1 Consensus position statement on advancing the classification of

2 patients and tests of cure in studies of antibiotic treatment of

3 complicated urinary tract infections

- 4 Authors: Truls E. Bjerklund Johansen, MD (Prof); Christina Bahrs, MD; Franck Bruyere, MD (Prof); Authors: Truls E. Bjerklund Johansen, MD (Prof); Christina Bahrs, MD; Franck Bruyere, MD (Prof); Authors: Truls E. Bjerklund Johansen, MD (Prof); Christina Bahrs, MD; Franck Bruyere, MD (Prof); Authors: Truls E. Bjerklund Johansen, MD (Prof); Christina Bahrs, MD; Franck Bruyere, MD (Prof); Authors: Truls E. Bjerklund Johansen, M
- 5 Tommaso Cai, MD;⁴ Amelia Joseph, BMBS;⁵ Béla Köves, MD;⁶ David M. Livermore, PhD (Prof);⁷
- 6 Alessandra Oliva, MD;⁸ Alex Soriano, PhD;⁹ Florian Wagenlehner, MD (Prof);¹⁰ Per Henrik Zahl, PhD;¹¹
- 7 Manuel Etienne, MD (Prof);¹² cUTI consensus group

8 Affiliations:

- Urology department, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; and
 Institute of Clinical Medicine, University of Aarhus, Aarhus, Denmark
- Division of Infectious Diseases, Department of Medicine I, Medical University of Vienna,
 Vienna, Austria; and Institute of Infectious Diseases and Infection Control, Jena University
 Hospital/Friedrich-Schiller-University, Jena, Germany
- 14 3. Urologie, CHRU Tours, Tours, France
- Department of Urology, Santa Chiara Regional Hospital, Provincial Health Care Agency
 (APSS), Trento, Italy
- Department of Clinical Microbiology, Nottingham University Hospitals NHS Trust, Queens
 Medical Centre, Nottingham, UK
- Urology Department, South-Pest Teaching Hospital, Budapest, Hungary
- 7. Norwich Medical School, University of East Anglia, Norwich, UK
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome,
 Italy
- Department of Infectious Diseases, Hospital Clínic of Barcelona, University of Barcelona,
 IDIBAPS, CIBERINF, Ciber in infectious diseases ISCIII, Madrid, Spain
- Department of Urology, Pediatric Urology and Andrology, Justus Liebig University Giessen,
 Giessen, Germany
- 27 11. Division for Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Infectious Diseases, CHU Rouen, Rouen, France; and INSERM UMR 1311
 DYNAMICURE, Univ Rouen Normandie, Rouen, France.

30 **Corresponding author:** 31 Truls E. Bjerklund Johansen 32 Urology department, Institute of Clinical Medicine, University of Oslo, Norway and Institute of 33 Clinical Medicine, University of Aarhus, Denmark 34 Address: PO Box 1171, Blindern, 0318 Oslo 35 Telephone: +47 91841063 36 Email: tebj@uio.no 37 Running head: Consensus on studies for antibiotics in cUTI 38 39 **Key words:** complicated urinary tract infections; FDA guidance; randomized controlled trials; 40 guideline adherence; risk of bias assessment; classification 41 42

Summary

44	Complicated urinary tract infections (cUTI) denote an important research field for new antibiotics
45	against Gram-negative pathogens. There is, however, increasing concern that this disease entity is
46	too vaguely defined, leading to heterogeneous study populations and risk of bias.
47	We analysed researchers' adherence to the US Food and Drug Administration (FDA) guidance on cUTI
48	and assessed risk of bias using a three-step procedure: literature review of cUTI papers; assessment
49	of the relative importance of risk factors for treatment failure, including statistical evaluation of how
50	patients with risk factors might skew treatment effects; and a Delphi consensus process in a
51	multidisciplinary group.
52	Our evaluation showed poor adherence to FDA guidance on cUTI and significant heterogeneity in the
53	reporting of study-, patient-, and pathogen-characteristics, leading to a high risk of bias when
54	interpreting and comparing study findings. We therefore question the concept of cUTI as a
55	meaningful entity with its own study guidance

Introduction

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71 72

73

74

75

76

77

78

79

80

81 82

83

84 85

86

87

Urinary tract infections (UTIs) are common, ranging in severity from simple, uncomplicated infections to life-threatening sepsis. Urosepsis accounts for about one-third of all sepsis cases. Conditions that increase the risk of acquiring UTI, predispose to a more severe disease course, and/or of treatment failure and a worse outcome, are called complicating factors or risk factors.³ Patients with severe or complicated UTI (cUTI) are often given initial intravenous (IV) antibiotic treatment,⁴ and UTI is a much-used model infection for studying the efficacy of new antibiotics.¹ Important reasons for this are that the spectrum of pathogens is limited and largely known, and the presence or absence of pathogens in the urinary tract can be easily assessed in most cases, as opposed to gastrointestinal or pulmonary infections, where it can be more challenging to identify the causative agent(s).^{1,5} The concept of cUTI was introduced by the Infectious Disease Society of America in 1992 for the evaluation of new anti-infective drugs in clinical studies.⁶ The meaning of "complicated" was, however, vaguely defined and, in 2010, the European Section for Infections in Urology suggested to avoid dividing UTI into complicated and uncomplicated and instead describe UTIs by clinical severity grade, phenotyping of risk factors, and pathogen characteristics. In 2015, this classification was adopted by the European Association of Urology guidelines panel on UTI.8 Patient populations with cUTI are very heterogeneous and the effect of an antibiotic might appear greater if studied in a population with less severe conditions and fewer (or different) risk factors. To ensure unbiased evaluation of antibiotics, we need careful descriptions of factors that influence treatment outcomes, such as the clinical condition, the patient, and the pathogen. In 2018, the FDA published new guidance for industry on developing drugs for cUTI.9 cUTI was defined as a clinical syndrome characterized by pyuria and a documented microbial pathogen on culture of urine or blood, accompanied by local and systemic signs and symptoms, including flank pain, back pain, and/or costo-vertebral angle pain or tenderness, and fever, chills, and malaise, occurring in the presence of a functional or anatomical abnormality of the urinary tract or in the presence of catheterization. As fever is not a strict inclusion criterion, there is a risk that patients with less severe infections without fever may be included. To counteract this, the FDA recommends that at least 30% of patients enrolled have acute pyelonephritis. 9 Conversely, there is no limitation in the percentage of the trial population who can have more severe infections, with an increasing Sequential Organ Failure Assessment (SOFA) score. 10,11 All risk factors mentioned in the FDA definition belong to the urological domain, but with no differentiation of the type and duration of

88 stents and catheters, or the severity of stone disease. The FDA definition fails to consider patient risk 89 factors such as history of recurrent UTI or extra-urogenital risk factors, such as diabetes mellitus and 90 immune deficiency. 91 According to the FDA guidance the main outcomes of studies on new antibiotics should be resolution of symptoms and evidence for reduction of pathogens. ⁹ The microbiological criterion for treatment 92 success of <10³ colony forming units (CFU)/mL on urine culture⁹ might be interpreted as \leq 10³ or \leq 10² 93 94 CFU/mL. There is even a possibility that microbiological success might be interpreted as total 95 absence of detectable micro-organisms (bacteriological cure); in any event, much will depend on the 96 detection limit of the microbiological tests employed. 97 The time points for assessing the effect of treatment are related to treatment duration, including a 98 switch to oral medication, which varies by antibiotic. The FDA states that the primary endpoint should be assessed after ~5 days of IV therapy, 9 with success re-evaluated at a test of cure (TOC) visit 99 at least 5 days after the end of treatment (EOT).9 A late follow-up visit to assess the sustainability of 100 101 effect is recommended 21–28 days after randomization.9 Hence, there are numerous criteria that 102 might be interpreted in different ways, leading to bias in the evaluation of new antibiotics. 103 The aim of the present paper is to advance the classification of patients and tests of cure in studies of 104 antibiotics for cUTI. Our primary objective was to review the most important recent publications on 105 antibiotic trials in cUTI and to analyse the interpretation of and adherence to the FDA guidance. Our 106 secondary objective was to perform a multidisciplinary consensus process on the importance of the 107 clinical condition, patient risk factors, and microbiological criteria for assessment of treatment 108 success in antibiotic trials for cUTI.

