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Abstract

The Flexible Farrington Algorithm (FFA) is widely used to detect infectious disease outbreaks at
national/regional levels on a weekly basis. The rapid spread of SARS-CoV-2 alongside the speed
at which diagnostic and public health interventions were introduced made the FFA of limited
use. We describe how the methodology was adapted to provide a daily alert system to support
local health protection teams (HPTs) working in the 316 English lower-tier local authorities. To
minimize the impact of a rapidly changing epidemiological situation, the FFA was altered to use
8 weeks of data. The adapted algorithmwas based on reported positive counts using total tests as
an offset. Performance was assessed using the root mean square error (RMSE) over a period.
Graphical reports were sent to local teams enabling targeted public health action. From 1 July
2020, results were routinely reported. Adaptions accommodated the impact on reporting
because of changes in diagnostic strategy (introduction of lateral flow devices). RMSE values
were relatively small compared to observed counts, increased during periods of increased
reporting, and were relatively higher in the northern and western areas of the country. The
exceedance reports were well received. This presentation should be considered as a successful
proof-of-concept.

Key findings
• The development of the Adapted Flexible Farrington Algorithm (AFFA) enabled the

calculation of daily exceedance thresholds for each of the 316 English Lower-Tier Local
Authorities (LTLA).

• Estimates were used to produce visualizations of local COVID-19 case reports and trends.
• The system-generated alerts and local epidemic profiles were a key part of themanagement of

the SARS-CoV-2 epidemic which were used to guide local intervention and control priorities.
• Red–amber–green (RAG) ratings were used to assist interpretation for the local public health

teams and, at the national level, in the development of government strategic priorities.
• Retrospective assessment demonstrated that the adapted algorithm performed satisfac-

torily. The project was considered to be a successful proof-of-concept development.

Introduction

Globally, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic was the
largest public health emergency to which many public health agencies had to respond [1]. By
July 2023, SARS-CoV-2 had led to over 750 million reported coronavirus disease (COVID-19)
cases and 4million deaths [2]. In the UK, the first two laboratory-confirmed cases of the SARS-
CoV-2 epidemic were reported on 30 January 2020. Across the course of the pandemic public
health systems needed to adapt to the rapidly changing epidemiology of COVID-19. Of
particular concern was the rapid emergence of COVID-19 variants and the reported case
doubling time which in late 2021 was estimated to be 1.5 to 3 days in England [3]. Initial control
measures focussed on non-pharmaceutical interventions, such as social distancing, and latterly
relied upon pharmaceutical interventions, such as vaccinations and antivirals [4]. In the UK,
the implementation of non-pharmaceutical interventions, such as national lockdowns,
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changed the course of the pandemic (Figure 1). Once available,
pharmaceutical interventions were rolled out. For example, in
March 2021, over 3 million people were vaccinated against
COVID-19 in 1 week [5]. Diagnostic strategies were also devel-
oped rapidly, and in the same month, lateral flow devices became
widely available. Initially, COVID-19 case data was only available
for hospital and symptomatic testing for high-risk settings but by
April 2020 expanded microbiological data became available from
wider community testing. To guide local control strategies within
this rapidly evolving epidemiological landscape, near real-time
(daily) situational and outbreak reports were needed. A system for
monitoring disease trends that was less dependent on long-term
historical trends was also required.

Before the pandemic, many public health institutions operated
automated statistical systems using health surveillance data to
monitor disease trends and detect outbreaks. These included the
Early Aberration Reporting System (EARS) [6], Early Notification
of Community-based Epidemics (ESSENCE) [7], SaTScan [8], and
the FFA [9, 10] which is used by many European public health
institutions. The UK Health Security Agency (UKHSA) imple-
mented the original Farrington Algorithm in the early 1990s for
use on infectious disease surveillance data and now routinely runs
the FFA weekly [11–13]. In 2016, the FFA was evaluated using
simulated situations considered likely to be encountered within the
UK [11]. A coronavirus pandemic was not an anticipated scenario.

Effective communication with all stakeholders involved in the
public health response was a key component of the public health
response. An early criticism of the UK COVID-19 response was
poor communication with local government [14]. Designing timely
insightful daily surveillance reports that provided information to
support the work of local infection prevention and control teams
was a particular challenge.

