclined 24 

plane tilted at different angles, the sensor tracked different types of cobble movement (namely rolling 25 

and sliding). . The experiments were recorded by a camera placed at the end of the experimental 26 

table. The ability of the sensor to transmit data wirelessly from inside a landslide was tested separately 27 

by burying the cobble at different depths in a sand filled bucket. The results demonstrate how smart 28 

sensor data can separate between rolling and sliding, approximate the energy of movement and send 29 

data remotely when buried in a layer of sand. The trials helped to clarify how sensors work and guide 30 

the use of sensors on real landslides for monitoring and early warning of landslide hazards. 31 
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1 Introduction 35 

Under climate change, precipitation has increased in intensity and frequency making landslide events 36 

more likely (e.g., Gariano and Guzzetti, 2016; Auflič et al., 2023). Rapid urbanization and demographic 37 

growth have made more people vulnerable to landslide hazards especially in low -income countries 38 

(e.g., Pollock and Wartman, 2020) leading to the development of different approaches in landslide risk 39 

management (e.g., Sim et al., 2022). Slow-moving landslides occur on high slopes and are typically 40 

sensitive to seasonal rainfall given their clay rich texture and complex subsurface network (e.g., De 41 

Blasio, 2011; Lacroix et al., 2020). Usually, these systems approach catastrophic collapse by 42 
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progressively increasing displacement or alternating phases of stability and movement, either seasonal 43 

or annual (e.g., Crosta et al., 2017; Chang and Wang, 2022). In many field applications, the rate of 44 

change of displacement can be used to reliably anticipate the time of failure (Carla’ et al., 2017; 45 

Intrieri et al., 2019; Leinauer et al., 2023). Satellite remote sensing techniques such as InSAR can be 46 

used to monitor displacement and aid prediction of catastrophic failure of slow-moving landslides but 47 

are limited to several days in temporal resolution and hindered by dense vegetation (e.g., Dini et al., 48 

2020; Mondini et al., 2021; Handwerger et al., 2022). Traditional ground-based methods of monitoring 49 

slow moving landslides (e.g., piezometers, extensometers, inclinometers, time-domain reflectometry) 50 

provide valuable and precise information in specific locations, but they are more expensive than 51 

remote sensing as they require drilling and often complex installation (e.g., Auflič et al., 2023). More 52 

recently, Passive Radio Frequency Identification (RFID) tags have been installed in boulders to track 53 

their displacements (e.g., Le Breton et al., 2019, 2022). These tags provide information about the 54 

movements with low battery consumption (Le Breton et al., 2019). However, all these ground-based 55 

techniques tend to be interrupted, damaged or destroyed by the landslide motion they are trying to 56 

capture.  57 

While moving, landslides erode debris from hillslopes such as boulders and cobbles that can remain 58 

embedded in the body of the landslide while being transported downslope (e.g. Shobe et al., 2020, 59 

2021). Recent advances in Micro-electromechanical systems (MEMS) have allowed the development 60 

of compact (few millimetres) and affordable sensors that can measure different environmental 61 

features with low power consumption offering new opportunities to effectively monitor stability of 62 

boulders embedded in landslides (e.g., Dini et al., 2021; Wang C. et al., 2022). When used in 63 

combination with a wireless network and with the appropriate firmware and hardware, the sensors 64 

become smart, i.e. they have the ability to provide an accurate and automated collection of 65 

environmental data. In summary, these sensors could be relatively small in size, low in price and 66 

versatile in the application and hence show a multifaceted potential. 67 

Smart sensors were deployed previously in the field to collect data on rock falls (Niklaus et al., 2017; 68 

Caviezel et al., 2018, 2019, Coombs et al., 2020; Souza and Benoit, 2024). More recently, boulders 69 

embedded in the body of a landslide have been used not only in the study of landform shape and 70 

evolution, but also in hazard assessment where they can be employed to measure slope-based 71 

displacement (Bennett et al., 2016; Shobe et al., 2020; Dini et al., 2021; Shobe et al., 2021; Roskilly 72 

et al., 2022, 2023). Sensors embedded in boulders start recording when movement is detected due 73 

to rotations or impacts exceeding a custom-defined threshold. Furthermore, smart sensors were used 74 

in laboratory experiments to study energy dissipation in pebble-bed collisions (Peng et al., 2024) or 75 

track pebbles embedded in a granular flow for motion characterisation (Gronz et al., 2016; Dost et al., 76 

2020). In this case, accelerometers, gyroscopes, and magnetometers were installed within five 77 

pebbles released in a flume. Although the granular flow was completely contained within the flume, 78 

some of the pebble trajectories inferred from sensor data were out of range, appearing to fall outside 79 

of the flume walls, indicating inability of sensors alone to reliably represent pebble motion and the 80 

need for further research (Dost et al., 2020).  81 
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The essential feature that makes sensors smart is their integration within a network that sends data 82 

to a server via wireless communication (e.g., Dini et al., 2021), i.e. a Wireless Sensor Network (WSN). 83 

The development in the Internet of Things (IoT) and Wireless Sensor Networks (WSN) have made 84 

possible the remote communication amongst sensors in the network and between the sensing network 85 

and servers (e.g., Gronz et al., 2016; Mao et al., 2019; Hart and Martinez, 2020; Dini et al., 2021). 86 