Methods 109 Literature review 110 Establishment of study group 111 A working group of urologists, infectious diseases specialists, and microbiologists was established to 112 discuss criteria for studies on cUTI. Participants were identified based on an internal healthcare 113 114 professional tiering tool as those with significant experience in cUTI (appendix p 4). The group held 115 an online meeting in October 2023, via a virtual collaboration tool (Within3, Lakewood, Ohio, US) 116 (appendix p 4). 117 Search strategy and selection criteria 118 To evaluate recent studies on cUTI, we conducted a literature search (appendix pp 4-5) to identify 119 publications of randomized controlled trials (RCTs) of cUTI treatments. A spreadsheet with the FDA 120 criteria for cUTI⁹ and risk factors defined by the group was developed, and 16 papers identified by 121 the literature search were evaluated for adherence (appendix p 4). Risk factors were assessed using 122 the ORENUC classification.⁷ Risk of bias assessment 123 124 Weighting of risk factors 125 The group used its virtual collaboration tool to identify those risk factors that are most likely to cause 126 clinical and microbiological failure in studies of cUTI. 127 Statistical evaluation 128 A statistical evaluation was performed of the interrelationship between the difference in the number 129 of patients with significant risk factors between study arms and p-values for differences in treatment 130 effects between study arms. We modelled the impact of four key parameters on the p-value of 131 falsely rejecting a null hypothesis stating a difference between treatment arms (appendix p 6). The parameters were: absolute difference in number of patients with treatment success; number of 132 patients in each arm with no effect of treatment; and the non-inferiority level. 12-14 133 134 **Delphi process** A modified, accelerated Delphi process was performed to assess the likelihood of bias¹⁵ in clinical and 135 136 microbiological outcomes if the clinical condition, patient risk factors, and microbiological aspects are 137 not adequately considered in studies of new antibiotics for cUTI. Based on findings from the literature analysis, 26 issues were identified, defined by five signalling questions and grouped into 138

characteristics) (appendix pp 7–8). For each issue, participants assessed the risk of bias (low risk,

four categories (clinical situation, patient risk factors, pathogen-related aspects, and study

139

some concerns, or high risk). For each category, participants also assessed the risk of bias if two or more issues in each category were not adequately considered. Finally, participants assessed the risk of bias when comparing outcomes between arms within a single study, and the risk of bias when comparing outcomes between studies. The risk of bias domains were the randomization process; the measurement of outcome; and the reporting of the outcome. ¹⁶ To inform their evaluation, the participants were asked to use the methods in the reviewed papers, any other relevant evidence, and their own expert opinion. Consensus was defined as >75% agreement on the degree of risk of bias. Participants in the Delphi process The original working group was expanded to a consensus group with 22 participants with research experience in the field of cUTI (20 European, two North American): 13 specialists in urology, seven in infectious diseases, and two in microbiology. Participants received no financial compensation for their time spent on the consensus process. Online platform The Delphi process was run on an electronic platform (Within3, Lakewood, Ohio, US). Consensus rounds Two consensus rounds were held (appendix p 9). The first-round results were sent to participants with a summary of their comments. Results were displayed for the whole group, and for urologists and infectious diseases specialists separately. To be able to demonstrate differences in evaluations, the consensus process was closed after the second round without further attempts to reach consensus on individual issues. Role of the funding source The funder had a role in establishing the initial study group and online meeting. Juan Quevedo, MD

The funder had a role in establishing the initial study group and online meeting. Juan Quevedo, MD (an employee of the funder) was a member of the independent study group and contributed to data collection, literature analysis, manuscript review, and agreed with the decision of the group to submit the manuscript for publication. All authors endorsed the decision to submit for publication and agreed to be accountable for the work.

168

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163164

165

166

Results

Evaluation of studies

169

170

171 **Study characteristics** 172 Sixteen RCTs were evaluated (appendix pp 10-11). Fourteen studies compared different IV/oral antibiotics, ¹⁷⁻³⁰ one compared different durations of antibiotic therapy, ³¹ and one compared 173 bacteriophage versus antibiotics.³² Four papers specified that the definition of cUTI was consistent 174 with FDA and/or the European Medicines Agency (EMA) guidance, 20,23,26,29 and two stated that study 175 conduct/design was generally in accordance with FDA and/or EMA guidance;^{22,30} the rest did not 176 177 refer to specific guidance or classifications published by medical societies. 178 Setting and clinical presentation One study specified the clinical setting as a community-acquired infection;³¹ no other studies 179 reported if the infection was community- or hospital-acquired. None of the studies detailed the 180 181 proportion of patients with cystitis at baseline and only one study showed the proportion of patients with sepsis at baseline.30 182 183 All but one study²⁶ included a history of symptoms of cystitis (dysuria, increased urinary frequency, urinary urgency, lower abdominal pain and/or pelvic pain) in the list of possible inclusion criteria that 184 185 defined cUTI, and all but one study³² mentioned symptoms of pyelonephritis (flank pain) as a possible criterion for cUTI. 186 Only two studies included clinical findings suggesting cystitis (suprapubic tenderness based on 187 physical exam) in the list of possible criteria indicating cUTI.^{22,27} Thirteen studies listed subcostal 188 tenderness as an anamnestic criterion indicative of pyelonephritis 18-30 and 12 studies included 189 general symptoms such as nausea and vomiting. 17-20,22-25,27-30 All studies except for one included fever 190 as a possible criterion for cUTI; the exception³² enrolled patients with non-febrile UTI, excluding 191 192 patients with a temperature >38°C. The definition of fever and ways of measuring it varied between trials (six used >38°C; $^{19,20,24,28-30}$ five used ≥ 38 °C; $^{21-23,26,31}$ one each used >38.5°C 17 and ≥ 38.5 °C; 18 one 193 used fever as defined by investigator²⁷; one used oral temperature >37.5°C or axillary temperature 194 >37°C²⁵). Two studies mandated that participants must have fever (see appendix p 12 for details). 195 21,31 196 The proportion of patients with pyelonephritis in the studies varied from 42–83% (n=12 studies)¹⁷ 197 ^{20,22-24,26-30} (Figure 1). 198

199 Study endpoints 200 Most studies (n=10) used composite primary endpoints of clinical and microbiological success 201 (appendix pp 10–11). 19,20,22-24,26,28-31 Clinical response was defined as symptom 202 resolution/improvement, with some definitions including no need for further antibiotics. There was 203 significant variation in treatment duration and the timing of TOC (Figure 2). Of 12 studies with IV 204 antibiotics as the investigational treatment, the duration of IV therapy in the test arm was 3–9 days 205 (based on data from 11 studies reporting the mean/median/protocol-specified duration of IV 206 therapy). 17-19,21-24,26-30 Among 13 studies that specified the timing of a TOC visit, ^{17-20,22-30} seven gave the timing relative to 207 study start (range: 14–23 days after treatment start)^{19,20,22,24,28-30} and six gave the timing relative to 208 EOT (range: 5–15 days after EOT). 17,18,23,25-27 Among these 13 studies, 11 evaluated outcomes at a 209 later timepoint than TOC: seven specified the follow-up visit timing relative to treatment start (range: 210 21–35 days after treatment start)^{19,20,22,24,28-30} and four specified the timing relative to EOT (range: 211 14–47 days after EOT). 17,18,23,26 An additional three studies did not specify a TOC timepoint (see 212 appendix p 12 for details). 213 214 Efficacy findings 215 Among 13 studies that presented primary endpoints assessing either clinical response, 216 microbiological response, or a composite of both (Table 1), the number of patients in the study arms 217 in the primary endpoint analysis sets ranged from 7-449. Five studies assessed superiority of the test drug versus comparator for seven primary endpoints^{22,23,26,29,32} (one study assessed three co-primary 218 219 endpoints²³). The criteria required to demonstrate superiority were the lower bound of the 95% 220 confidence interval being >0 (two studies 22,23) or \geq 0 (one study 29) (criteria were not specified for two studies^{26,32}). Superiority criteria were met for all four of the primary endpoints that were composites 221 of clinical and microbiological response; the absolute difference between treatment groups varied 222 from 4·5–21·2 percentage points. ^{22,23,26,29} For three primary endpoints assessing microbiological 223 response, superiority criteria were not met. 23,32 Ten studies assessed non-inferiority of the test drug 224 versus comparator on the primary endpoint (non-inferiority margins varied from 10-35%). 19,20,22-225 ^{24,26,29-32} Additional details are presented in Table 1 and appendix p 12. 226 227 Discordant findings between clinical and microbiological response 228 Nine studies reported the treatment effect between study arms for both microbiological and clinical 229 outcomes at the TOC visit for the same analysis set, allowing assessment of whether discordant findings occurred between the two outcomes (appendix p 13)^{19,20,22-24,26,27,29,30}. Five of these nine 230

studies (55·6%) reported discordant findings, ^{19,22,26,29,30} with a significant difference between treatment groups in microbiological response but not in clinical outcome. Overall, five studies asserted to asymptomatic bacteriuria as the explanation for patients who have clinical, but not microbiological success. 19,20,23,29,30 **Patient characteristics** Age, sex and race Two studies included paediatric patients, ^{17,27} with one of these enrolling newborn babies; ²⁷ the rest solely included adults. Fourteen studies enrolled male and female patients; 12 stated that pregnant females were excluded, 17-25,27,29,30 two did not mention pregnancy in their exclusion criteria nor as a risk factor, ^{26,28} and two restricted enrolment to male patients. ^{31,32} Details on race are in appendix p 14. Risk factors (ORENUC criteria) No studies reported inclusion of patients without risk factors or reported using "no risk factors" as an exclusion criterion. No studies specified lifestyle factors as the cause of recurrent UTI. Nine studies excluded patients with kidney transplant 17-20,22-24,29,30 and only one publication specifically stated that patients with kidney transplant could be included.²⁶ Fourteen studies excluded patients with kidney failure. 17-27,29-31 All publications (except two) 28,31 reported urological risk factors as indicators of cUTI among study inclusion criteria. The proportion of patients enrolled with catheters varied from 1-38% (n=7 studies) (appendix, p 15). 17-19,26,27,30,32 Two studies considered patients with catheters as noneligible for inclusion, ^{25,31} and a further seven did not provide data on catheters. ^{20-24,28,29} Additional details on the reporting of risk factors are in the appendix (p 14). **Pathogen characteristics** Spectrum Escherichia coli was the most reported pathogen in general (range: 26–92% of participants) (Figure 3). Across studies, 0-7% of patients had Pseudomonas aeruginosa infection and 3-20% had Klebsiella pneumoniae infection. Antimicrobial resistance Among studies that provided relevant information, the proportion of participants/isolates with multidrug resistant pathogens ranged from 15-36% (n=5 studies) and the proportion with extendedspectrum beta-lactamase-producing pathogens ranged from 2-31% (n=9 studies) (Figure 4).