The adapted Farrington Flexible algorithm (AFFA) provided
exceedances of aggregated case reports in precisely the same

manner as the FFA, that is, it estimates an upper threshold using
results obtained from a quasi-Poisson time-series model. The
AFFA was adapted to use a shorter time series of daily counts
with cyclical patterns constructed to capture the changes in
reporting patterns across the days of the week. The major change
from the FFA was that, rather than just considering a single time
period as is the case with FFA, we forecast the expected values
from the model and constructed thresholds for each of the most
recent 14 days. However, unlike the FFA, we did not construct
exceedance scores, that is observed minus expected divided by
threshold minus expected. This metric was used in the FFA to aid
interpretation and is provided to those undertaking outbreak risk
assessments using exceedance algorithms. The AFFA produced a
simpler aid to interpretation that could be used by local public
health professionals who are usually not as familiar with outbreak
detection methodologies as infectious disease epidemiologists
based in national public health institutes. This consisted of a
heuristic RAG rating (see Methods). Both the FFA and the AFFA
produce estimates of exponential trends. These would not usually
be reported for the FFA because the log-linear time parameter is
included within the statistical model to capture longer-term
trends due to ascertainment and reporting practices. However,
for the short time series used in the AFFA, these growth estimates
were provided as a daily incidence rate ratio in addition to the
RAG rating. This is because, for short time series, exponential
growth estimates are more likely to reflect underlying epidemi-
ology and would therefore be useful in providing an indicator of
when local upsurges were occurring.

Here, we describe and assess how the FFA was adapted to the
dynamic epidemiological context of the COVID-19 pandemic so
that it was capable of supplementing investigator-based surveil-
lance methods to inform public health action within each of the
316 English Lower Tier Local Authorities (LTLA; administrative
areas with an average size of just over 180,000 residents).

Figure 1. Diagnoses of SARS-CoV-2 and key events in the response to the epidemic, England: 21 January 2020 to 18 October 2021.
Data source: Public Health England, Second Generation Surveillance System (SGSS) (16).
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Methods

Flexible Farrington Algorithm (FFA)

The FFA is the automated statistical system for health surveillance
data implemented within UKHSA. Briefly, a quasi-Poisson
regression-based model is fitted to weekly disease counts, with
mean (expected count) μi and variance ϕμi at week ti. To estimate
disease in the current week, the model is fitted to the previous
5 years of data and includes a linear trend βtið Þand a yearly 10-level
factor δj tið Þð Þ to capture seasonal and sub-seasonal cyclical pat-
terns. The corresponding log-linear model is

log μið Þ= θþβtiþδj tið Þ (1)

where j(ti) is the seasonal factor level for week ti, with j(t0) = 0 and
δ0 = 0.Weeks are highlighted as being possible outbreaks based on
the exceedance score:

X =
y0�bμ0
U�bμ0 (2)

where y0 is the current observed count and μ̂0= expðθ̂ þβ̂t0þ
δj t0ð ÞÞ is the current expected count, θ̂ and β̂ being the respective
estimates of θ and β from Equation (1). U, the upper threshold, is
the 100(1-α)% negative binomial quantile, α being the type I error
probability and set as 0.005. Alarms are flagged for weeks where
X ≥ 1. The effect of baseline outbreaks on current predictions is
reduced through reweighting of baseline data. The baseline at week
ti is down-weighted by the inverse of the squared Anscombe
residual when the latter is greater than 2.58 [13].

Adapted Flexible Farrington Algorithm (AFFA)

During COVID-19, the rapidly changing epidemiological situ-
ation necessitated the distribution of daily situational and out-
break reports and a system for detecting disease outbreaks that
was trained on short term as opposed to long-term historical
data. The FFA was adapted accordingly. FFA was chosen as a
widely used algorithm, with favourable performance character-
istics [15] and was adapted as follows. The AFFA used daily
count data and incorporated a day-of-the-week effect rather than
calendar periods, and the baseline period of 42 days to remove
the need to account for longer-term changes in testing policy.
Specifically, the quasi-Poisson regression-based model was fitted
to daily counts of reported positive tests, with estimated mean
(expected count) μ̂ i and variance ϕμi at day di. To estimate
disease in any one day, the model was fitted to a baseline period
(42 days, 15–56 days previously) and included a linear trend and
a daily seven-level categorical. The corresponding log-linear
model is

log μið Þ= log Tið Þþθþβdiþδj∈DOW (3)

where δj∈DOW is a seven-level categorical variable for each day of
the week, and log Tið Þ is the offset of the total number of reported
tests which was initially included to normalize variations in testing
but later dropped from the model (described later in paper). Daily
exceedance scores were calculated. Reweighting of outliers in the
baseline occurs as per the original FFA [13].

