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complete representation of human body movement compared
to the traditional 3D key point skeleton.

The majority of the traditional online benchmark datasets
for 3D human pose estimation have 3D key points as ground
truth. However, only a handful of datasets have been created
with the SMPL human model ground truth. In this research,
the focus is on improving the estimation of self-occluded
motions using SMPL models. We have also created a dataset
of self-occluded motions performed by three subjects with
SMPL model ground truth. We also introduced a new error
measurement method for evaluating the correct pose of SMPL
models relating to the SMPL rotation parameters.

The input video in our research does a full-body capture
of a single subject using a monocular video camera, whilst no
external objects or other persons are in between the subject and
the camera. The main source of occlusion is self-occlusion of
the body parts due to having only one camera. The output
is the parametric SMPL model. Current HPE methods are
ranked based on the achievable pose error and not by handling
extreme cases, so their ability to handle self-occlusion or
external occlusion is not part of their performance measure.
Most of the more recent work on occlusion is on external
occlusion, for example being occluded by another person,
external objects, being outside the frame, crowded scenes or
having only a single image. In the area of video-based or 3D
HPE with SMPL model estimation, the self-occlusion problem
is largely ignored and remains an outstanding issue in state-
of-the-art methods.

When a large part of human motion is occluded, the infor-
mation about the performed action can be used to reconstruct
the 3D motion in the output. It can be shown that the overall
pose of the SMPL human model can be improved using
machine learning post-processing, which can be reflected in
a lower rotation error. To recover the occluded poses, the
machine learning post-processing models should be trained
on a specific action. Action recognition in the input video
can help select the appropriate model that is trained on a
specific action. Both frame-to-frame and predictive sequence-
to-sequence machine learning are used. It is shown that both
methods can improve the occluded limb error and reconstruct
the occluded motion.

Abstract—Monocular video motion capture is a popular al-
ternative to more expensive technologies such as marker-based 
optical motion capture. However, motions that are occluded from 
the single camera view, for example, due to self-occlusion, are 
difficult to recover. In this paper, we propose a machine learning-
based method that is used in post-processing to reconstruct the 
incorrect motions that are caused by self-occlusion. The post-
processing network is trained on a dataset acquired from three 
subjects doing 30 different basic exercise motions that include 
self-occlusion. The collected data comprise single video camera 
footage and optical motion capture data as the ground truth. 
To correctly reconstruct the occluded motion, action recognition 
information is used to select a machine learning model that is 
trained on the specific m otion. T he p erformance o f predictive 
and non-predictive networks are compared to each other and 
also with the state of the art in human motion estimation. The 
results show a significant reduction of the overall pose error and 
the pose error for selected body parts with a large degree of 
self-occlusion.

Index Terms—human pose estimation, self-occlusion, single 
view video, SMPL model, machine learning, deep learning

I. INTRODUCTION

Human Pose and Mesh Estimation is an important problem
that has attracted a lot of research interest in the last three
decades. Vision-based estimation of the human pose and shape
from monocular video whilst addressing the problem of self-
occlusion is the focus of this research paper. There is a wide 
variety of methods introduced in the literature to solve the Hu-
man Pose Estimation (HPE) problem. Despite advancement,
some unresolved challenges such as ambiguity, occlusion by 
self or an object, collision of body parts, unnatural poses,
issues with low quantity and diversity of data, and use of 
different skeleton/human models, still exist.

Improving benchmarks, protocols and toolkits for 3D human 
mesh recovery methods are among the future directions of
research in this area. There is a lack of large-scale online 3D 
mesh data sets and protocols for effective evaluation of 3D
human mesh recovery methods. The SMPL human model [1], 
consisting of a human mesh and an underlying skeleton, is one
of the most popular 3D virtual human models. Unlike the more
traditional 3D key point skeleton representation of the human
body, the joints of the SMPL model have both rotational and
positional degrees of freedom. This makes SMPL a more



II. BACKGROUND

HPE algorithms are divided into top-down and bottom-up
approaches. Top-down methods first detect individual subjects
and then estimate the pose for each subject. Bottom-up meth-
ods find all the key points in the image and then group them
into individuals. They have lower accuracy than top-down
methods but they are better at handling occlusion because of
consideration of the joint relationships. One example of such a
bottom-up method is ORPM [2] (occlusion robust pose-map)
which uses the joint location redundancy that can be applied
only to extremity joints to infer occlusion. Another bottom-up
method is XNect [3] which encodes the joint’s immediate local
context in the kinematic tree to handle occlusion. Finally, there
is also the depth-aware part association algorithm [4] which
is robust to occlusion.