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252253

254

255256

257

258

259

261	Definition of susceptibility
262	Criteria used for susceptibility testing were reported for nine studies, with six using criteria
263	developed by the Clinical and Laboratory Standards Institute (CLSI), 20,24,25,27,29,30 one using European
264	Committee on Antimicrobial Susceptibility Testing (EUCAST) criteria, ²¹ and two using both CLSI and
265	EUCAST criteria. 18,23
266	Definition of microbiological response
267	Twelve studies had a primary endpoint that included assessment of microbiological response, either
268	in isolation or as part of a composite endpoint. The criteria for assessing microbiological response
269	varied, with a reduction in pathogens to $<10^3$ CFU/mL used in five studies, 19,20,22,29,31 one study using
270	\leq 10 ³ CFU/mL, ²⁸ four studies using $<$ 10 ⁴ CFU/mL, ^{18,24,30,32} one study using \leq 10 ⁴ CFU/mL ²⁶ and one
271	study using both $<10^3$ CFU/mL and $<10^4$ CFU/mL in co-primary endpoints with different definitions. 23
272	For some of these studies, the term "microbiological eradication" was used to describe
273	microbiological response, but none used "eradication" with its dictionary definition of total absence
274	of the pathogen. Authors typically did not state the detection limit of the microbiological testing
275	method used.
276	Definition of sustainability
277	Nine studies evaluated microbiological response as a criterion for sustainability of treatment effect
278	(appendix p 16), 17,20,22-24,26,28-30 using varied time-points to assess sustainability (range: Day 21–35 for
279	studies specifying the timing relative to study start; 14–36 days after EOT for studies specifying the
280	timing relative to EOT), 17,22 and varied criteria to define microbiological response (reduction in colony
281	counts to $<10^3$ CFU/mL, $^{20,22,23,29} \le 10^3$ CFU/mL, $^{28} < 10^4$ CFU/mL, 23,24,30 or $\le 10^4$ CFU/mL; 26 one study
282	provided no definition beyond "eradication [sic.] of pathogens" 17).
283	Evaluation of bias
284	Weighting of risk factors
285	The presence of an indwelling urinary catheter or stent was regarded as the most significant patient-
286	related risk factor for treatment failure, followed by anatomical abnormalities of the urinary tract
287	causing drainage problems, and urinary stones (appendix p 17).
288	Statistical modelling
289	Our statistical modelling indicated that if zero, five, or ten patients with significant risk factors for
290	treatment failure were unequally included in one arm in a study with 200 patients per arm, the p-
291	value for non-inferiority of the test drug rises from 1%, to 12%, and 50%, respectively (appendix p
292	18). If there are 100 patients in each study arm, the effect of unequally including zero, five, or ten

293 patients with risk factors for treatment failure is that the p-value rises from 5%, to 20%, and 50%, 294 respectively. 295 **Delphi process** 296 Twenty-two participants answered the Delphi survey. An overview of the results is shown in Figure 5 297 with additional details by specialty and round in the appendix (pp 19–24). 298 Clinical situation 299 There was consensus on a high risk of bias if clinical presentation and severity, and fever, were poorly 300 reported and/or unbalanced between study arms. There was also consensus on a high risk of bias if 301 two or more issues in this category were not satisfactorily described/balanced. Most participants 302 voted for high risk of bias if the setting (nosocomial- or community-acquired UTI) was not adequately 303 described or balanced between arms. Half of participants voted for a high risk of bias related to the 304 general condition of the patient. 305 Patient-related issues 306 There was consensus on a high risk of bias related to urinary catheters/stents and stones being 307 poorly reported or unequally distributed between study arms, in addition to history of bacterial 308 prostatitis, evidence of immune suppression or diabetes mellitus, and antibiotic treatment within the 309 previous 30 days; consensus was not reached on the risk of bias related to poor 310 description/distribution of patients with history of symptomatic UTI in the previous 6 months, female 311 sex, premenopausal women with history of recurrent UTI associated with sexual intercourse, and a 312 history of obstipation. 313 Pathogen-related issues 314 There was 100% consensus on a high risk of bias in case of poor reporting/distribution between 315 study arms of resistance to study drug, and if neither the spectrum of pathogens nor the occurrence 316 of drug resistance was satisfactorily described/balanced. 317 Study characteristics 318 When comparing findings between studies, there was consensus that a discrepancy between studies 319 in the definition of microbiological "eradication" would introduce a high risk of bias. There was also a 320 high percentage of votes (without reaching the consensus threshold) for a high risk of bias if there 321 was a discrepancy between studies in microbiological success criteria of ≥ 10 CFU/mL (e.g., using $\leq 10^3$ 322 instead of ≤10⁴ CFU/mL). The majority of participants voted for high risk of bias if there were 323 differences between studies in the length of time from EOT to TOC (73%; consensus threshold not

324 reached), and from EOT to assessment of sustainability (consensus reached). There was consensus 325 on a high risk of bias if two or more issues in this category were present. 326 All categories 327 There was consensus that the presence of at least one issue in each of the categories related to 328 clinical situation, patient, and pathogen would lead to a high risk of bias when interpreting the study 329 findings. Likewise, there was consensus that comparing outcomes between studies would be subject 330 to a high risk of bias if at least one issue in all four categories (clinical situation, patient, pathogen, 331 and study characteristics) was present.

Discussion

332

333

334

335

336

337

338

339

340

341

342

343

344

345346

347

348

349

350

351

352

353

354

355

356357

358

359

360

361

362363

Main findings The concept of 'cUTI' was introduced in recognition of patient and pathogen factors that increase the risk of UTI recurrence and treatment failure. It was meant to be a suitable entity for studies of new antibiotics targeting Gram-negative pathogens, and cUTI is now often the setting for Phase 3 licensing trials. Unfortunately, when reviewing recent antibiotic RCTs in cUTI, we found significant variation in the reporting of: (i) the health setting(s) where cUTI developed, (ii) clinical presentation and severity, (iii) patient and pathogen characteristics, (iv) definitions of clinical and microbiological 'cure', and (v) study characteristics in general. Our multidisciplinary group reached consensus that there is a high risk of bias for intra- and, especially, inter- study comparison of outcomes if key characteristics are unsatisfactorily reported, unequally distributed between treatment arms, or not reported at all. Overall, recent RCTs on new antibiotics in cUTI are so heterogeneous that the highest level of evidence, based on systematic review and meta-analysis, cannot be achieved. Accordingly, we question the impact of the current FDA research guidance and the concept of 'cUTI' as a meaningful entity with its own study guidance. **Context and impact** To our knowledge this is the first evaluation of licensing trials of new antibiotics in cUTI to have: (i) compared the key characteristics of the study populations and (ii) to use Delphi methodology to evaluate the risk of bias if these characteristics are not satisfactorily described, or not described at all. Numerous previous authors have questioned the validity of the concept of 'cUTI' and called for new definitions to ensure that new antibiotics are evaluated in more homogeneous populations. 33-36 In 2023, authors of a systematic review of studies on therapeutic and prophylactic interventions in adult UTI concluded that there is wide variation in clinical and microbiological criteria for diagnosing UTI.³⁴ They supported an earlier recommendation⁷ to abandon the overarching concept of 'cUTI'. A review of recent pivotal cUTI trials highlighted that, even when study designs follow regulatory guidelines, significant variation remained across trial populations.³⁷ We identified shortcomings and variation in multiple key endpoints used to define success and failure, including the duration of study drug treatment, the period from EOT to assessment of effect, and the period from EOT to assessment of sustainability. Clinical and microbiological criteria for diagnosis and treatment success were unclear and variable in terms of the number of surviving

uropathogens allowed to remain in a 'microbiological success'. The dictionary definition of

'eradication' (i.e. complete removal) is far stricter than how this word is commonly applied to describing microbiological outcomes in cUTI. In this same context, many studies showed discordant clinical and microbiological success rates, questioning the appropriateness of 'composite' success criteria, and the equal weighting of clinical and microbiological outcomes in treatment results. Kadry *et al.*³⁸ found higher rates of clinical failure at late follow-up if there is a discordance between clinical and microbiological success at TOC, which is a clinically relevant observation.

Shortcomings in the reporting of the clinical findings used as inclusion criteria, inconsistent definitions of fever, and vague definitions of clinical success call for the use of objective criteria, such as defervescence, normalization of leucocyte count, C-reactive protein, and procalcitonin. The word 'eradication' should be replaced by criteria requiring reduction of bacterial count to below agreed and standardized thresholds. Reporting the spectrum of pathogens and the rate of resistance to study antibiotics should be mandatory. The results of RCTs are not only needed for the registration of new antibiotics but also guide subsequent clinical decisions. Overcoming limitations in study characteristics and patient classification will therefore also improve clinical practice.

Strengths and weaknesses

It might be argued that the reviewed studies were too diverse to allow comparison. Some were performed before the publication of the most recent FDA guidance. However, our objective was to explore studies on 'cUTI' and we were interested in displaying how diversely investigators interpreted the concept. Another limitation is that, to keep the search manageable, we focused solely on studies with results published in peer-reviewed literature and did not search congress presentations nor the grey literature which, by definition, is not indexed nor readily searchable. We are aware e.g. of unpublished trials of antibiotics that failed to demonstrate efficacy in cUTI, notably eravacycline. Finally, in respect to pathogen characteristics, we acknowledge these may have been reported in secondary publications excluded from our analysis.