From 1 July 2020, SARS-CoV-2 PCR test results (positive and
negative) were extracted from UKHSA databases [16] and used
within the AFFA. The primary outcome of interest was PCR-
positive SARS-CoV-2 cases by specimen date. The natural

logarithm of the number of individuals newly tested was fitted as
an offset (included in the model with a coefficient fixed at = 1) to
provide estimates of positivity. The delay from the earliest specimen
collection date to when test results were reported and available for
inclusion in analyses was short, typically 2 days, with around 90%of
cases reported by the fourth day after the specimen was taken. The
days for which incomplete reporting was expected were highlighted
in the time-series graphs provided to local stakeholders to aid
interpretation.

Public health dissemination

The outputs from the AFFA provided key information on subna-
tional (LTLA) trends and local upsurges in COVID-19 cases. To
guide local control strategies, clear and effective communication of
information was essential. Daily graphs were produced which
presented the key data from the AFFA. These resources were
developed through an iterative process.

On these graphs, the observed case rate of COVID-19 in the
previous 56 days was plotted starting 2 days previously. For
example, on 18 March, the graphs would show data for the
previous 42 days starting 16 March. Rather than attempting to
adjust for reporting delays, the current and previous days are not
presented as the surveillance data was largely incomplete. Data for
the previous 56 days were subdivided into the period of interest
(previous 14 days) and the baseline period (15 to 56 days previ-
ously). From the AFFA, the expected case positivity was also
presented alongside the upper 99% exceedance threshold. Days
exceeding the 99% threshold were labelled, and the graphs also
presented the number of people tested each day for COVID-19.
Due to reporting delays, the last 4 days of case numbers were likely
to be somewhat incomplete, and hence, these data were labelled as
uncertain.

To provide a readily interpretable summary, a red–amber–green
(RAG) rating was used to provide a daily classification for each
LTLA. A RED rating is given if the threshold is exceeded for two or
more of the 14 most recent days regardless of the magnitude of the
exceedances, or if the observed cases are greater than the expected
value for 12 of the 14most recent days. AnAMBER ratingwas given
if the threshold is exceeded for only one of the 14 most recent days,
or if the observed cases are greater than the expected value for 10 or
more of the 14 most recent days. Otherwise, a GREEN rating was
given. In addition, for each LTLA, further detail was produced
including temporal trends and the geospatial distribution of disease
burden by gender, risk group, and healthcare setting [17].

Assessment of the AFFA

An assessment of the AFFA was conducted based on 300 days of
model outputs between 18 March 2021 and 11 May 2022 for each
of the 316 LTLAs. This period is longer than 300 days while in the
earlier period of the pandemic results from the AFFA were pro-
vided daily including weekends. Over a 300-day period, the
42-day baseline case data together with the model predictions
for the period of interest were used. The ideal performance
characteristic metrics of detection sensitivity and specificity and
timeliness of detection [15] could not be estimated due to the lack
of knowledge of when and where true periods of increased inci-
dence occurred. Since the AFFA provided an assessment of how
close the observed reported case numbers were from the model
expectation, and ‘flagging’ situations where these exceeded the
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upper 99.5% threshold, it was reasonable to use the root mean
square error (RMSE) of the forecasts to assess the algorithm.

RMSE j =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i = 1 yij � ŷij

� �2

N

vuut
(4)

This was calculated for each of the 14-day prediction periods j,
combining data across the N LTLAs for each run of the algorithm
over the 300 days, providing a means of assessing by how much

the observed reported cases yij

� �
diverge from the algorithms

forecast ŷij

� �
. Spatial variability in the RMSE for the 1 day ahead

forecast was explored. The RMSE, calculated for each LTLA,
pooling data from all the model runs. Finally, to explore how
the RMSE varied over time, estimates for each day were obtained
from data across all LTLAs.

Results

Public health dissemination

The AFFA was successfully implemented, and daily outputs were
produced for LTLAs from 1 July 2020. A sample output for one
LTLA shows the modelled pattern of reports over the days of the
week (expected case rate (blue) and the upper 99% threshold (red)
(Figure 2). This demonstrates how the AFFA has accounted for
day-of-the-week effects. On the line for the recent case rate (black),
days exceeding the upper 99% confidence threshold are labelled red
and the most recent 4 days are labelled orange to alert for potential
impacts of reporting delays. Based on the criteria given in Table 1,
this LTLA would have a red RAG rating, that is upper threshold
exceeded for 7 of the 14 most recent days, indicating further
investigation was warranted by local health protection teams.

