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ABSTRACT: The substance Tris (2-amino-2-hydroxymethyl-1,3-
propanediol, CAS 77-86-1), and its protonated form TrisH*, are
used in the preparation of pH buffers in artificial seawater media for
applications in marine chemistry. The development of a chemical
speciation model of the buffer solutions has been proposed in order
to quantify the effects of composition change on buffer pH and to
address the metrological requirement for traceability of pH to SI
base units. Such a model should be based upon data yielding
solvent activities and mean activity coefficients (especially those of
H* with conjugate anions such as Cl~ or SO,””) for aqueous
solutions of single solutes (e.g., HCl, TrisHCI) and simple mixtures
over a temperature range of about 0 to 40 °C. There are currently
few data for solutions containing the ion TrisH', and these are mostly restricted to 25 °C. Here, in the first of a series of studies, we
present Harned cell measurements of potentials in solutions containing HCI and TrisHCI from S to 45 °C, yielding mean activity
coeflicients of HCI. The results at 25 °C are found to agree closely with those of literature studies. The Harned cell technique is
described in detail, including the preparation of electrodes.

Lto voltmeter

Harned Cell

E= EY — (RTIF)In(aH*-aCl)

aH*-aCl- = mH*mCI- - ‘YHC|2

1. INTRODUCTION much smaller amounts of Mg**, SO,*~, Ca*, and K*. The
minor species present in natural seawater’ are omitted as they
are not expected to influence the activity coefficients of other
solutes (because their molalities are too low).

Dickson et al.* and later Clegg et al.” have pointed out that a
chemical speciation model of the buffer solutions, yielding

The seawater total hydrogen ion pH scale, which is used for
the most accurate measurements of ocean pH, was established

Table 1. Typical Composition of Artificial Seawater”

solute species molality (at salinity 35) mol % molalities and activities of Tris, TrisH*, H" and other species,
Na* 0.48618 41.89 has a number of potential benefits. These include the extension

Mg 0.05474 4716 of the total pH scale to low salinity waters; the ability to

Ca?* 0.01075 0.926 calculate the pH of buffers designed for saline waters whose

K* 0.01058 0912 stoichiometry differs from that of seawater; and addressing

Cl- 0.5692 49.04 metrological concerns regarding the traceability of the scale to

ek 0.02927 2.522 the International System of Units. Clegg et al.” developed a
“From DelValls and Dickson." In Tris buffer solutions cation TrisH* draft model of Tris buffer in artificial seawater, using the Pitzer
(generally 0.04 molal or lower) substitutes for an equal molality of equationss for the calculation of activity coefficients. The
Na*, and the same molality of neutral solute Tris is added. model is restricted to 25 °C by lack of data, and is of

insufficient accuracy. For completion it requires additional
thermodynamic parameters based upon measurements of

from measurements of cell potentials of solutions of artificial aqueous solutions containing several single solutes (Tris, and

seawater acidified with HCI, and of buffer solutions containing
equimolal Tris and its conjugate acid TrisH'."' The calibration
of the scale, for solution compositions corresponding to the
same ratios of major ions as found in normal ocean water, is
still largely limited to salinities above 20 for reasons given by
Clegg et al.” Artificial seawaters used in the preparation of total
pH buffers have compositions such as that listed in Table 1.
About 90 mol % consists of Na* and Cl~ ions, and there are
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cation TrisH"* paired with anions $SO,*~, HSO,™ and CI7), and
key mixtures containing Tris or TrisH* (e.g., aqueous HCl—
TrisHCl and Tris-NaCl) for a range of temperatures. These
data needs are summarized in Table 9 of Clegg et al.”
Literature data that can contribute toward the speciation
model of buffer solutions include cell potentials of aqueous
HCl-TrisHCI mixtures at 25 °C,”” water activities of aqueous
Tris and TrisHCL™” cell potentials of Tris buffers in aqueous
NaCl,” and solubilities in salt solutions also containing Tris.'”