Our way of assessing risk of bias differed from Cochrane methodology for systematic reviews.

Cochrane recommends using five domains assessed independently by two investigators, often junior researchers. We did not specify so many domains, but instead specified 26 issues, and our assessment was made by 22 experts from three medical specialties. We not only present the final Delphi results, but also display the full variation between rounds and specialties. In compliance with Cochrane, each issue was rated as 'low', 'some concerns' or 'high' for risk of bias. The assessors' reasons for judgement were presented in free text comments in a transparent, independent, and confidential way. In the first consensus round, urologists tended to vote for a higher chance of bias related to patient risk factors than did infectious diseases specialists. This difference likely reflects

urologists, within their day-to-day practice, working to identify and minimize factors related to recurrence (ORENUC categories R and U). The composition of the panel might therefore be a bias itself, and a differently composed research panel performing a wider search might produce better evidence-based recommendations than developed here. The Europe-centred perspective of our panel may have influenced our weighting of risk factors compared with colleagues elsewhere, reflecting difference in practice and awareness.

Despite these limitations we contend that our issue-based evaluation of bias provides original, sound, and valuable criticism to improve and standardise the conduct of clinical trials in cUTI.

Consequences and conclusions

A triad of issues in cUTI research need further evaluation: poor adherence to research guidance; high risk of bias in clinical studies; and 'cUTI' inherently being a poor concept.

Improving adherence to guidance

Developing clearer guidance will facilitate adherence. This should start with obtaining consensus-based agreement, via a carefully composed, international, multidisciplinary expert group, on numerical protocol criteria (e.g. treatment duration(s), number of days between treatment start and assessment of response or sustainability) and on measures defining treatment success (such as time to defervescence and acceptable colony count thresholds at TOC). There is also a need for a better classification of clinical severity of UTI and the ESIU/EAU definition is a good starting point.⁷

The responsibility for adherence to research guidance lies with researchers, but also with reviewers

and editors who evaluate and publish reports. Adherence should be monitored continuously.

Improved guidance will not only enhance the quality of future research and increase the comparability of cUTI trials but will also improve clinical practice, which is guided by trial results.

Reducing risk of bias

Patient-related risk factors are the most discriminatory criteria within present 'cUTI' trial populations, and the proportions of patients with different risk factors may bias outcomes. Recruitment to future studies should start with assessment of clinical presentation form and severity, followed by evaluation of the patients' risk profile, preferably by phenotyping according to the ORENUC classification.⁷ Special attention should be given to patient-related risk factors for recurrence (ORENUC category R), as these patients often have lifestyle factors as their main risk factor, such as fluid intake, voiding habits, frequency of sexual activity, or obstipation. Unless such aspects are addressed, patients will return to a lifestyle with an increased risk of recurrence, which may skew assessment of the sustainability of antibiotic-achieved cure.

Knowledge gaps remain regarding the impact of risk factors on the rate of recurrence and risk of progression to more-severe UTIs. We need to know more about the roles of non-catheter biofilms that harbour bacteria, preventing treatment success, and the importance of an immunologically impaired host response. Both remain grey zones in UTI research.⁴⁰ Pathogen species, strain, and particular resistance genes do impact outcome. Here, technologies are emerging that allow full genomic characterization of organism(s) within one hour, directly from urine.⁴¹ Microbiological assessment by such methods during trial recruitment will reduce pathogen-related risks for bias.

New ways to analyse the impact of risk factors on study outcomes could entail a retrospective analysis of a broader range of studies using various *a priori* classifications, or re-analysis of individual study outcomes stratified according to risk factors. A caveat is that recruitment of patients according to stricter phenotyping and microbiological criteria replaces one big pool of patients with numerous smaller pools, reducing recruitment capacity within each hospital. Moreover, smaller sub-groups within a study will limit statistical power. A possible route forwards would be for future studies to be run by large, international specialist groups sponsored by pharmaceutical companies, replacing the current model, where trials typically are run by pharmaceutical companies themselves.

The concept of cUTI

If the concept of 'cUTI' is abandoned, complex decision algorithms will be required to obtain homogenous patient groups for studies. A potential way forwards lies in developing algorithms that simultaneously weight numerous variables. This calls for machine learning and use of artificial intelligence, which is already being tested in clinical decision-making for UTI treatment. Notably, researchers in the Serpens study are developing a machine-learning tool to predict outcomes of urosepsis based on multiple variables, including ORENUC criteria. In the shorter term, researchers can increase homogeneity in study arms by focusing on pyelonephritis patients without known risk factors, as a clearly defined clinical entity. As knowledge gaps are filled, new groups of patients with risk factors can be defined and studied. This would be in line with the strategy of the Infectious Diseases Society of America (IDSA) and the American Urologist Association (AUA), which have distinct guidelines on asymptomatic bacteriuria, uncomplicated-, recurrent- and catheter-associated UTI, but not for 'cUTI'. 44-47

Concluding remarks

We hope this paper will push regulatory agencies and international medical societies to prioritize the establishment of an expert panel with a mandate to improve definitions, standards and phenotyping of patients for the betterment of evaluations of new antibiotics in UTI. UTI remains an important study field particularly for antibiotics against Gram-negative pathogens due to its clinical frequency,

and the strong likelihood of identifying the causative pathogen and of documenting microbiological treatment effect. Medical societies and regulatory bodies owe developers and patients clear guidance on how to perform clinical studies and to improve clinical practice.

466 **Contributors** 467 TEBJ chaired the study group. The literature assessment was made by TEBJ, JQ and the medical 468 writer (RL). PHZ and TEBJ performed the statistical evaluation. TEBJ designed and moderated the 469 Delphi process. All authors contributed to the Delphi process. TEBJ had access to and verified all 470 underlying data. Manuscript writing was led by TEBJ. All authors contributed to the development of 471 the manuscript by critically reviewing the content. All authors endorsed the decision to submit for 472 publication and agreed to be accountable for the work. Members of the cUTI consensus group are listed in the appendix (p 3). 473 474 **Declaration of interests** 475 AJ has received speaker fees from bioMerieux, Serosep, and The British Medical Journal; consultancy 476 fees from Advanz Pharma, GlaxoSmithKline, Pfizer, and Global Access Diagnostics; grants from Pfizer; 477 support for meeting attendance from Eumedica and GSK; and is a trustee for the British Society for 478 Antimicrobial Chemotherapy. 479 AO has participated in advisory boards hosted by Advanz Pharma; and received honoraria from 480 Advanz Pharma, MSD, InfectoPharm, and Pfizer. 481 AS reports receiving grants from Pfizer and Gilead Sciences; consulting fees and honoraria for 482 lectures from Pfizer, MSD, Angelini, Shionogi, Gilead, and Menarini; and support for meeting 483 attendance from Pfizer. BK has participated in advisory boards hosted by OM Pharma; and is a member of the European 484 485 Association of Urology guidelines panel on Urological Infections and unpaid chair of the UTISOLVE 486 research group. 487 CB has participated in advisory boards hosted by Advanz Pharma, MiP Pharma, and GSK; and 488 received honoraria for lectures from GSK and Mundipharma. 489 CGJ has received honoraria for lectures from Astellas Pharma, IBSA, and Medtronic; support for 490 meeting attendance from Medtronic and IBSA; and participated in advisory boards hosted by Astellas 491 Pharma, Innocon, and Aarhus Medical. 492 DML reports grants from Pfizer; personal fees from Adjutec, ADVANZ Pharma, AstraZeneca, 493 bioMérieux, Centauri, GenPax, ParaPharm, Pfizer, Shionogi, Sumitovant, Summit, Thermofisher, 494 Zambon, and Zuellig; shareholdings or options from GenPax, GSK, Merck, and Revvity; and 495 nominated holdings in Arecor Therapeutics, Celadon Pharmaceuticals, Destiny Pharma, Genedrive, 496 Genincode, Oxford BioDynamics, Optibiotix Health, Probiotix Health, SkinBiotherapeutics, and 497 VericiDx under Enterprise Investment Schemes with no direct authority to trade holdings.