In geomorphology applications, MEMS are usually equipped with a transceiver and antenna to send 87 

data (e.g., Maniatis et al., 2021). Recent studies have made use of LoRaWAN, a wireless 88 

communication protocol capable of long distance and low power data transfer (Dini et al., 2021; 89 

Roskilly et al., 2022, 2023). Before applying this technology to landslide monitoring, LoRAWAN 90 

technology had given positive outcome to send data from motion sensors in wild animal tracking (e.g. 91 

Soriano-Redondo et al., 2021; Gauld et al., 2023).  Communication is bidirectional, permitting the 92 

sensor to both send data and receive messages in return. Once motion is recorded, data are stored 93 

and transmitted to receivers via LoRaWAN. Finally, the data are transmitted to cloud storage via the 94 

internet, usually using cellular networks. Thus, LoRaWAN wireless transmission represents an advance 95 

over RFID sensors where communication is only one-way and over shorter distances.  However, the 96 

use of LoRaWAN as protocol to send data from motion sensors has not yet received much attention in 97 

geomorphology.  98 

These recent applications highlight that the reliability of these sensors still need to be evaluated for 99 

monitoring purposes and tested for the development of early warning systems. The present study 100 

aims to improve our understanding of the functioning of motion sensors and LoRaWAN transmission 101 

protocol and to test their use in dedicated laboratory experiments before their deployment in ground-102 

based monitoring in landslide settings. Specifically, a tag equipped with accelerometers, gyroscopes 103 

and magnetometers was tested to get insight on how to discern mode of movements, and capture 104 

magnitude of motion of a single cobble travelling down a slope. The sensor was tested over different 105 

slope inclinations and modes of movement. The LoRaWAN wireless data transmission was also tested 106 

through sand layers of different thickness to study the impact on the signal strength received from 107 

the sensor. The study is organised as follows. The experimental setup, the sensor details and the 108 

experimental campaigns are described in Section 2. Then, the results from LoRaWAN data transmission 109 

tests and the findings on raw and processed data for cobble motion are shown in Section 3. Finally, 110 

the insights gained from the experiments and on how this can improve the application of this 111 

technology in ground-based monitoring of boulders are discussed in Section 4.   112 

2 Materials and Methods 113 

2.1 Experimental setup 114 

The experimental setup shown in Figure 1a consisted of an inclined panel (1500 mm x 1500 mm), 115 

followed by a horizontal one (2000 mm x 1500 mm) as in Manzella et al. (2016) and Makris et al. 116 

(2024). At the upper end of the inclined plane, a glass box with a sluice gate was installed to hold and 117 

release the cobble (Figure 1a). To control the spreading of the run out when the cobble is embedded 118 

in a sand layer, two acrylic side walls were mounted on the table constraining the maximum spread to 119 
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30 cm. A GoPro HERO8 located at the end of the horizontal board was used to record the experiments 120 

(Figure 1a). To track moving objects, the GoPro camera was set at 4K resolution with linear distortion 121 

and a frame rate of 30 fps. Further details about camera tracking are in the Supplementary Material. 122 

The cobble used in the experiments has an approximately round shape (Figure 1b and c). On the 123 

vertical plane the cobble had a diameter of 10 cm, whereas on the transversal plane, the cobble 124 

diameter was around 8 cm (Figure 2a and b). The cobble had a cylindrical borehole with a diameter 125 

of 4 cm and a depth of 7.5 cm (Figure 1b and c). The hollowed cobble was made of concrete cast 126 

using a mould created from a real cobble (further details on cobble making are in Clark, 2023). A 127 

smart sensor was placed within the borehole to detect the movements of the cobble (Figure 2a, b, 128 

and c). Specifically, the smart sensor used was a Miromico-manufactured device (Miromico manual, 129 

2020a, b) equipped with a 9-axis sensor comprising accelerometers, gyroscopes, and magnetometers 130 

(ST LSM9DS1) powered by a 3.6 V lithium thionyl chloride battery. The device is equipped with an 131 

additional low-power 3-axis accelerometer sensor (ST LIS2DH) used to continuously monitor 132 

acceleration. When the movement exceeds the user-defined threshold (configured to 390 mg in this 133 

study), the continuously monitoring accelerometer wakes the 9-axis sensor that begins recording. The 134 

smart sensor is also provided with LoRaWAN for wireless communication and a microcontroller to 135 

regulate data acquisition, processing, and transmission. The sensors in the LSM9DS1 record with their 136 

maximum range, i.e. the accelerometers at ±16g, the gyroscopes at ±2000 ˚/s, and the 137 

magnetometer at ±16 Gauss. The sensor tag and the battery were placed within a sensor enclosure 138 

stuffed with cotton-pads to damp and prevent overload damage due to violent impacts (Figure 2b). 139 

The sensor enclosure was then inserted into the cobble so that the sensor tag sat at the bottom of the 140 

borehole. The upper part of the cavity was then sealed with a blue tack for a total weight of 0.7 kg 141 

(Figure 2c). Although the cotton pad buffer in the sensor enclosure does not ensure a fixed sensor 142 

installation position within the cobble and can increase the error in the measurements, it is necessary 143 

to prevent damage to the sensor by dampening the impact overload and preserving the integrity of 144 

the sensors (Feng et al., 2023). This has been taken into account when analysing the data. 145 