This study is the first of a series, for solutions of different
compositions, from a collaboration involving the national
metrology institutes of Japan (hereinafter NMIJ), Germany,
and the USA where all measurements have been carried out. In
this work we present results of measurements of electro-
chemical potentials using Harned cells (which yield activity
products of H" and CI”7) of aqueous HCI-TrisHCI mixtures
over a range of temperatures and ionic strengths. It is intended
that these data, in combination with the results of other
studies, will enable Pitzer parameters for TrisH"—Cl~, H —
TrisH" and H*—TrisH*—Cl" interactions to be determined as
functions of temperature.

2. EXPERIMENTAL METHOD

In this study the activity products of H" and CI™ ions were
determined from measurements of the potential difference of
the following electrochemical cell

Hz{}

To voltmeter

L
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Figure 1. Schematic of a Harned cell. A flow of dry hydrogen enters
the damper chamber (1), and then passes through a set of three
presaturators (2), and into the half-cell containing the solution being
measured and a platinum hydrogen electrode (3). The gas flow exits
via a small trap (5). Half-cell (3) is connected, via a glass capillary
tube, to half-cell (4) which contains the same solution and a silver—
silver chloride electrode. The whole cell is immersed in a water bath
for temperature control.

Pty Hz(g)(l atm)|H"*, CI” in aq. soln.|Ag(s) /AgCl<S) (A)

where the aqueous solution contains H*, TrisH, and CI ions.
The potential, E (V), of cell A is given by the expression

1995

E = E° — (RT/F)-In(aH"-aCI") (1)
where E° (V) is the standard potential of the cell at the
temperature T (K) of interest, R (8.31446 ] mol™* K™!) is the
gas constant, F (96485.332 C mol™') is Faraday’s constant, and
prefix a denotes activity. The activity product of the H* and
Cl” ions can also be written mH"mCl™-yyyq or mH*
mCl ™y, where prefix m indicates molality, 7, is the activity
coeflicient of individual solute species i, and yy; is the mean
activity coefficient of H" and CI” ions in the aqueous solution
(7uc s equal to (yrye)™)-

A schematic of the Harned cell (cell A) used at NMIJ is
shown in Figure 1. A flow of dry hydrogen gas at a rate of 4
cm® min~' enters the damper chamber (top left of Figure 1)
and then passes into a set of three presaturators all of which
contain an aqueous solution of the same composition as being
measured. The gas flow next passes into the half-cell of the U-
shaped measurement compartment containing the platinum
hydrogen electrode, and bubbles through the solution. The gas
exits the cell via a hydraulic trap designed to prevent any direct
contact with the air. This half-cell is connected, with a glass
capillary tube of about 1.5 mm internal diameter, to the other
half-cell which contains the same solution and the reference
silver—silver chloride electrode. For each measurement run a
set of six Harned cells is immersed in a water bath, for
temperature control, to just above the top of the presaturators.

A total of 18 Harned cells and 12 reference electrodes were
used in this study. The preparation of hydrogen and reference
electrodes is described by Bates,'" and the specific procedures
used at NMIJ are summarized in the Supporting Information.
The cells were immersed in a Hart Scientific model 7008
constant temperature bath of 42 L capacity (Fluke Corp.), and
temperature monitored using a Fluke 1502A thermometer
(standard uncertainty +0.0007 °C). Hydrogen gas was
generated using a Parker Balston H2PD-150JA-100 generator
(Parker Corp.), and cell potentials were recorded using a
model 2182A Keithley Nanovoltmeter (Tektronix). Atmos-
pheric pressure, and hence gas pressure in the cells, was
measured using a GE Druck DPI 740 precision barometer
(General Electric) (+20 Pa). The setup for Harned cell
measurements at NMIJ is described in detail by Ohata.'”