Various methods are designed to solve the occluded pose
estimation problem specifically. One category of methods first
finds the 3D skeleton that has some missing joints and then
completes the missing joints with statistical and geometric
models [3], [5]–[7]. The attention mechanism method is
another approach that enforces the model to focus on non-
occluded areas and results in more robustness in the final
output [8]–[10]. If the input is video, it is possible to use
temporal methods [11]–[19]. If the complexity of occlusion
in the real world is higher than the available data, data
augmentation methods [19]–[22] can solve this problem. In
severe occlusion scenarios where there are little or no cues,
some recent methods regress multiple plausible poses [23]–
[26].

The problem of self-occlusion has also been specifically
researched. For example, to reduce the ambiguity in inferring
a 3D pose from a single image, both kinematic and orientation-
related constraints are used [6]. This is done by projecting the
3D model onto the input image and other synthetic views,
improving the ambiguity. In [27], the occlusion problem in
a single image is solved by using the Euclidean Distance
Matrix. In [28], a Markov random field is used to represent
the occlusion relationship between human body parts in terms
of occlusion state variables. The depth ordering of the body
parts creates occlusion states that need to be estimated. The
dataset is labelled according to how the depth ordering of body
parts and self-occlusion is changing during the video. The
inference is done in two separate stages: body pose inference
and occlusion state inference. A new cue is used in [29]
to address the problem of self-occlusion. The self-occlusion
handling process uses the torso orientation as a cue. A new
occlusion-aware graphical model is introduced in [30] that
explicitly models both self-occlusion and other occlusions to
improve robustness. The model learns the part-level occlusion
relationship from data and infers the occlusion states of parts
explicitly. In [31] pixel level hidden binary variables are used
for self-occlusion reasoning. Some methods try to model self-
occlusion holistically. In [32] self-occlusion of pedestrians is
modelled in a joint shape and appearance tracking framework.
In [6] self-occlusion reasoning is treated as a post-process with

Twin-GP regression for 2D pose rectification.
Most of the previous research on self-occlusion is related

to a single image and 2D human pose estimation [6], [27],
[29]–[31] or 2D silhouette [32]. Some of the previous methods
are demanding in terms of data, for example, [6] is taking
advantage of multiple view training data and [27], [31] need
a large training dataset. In [28] and [31] the depth ordering of
body parts is required to be known beforehand. [28] is a video-
based method but being part-based it is unable to estimate
invisible body parts or limbs. The most widely used human
body model in the previous work on self-occlusion is the body
parts model [28]–[31]. Existing work on occlusion problems in
SMPL-based methods [9] works for occlusion by other objects
but does not perform well in self-occlusion scenarios where
body parts are occluded by other body parts.

Our research focuses on the problem of self-occlusion in
video-based 3D human model estimation, which is an under-
researched area. We also believe this is the first work on the
problem of self-occlusion using SMPL-based methods. Our
approach does not require a complicated or large training
dataset and only uses single-view video data. Furthermore,
it is able to estimate invisible motions and body parts, unlike
the previous video-based research.

III. METHODS

The main aim of the research is to improve estimated
human motion in challenging scenarios such as self-occlusion.
We chose MotionBERT [33] as our baseline to evaluate the
performance of our self-occlusion recovery methods. Motion-
BERT is a recent state-of-the-art 3D human pose estimation
method that, given the input video, can predict several pieces
of information such as 3D key points, the parametric SMPL
model and the action performed by the subject. Then, a model
that is trained on the specific action is chosen to predict
the correct motion from the imperfect SMPL output of the
human pose estimator. For better prediction of self-occluded
and invisible motions, machine learning training data can be
restricted to a specific action. Assuming we have an input
video of arbitrary motions, the action label that is specified
with action recognition is used to choose the model trained
on the specific action in the video. Action segmentation is
used to specify the start and end frame of the action from the
video.