The recorded data can be wirelessly transferred to a cloud server for online retrieval using a LoRaWAN 146 

gateway, or it can be manually downloaded via a USB cable. A Dragino-manufactured gateway was 147 

used for the tests and placed 3 m from the experimental table (Dragino LPS8 manual, 2021). The 148 

OpenWRT-based gateway is powered by an open-source software, with minor customisations of the 149 

stock firmware applied for additional features such as remote access and cellular modem support. The 150 

network was composed of the sensor, an end-node device, and the LoRaWAN gateway. The LORIOT 151 

network server receives the data from the gateway and then relays it to the SENSUM cloud server 152 

(Roskilly et al., 2022, 2023). Besides the transmitted data, LORIOT provides each transmission with 153 

received signal quality metrics, namely the Received Signal Strength Indicator (RSSI) and the Signal-154 

to-Noise Ratio (SNR). The signal strength that the gateway receives from the end node is measured 155 

by RSSI, which typically falls between -120 dBm and -30 dBm, indicating a weak reception and a high 156 

reception, respectively. SNR is defined as the ratio of the power of the received signal to the power of 157 

the background signal noise. SNR levels are typically between -20 dB and 10 dB, with higher values 158 

indicating less corrupted signal. MEMS features are summarized in Table 1.  159 
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 160 

161 

Figure 1 Experimental setup as in Manzella et al. (2016) and Makris et al. (2024). (a) Lateral view of 162 

experimental table. b), c) Cobble used in the experiments (Clark, 2023).   163 

 164 

 165 
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Figure 2 Laboratory experiments pictures. a) Sensor tag. b) and c) Sensor installation in the cobble. The starting 166 

position of the cobble within the release box for (d) rolling experiments and (e) sliding experiments while 167 

embedded in a thin layer of sand. 168 

 169 

Table 1. Main sensor parametric features (Miromico manual, 2020a, b). 170 

MEMS  

Power supply 3.6 V battery 

3-axis sensor (ST LIS2DH) 2 Hz 

Parameter  

Accelerometers ±2g 
Acquisition frequency 2 Hz 
Acceleration threshold to wake 9-axis sensor 390 mg 

9-axis sensor (ST LSM9DS1)  

Parameter  

Accelerometers ±16 g 

Gyroscopes  ±2000 °/s 

Magnetometers  ±16 Gauss 

Acquisition frequency (Accelerometers, Gyroscopes) 14.9 Hz or 59.5 Hz 

Acquisition frequency (Magnetometers) 5 Hz 

LoRaWAN  

Parameter  

Received Signal Strength Indicator (RSSI) from -120 dBm to -30 dBm 
Signal-to-Noise ratio (SNR) from -20 dB to 10 dB 

 171 

2.2 Data-fusion approach 172 

Micro-electromechanical systems (MEMS) usually suffer from stochastic and deterministic errors, 173 

including bias, scale factor errors, misalignments, noise, latency, and temperature dependence (e.g., 174 

Dewhirst et al. 2016). These factors hamper tracking based on Inertia Measurement Unit (IMU) and 175 

magnetometer (i.e., inertial navigation or dead reckoning), which is detrimental to its use in 176 

position/velocity monitoring. To avoid these issues and harness the best information about object 177 

motion, it is necessary to fuse sensor data together and use the camera-based positions as movement 178 

constraints (e.g., Dewhirst et al. 2016). This data fusion approach can be summarised in five steps as 179 

illustrated in the flowchart in Figure 3.  180 

First, the raw recordings are retrieved from the sensor at the end of each run. Second, calibrated data 181 

are derived from the sensor raw recordings. Magnetometers and each sensor in the Inertial 182 

Measurement Unit are calibrated. Specifically, the accelerometers are calibrated according to Frosio et 183 

al. (2009), the gyroscopes according to Glueck et al. (2013) and the magnetometers according to 184 

Dewhirst et al. (2016). Details on the calibration framework used are reported in the Supplementary 185 

Material. Third, the orientation is computed combining the readings of the accelerometers, gyroscopes, 186 

and magnetometers (e.g., Madgwick et al., 2011; Mahony et al., 2012). Here, the orientation is derived 187 

following the approach proposed in Mahony et al. (2012) coded in the AHRS (Attitude and Heading 188 

Reference System) python library (AHRS library, 2019). Fourth, linear accelerations were inferred from 189 

the accelerometers through gravity compensation. The fusion of these data sources eliminates the low 190 

frequency drift caused by integration of gyroscope errors, while giving better high frequency accuracy 191 

than accelerometer and magnetometer measurements alone. Then, given the sensor orientation 192 

(attitude) with respect to the local Earth reference frame, the calibrated accelerometer measurements 193 
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are rotated from the local body reference frame to the local Earth reference frame using simple 194 

transformations. The last step in the pipeline for IMU and camera tracking data fusion is a linear 195 

Kalman filter fed by sensor-derived (linear) accelerations and camera-based positions (Dewhirst et al., 196 

2016; Kim and Bang, 2019). 197 

 198 

Figure 3 Pipeline for IMU and camera tracking data fusion. In short, the raw data retrieved from the sensors are 199 

calibrated following the procedure related to each sensor and then filtered to better describe cobble kinematics. 200 