2.1. Solution Compositions and Preparation. The total
molal ionic strengths (I) of the HCl — TrisHCl aqueous
solutions range from 1.0 to 5.0 mol kg_l, with H* cation
fractions yH* [equal to mH*/(mH" + mTrisH")] of 0.1, 0.3,
and 0.5. In this way the study focuses on those solutions in
which the cation TrisH" can be expected to have a generally
larger influence on the ClI™ activity than will H'. It will also
affect H' activity. The measurement of a wide range of ionic
strengths should enable the unknown Pitzer interaction
parameters for this mixture to be determined accurately,
because their influence on In(yyc) scales with solute species
molalities or molality products. The choice of ionic strengths
1.0, 2.0, and 3.0 mol kg_1 for some of the measurements
enables our results to be compared directly with those of
Macaskill and Bates® and Bates and Macaskill” at 25 °C.

The chemicals used in the preparation of the solutions are
listed in Table 2. The solid Tris was stored at room
temperature, and used directly from the sealed bottles supplied
by the manufacturer without additional drying. The con-
centrated HC] was diluted with ultrapure water to produce
stock solutions of lower concentrations, and their exact
molalities (3.6455 + 0.0009, 3.6600 + 0.0018, 5.7700 +
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Table 2. Chemicals Used in This Study

CAS
chemical  registry #  molar mass supplier or source
Tris“ 77-86-1 121.135 g FUJIFILM WAKO Pure Chemical Corp.
HCI 7647-01-0 364609 ¢  Kanto Chemical Co.
H,0 7732-18-S  18.0153 g Milli-Q Ultra Pure Water System (Merck)

“2-amino-2-(hydroxymethyl)propane-1,3-diol, C,H;;NO;.

notes
the manufacturer’s certificate stated that the purity was 99.87 mass %, and
this value was assumed

ultrapure grade aqueous HCI of 31.4 mass % (diluted with water and then
molality determined before use)

resistivity 18.2 MQ cm at 25 °C

Table 3. Cell Identifiers and Dates of Measurements

mCl™ mHCl
cells (mol kg™) date cells (mol kg™) date
1-6 1.0 26/07/17 A-F 0.01 21/08/17
7—-12 1.0 31/07/17 G-L 0.01 24/08/17
13—-18 2.0 02/08/17 M-R 0.01 25/09/17
19-24 2.0 07/08/17 S=X 0.01 23/10/17
25-30 3.0 09/08/17 Al-F1 0.01 14/12/17
31-36 3.0 15/08/17
37—-42 4.0 28/08/17
43—48 4.0 31/08/17
49-54 5.0 04/09/17
55—-60 5.0 11/09/17
1A—-6A 1.0 13/09/17
61-62 1.0 02/10/17
63—64 4.0 02/10/17
65—66 S.0 02/10/17
67—68 4.0 05/10/17
69—-72 5.0 05/10/17

0.0028, and 6.3979 + 0.0009 mol kg™') were determined by
coulometric titration.

For the ~0.01 mol kg™! HCl required for the determination
of the standard potentials of the Harned cells the concentrated
HCI was first diluted to make an approximately 0.1 mol kg™
stock solution, and its exact molality was also determined by
coulometry. This solution was then diluted gravimetrically to
obtain the required 0.01 mol kg™ solutions (0.00996382,
0.0099641, 0.0099638, and 0.0100000 mol kg_1 in this work).

All of the studied HCI + TrisHCI solutions were prepared
gravimetrically as weights in air of HCI stock solution aliquots,
solid Tris, and water. Buoyancy corrections were carried out
using equations presented in Dickson et al,'’ and assuming a
laboratory temperature of 20 °C. Densities of solid Tris of
1.32, 1.328, and about 1.35 g cm™ are listed by various
chemical suppliers, and we adopted a value of 1.328 g cm™ for
the calculation of the buoyancy correction in this study.
Densities of aqueous HCl were taken from Clegg and
Wexler,'* and those of water from Kell."”> All of the HCI +
TrisHCI solutions were prepared in duplicate.