Modifications to the AFFA

Modifications were required due to the rapid expansion in testing
facilitated using lateral flow devices (LFDs). From 8 March 2021,

the use of LFD expanded rapidly as secondary school children
began regular testing as part of the government’s strategy to reopen
schools [18]. Using data from a different LTLA, the impact of this
modification is seen as a testing spike (green dashed line) around
8 March 2021 (Figure 3a). Initially, the greater amount of testing
increased the offset in the model which effectively reduced the
positivity. However, around 1 week later, as the time window
moved forward and the spike in testing volumes fell, a higher
proportion of LTLAs were classed with a red RAG. This is because
the reduction in testing effectively increased the positivity, most
likely as a result of decreases in the volume of unpremeditated LFD
testing. The large variations in testing numbers were inducing
spurious variations in positivity. This artefact was expected to
continue and, since case numbers were the primary public health
focus, the AFFA was adapted so that it was based solely on reported
case numbers. This was achieved by removing themodel offset. The
impact of this change is illustrated in Figure 3b for the same LTLA
and shows that recent cases are now below the upper threshold and
that the LTLA RAG rating LTLA has changed from red (Figure 3a)
to green (Figure 3b).

Figure 2. Daily SARS-CoV-2 exceedance report published 5 January 2021 for one LTLA.

Table 1. Definition of red–amber–green (RAG) rating

Classification Definition

Red Upper threshold was exceeded for ≥2 of the 14most recent
days regardless of themagnitude of the exceedances, or
if the observed case count was greater than the
expected case count for ≥12 of the 14 most recent days.

Amber Upper threshold was exceeded for 1 of the 14 most recent
days, or if the observed case count was greater than the
expected case count for 10 or 11 of the 14 most recent
days.

Green Upper threshold was not exceeded during the most recent
14 days and the observed case count was greater than
the expected case count on ≤9 of the most recent
14 days.

4 Ian Simms et al.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0950268825000160
Downloaded from https://www.cambridge.org/core. University of East Anglia (UEA), on 24 Feb 2025 at 11:49:11, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0950268825000160
https://www.cambridge.org/core


Assessment of the AFFA

The AFFA was assessed in three steps. Firstly, the x-days ahead
prediction RMSE was explored to assess how these varied the
further into the future the model predictions are being made.
Across all LTLA’s, the prediction 1 day into the future had a mean
RMSE of 39.7 cases per day (95% CI 36.8–42.6). As anticipated, this
mean was 2.5 times higher when produced for 14 days into the
future (102.8 cases per day, 95% CI 94.3–111.3). For context, the
mean number of cases across all LTLAs was 216 per day with a
median value of 161 cases per day.

To explore whether there was evidence that AFFA might be
performing differently in certain parts of the country, the mean

RMSE one day into the future, and the RMSE divided by average
daily case numbers for each LTLA were mapped (Figure 4).

Some spatial variation in the RMSE and RMSE/cases can be seen
in Figures 4a and 4b. These were relatively higher in the northern
andwestern parts of the country.While this extra variance would be
taken into account in setting the AFFA thresholds, its likely impact
would be to lower the detection sensitivity and increase the time to
detection of periods of increased incidence in the LTLAs in these
parts of the country.

Finally, the temporal pattern in the RMSE was assessed. Case
numbers were plotted against the RMSE (1 day into the future)
averaged over all LTLAs and weeks (Figure 5). The figure shows

Figure 3. Influence of rapid expansion of LFD testing on AFFA published 6 April 2021 for one LTLA. (a) Model based on case numbers but offset by testing volume. (b) Model based on
case numbers only.
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that when incidence was low in early 2021, the RMSE per case was
small, but after this period when incidence increased, the RMSE
also increased indicating that the reported counts and the algorithm
predictions were diverging. This is precisely what you would want
to occur to enable the algorithm to ‘flag’ that there is a rapidly
increasing incidence in reported cases. As observed in most infec-
tious disease surveillance systems, a large decrease in reported cases
occurred at Christmas (Specimen Weeks 51/52).

Discussion

Here, we demonstrate how the development of the AFFA enabled
the calculation of daily exceedance estimates for each English

LTLA. We have further highlighted how these estimates were used
to produce visualizations of local COVID-19 case reports and
trends and used to provide an RAG rating to assist interpretation
for the local public health teams. These system-generated alerts and
local epidemic profiles were a key part of the management of the
SARS-CoV-2 epidemic which were used to guide local intervention
and control priorities [17]. For example, in the late summer of 2020,
LTLA’s with a red RAG rating were prioritized to receive additional
resources focussed on testing for COVID-19 and tracing case
contacts. RAG ratings were also used at the national level in the
development of government strategic priorities. When the testing
policy changed, there was a greater increase in the ascertainment of
negative test results compared to that observed for reported positive

Figure 4. RMSE (a) and RMSE/case (b) across all LTLA’s in England for predictions 1 day into the future.