Figure 1 shows the process of self-occlusion correction.
The video is given to the HPE block, where its output will
be incorrect SMPL model prediction due to self-occlusion. A
machine learning model that is trained on a dataset of incorrect
and correct pose/motion pairs then predicts the correct SMPL
pose/motion in which the self-occluded frames are improved.

A. Dataset Recording and Creation

The introduced post-processing method should be able to
recover the 3D motion from the self-occluded videos when ap-
plied to any HPE program. For machine-learning-based post-
processing, we are using pairs of incorrect SMPL (predicted
by HPE) and correct SMPL (created using MoCap). This pair



Figure 1. Human Pose Estimation (HPE) post-processing using machine
learning for self-occlusion compensation. The action-specific machine learn-
ing model is chosen with the help of action recognition done by the HPE
module. Action segmentation specifies the start and end frame of the action
video segment within the input video.

of input and ground truth data is created by capturing syn-
chronised monocular video and motion capture data from self-
occluded motions. A total of 30 different motions with specific
emphasis on self-occlusion from three different subjects were
recorded. Performed actions in the data are repeated to add to
the quantity and diversity of the data.

The motion capture was recorded at 120 fps and the video
data frame rate was also 120 fps. The subjects were wearing
motion capture suits or black outfits, which makes subject
calibration and data recording easier. Since the motion capture
lab walls and floor are black, we have added a green screen
behind the subject to easily segment the subject from the
background.

A (blurred) version of the video can be found in [34].

B. Data Preparation

The motion data that is processed in this work are the
incorrectly estimated joint rotation values (affected by self-
occlusion) of the SMPL human model. The SMPL model
has 24 body joints and the rotational values are in axis-angle
format with three rotation values. Therefore, each pose can be
represented by a 1D array of length 72. A motion matrix is
a 2D matrix of n × 72 in which n is the number of frames
recorded from MoCap and a single video camera. There are
two corresponding motion matrices: one resulting from the
MoCap and one from the synchronised video human pose
estimation.

Suppose we have a motion sequence of length n which
is down-sampled from 120 fps to 30 fps, then a 124-frame
window from this sequence is chosen that is equal to around
four seconds of video. This is sufficient time to complete one
action. An overlapping window from the sequence with a one-
second (30 frames) gap is chosen.

Each of the three subjects in the recorded dataset performed
30 different actions resulting in 90 video sequences. After
dividing the data of three subjects into overlapping matrices
we will obtain 10773 data matrices.

The SMPL-X model resulting from MoCap has extra infor-
mation as compared to the SMPL model resulting from HPE,
that needs to be removed. This includes the global position of
the root joint and extra joints in the body e.g. additional finger
joints.

C. Frame-based and Classic Machine Learning

The first proposed method uses a random forest (RF) model
to learn the corresponding correct pose to each incorrectly
predicted pose from HPE. As mentioned before, each pose is
a set of joint orientations. The RF model is chosen due to being
a multi-input and multi-output model suitable for this purpose.
Each frame of the motion matrix is used as independent data
for the RF model.

To properly compensate for the self-occluded motions,
the uniqueness of correct to incorrect pose mapping can be
guaranteed when having information about the action that is
taking place. With the help of action recognition, the model
that is trained on a specific action can be used to properly
compensate for the occluded motion.

D. Predictive Sequence-based and Deep Learning

The second proposed method is a deep learning method
and uses a motion sequence of poses instead of just one pose
as the input data. It also creates a correspondence between a
window of motion from the present to a window of motion
from future frames. Two different networks with one and two
LSTM layers - see Figure 2 - are used for this purpose.