2.2. Measurements. Cell potentials were measured from 5
to 45 °C for the 1 mol kg71 chloride solutions, and from S to
40 °C for the others. Duplicate solutions were measured in all
cases, with supplementary determinations of cell potential also
made for some solutions at 1, 4, and S mol kg_1 chloride
molality. The standard potentials of the reference electrodes
were obtained from measurements of 0.01 mol kg~ HCI
solutions. Identifiers for the individual cells used, the chloride
or HCl molalities of the solutions, and the dates of
measurements are listed in Table 3.

The Harned cells described above are routinely used for the
certification of buffer solutions of ionic strengths up to 0.1 mol
kg™!, and the measurements in this study presented an
additional difficulty. This is because the solubility of AgCl
increases greatly in solutions containing high concentrations of
chloride ions, for example by a factor of about 50 in ~5 mol
kg™ NaCl(,q) compared to ~1 mol kg™ NaCl(aq).16 In their
study of the long-term stability of silver—silver chloride
electrodes Maksimov et al.'” have described the resulting
dissolution and degradation of the electrode, noting that at
such high concentrations the electrodeposited layer of silver
chloride on the electrode is gradually dissolved due to
formation of various aqueous chloro-complexes of the silver
cation. In this process the electrode is irreversibly damaged,
and it is therefore necessary to measure the solutions in a
relatively short space of time.

In dilute buffer solutions the criterion of stability of cell
potential is a voltage drift not exceeding 10 uV h™". In this
study we observed a similar bias only in the solutions with a
chloride molality of 1 mol kg™, and the drift rose to about S0
uV h' for 2—3 mol kg™ of chloride and was sometimes
greater in the more concentrated solutions. In solutions with a
chloride molality of § mol kg™ it was necessary several times
to replace failing electrodes which were identified either by
large differences in cell potentials between duplicate measure-
ments, or unacceptable potential drift during a single voltage
recording. Discoloration of the platinum hydrogen electrode
was observed twice at the end of a series of measurements
(resulting in data being discarded) and a possible explanation
for this is deposition of silver, from the chloro-complexes

Table 4. Effect of the Terms in the Pressure Correction to the Measured Potentials (eq 2b)“

adjustment term contains s°C 40 °C
mV cumulative % of total mV cumulative % of total
P 0.022 20.1 0.131 11.8
P - pH,0 0.122 113.7 1.128 101.6
P — pH,O + JetCorr” 0.107 100.0 1.110 100.0
P — pH,0 + JetCorr — pHCI® 0.107 100.0 1.110 100.0

“The examples used here are measurements of a solution containing 1.0 mol kg™'CI~, and 0.1 mol kg™" H*. The correction term is given by —RT/
(2F)In(X), where X is the quantity listed in the leftmost column. ®The correction for the immersion of the H, bubbler in the cell. “The correction

for pHCI is negligible.
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Figure 2. Measured mean activity coefficients yy¢ (labeled y(HCI) for clarity) at 25 °C plotted against the H' cation fraction yH* [mH"/(mH" +
mTrisH")]. (a) Results at ionic strengths (I) of 1.0 to 5.0 mol kg™’, as indicated. Symbols: solid dot — data of Macaskill and Bates® (I = 1.0 mol
kg™'), and Bates and Macaskill” (I = 2.0 and 3.0 mol kg™"); other symbols — this study, at the indicated ionic strengths. Dotted line — fitted to the
data from the two studies of Bates and co-workers in order to indicate the variation of y;c; with yH'. (b) Results at ionic strength 2.0 mol kg™' only
(v axis tick marks are spaced logarithmically). Symbols: solid dot — data of Bates and Macaskill;” open square — this study. Solid line ‘A’ —
calculated using the model of Clegg et al? including Pitzer mixture parameters Oy 1y and Wiy rigycr from Bates and Macaskill;” dotted line —
calculated with the same model but without the two mixture parameters.

mentioned above, onto the electrode (J. F. Waters, pers.
comm.). It has been noted by Bates'' that the cations of
certain metals, such as silver and mercury, can “poison” the
electrode by inhibiting its reversibility.