498	FJMN has received consulting fees from Meiji; honoraria from Advanz Pharma, Angelini Pharma,
499	Gilead, GSK, Pfizer, Viatris, and ViiV; payment for expert testimony from Merck Sharp and Dome;
500	support for meeting attendance from Advanz pharma, Gilead, Merck Sharp and Dome, and Pfizer;
501	participated in advisory boards hosted by AstraZeneca, Advanz Pharma, Baxter, and Meiji; and has
502	leadership roles for the Spanish Society of Infectious Diseases and Clinical Microbiology, the Latin-
503	American Alliance on Infectious Diseases and Clinical Microbiology, and the Foundation SEIMC-
504	GESIDA.
505	FW has participated in advisory boards hosted by VenatoRx and is a member of the UTISOLVE
506	Research Group.
507	JCN reports being a consultant for Inmunotek and OM Pharma; and an invited speaker for Grand
508	Rounds in Urology.
509	JK has received consulting fees from Bionorica and GSK; honoraria for presentations from Apogepha
510	Arzneimittel GmbH, Bionorica, GSK, and Janssen Cilag GmbH; support for meeting attendance from
511	Apogepha Arzneimittel GmbH and Janssen Cilag GmbH; has participated in advisory boards hosted
512	by Bionorica, GSK, and Shionogi; and holds leadership/membership roles for the European
513	Association of Urology, the German Society of Urology, and the UTISOLVE Research Group.
514	JMP has received speakers honoraria and support for meeting attendance from Astellas Pharma,
515	Boston Scientific, Coloplast, Gebro Pharma, GSK, Lacer, Pierre Fabre, Qpharma, and Wellspect.
516	KGN is a consultant of Adamed Pharma, Bionorica, BioMerieux, GlaxoSmithKline, Inmunotek,
517	Ingenion Medical, Johnson & Johnson, OM Pharma, and MIP/Rosen Pharma.
518	KSK has served as a consultant for GSK, Merck, Shionogi, Abbvie, Spero, Carb-X, and Biomeme; and
519	participated in Data Safety Monitoring Board meetings for Venato-Rx, Meiji, and Contrafect.
520	ME reports honoraria for ad hoc expertise from Advanz Pharma and CORREVIO; and travel grants
521	from ViiV Healthcare, MSD, Pfizer, and Gilead.
522	ML reports payment for manuscript writing from Pfizer.
523	TEBJ reports consultancy fees from Advanz Pharma (for chairing the cUTI consensus group and
524	research for this manuscript), Sandoz, and Zambon; participation in advisory board meetings for
525	Advanz Pharma and Zambon; and unpaid leadership roles with ESIU/EAU and UTISOLVE.
526	ZT is chair of the European Section of Infection in Urology/European Association of Urology and
527	member of the UTISOLVE research group on UTI.

The other authors declared no conflicts of interest.

Acknowledgements

The authors would like to thank Juan Quevedo (JQ), MD, from ADVANZ PHARMA for his contribution to the project and Lucy Sims of Within3 for technical support with the online platform and Delphi process, funded by ADVANZ PHARMA. Medical writing support was provided by Ruth Lloyd (RL), PhD, of Herdwick Pharma Ltd. and funded by ADVANZ PHARMA.

Funding

This work was supported by ADVANZ PHARMA.

References

- 537 1. Wagenlehner FME, Bjerklund Johansen TE, Cai T, et al. Epidemiology, definition and
- treatment of complicated urinary tract infections. *Nat Rev Urol* 2020; **17**: 586-600.
- 539 2. Wagenlehner FME, Pilatz A, Weidner W, Naber KG. Urosepsis: Overview of the Diagnostic and 540 Treatment Challenges. *Microbiol Spectr* 2015; **3**.
- 3. Bjerklund Johansen TE BH, Cek M, Grabe M, Tenke P, Wagenlehner FME, Naber KG. Critical
- review of current definitions of urinary tract infections and proposal of an EAU/ESIU classification
- 543 system. In: Naber KG SA, Heyns CF, Matsumoto T, Shoskes DA and Bjerklund Johansen TE, ed.
- 544 Urogenital Infections Arnheim: International Consultation on Urological Diseases (ICUD) and
- 545 European Association of Urology 2010: 979-93.
- 546 4. European Association of Urology. Guidelines on Urological Infections. 2024.
- 547 <a href="https://d56bochluxqnz.cloudfront.net/documents/full-guideline/EAU-Guidelines-on-Urological-documents/full-guideline/EAU-Guidelines-on-Urological-documents/full-guideline/EAU-Guidelines-on-Urological-documents/full-guideline/EAU-Guidelines-on-Urological-documents/full-guideline/EAU-Guidelines-on-Urological-documents/full-guideline/EAU-Guidelines-on-Urological-documents/full-guidelines-on-Urological-documents/full-guidelines-on-Urological-documents/full-guidelines-on-Urological-documents/full-guidelines-on-Urological-documents/full-guidelines-on-Urological-documents/full-guidelines-on-Urological-documents/full-guidelines-on-Urological-documents/full-guidelines-on-Urological-documents/full-guidelines-on-Urological-documents/full-guidelines-on-Urological-documents/full-guidelines-on-Urological-documents/full-guidelines-documents/
- 548 <u>Infections-2024.pdf</u> (accessed December 17th 2024).
- 549 5. Burd EM, Hinrichs BH. Gastrointestinal Infections. *Molecular pathology in clinical practice* 550 2015; **19**: 707-34.
- 551 6. Rubin RH, Shapiro ED, Andriole VT, Davis RJ, Stamm WE. Evaluation of new anti-infective
- drugs for the treatment of urinary tract infection. Infectious Diseases Society of America and the
- Food and Drug Administration. *Clin Infect Dis* 1992; **15 Suppl 1**: S216-27.
- 554 7. Bjerklund Johansen TE, Botto H, Cek M, et al. Critical review of current definitions of urinary
- tract infections and proposal of an EAU/ESIU classification system. *Int J Antimicrob Agents* 2011; **38 Suppl**: S64-70.
- 557 8. European Association of Urology. Guidelines on Urological Infections. 2015.
- 558 https://d56bochluxqnz.cloudfront.net/documents/EAU-Guidelines-Urological-Infections-2015.pdf
- 559 (accessed December 12th 2024).
- 560 9. U.S. Food and Drug Administration. Complicated Urinary Tract Infections: Developing Drugs
- for Treatment Guidance for Industry. 2018. https://www.fda.gov/media/71313/download (accessed February 5th 2024).
- 563 10. Ferreira FL, Bota DP, Bross A, Melot C, Vincent JL. Serial evaluation of the SOFA score to predict outcome in critically ill patients. *JAMA* 2001; **286**: 1754-8.
- 565 11. Vincent JL, Moreno R, Takala J, et al. The SOFA (Sepsis-related Organ Failure Assessment)
- score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related
- Problems of the European Society of Intensive Care Medicine. *Intensive Care Med* 1996; **22**: 707-10.
- 568 12. Kaul S, Diamond GA. Good enough: a primer on the analysis and interpretation of
- noninferiority trials. Ann Intern Med 2006; 145: 62-9.
- 570 13. Piaggio G, Elbourne DR, Altman DG, Pocock SJ, Evans SJ, Group C. Reporting of noninferiority
- and equivalence randomized trials: an extension of the CONSORT statement. *JAMA* 2006; **295**: 1152-
- 572 60.
- 573 14. Fleming TR. Current issues in non-inferiority trials. *Stat Med* 2008; **27**: 317-32.
- 574 15. Cohchrane. RoB 2: A revised Cochrane risk-of-bias tool for randomized trials. 2024.
- 575 https://methods.cochrane.org/bias/resources/rob-2-revised-cochrane-risk-bias-tool-randomized-
- trials (accessed November 22nd 2024).
- 577 16. Higgins JPT SJ, Page MJ, Elbers RG, Sterne JAC. Chapter 8: Assessing risk of bias in a
- 578 randomized trial [last updated October 2019]. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li
- 579 T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions version
- 580 6.5. Cochrane, 2024. Available from www.training.cochrane.org/handbook. 2024.
- 581 17. Bradley JS, Roilides E, Broadhurst H, et al. Safety and efficacy of ceftazidime-avibactam in the
- treatment of children ≥3 months to <18 years with complicated urinary tract infection: Results from a
- phase 2 randomized, controlled trial. *Pediatr Infect Dis J* 2019; **38**: 920-8.
- 18. Connolly LE, Riddle V, Cebrik D, Armstrong ES, Miller LG. A multicenter, randomized, double-
- 585 blind, phase 2 study of the efficacy and safety of plazomicin compared with levofloxacin in the