Figure 2. 1-layer LSTM AutoEncoder (AE1) for predictive pose correction
with an input sequence of length 10 and output sequence of length 5. The
brackets show the dimensions of the input and output data of each layer. The
first dimension (n) is the batch size.

The data is first scaled between -1 and +1. To divide into
overlapping windows, the length of the window from the past
is 10 frames, which is mapped to a window of the future with
a length of 5 frames.

As can be seen in Figure 2, the output of the network is
the predicted window of future motion with a fixed length



of 5 frames. Since input/output windows are overlapping, for
each frame there will be more than one predicted value from
different predicted windows. The average of predicted values
for each frame is computed to create the final output motion
signal.

Similar to the frame-based method in section III-C, a model
that is trained to recover the incorrect occluded motion can
better predict future motion when it is trained on a specific
action. Therefore, an additional step is needed to do action
segmentation and action recognition of an arbitrary sequence
of different actions and use the action-specific model to predict
the output.

E. Error Measurement

This work is focused on solving the problem of self-
occlusion and unnatural poses in SMPL human pose estima-
tors. In HPE there is quantitative and qualitative comparison
between the state-of-the-art and the implemented method.
Since the errors are average measurements during the whole
motion sequence, sometimes qualitative comparison is also
needed to show how a method can improve the overall shape
of the predicted pose in specific occurrences such as occlusion
and unnatural poses.

The pose parameters of the SMPL model that are related
to the output is a set of joint rotations in axis-angle format.
Therefore, root-relative joint rotations are representative of
the improvement of the overall pose in the SMPL model.
The joints’ 3D position error in the SMPL model can be
affected by several factors such as root joint orientation or
incorrect estimation of global position. The position is only
representative of 3 degrees of freedom in joint movements.
Therefore, in addition to the traditional mean joint position
error, a new error measurement for SMPL-based human pose
estimation based on quaternion differences is introduced.

IV. RESULTS

The machine learning-based self-occlusion correction
method is tested on the dataset of occluded motions collected
in the lab. The orientation and position error of the output
SMPL model were calculated. The data consists of 30 different
actions with emphasis on self-occluded motions performed by
three subjects.

The self-occluded motions from our dataset are tested on
two different state-of-the-art (SOTA) methods, one of them is
SMPL-based human pose estimation for occlusion [9] and the
other is a recent human pose estimator [35]. When a large part
of the motion is invisible or limbs are hidden from the single
camera view, many of the recent HPE methods are unsuc-
cessful. It should be noted that the proposed post-processing
method can potentially find the self-occluded motion when
applied to any HPE algorithm. In the demonstrated results,
our method is added to the MotionBERT [33] HPE method
which provides both action and 3D key points as well as the
SMPL human model as the output.

There are three different post-processing methods: frame-
to-frame machine learning using random forest (RF) and

sequence-to-sequence machine learning using LSTM-based
autoencoders with one and two layers respectively. There are
three different subjects with 30 different actions, resulting in
90 different videos each doing specific actions.

The results from two different experiments are reported
next. In the first experiment, the post-processing method is
trained and tested on all different actions and the error of the
pose is calculated - see Table I. To recover the occluded pose
correctly, in the second experiment, the models are trained on
specific action data. The result of self-occlusion human pose
recovery is shown in the qualitative and quantitative results
section (See Figure 4 and Table II).

A. Qualitative results

Figure 3 shows the results of a complex self-occluded
pose: hands crossed over behind the back. The first sub-
image shows the result for HPE whilst sub-image 2 shows
the ground truth from the MoCap data of the test subject.
The results of the post-processing methods, i.e. Random Forest
and Predictive LSTM autoencoder with one and two layers,
are in sub-images 3-5, respectively. The bottom sub-images
6 and 7 show the results of the HybrIK [35] and PARE [9]
methods, respectively. Our proposed post-processing methods
can resolve the self-occlusion problem as compared to the HPE
baseline and the previous SOTA methods.