3. TREATMENT OF THE DATA

The measured cell potentials, E ., at the ambient H, partial
pressure in the cell are corrected to pH, equal to 1 atm using
the following relationship"’

E(sz, 1 atm) =E s — RT/(ZF)-ln(pHZ) (2a)
where
pH, = P — pH,0 — pHCI + 0.4-p-h-g-C (2b)

and P (atm) is atmospheric pressure at the time of the
measurement, pH,0 (atm) and pHCI (atm) are the partial
pressures of water and of HCI, respectively, above the solution
at the temperature of the measurement. The final term in eq 2b
is a further correction in which 0.4 is an empirical factor (due
to Hills and Ives'® ), p (g cm™) is the density of the solution,
h (mm) is the depth of immersion of the H, electrode, g (9.81
m s7%) is the gravitational constant, and C (1/101325 atm
Pa™') is a conversion factor from Pa to atm. The influences of
the different terms in eq 2b on the adjustment to the measured
potential are listed in Table 4 for a solution at 5 and 40 °C.
The change is more than a factor of 10 greater at the higher
temperature because of the much larger influence of the water
vapor pressure (pH,0). The contribution of pHCl is negligible
at both temperatures.

The equilibrium partial pressure of water above an aqueous
solution is equal to aH,0-p°(H,0), neglecting the small
difference between partial pressure and fugacity, where aH,O
is the water activity of the solution and p°(H,0O) (atm) the
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vapor pressure of pure water at the temperature of the
measurement (calculated using the expression of Wagner and
Pruss'”). Values of aH,0 and the H* and CI™ activity
coefficients in the solutions were estimated using the Pitzer
model, and pHCl from the expression aH"-aCl™/Ky where Ky
(mol®* kg™> atm™") is the Henry’s law constant of HCI at the
temperature of interest. Densities of the solutions were
estimated by assuming additivity of the apparent molar
volumes of the electrolytes (HCl and TrisHCI) in the
solutions. Further details of the calculation of aH,0, pHCI
and p are given in the Supporting Information.

3.1. Standard Potentials. Standard potentials, E°, of Cell
A at each temperature were obtained from the measurements
of 0.01 m HCl solutions, adjusted to 1 atm pH,, together with
mean activity coefficients of HCI listed by Bates and
Robinson.”” The effects of the very small deviations of the
solution compositions from exactly 0.01 mol kg™' were
compensated for by adjusting the potentials E according to
the equation

E(0.01) = E + 2RT/F-[In(m-p,.,) — ln(O'OI'VHCI(o.m))]
3)

where E(0.01) is the estimated potential of exactly 0.01 m HC,
E is that of the solution containing HCI of molality m (where
m is very close to 0.01), and mean activity coefficients yy; and
YHci(oo01) are values calculated for pure aqueous HCI of molality
m and 0.01, respectively, using the equations of Holmes et al.”!
(with the first set of parameters in their Table 3). Values of the
standard potentials, E°, at each temperature were obtained
using E(0.01) and HCI mean activity coefficients from Bates
and Robinson™ in eq 1. Information concerning the cells used
to determine the standard potentials at each temperature, and
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Figure 3. Measured mean activity coefficients yy¢; (labeled y(HCI) for clarity), obtained in this study for different ionic strengths (I) and H" cation
fractions yH* (mH*/(mH"* + mTrisH")), plotted against temperature (¢). Symbols: solid dot, open circle, and cross — yH* equal to 0.1; square —
yH' equal to 0.3; triangle — yH* equal to 0.5. (a—d) Results for four different ionic strengths as indicated. In plot (a) the solid dots indicate values
for measurements for cells 61 and 62 that have been adjusted (see text), and the crosses are results for cells 1A and 2A. Results for I equal to 5.0

mol kg_1 are similar and are not shown.

the values of E° (with uncertainties) determined in this study,
can be found in the Supporting Information.