The sensors embedded in the cobble provide internally-measured acceleration data, that can be 201 

integrated for velocity and position change, but the derived data are prone to drift over time while the 202 

camera provides position data measured externally. Although camera-based position is subject to 203 

noise when differentiated for velocity and acceleration, it can constrain the drift from sensor data 204 

alone. By combining the measurement data, a two-step recursive algorithm computes the state of the 205 

system defined as the position, velocity, and linear acceleration of the cobble. The uncertainty in the 206 

state estimate is assessed by the relative weight given to the measurements and current state 207 

estimate. Additional information about sensor calibration and Kalman filter implementation can be 208 

found in the Supplementary Material. 209 

2.3 Design of the experiments 210 

Two experimental campaigns were conducted to test the performance of smart sensors in monitoring 211 

the movements of a cobble (Table 2). In the first set of experiments, the LoRaWAN wireless data 212 

transmission was tested using a gateway and a sensor acting as an end-node device. The experiments 213 

were carried out indoors with the gateway mains powered and the sensor battery powered. 214 

Specifically, to replicate the attenuation the terrain may exert on smart sensor transmitting data, the 215 
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device was covered by sand layers of increasing thickness (namely 0 cm, 5 cm, 8 cm, and 10 cm) to 216 

measure the signal strength of data packets transmitted via LoRaWAN. The sensor was placed in a 217 

plastic box and buried in sand within a bucket ensuring that there was a minimum sand layer was 218 

achieved in all directions.  By moving the bucket, the sensor then detected movement sending data 219 

to the gateway placed at a distance of 3 m. For these experiments, the acquisition frequency for the 220 

accelerometers and gyroscopes was set at 14.9 Hz, the magnetometers recorded at 5 Hz. In the 221 

second experimental campaign, the magnitude and mode of movements were analysed with the 222 

sensor installed in a cobble travelling down different inclines, namely 18˚, 25˚, 30˚, 35˚, 40˚, 45˚, 223 

50˚ and 55˚. The tagged cobble was placed within the release box with the sealed borehole facing 224 

upwards and a side leaning on the sluice gate (Figure 2f). The starting position allows the cobble to 225 

roll down the table.  For slopes of 25˚ to 40˚, the same experiments were also carried out embedding 226 

the cobble in a thin sand layer (~0.5 cm) to reduce the friction on the table and favour sliding motion. 227 

The cobble was placed within the release box with the sealed borehole leaning on the sluice gate 228 

(Figure 2g). The starting position of the cobble and the sand layer prevent full rotation and allows the 229 

cobble to slide down the table. For slope angles larger than 40°, sliding motion was not ensured and 230 

thus it was possible to carry out only rolling-type trials.  Each run was repeated three times. For these 231 

movement experiments the acquisition frequency for the accelerometers and gyroscopes was set at 232 

59.5 Hz and the magnetometers recorded at 5 Hz. In this set of experiments, the data were 233 

downloaded from the sensor via a USB cable.  The raw data collected showed the cobble movements 234 

in space and time. To characterise the mode of movement for each inclination, a typical behaviour was 235 

inferred from the data following the procedure described. First, the vector magnitudes of the 236 

acceleration, angular velocity and the magnetic field data were computed. Second, each vector norm 237 

was averaged over the run duration. Then, error bars were computed from these averages. Finally, 238 

camera-based data and sensor-based data were filtered (Figure 3) to better describe cobble motion.  239 

Table 1. Experimental campaigns. In the first experimental campaign, the sensor secured in a plastic box and 240 

buried under a sand layer of different thickness was moved so that Received Signal Strength Indicator (RSSI) 241 

and the Signal-to-Noise ratio (SNR) were sent to LORIOT network service through LoRaWAN. In the second 242 

experimental campaign, cobble motion down an inclined plane was tested for different mode of movements and 243 

slope inclination. Three repeats for each test were conducted (tick symbol stands for 3 repeats). 244 

First experimental campaign: Testing LoRaWAN under sand layers 

Experiment series Sand layer thickness (mm) 

A 0 

B 5 

C 8 

D 10 

E 15 

 

Second experimental campaign: Testing MEMS for cobble motion 

Experiment series Slope 
inclination 

Rolling 
experiments 

Sliding 
experiments 

F1 18° ✔  

G1 25° ✔  

G2 25°  ✔ 

H1 30° ✔  
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H2 30°  ✔ 

I1 35° ✔  

I2 35°  ✔ 

J1 40° ✔  

J2 40°  ✔ 

K1 45° ✔  

L1 50° ✔  

M1 55° ✔  

3 Results 245 

3.1 Received signal transmitted by LoRaWAN through sand  246 

The power of the received sensor data transmissions was evaluated with two metrics, the Received 247 

Signal Strength Indicator (RSSI) and the Signal-to-Noise Ratio (SNR) (Figure 4). For the accelerometer 248 

and gyroscope data packets, the median value of RSSI is -35 dBm with no sand coverage (Figure 4a). 249 