- treatment of complicated urinary tract infection and acute pyelonephritis. Antimicrob Agents
- 587 *Chemother* 2018; **62**: e01989-17.
- 588 19. Dunne MW, Aronin SI, Das AF, et al. Sulopenem for the Treatment of Complicated Urinary
- Tract Infections Including Pyelonephritis: A Phase 3, Randomized Trial. *Clin Infect Dis* 2023; **76**: 78-88.
- 590 20. Eckburg PB, Muir L, Critchley IA, et al. Oral Tebipenem Pivoxil Hydrobromide in Complicated
- 591 Urinary Tract Infection. *N Engl J Med* 2022; **386**: 1327-38.
- 592 21. Edlund C, Ternhag A, Skoog Ståhlgren G, et al. The clinical and microbiological efficacy of
- temocillin versus cefotaxime in adults with febrile urinary tract infection, and its effects on the
- intestinal microbiota: a randomised multicentre clinical trial in Sweden. Lancet Infect Dis 2022; 22:
- 595 390-400.
- 596 22. Kaye KS, Belley A, Barth P, et al. Effect of Cefepime/Enmetazobactam vs
- 597 Piperacillin/Tazobactam on Clinical Cure and Microbiological Eradication in Patients With
- 598 Complicated Urinary Tract Infection or Acute Pyelonephritis: A Randomized Clinical Trial. JAMA 2022;
- **328**: 1304-14.
- Kaye KS, Bhowmick T, Metallidis S, et al. Effect of Meropenem-Vaborbactam vs Piperacillin-
- Tazobactam on Clinical Cure or Improvement and Microbial Eradication in Complicated Urinary Tract
- Infection: The TANGO I Randomized Clinical Trial. *JAMA* 2018; **319**: 788-99.
- 603 24. Kaye KS, Rice LB, Dane AL, et al. Fosfomycin for Injection (ZTI-01) Versus Piperacillin-
- tazobactam for the Treatment of Complicated Urinary Tract Infection Including Acute Pyelonephritis:
- 605 ZEUS, A Phase 2/3 Randomized Trial. Clin Infect Dis 2019; **69**: 2045-56.
- 606 25. Li Y, Yin Y, Peng X, et al. A randomized, active-controlled, multicentre clinical trial to evaluate
- the efficacy and safety of oral sitafloxacin versus levofloxacin in Chinese adults with acute
- uncomplicated or complicated urinary tract infection. *Ann Med* 2021; **53**: 217-26.
- 609 26. Portsmouth S, van Veenhuyzen D, Echols R, et al. Cefiderocol versus imipenem-cilastatin for
- the treatment of complicated urinary tract infections caused by Gram-negative uropathogens: a
- 611 phase 2, randomised, double-blind, non-inferiority trial. *Lancet Infect Dis* 2018; **18**: 1319-28.
- 612 27. Roilides E, Ashouri N, Bradley JS, et al. Safety and Efficacy of Ceftolozane/Tazobactam Versus
- 613 Meropenem in Neonates and Children With Complicated Urinary Tract Infection, Including
- 614 Pyelonephritis: A Phase 2, Randomized Clinical Trial. *Pediatr Infect Dis J* 2023; **42**: 292-8.
- 615 28. Wagenlehner F, Nowicki M, Bentley C, et al. Explorative Randomized Phase II Clinical Study of
- the Efficacy and Safety of Finafloxacin versus Ciprofloxacin for Treatment of Complicated Urinary
- Tract Infections. *Antimicrob Agents Chemother* 2018; **62**.
- 618 29. Wagenlehner FM, Gasink LB, McGovern PC, et al. Cefepime-Taniborbactam in Complicated
- 619 Urinary Tract Infection. *N Engl J Med* 2024; **390**: 611-22.
- 620 30. Wagenlehner FME, Cloutier DJ, Komirenko AS, et al. Once-Daily Plazomicin for Complicated
- 621 Urinary Tract Infections. *N Engl J Med* 2019; **380**: 729-40.
- 622 31. Lafaurie M, Chevret S, Fontaine JP, et al. Antimicrobial for 7 or 14 Days for Febrile Urinary
- 623 Tract Infection in Men: A Multicenter Noninferiority Double-Blind, Placebo-Controlled, Randomized
- 624 Clinical Trial. *Clin Infect Dis* 2023; **76**: 2154-62.
- 625 32. Leitner L, Ujmajuridze A, Chanishvili N, et al. Intravesical bacteriophages for treating urinary
- 626 tract infections in patients undergoing transurethral resection of the prostate: a randomised,
- 627 placebo-controlled, double-blind clinical trial. *Lancet Infect Dis* 2021; **21**: 427-36.
- 628 33. Nelson Z, Tarik Aslan A, Beahm NP, et al. Guidelines for the Prevention, Diagnosis, and
- 629 Management of Urinary Tract Infections in Pediatrics and Adults: A WikiGuidelines Group Consensus
- 630 Statement. *JAMA Netw Open* 2024; **7**: e2444495.
- 631 34. Bilsen MP, Jongeneel RMH, Schneeberger C, et al. Definitions of urinary tract infection in
- current research: A systematic review. *Open Forum Infect Dis* 2023; **10**: ofad332.
- 633 35. Bilsen MP, Conroy SP, Schneeberger C, et al. A reference standard for urinary tract infection
- 634 research: a multidisciplinary Delphi consensus study. Lancet Infect Dis 2024; 24: e513-e21.

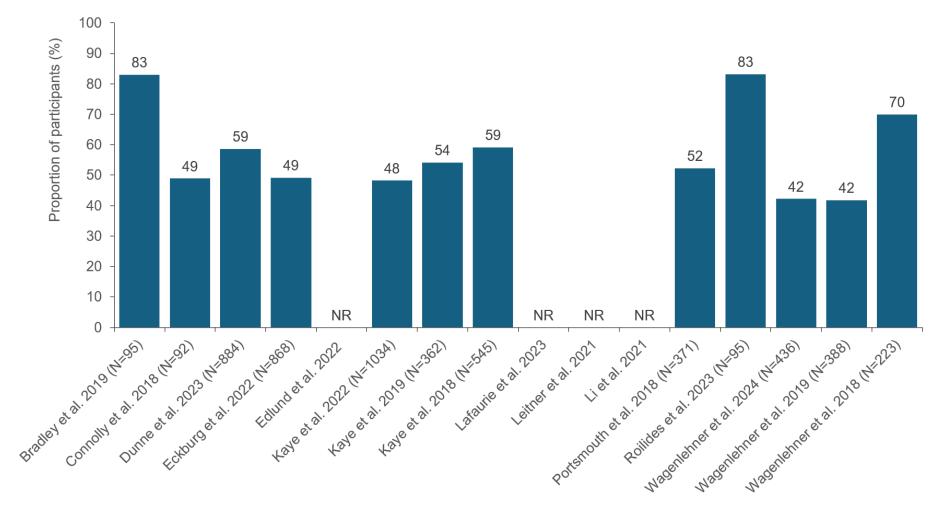
- 635 36. Bonkat G, Wagenlehner F, Kranz J. Keep it Simple: A proposal for a new definition of
- 636 uncomplicated and complicated urinary tract infections from the EAU Urological Infections
- 637 Guidelines Panel. Eur Urol 2024; 86: 195-7.
- 638 37. Portsmouth S, Bass A, Echols R, Tillotson G. Heterogeneity of Recent Phase 3 Complicated
- Urinary Tract Infection Clinical Trials. *Open Forum Infect Dis* 2021; **8**: ofab045.
- 640 38. Kadry N, Natarajan M, Bein E, Kim P, Farley J. Discordant Clinical and Microbiological
- Outcomes Are Associated With Late Clinical Relapse in Clinical Trials for Complicated Urinary Tract
- 642 Infections. Clin Infect Dis 2023; **76**: 1768-75.
- 643 39. Tetraphase Pharmaceuticals, Inc. U.S. Prescribing Information: XERAVA® (eravacycline). 2024.
- 644 https://xerava-assets.s3.amazonaws.com/prescribing-information.pdf (accessed December 19th
- 645 2024).
- 646 40. Bjerklund Johansen TE, Bonkat G, Cai T, Tandogdu Z, Wagenlehner F, Grabe M. Grey Zones in
- the Field of Urinary Tract Infections. *Eur Urol Focus* 2016; **2**: 460-2.
- 648 41. Bellankimath AB, Chapagain C, Branders S, et al. Culture and amplification-free nanopore
- 649 sequencing for rapid detection of pathogens and antimicrobial resistance genes from urine. Eur J Clin
- 650 Microbiol Infect Dis 2024; **43**: 2177-90.
- 651 42. Cai T, Anceschi U, Prata F, et al. Artificial Intelligence Can Guide Antibiotic Choice in Recurrent
- 652 UTIs and Become an Important Aid to Improve Antimicrobial Stewardship. Antibiotics (Basel) 2023;
- 653 **12**: 375.
- 43. Tandogdu Z, Koves B, Ristovski S, et al. Urosepsis 30-day mortality, morbidity, and their risk
- factors: SERPENS study, a prospective, observational multi-center study. World J Urol 2024; 42: 314.
- 656 44. Bixler BR, Anger JT. Updates to Recurrent Uncomplicated Urinary Tract Infections in Women:
- 657 AUA/CUA/SUFU Guideline. J Urol 2022; 208: 754-6.
- 658 45. Gupta K, Hooton TM, Naber KG, et al. International clinical practice guidelines for the
- 659 treatment of acute uncomplicated cystitis and pyelonephritis in women: A 2010 update by the
- 660 Infectious Diseases Society of America and the European Society for Microbiology and Infectious
- 661 Diseases. Clin Infect Dis 2011; **52**: e103-20.
- 46. Hooton TM, Bradley SF, Cardenas DD, et al. Diagnosis, prevention, and treatment of catheter-
- associated urinary tract infection in adults: 2009 International Clinical Practice Guidelines from the
- Infectious Diseases Society of America. Clin Infect Dis 2010; 50: 625-63.
- 665 47. Nicolle LE, Gupta K, Bradley SF, et al. Clinical Practice Guideline for the Management of
- Asymptomatic Bacteriuria: 2019 Update by the Infectious Diseases Society of America. Clin Infect Dis
- 667 2019; **68**: e83-110.