It is common in Harned cell studies for the potentials of the
measurement solutions to be adjusted to a common set of
standard potentials, those of Bates and Bower,*> for
consistency and ease of comparability. We have done this
here. The potentials, E, of the measurement solutions for pH,
equal to 1 atm were adjusted using the following expression

(4)

where E (adj.) are the potentials adjusted to be consistent with
the standard potentials of Bates and Bower,”> E and standard
potentials E° are the values obtained in this study, and E°(std.)
are from eq 4 of Bates and Bower and listed in their Table 1.

3.2. Uncertainties. The contributions to the overall
uncertainty of a measured potential, after adjustment to pH,
equal to 1 atm, are as follows: 96 to 99% is from the voltage
measurements themselves; the determination of barometric
pressure contributes about 1-4%; and other elements

E(adj. ) = E — (E° — E%std. ))
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(temperature, solution water activities and densities) less
than about 0.01%. The uncertainty of the measured potential
(that of the voltmeter was ignored as negligible) was calculated
as a combined value of cell potential drift at the experimental
temperature and the standard deviation SD of two (or four or
six, if available) duplicate measurements:

u(E) = [(drift)* + (SD)*]'/? (5)

where the potential drift over a period of 1 h experienced in
the measurements is equal to 10 4V at the temperatures S, 10,
15, and 20 °C; 20 uV at the temperatures 25, 30, and 35 °C;
and 40 4V at the temperatures 40 and 45 °C. We note that the
drift values were slightly higher for the solutions used in the
determination of E°, because the dilute aqueous HCI seems to
be more sensitive to the effects of evaporation.

In most cases, duplicate measurements agreed very well—to
within 10 gV—so that the determined u(E) is close to the drift
value. However, for solutions for which there was a greater
number of determinations the calculated value of u(E) typically
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rises to 80—150 uV. This is because we made the extra
replicate measurements for the solution compositions with
obviously doubtful original results, i.e. with a high discrepancy
between duplicate cells (perhaps due to the effect of
accumulated electrode degradation).

4. RESULTS

Measured cell potentials, corrected to pH, equal to 1 atm and
adjusted to be consistent with the standard potentials of Bates
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Figure 4. Deviations of measured mean activity coeflicients of HCI
from an arbitrary fitted line (A[y(HCl)]) plotted against temperature
(t), for mCl™ equal to 1.0 mol kg™ and yH"* equal to 0.1. Symbols:
open circles — from cells 1, 2, 7, 61, and 62; dots — cell 1A; solid
triangle — cell 2A; solid square — cell 8. The uncertainties shown on
the plot were taken from Table S8 of the Supporting Information.
Results for each cell, at each temperature, are offset horizontally so
that the error bars are distinguishable.

and Bower”” are listed in Table 5 together with mean activity
coefficients of HCI, yyc, calculated using eq 1. In Table S8 of
the Supporting Information the original measured potentials
are listed, together with other information needed in eq 2, and
also the estimated uncertainties in yyc. A total of four results
were removed as erroneous (and are not listed), due to very
large calculated uncertainties and/or deviations from other
measurements.

Macaskill and Bates® and, later, Bates and Macaskill” have
used Harned cells to measure cell potentials in the same
solutions at 25 °C only and for a series of fixed ionic strengths
(I) from 0.1 to 3.0 mol kg™". Our results are compared with
theirs in Figure 2a at the common ionic strengths, and show
good agreement. Bates and Macaskill’ have analyzed their
results in terms of Harned’s rule, which implies that In(yyc)
should be a linear function of mTrisHCl (and similarly for
fraction yH*) and they found that an additional term in
mTrisHCI” is needed to fit the data at ionic strength 1.0 mol
kg™ and above (their Table V). Our results in Figure 2,
especially those at the higher ionic strengths, are consistent
with this.