The median value decreases to -45 dBm when sensors are submerged in a 10-cm sand layer. Moreover, 250 

the cumulative probability increases its slope suggesting data closely distributed around its median 251 

value. Similarly, the signal strength indicator of the magnetometer data packets is sensitive to sand 252 

layer depths (Figure 4b). Indeed, the median value RSSI decreases from -35 dBm to -55 dBm. In 253 

contrast with the behaviour of accelerometer and gyroscope packets, the cumulative probability 254 

becomes less tilted since the sample is more dispersed around the median. Overall, the RSSI is more 255 

sensitive to sand submergence with magnetometer data than with the gyroscope and accelerometer 256 

data. However, this sensitivity behaves differently. For the accelerometer and gyroscope packets, the 257 

RSSI becomes concentrated around the median value. On the other hand, for the magnetometer 258 

packets, differently from the gyroscope and accelerometer, RSSI is lower but more dispersed when 259 

the sensor is submerged in a sand layer probably due to a different acquisition frequency. Moreover, 260 

the SNR is not as sensitive as RSSI to sand layer submergence. SNR is positive ranging between 5.4 261 

dB and 13.5 dB for the accelerometer and the gyroscope data packets (Figure 4c) and between 5.2 262 

dB and 13.0 dB for the magnetometer data packets (Figure 4d). Regardless of the sand thickness 263 

tested, the median value for SNR stays approximately constant for both packet types.  264 
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 265 

Figure 4. Cumulative probability distribution of (a and b) Received Signal Strength Indicator (RSSI) and (c, d) 266 

Signal Noise Ratio (SNR) when the signal is transmitted through different sand layer depths, namely 0 cm, 5 cm, 267 

8 cm, and 10 cm (experiment series A-E, Table 2). RSSI and SNR are measurements of the signal power received 268 

in the gateway and the ratio of the signal power and the noise power, respectively.  (a, c) Accelerometer and 269 

gyroscope packets. (b, d) Magnetometer packets. 270 

 271 

3.2 Recordings from accelerometers, gyroscopes, and magnetometers and 272 

camera-based positions 273 

Raw data recorded on a 30˚ incline are shown as an example of characteristic signals of the sensors 274 

while the cobble travels down the slope (Figure 5). Similar observations can be derived from the raw 275 

data collected on other slope angles. Sensor outputs show different ranges when the cobble freely 276 

travels down the tilt table (Figure 5a, b, c) compared to when it travels while embedded in a sand 277 

layer (Figure 5e, f, g). Following its release, the cobble was seen simply sliding down the incline when 278 

embedded in the sand, but without the sand it rolled down the table instead. These different modes 279 

of movement are evident in the gyroscope recordings. When the cobble is not embedded in a sand 280 

layer, the angular velocities increase progressively reaching maximum magnitude at the junction 281 

between the sloping and the horizontal board and then gradually decrease (Figure 5a). The angular 282 

velocities along all axes range between -2000 ˚/s and 1200 ˚/s, confirming the rolling movements 283 
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seen in the experiments. Conversely, when the cobble is embedded in a sand layer, full rotations do 284 

not occur and thus the angular velocities show less variation, between -200 ˚/s and 400 ˚/s (Figure 285 

5e). The smaller range for the angular velocities denotes a different behaviour, confirmed by the sliding 286 

observed during the experiment.  287 

 288 

The accelerometer detects the impacts occurring during the motion. When the cobble rolls down the 289 

slope, the acceleration signal shows spikes across all axes representing the contact impacts between 290 

the cobble and the experimental table during the rolling motion (Figure 5f). The highest magnitude 291 

peaks occur when the cobble touches the horizontal board at the end of the sloping board and reaches 292 

the value of -14.5 g in the vertical direction. Conversely, when the cobble is embedded in a sand layer, 293 

the accelerometer signals are smoother ranging between –0.5 g and 2.0 g (Figure 5f). Accelerations 294 

in all directions show smaller changes with a small spike occurring when the slope becomes horizontal 295 

along the experimental table.  296 

 297 

Magnetometer recordings exhibit some differences depending on the mode of movements. In the 298 

sliding experiment, the magnetic field signal is flat in all directions as the cobble travels down the 299 

slope and it changes slightly as the cobble slows down on the horizontal board (Figure 5g). Similarly, 300 

in the rolling experiments, while the cobble is on the slope, the magnetic field data are approximately 301 

constant with time and are then subject to larger variations when the cobble decelerates (Figure 5c). 302 

Between modes, some differences are seen in the magnetic field values, ranging between -0.5 and 303 

0.5 Gauss for the rolling experiments and -0.2 and 0.6 Gauss for the sliding ones. 304 



This is a non-peer reviewed manuscript submitted to GEOMORPHICA  

 

12 

 

305 

Figure 5. Raw recordings of the three sensor types on a 30˚ incline for (a, b and c) a rolling experiment 306 