Tables and Figures

Table 1: Efficacy findings for studies with primary endpoints assessing clinical, microbiological or composite response

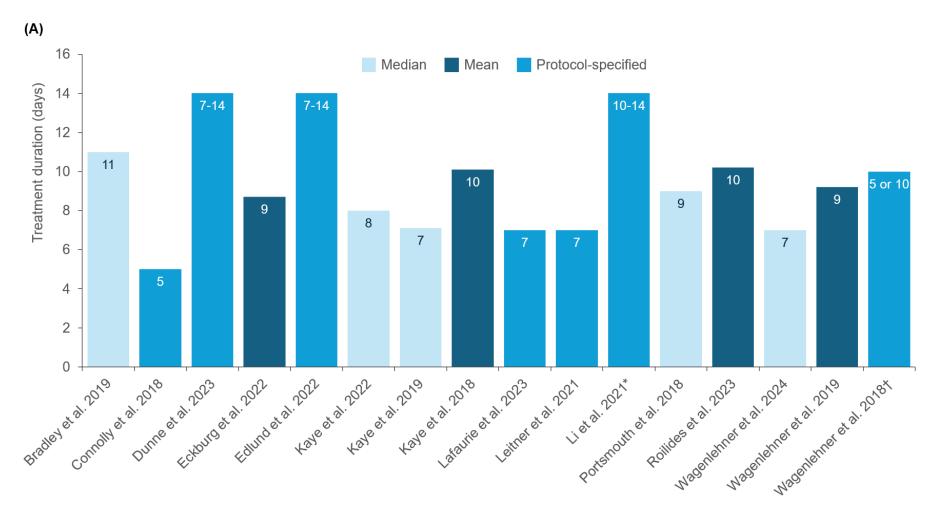
						microbiol	_		Clinical response, n/N (%)		ological e, n/N (%)	Treatment difference, percentage	Inferiority or
Study	Endpoint	Analysis set	Timepoint	Test	Comparator	Test	Comparator	Test	Comparator	Test	Comparator	points (95% CI)*	superiority criteria met
Connolly et al. 2018 ¹⁸	Co-primary endpoint		TOC	Plazomicin 15 mg/kg	Levofloxacin IV	1	NA	NA	NA	31/51 (61%)	17/29 (59%)	2.2 (–22·9, 27·2)	NA
				Plazomicin 10 mg/kg IV	Levofloxacin IV	NA	NA	NA	NA	6/12 (50%)	17/29 (59%)	NA	NA
	Co-primary endpoint	ME	TOC	Plazomicin 15 mg/kg IV	Levofloxacin IV	NA	NA	NA	NA	31/35 (89%)	17/21 (81%)	7.6 (–16·0, 31·3)	NA
				Plazomicin 10 mg/kg IV	Levofloxacin IV	NA	NA	NA	NA	6/7 (86%)	17/21 (81%)	NA	NA
Dunne et al. 2023 ¹⁹	Primary endpoint	Micro- mITT	тос	Sulopenem IV†	Ertapenem IV†	301/444 (68%)	325/440 (74%)	NA	NA	NA	NA	-6.1 (-12·0, - 0·1)	Non- inferiority criteria not met
Eckburg et al. 2022 ²⁰	Primary endpoint	Micro- ITT	тос	Tebipenem pivoxil hydrobromi de (oral)	Ertapenem IV	264/449 (59%)	258/419 (62%)	NA	NA	NA	NA	-3.3 (-9·7, 3·2)	Non- inferiority criteria met
Kaye et al. 2022 ²²	Primary endpoint	Micro- mITT	TOC	Cefepime/ enmetazob actam IV	Piperacillin/ tazobactam IV	273/345 (79%)	196/333 (59%)	NA	NA	NA	NA	21·2 (14·3, 27·9)	Non- inferiority and superiority criteria met
Kaye et al. 2019 ²⁴	Primary endpoint	Micro- mITT	TOC	ZTI-01 IV	Piperacillin/ tazobactam IV	119/184 (65%)	97/178 (54%)	NA	NA	NA	NA	10·2 (-0·4, 20·8)	Non- inferiority criteria met

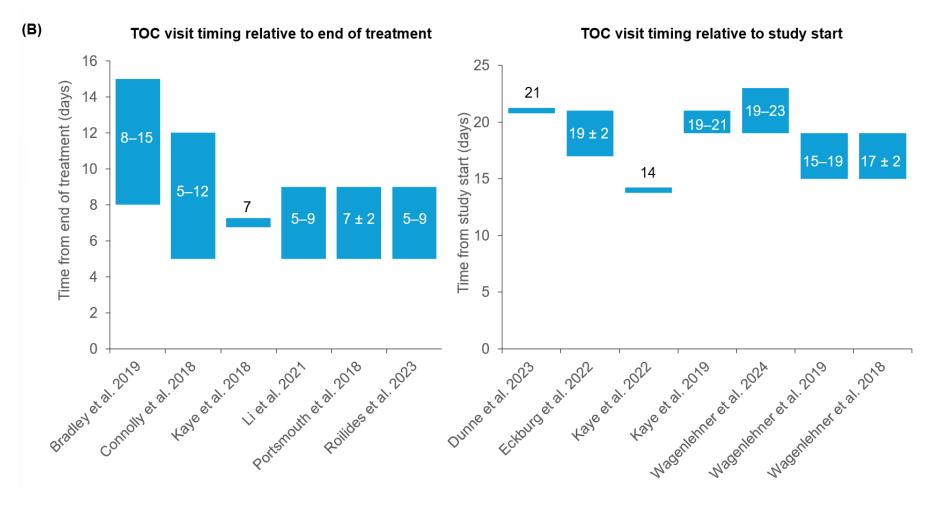
						Combined	d clinical and	Clinical	response, n/N	Microbio	logical	Treatment difference,	
						response,	_	(%)	response, n/N		e, n/N (%)	percentage	Inferiority or
		Analysis						(- /				points	superiority
Study	Endpoint	set	Timepoint	Test	Comparator	Test	Comparator	Test	Comparator	Test	Comparator	(95% CI)*	criteria met
Kaye et al. 2018 ²³	Primary end point for FDA		End of IV treatment	-	Piperacillin- tazobactam IV	189/192 (98%)	171/182 (94%)	NA	NA		NA	4.5 (0·7, 9·1)	Non- inferiority and superiority criteria met
	Co-primary endpoint for EMA	Micro- mITT	тос	•	Piperacillin- tazobactam IV	NA	NA	NA	NA		105/182 (58%)	9.0 (-0.9, 18.7)	Non- inferiority criteria met; superiority criteria not met
	Co-primary endpoint for EMA	ME	тос		Piperacillin- tazobactam IV	NA	NA	NA	NA		102/169 (60%)	5.9 (-4·2, 16·0)	Non- inferiority criteria met; superiority criteria not met
Lafaurie et al. 2023 ³¹	Primary endpoint‡	ITT	Week 6	7 days of antibiotics	14 days of antibiotics	64/115 (56%)	97/125 (78%)	NA	NA	NA	NA	-21·9 (-33·3, -10·1)	Inferiority criteria met
Leitner et al. 2021 ³²	Primary endpoint	mITT	EOT or withdrawa I	Intravesical pyophage	SoC antibiotics	NA	NA	NA	NA	5/28 (18%)	13/37 (35%)	Odds ratio (95% CI)§: 2·66 (0·79, 8·82)	Non- inferiority criteria met
					Intravesical placebo	NA	NA	NA	NA	5/28 (18%)	9/32 (28%)	Odds ratio (95% CI)§: 1·60 (0·45, 5·71)	Superiority criteria not met
Li et al. 2021 ²⁵	Primary endpoint¶	Per- protocol	тос	Sitafloxacin oral	Levofloxacin oral	NA	NA	27/33 (82%)	20/26 (77%)	NA	NA	4·9 (–16·0, 25·8)	NA


						Combined clinical and microbiological response, n/N (%)		Clinical response, n/N (%)		Microbiological response, n/N (%)		Treatment difference, percentage	Inferiority or
Study	Endpoint	Analysis set	Timepoint	Test	Comparator	Test	Comparator	Test	Comparator	Test	Comparator	points (95% CI)*	superiority criteria met
•	Primary endpoint	mITT	тос		Imipenem- cilastatin IV	183/252 (73%)	65/119 (55%)	NA	· ·	NA	NA	18·58 (8·23, 28·92)	Non- inferiority criteria met and post hoc superiority criteria met
Wagenlehner et al. 2024 ²⁹	Primary endpoint	Micro- ITT	TOC	Cefepime- taniborbact am IV	Meropenem IV	207/293 (71%)	83/143 (58%)	NA	NA	NA	NA	12.6 (3.1, 22.2)	Non- inferiority and superiority criteria met
Wagenlehner et al. 2019 ³⁰	Co-primary endpoint	Micro- mITT	Day 5	Plazomicin IV	Meropenem IV	168/191 (88%)	180/197 (91%)	NA	NA	NA	NA	-3·4 (−10·0, 3·1)	Non- inferiority criteria met
	Co-primary endpoint	Micro- mITT	TOC	Plazomicin IV	Meropenem IV	156/191 (82%)	138/197 (70%)	NA	NA	NA	NA	11.6 (2.7, 20.3)	Non- inferiority criteria met
Wagenlehner et al. 2018 ²⁸	Primary endpoint	Micro- ITT	TOC	5 days finafloxacin	10 days ciprofloxacin	45/64 (70%)	35/61 (57%)	NA	NA	NA	NA	NA	NA
				•	10 days ciprofloxacin		35/61 (57%)	NA		NA	NA	NA distantian to	NA

Cl=confidence interval. ITT=intention-to-treat. IV=intravenous. ME=microbiologically evaluable. Micro=microbiological. mITT=modified intention-to-treat. NA=not assessed. SoC=standard of care. TOC=test of cure. UTI=urinary tract infection. *Unless otherwise indicated, treatment effect is treatment difference in percentage points and 95% confidence interval. †Sulopenem IV followed by oral sulopenem etzadroxil/probenecid or ertapenem IV followed by oral ciprofloxacin or amoxicillin-clavulanate. ‡Treatment success (clinical success, microbiological success, and absence of new antimicrobial treatment since the end of the antibiotic treatment for UTI [except if a new antimicrobial was prescribed for another infection and had no effect on the initial uropathogen]). §Adjusted logistic regression with pyophage as the reference. ¶Data shown for the subgroup of UTI patients with complicated UTI.