Bates and Macaskill” have also analyzed their results using
the Pitzer model, and obtained mixture parameters O 1y
equal to 0.0045 and 4 g equal to —0.0152 (their Table
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VI). In Figure 2b we compare measured mean activity
coefficients yyc; from this study, and from Bates and
Macaskill,” with two sets of calculated values at an ionic
strength of 2.0 mol kg™". The y axis tickmarks on this plot are
spaced logarithmically, so that straight line relationships
correspond to Harned’s rule. The solid line was calculated
using the Pitzer model of Clegg et al.” (which contains
interaction parameters for H*-Cl~ and TrisH'*-Cl”) and also
the ternary mixture parameters QHTHSH and YWy amc from
Table VI of Bates and Macaskill.” There is excellent
agreement: the mean deviation of the activity coeflicients
Yucr of Macaskill and Bates® from the model-calculated values
is 0.11%, and that of the data of this study 0.032%. The results
confirm the finding of Bates and Macaskill” that the solute
activity coefficients in these solutions can be accurately
represented by the Pitzer model as long as the mixture
parameters are included. The dotted line in Figure 2b shows
the values calculated using the Pitzer model without these
parameters.

We have not applied the Pitzer model to the results for
temperatures other than 25 °C because the values of the
parameters for TrlsH+ Cl_ interactions (ﬁTmH b ﬂTmH b
CT,,SH cp and possibly CTnsH 1) are not yet clearly established.
They have been estimated by Tishchenko’ from 0 to 40 °C
from measurements using two electrochemical cells, but our
analyses'® suggest that at least some of the data may be in
error. The TrisH*-Cl™ parameters can in principle be
determined from the results in the present study, but it is
not possible to completely distinguish them from the two
mixture parameters. Consideration of the Pitzer model
expression for ln(yH-yCl), for example by using equations AI2
and AI3 of Clegg et al,” or e%s 63 and 64 of Pitzer,” yields the
contrlbutlons +2mTrisH" (B, + O 1), and + mTrisH
(4mCl™-Cgy c + [mH* + mCl- il W Trstcl)- We note that the
contributions of TrisH*-Cl™ parameters ﬂTnSH c and CTHSH a
are more complex functions of solution composition (and
different from Oy 1y OF Wi rienic1)- For these reasons a Pitzer
model application to obtain the parameters for both TrisH'-
CI” and mixture parameters will be carried out in a future work
and based upon several different data sets for solutions
containing the ions TrisH" and CI7, including some now in
preparation.

In Figure 3 we show activity coeflicients from Table S for
ionic strengths 1.0 to 4.0 mol kg™' as a function of
temperature. The variation in yyc with temperature is very
close to linear in all cases, although the gradients increase with
both yH" and ionic strength. There is very little scatter in the
data except for those for yH* equal to 0.1 in Figure 3a. For this
composition some the results for cells 1A and 2A are
discordant with other data at 5—15 °C. Also, the results for
cells 61 and 62 (solid dots on the plot) were found to disagree
with the other data by an almost constant potential at all
temperatures, and have been adjusted as noted in Table 5. We
show these results, as deviations from an arbitrary fitted line, in
Figure 4. The activity coeflicients obtained from potentials
measured in cells 1, 2, and 7 agree well (as do those from cells
61 and 62 after the adjustment by a fixed AE noted above).
They also have generally lower uncertainties than the other
data which are plotted as solid symbols. This illustrates a
common feature of the results: differences in the behavior of
the pairs of electrodes in the different cells tend to produce
changes in potential that vary very little with temperature.
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5. CONCLUSIONS

We have measured cell potentials, and obtained mean activity
coefficients of HCI, of aqueous HCI-TrisHCI solutions from S
to 45 °C and ionic strengths from 1.0 to 5.0 mol kg™'. The
results agree well with previous studies at 25 °C for ionic
strengths 0.1 to 3.0 mol kg™'. In combination with other
literature data these new measurements should enable a Pitzer
ion-interaction model of the solutions to be developed with the
particular goal of determining the variation of TrisH*-Cl~
interaction parameters with temperature. These parameters
will be essential components of models of acid—base
equilibrium of Tris buffers in NaCl media and in the artificial
seawater solutions used to calibrate the seawater total pH scale.
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