(experiment series H1, Table 2) and (e, f and g) a sliding experiment (experiment series H2, Table 2). (a, e) 307 

gyroscopes data, (b, f) accelerometers data, (c, g) magnetometers data after upsampling. The solid line refers 308 

to the x axis, the dashed line to the y axis and the dotted line to the z axis.  Trajectories extracted from camera 309 

videos for (d) rolling tests and (h) sliding tests carried out on a 30˚ incline. The solid red line shows the time 310 

when the cobble passes over the slope break. 311 

 312 

The cobble paths tracked by the camera on the 30˚ incline are shown to highlight the differences 313 

between the rolling trajectory (Figure 5d) and sliding trajectory (Figure 5h). When the cobble is rolling, 314 

the trajectory keeps approximately straight and then, in the second half of the horizontal board, tends 315 

to drift to the left-hand side. These paths can be explained based on the momentum and the irregular 316 

shape of the cobble. After the release, the cobble accelerates rapidly increasing its momentum. Thus, 317 

along the slope, when the momentum is high, the cobble hardly drifts from its initial direction. At the 318 

junction between the slope and the horizontal board, the cobble keeps on rolling in the same direction 319 

without losing contact with the surface. In the second half of the horizontal board, when the 320 

momentum has reduced, the irregular shape of the cobble makes its trajectory drift. Conversely, when 321 

the cobble is embedded in sand, it keeps approximately the same side in contact with the experimental 322 

table and slides down the slope. Since full rotations do not occur, the irregularities on the cobble 323 

surface only slightly affect the trajectory so that it is approximately straight. On the horizontal board, 324 
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the cobble motion is quickly stopped by the sand layer. Thus, the resulting trajectories are shorter 325 

than in the rolling experiments. 326 

3.3 Lumped representation of motion from raw data 327 

The cobble activity was lumped into error bars representing the spatiotemporal averages over all runs 328 

for each slope and for rolling and sliding experiments (Figure 6). In Figure 6, error bars on the left-329 

hand side refer to motion on the inclined plane (Figure 6a, c, and e), and error bars on the right-hand 330 

side correspond to the motion on the horizontal plane (Figure 6b, d, and f). The error bars referring 331 

to the gyroscopes show a clear separation between rolling and sliding experiments from both the 332 

magnitude and distribution of angular velocity (Figure 6a, b). Specifically, sliding experiments exhibit 333 

similar values for angular velocity on the inclined plane (Figure 6a) and on the horizontal plane (Figure 334 

6a) regardless of the slope angle (𝜔≈0˚/s). Conversely, rolling experiments show different behaviour 335 

depending on inclination. On the inclined plane, the angular velocity becomes larger as the tilt table 336 

increases to 50˚ and then drops at a slope of 55˚ (Figure 6a). A similar trend is shown on the 337 

horizontal plane where the cobble released from a more inclined plane has larger values of angular 338 

velocity (Figure 6b). On the horizontal plane, at around 50˚-55 ˚, the increasing trend of angular 339 

velocity also shows a sudden drop on the horizontal plane. On both planes, the angular velocity for 340 

rolling experiments ranges between 1000 ˚/s and 2500 ˚/s.   341 

 342 

Raw acceleration data shows a clear separation between rolling and sliding experiments (Figure 6c, 343 

d). This separation suggests a remarkable difference in the acceleration depending on the mode of 344 

movement, as the acceleration in sliding experiments (1-1.5 g) was smaller than in rolling experiments 345 

(namely 1.5-4.0 g). The sensor was not tightly fixed to borehole walls resulting in slight motion of 346 

sensor when the cobble travels down the incline, especially during full rotations. Hence, the vibrations 347 

were seemingly higher than in the rolling experiment rather than in the sliding experiments resulting 348 

in higher values of total acceleration. On the inclined plane, the acceleration does not increase with 349 

the slope inclination and shows an irregular trend. Specifically, the acceleration increases up to a 35˚ 350 

incline, then it decreases at 40˚, it goes up again at 50˚ before dropping at 55˚. On the horizontal 351 

plane, the acceleration in rolling experiments is more regular as the cobbles released from higher 352 

slopes show larger acceleration (Figure 6d). However, between 50˚ and 55˚, the acceleration drops 353 

stopping the increasing trend. Although the raw acceleration magnitude and distribution separate the 354 

modes of movement, the irregular behaviour, especially for high slopes, is not completely clear from 355 

a physical point of view. Raw acceleration data need further investigation to explain the cobble 356 

dynamics on the slope. 357 

  358 

Similarly, the raw magnetometer data show irregular behaviour. Magnetometer recordings have a 359 

similar range regardless of the mode of movements (Figure 6e, f). However, in the rolling experiments, 360 

the magnetic field magnitude decreases non-monotonically by increasing the inclination up to 35˚ on 361 

the inclined and the horizontal plane. For a slope of 40˚, the magnetic field drops abruptly and then 362 

shows similar values for higher slopes on both the inclined and the horizontal plane. Conversely, in 363 
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the sliding experiments, raw data increases with incline up to 35˚ and then it slightly decreases at 364 

40˚. Overall, the magnetic field magnitude changes non-monotonically for rolling and sliding 365 

experiments. However, in the rolling experiments, the magnetic field tends to decrease as the slope 366 

angle increases, whereas, in the sliding experiments, it has the opposite trend. The same behaviour 367 

is observed on both the horizontal and the inclined plane. Although different trend responses are 368 

seemingly detected for a slope increase, it is not possible to characterise the mode of movement with 369 

the magnetometer data alone.  370 

 371 

 372 

Figure 6. Lumped representation of cobble motion for rolling and sliding experiments using raw data. (a, c, and 373 

e) Error bars for motion on the inclined plane. (b, d, and f) Error bars for the motion on the horizontal plane. The 374 

mean magnitude of (a and b) angular velocity, (b and c) acceleration, and (e and f) magnetic field. Amber error 375 

bars refer to experiments with a sliding cobble, whereas blue error bars are tests with a rolling cobble. 376 