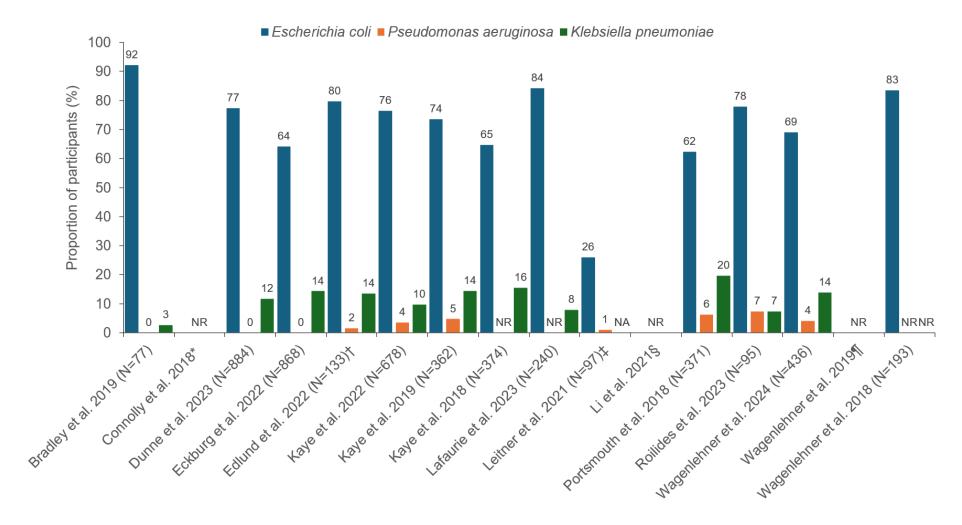
Figure 1: Proportion of participants with pyelonephritis


678


679

Data are presented for all treatment groups combined. Analysis sets used to report data varied between studies. NR=not reported.

Figure 2: Treatment duration (A) and timing of test of cure visit (B)



(A) Analysis sets used to report data varied between studies. Treatment durations are for both arms combined if available, ^{18,19,22,25,32} and for the investigational treatment arm in all other cases; the duration is for all treatments (e.g., including both intravenous and oral step-down therapy, where this was permitted). Durations are mean, median or protocol specified as indicated (protocol-specified durations are shown if the median/mean total duration of all study treatments combined [including oral step-down] was not provided, or the studies had a fixed treatment duration). (B) TOC visit timing was specified

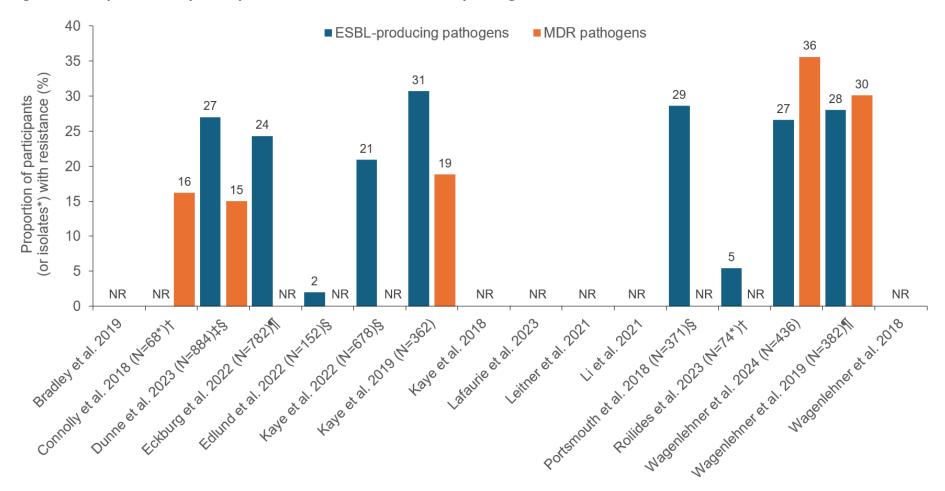

according to end of treatment or study start. Three studies are not shown as they did not specify timing of a TOC visit. 21,31,32 cUTI=complicated urinary tract infection. TOC=test of cure. *For the subgroup with cUTI. †Treatment duration with investigational drug was 5 days in one arm and 10 days in another arm.

Figure 3: Proportion of participants with *Escherichia coli, Pseudomonas aeruginosa* and *Klebsiella pneumoniae* pathogens

Data are presented for all treatment groups combined. Analysis sets used to report data on pathogens varied between studies (all included only patients who had pathogens isolated at baseline). NA=not applicable. NR=not reported. UTI=urinary tract infection. *69 Escherichia coli and 7 Klebsiella pneumoniae isolates reported among 92 patients. †Data shown for all Klebsiella spp. and Pseudomonas spp. ‡To be eligible for inclusion, patients had urine cultures that were positive for pathogens covered by the pyophage cocktail investigated in this study (i.e., Enterococcus spp., E. coli, Proteus mirabilis, Pseudomonas aeruginosa, Staphylococcus spp., and Streptococcus spp.); patients with other pathogens typical in UTI, such as Klebsiella spp., were not eligible. §23 E. coli isolates reported among 26 patients in the subgroup with complicated UTI. ¶270 E. coli and 76 K. pneumoniae pathogens reported among 388 patients.

Figure 4: Proportion of participants/isolates with resistant pathogens

Multidrug resistance was defined as resistance to at least one antibiotic from at least three different classes unless otherwise indicated. Data are presented for all treatment groups combined. Analysis sets used to report data on pathogens varied between studies. ESBL=extended-spectrum beta-lactamase.

MDR=multidrug resistant. NR=not reported. *Indicates that data are proportion of isolates rather than patients. †Data are among Enterobacteriaceae

isolates¹⁸ and *Escherichia coli* isolates only.²⁷ ‡The proportion of participants with MDR pathogens was not reported but data are shown for pathogens that specifically were ESBL-producers, fluoroquinolone non-susceptible, and trimethoprim-sulfamethoxazole non-susceptible. §ESBL data represent the proportion of patients with ESBL-producing Enterobacterales,^{19,22} *Escherichia coli*,²¹ and Gram-negative uropathogens.²⁶ ¶Among patients with Enterobacterales²⁰ and Enterobacteriaceae³⁰ only.

Figure 5: Delphi questionnaire and final consensus results

			Risk of bias					
Signalling questions	Category	Issue number	Issues that are likely to affect the ability to draw reliable conclusions from studies	Low	Some concerns	High		
		1	The type and frequency of clinical presentation and severity, i.e., percentages of cystitis, non-febrile and febrile pyelonephritis, and urosepsis			100		
	ation	2	Whether the infection was nosocomial or community-acquired		41	59		
	Clinical situation	3	Fever		23	77		
	Clinic	4	The general condition of the patient (ASA status)	14	36	50		
		5	If two or more of the issues in this category were not satisfactorily described		9	91		
		6	Catheter or stent (including nephrostomy tube) in place at diagnosis, during treatment and during follow-up			100		
A. How would you assess the risk of bias in study outcomes in terms of clinical and microbiological success		7	Presence of urinary stones anywhere in the urinary tract		14	86		
(including sustainability), if these issues (risk factors) were: not		8	History of symptomatic UTI in the previous 6 months		32	68		
considered at all, or not equally distributed, or not clearly defined (i.e., fever) in study groups?		9	A history of bacterial prostatitis		18	82		
(i.e., level) in study groups:	Patient	10	Evidence of immune suppression or diabetes		14	86		
	Pati	11	Female sex	9	59	32		
		12	Antibiotic treatment within the previous 30 days		23	77		
		13	Premenopausal women who have a history of recurrent UTI associated with sexual intercourse	14	32	55		
		14	A history of obstipation	45	36	18		
		15	If two or more of the issues in this category were not satisfactorily described		18	82		

	7		Risk of bias				
Signalling questions	Category	Issue number	Issues that are likely to affect the ability to draw reliable conclusions from studies	Low	Some concerns	High	
B. How would you assess the risk of bias of study outcomes in terms of	r.	16	The spectrum of pathogens		18	82	
microbiological success, if these issues related to the pathogen were:	Pathogen	17	Resistance to study drugs			100	
not reported at all, or not equally distributed in study groups?	ď	18	If both issues in this category were not satisfactorily described	Low Some concers 18 50 27 5 27 9 5 5		100	
		19	Difference between studies in the duration of treatment with study drug of more than 100% of average treatment duration (typically >3 days)		50	50	
	stics	20	The period from EOT to TOC assessment differs by >1 week between studies		27	73	
C. How would you assess the risk of bias when comparing studies if these	acteris	21	The observation period from EOT to assessment of sustainability of effect differs by >3 weeks between studies		14	86	
	Study characteristics	22	A discrepancy between studies in microbiological success criteria of ≥10 CFU/mL (using ≤10³ instead of ≤10⁴ CFU/mL)	5	27	68	
		23	A discrepancy between studies in the definition of microbiological "eradication" (using ≤10³ CFU/mL or no definition at all)		9	91	
		24	If two or more of the issues in this category were present		5	95	
D. How would you assess the overall risk of bias in the outcomes of a study (in terms of clinical and microbiological success):		25	If at least one issue in each of the following categories was present (clinical situation, patient, and pathogen)?		5	95	
E. How would you assess the overall risk of bias when comparing outcomes between studies (in terms of clinical and microbiological success):	risk of bias when comparing comes between studies (in terms of clinical and microbiological		If at least one issue in all four categories (clinical situation, patient, pathogen, and study characteristics) was present?		9	91	

Numbers in circles in the last three columns indicate the percentage of participants who voted for each risk level during the final round of the Delphi process (out of 22 respondents). Consensus was achieved if there was >75% agreement on risk of bias for an issue (indicated by shaded rows). ASA=American Society of Anaesthesiologists. CFU=colony forming unit. EOT=end of treatment. TOC=test of cure. UTI=urinary tract infection.