Figure 3. Self-Occlusion human pose recovery using post-processing meth-
ods, compared to the state of the art and the baseline HPE. 1: HPE, 2:
Ground-Truth MoCap, 3: RF Post-Processing, 4: Predictive AutoEncoder Post-
Processing with 1-Layered LSTM, 5: Predictive AutoEncoder Post-Processing
with 2-layered LSTM, 6: PARE Method, 7: HybrIK Method.

B. Quantitative results

Table I shows the comparison of the average error of all
joints using post-processing methods and the baseline when



using a model trained on all actions. It is shown that all post-
processing methods show better rotational errors than HPE.
For positional errors, the RF method is better than HPE, but the
AE methods are not. The error calculations are across different
subjects and actions in the test data (20% random selection of
all subject-action data). The large positional errors are due
to training across all actions and the predictive nature of the
autoencoder model.

Figure 4 and Table II compare the errors of the HPE base-
line, the HPE baseline with post-processing methods (trained
on hand behind back action), and the state-of-the-art methods
(PARE [9] and HybrIK [35]). It is observed that our proposed
post-processing methods show better performance than the
baseline and state-of-the-art methods. While the result of fu-
ture motion prediction from predictive autoencoders might not
be as good as current frame-to-frame RF motion prediction,
they are still effective in reconstructing self-occluded motions
when combined with action recognition.

Table I
AVERAGE ERRORS FOR TRAINING ACROSS ALL ACTIONS. ROTATIONAL

ERRORS ARE IN 10−3 RADIANS AND POSITIONAL ERRORS ARE IN MM. RF
IS RANDOM FOREST AND AE1 AND AE2 ARE THE AUTOENCODER

METHODS WITH ONE AND TWO LSTM LAYERS RESPECTIVELY.

Joint Baseline Post-Processing SOTA
Error HPE RF AE1 AE2 PARE HBIK

R
ot

.

All 467.1 186.33 262.8 258.1 480.9 535.5
LArm 64.0 38.0 51.2 48.0 63.6 83.9
RArm 68.0 40.0 53.2 50.3 76.5 83.2
LLeg 52.4 27.7 48.6 47.3 59.6 62.6
RLeg 53.0 28.0 46.3 47.4 57.8 69.1

P o
s.

All 74.9 57.7 88.6 90.7 88.9 70.6
LArm 15.6 2.9 20.2 21.1 19.3 15.2
RArm 14.0 13.7 18.4 18.4 17.4 13.4
LLeg 12.7 8.8 15.2 15.2 14.7 11.8
RLeg 15.6 9.3 15.8 16.9 16.9 13.1

Table II
ERRORS IN MM OF POST-PROCESSING METHODS COMPARED TO THE STATE

OF THE ART FOR ACTION-SPECIFIC LEARNING IN 10−3 RADIANS FOR
ROTATION AND MM FOR POSITION. ACTION: HAND BEHIND BACK - SEE

ALSO FIGURE 3.

Joint Baseline Post-Processing SOTA
Error HPE RF AE1 AE2 PARE HBIK

R
ot

. LArm 2.13 1.30 1.84 1.84 3.17 4.95
RArm 2.65 1.26 3.08 1.71 4.05 4.58

P o
s. LArm 0.96 0.29 0.80 0.53 0.87 0.78

RArm 1.29 0.32 0.69 0.52 1.08 0.98

V. CONCLUSION

This research focused on solving self-occlusion in SMPL-
based single-video human pose estimation. Different post-
processing methods were suggested to improve the result of
the state-of-the-art human pose estimators and to recover the
self-occluded poses. The action-specific models can be trained
and selected using human action recognition depending on
the input data action. Additionally, a new rotation-based error

Figure 4. Arm joints error for action specific learning of hand behind back
action - see also Figure 3 and Table II.

metric provides a more suitable evaluation of 3D human pose
accuracy.



In future work, the quality and quantity (more subjects) of
the ground truth data will be increased. Using more informa-
tion from the original input video can also help improve the
result. The predictive networks can also be compared with
classic methods such as the Kalman filter which can do both
position and orientation motion prediction, unlike our current
method that does only the latter.
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