3.4 Kinetic energy as representation of motion 377 

The total kinetic energy of an object is defined as the sum of the translational and rotational energy 378 

(e.g., Díaz, 2019): 379 

𝐸𝑇𝑂𝑇 = 𝐾 + 𝑅 =
1

2
𝑚𝑣𝐺

2 +
1

2
𝜔𝑇𝐼𝜔 (1) 
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where 𝑚 is the mass of the cobble, 𝑣𝐺 is the velocity magnitude of the centre of mass, 𝜔 is the angular 380 

velocity, while 𝐼 is the moment of inertia of the cobble. By approximating the cobble as a sphere of 381 

radius R, the moment of inertia is  2
5
𝑚𝑅2. The first term on the right-hand side is translational energy, 382 

whereas the second term is the rotational energy. Given the mass and the average diameter of the 383 

cobble, the variation of the average total kinetic energy can be calculated with respect to the inclination 384 

of the slope using the magnitude of linear and angular velocity (Figure 7). The linear velocity is 385 

computed through the Kalman filter fed by the camera-based positions and sensor-based linear 386 

accelerations (see the Supplementary Material for further details), whereas the angular velocity is 387 

inferred from the orientation angles (Section 2.3, Figure 3). 388 

For the rolling experiments, on the inclined plane, the total kinetic energy increases with incline up to 389 

45˚ (Figure 7e). Then, the energy slightly decreases at 50˚and 55˚, where the average value stays 390 

between 4 J and 6 J. Similarly on the horizontal plane (Figure 7f), the total kinetic energy increases 391 

with the slope angle but suddenly decreases when the slope angle reaches 50˚- 55˚. For sliding 392 

experiments, on the inclined plane, the total kinetic energy increases until the slope reaches 35˚ and 393 

then it reduces (Figure 7e). On the horizontal plane, the drop in the total kinetic energy occurs at a 394 

slope angle of 35 ˚ - 40˚ (Figure 7f). A better understanding of the trend shown by the total kinetic 395 

energy is provided by the translational and rotational energy. In rolling experiments, as the slope 396 

inclination increases, the rotational energy increases and suddenly drops at 55˚ both on the inclined 397 

and horizontal plane (Figure 7c, d). Translational energy increases monotonically on the horizontal 398 

plane (Figure 7b). Conversely, on the inclined plane, the increasing trend of the translational energy 399 

is interrupted with sudden drops at 40˚ and at 50˚ -55˚ (Figure 7a). By hitting the horizontal board, 400 

the cobble makes small bounces. Consequently, the cobble does not keep a point of contact with the 401 

boards while it transits from the tilted board to the horizontal board. The impact dissipates energy 402 

leading to its decrease at 50˚ and 55˚. In sliding experiments, the rotational energy is very small so 403 

that there is a clear separation between modes of movements on the inclined and horizontal planes 404 

(amber and blue error bars in Figure 7c, d). The translational kinetic energy on both planes is lower 405 

than in the rolling experiments but has the same trend for slope changes between 30˚ and 40˚ (Figure 406 

7a, b). Comparing rolling and sliding tests on the same slope, the average value of the total kinetic 407 

energy is slightly larger in the rolling experiments since the rotational energy is higher than in the 408 

sliding experiments. Indeed, in sliding experiments, the rotational kinetic energy is approximately 409 

constant and smaller than in rolling experiments on the inclined and horizontal planes. The 410 

translational kinetic energy in sliding experiments has a trend similar to the rolling experiments but 411 

with slightly smaller values.  412 
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 413 

Figure 7. Error bars of (a, b) the mean translational kinetic energy K, (c, d) rotational kinetic energy R and (e, 414 

f) total kinetic energy Etot in rolling and sliding experiments. (a, c, and e) Motion on the inclined plane. (b, d, and 415 

f) Motion on the horizontal plane. Amber error bars refer to experiments with a sliding cobble, whereas blue error 416 

bars describe tests with a rolling cobble (m =0.7 kg; R = 0.05 m; I = 1.68 kg ˑ m2). 417 

4 Discussion 418 

Our laboratory experiments have given us insights into the possibilities and challenges of smart 419 

boulders for landslide monitoring and early warning in field applications. Despite some limitations in 420 

the camera and sensor settings dictated by laboratory and design constraints, the protocol and 421 

methods developed here are able to provide a lumped representation of the motion magnitude, 422 

determine the mode of movement of the cobble and test its signal transmission. Firstly, it seems 423 

possible from our experiments with a sand-filled bucket of different depths (section 3.1) to obtain a 424 

signal from partially buried sensors, though in a complex field setting this will inevitably also depend 425 

on other factors such as geology, topography, atmospheric conditions etc. Preliminary data from field 426 

experiments conducted in parallel to our laboratory experiments also suggest that this is the case, 427 

with signal obtained even from partially buried sensors (Roskilly et al. 2023; Newby et al., 2024).  428 

Laboratory experiments on the style of cobble movement show the potential of IMU sensors for 429 

monitoring landslides by detecting the style of movement e.g. by rolling or sliding, and magnitude of 430 

movement. Thus, by analysing the activity of boulders distributed on a landslide, it should be possible 431 
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to analyse landslide movements in time and space. Boulder activity would possibly help to map the 432 

boundaries of zones where displacements occur (e.g., Dini et al., 2021) and monitor movement of the 433 

underlying landslide. The sensor used in this study is also equipped with a GPS that, although remained 434 

deactivated in the laboratory trials, can record the location of the smart boulder outdoors given 435 

satellite coverage (Miromico manual, 2020a, b).  436 

 437 

Whilst there are benefits of a technology that can move with the landslide over more traditional 438 

techniques that may be disrupted by landslide movement, boulders may not remain fully embedded 439 

in the body of the landslide for the entire duration of the motion and thus may not always represent 440 

underlying landslide movement. The sensor recordings from the field thus need to be carefully 441 

analysed to determine whether boulder motion is representative of deeper-seated landslide movement 442 

or more surficial movements in flows or rock falls. Moreover, LoRaWAN technology has to provide low-443 

latency data transmission with respect to the timescale of the events being monitored. Thus, the time 444 

lag between sensor recording and data retrieval should be carefully studied in field sites. To allow 445 

timely data transmission for early-warning system applications, it would be advisable to rapidly 446 

characterise the motion of the boulder by computing a high-level metric on-board the sensor (such as 447 

the total kinetic energy proposed in this study) and then send this via LoRaWAN with highest priority. 448 

A full understanding of landslide behaviour requires monitoring data at different spatio-temporal scales 449 

to track local and global movements, correlate movements occurring on the landslide surface and 450 

deeper layers and get insight into the sensitivity of subsurface drainage network to rainfall. In the 451 

past, an integrated multi-sensor approach has been used to study and frame landslide behaviour (e.g., 452 

Castagnetti et al., 2013, Casagli et al., 2017; Wang Z. et al., 2022). Hence, smart boulders could be 453 

integrated into a multi-sensor monitoring system where remote-sensing and ground-based 454 

measurements are used together to capture fully the landslide behaviour.  455 

5 Conclusions 456 

In view of possible application for monitoring and early warning of landslides, in this study we tested 457 

the ability of novel smart sensors to track and characterize cobble motion and send data via wireless 458 

network in laboratory experiments . Specifically, the study investigated the ability of the sensor to 459 

send data via LoRaWAN even when buried in a layer of sand and to detect magnitude and type of 460 

motion using the the 9-axis IMU tag. The main experimental findings can be summarised as follows. 461 

 462 

First, the Received Signal Strength Indicator (RSSI) declines as the thickness of the sand layer 463 

covering the sensor increases. RSSI shows more sensitivity to sand coverage in the magnetometer 464 

packets than in the gyroscope and accelerometer packets. Conversely, the Signal-to-Noise Ratio (SNR) 465 

stays approximately constant regardless of the sensor. The sensitivity of the LoRaWAN system to 466 

possible sand coverage adds a degree of complexity to wireless data transmission in the field and 467 

deserves further investigation to better frame the technology potential for landslide monitoring and 468 

early warning. 469 

 470 
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Second, the sensor was able to differentiate between different types of movement of cobbles in our 471 

laboratory experiments. Importantly, even without calibration, raw data allows detection of movement 472 

and separating two modes of movement, namely rolling, and sliding. This is important because it may 473 

be time-consuming and difficult to accurately calibrate sensors used in field-based monitoring 474 

systems. In field applications, this finding can potentially be useful to understand the type of motion 475 

of the landslide in which smart cobbles/boulders are embedded. However, it is important to consider 476 

that raw data do not give reliable values for the acceleration, angular velocity, and magnetic field. 477 

 478 

By combining sensor data and camera-based data in the laboratory setting, it was possible to derive 479 

a full characterisation of the movements of the cobble. A data fusion approach makes it possible to 480 

derive values for position, orientation, velocity, and acceleration allowing the evaluation of the total 481 

kinetic energy. As slope increases, the total kinetic energy becomes greater, suggesting its potential 482 

use as metric for characterising the cobble motion when embedded in the body of the landslide.  483 

 484 

Overall, smart sensors showed their potential to give new insights on the dynamics of complex 485 

hazardous flows. In field applications, smart boulders can provide an indication to the initiation of 486 

movement and a quantitative approximation of its intensity and could be used effectively to fully 487 

capture the landslide behaviour when integrated into a multi-sensor monitoring system.  488 

Notation 489 

𝑅𝑆𝑆𝐼 Received Signal Strength Indicator (dBm) 
𝑆𝑁𝑅 Signal-to-Noise Ratio (dB) 
𝑎 Total acceleration (g) 
𝜔 Angular velocity (°/s) 
𝜙 Direction of magnetic field (Gauss) 
𝑣𝐺 Velocity of the centre of mass (m/s) 
𝑚 Cobble mass (g) 
𝑅 Average cobble radius (m) 
𝐼 Moment of inertia (Kg m2) 
𝐾 Translational kinetic energy (J) 
𝑅 Rotational kinetic energy (J) 
𝐸𝑡𝑜𝑡 Total kinetic energy (J) 

 490 
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