Figure 5. Time-series plot of COVID-19 case numbers in England and the RMSE from the prediction made 1 day into the future using the Adapted Flexible Farrington Algorithm.
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test results. Such time-series ‘shocks’ were clear and obvious when
accounting for testing volumes using test positivity. These ‘shocks’
impacted the total test positive reports, but their magnitude
appeared less obvious to discern. The inclusion of additional pre-
dictor variables within the time-series model could have been used
to explore the volatility within the reporting process, but we were
unable to address this as time and resources were at a premium
during the pandemic.

Many automated statistical systems of health surveillance data
work using weekly surveillance data [19], and some work with daily
data [20]. Interest in daily systems has developed for two reasons.
Increased analytical frequency offers the opportunity to detect and
control incidents earlier. The data collection process also provides
benefits in terms of situational awareness of developing incidents or
reassurance that an incident has not developed [21]. Statistical
summaries of case reporting cannot be used alone to guide local
control strategies. However, they do assist in providing insight into
whether current case numbers are deviating from extrapolated
trends and the trend estimates themselves indicate whether there
are changes in the underlying incidence within the population. All
the statistical information from the AFFA together with local
situational awareness such as clusters of cases in schools and
workplaces, and spatial distribution of cases, provided local public
health professions with a consolidated view of how SARS-CoV-2
was transmitted within their locality. This allowed local risk assess-
ments to be undertaken to assist in determining whether any
additional public health action was warranted.

The degree to which the AFFA and RAG ratings were accepted
and used during COVID-19 was an important indication of their
validity. The speed with which the AFFAwas implemented without
a thorough evaluation suggests that the AFFA and subsequent RAG
ratings presented in this paper should be viewed as a proof-of-
concept development. The daily AFFA is an adaptation of the
weekly FFA which itself is recognized for its high sensitivity,
specificity, and positive predictive value [15]. The preliminary
assessment of the algorithm presented provides reassurance that
the AFFA is performing as anticipated. However, further research
and evaluation are needed to explore refinements to the algorithm.
For example, the optimal length of the baseline period, the inclusion
of non-linear trends and offset specification, using synthetic with
known periods with varying increased incidence to better under-
stand the performance characteristics of the AFFA to detect out-
breaks and investigate how this compares to other algorithms [13,
15]. We would contend that the RMSE can be used as a method of
providing a rough guide as to whether the algorithm provides
results that can be used for public health action when considered
together with other local intelligence.

To enhance the validity of the AFFA, future research needs to
consider its ability to work beyondCOVID-19. COVID-19 incidence
was relatively high and additional challenges may emerge for less
common diseases especially at a local level. For example, in the early
stages of the epidemic, changes in testing strategies led to artefacts in
the comparison of local epidemic trajectories using the AFFA. The
more stable testing volumes later in the pandemic minimized these
issues, although technical challenges emerged due to the increasingly
large quantities of data needing to be processed.

One advantage of the AFFA was that it was not fully automated.
This allowed modifications to be made in response to operational
requirements and ensured that accurate, easily accessible informa-
tion was produced to support local decision-making. For example,
early in the development process, an initial modification was made
to control the proportion of false alarms without compromising the

detection of genuine alarms. All changes were tested in parallel with
‘live’ surveillance processes and implemented after consultation
with the UKHSA Incident Director and LTLAs.

The validity of the graphical outputs from the AFFA and the
associated RAG ratings was enhanced by the degree to which it was
used during COVID-19. The RAG ratings were chosen as they are
commonly used for status reporting within public health [22]. In
addition, surveys of the SARS-CoV-2 surveillance outputs pro-
duced by the UKHSA were generally viewed favourably by local
stakeholders [17]. Yet the speed of implementation prevented a
thorough inclusion of user perspectives at the outset which is key to
the success of such information [23]. Further development of
outputs through a user consultation involving the wide audience
of the AFFA outputs would be useful. This would be particularly
important when the format of the outputs needs to be altered. For
example, in March 2021, the removal of the offset term from the
AFFA effectively changed the analysis from positivity to case
reports (Figure 3a vs. 3b). Although this statistical change was
implemented quickly, it took longer to address user concerns. These
related to the effect that the removal of the denominator had on the
interpretation of the graphs and statistical outputs in relation to
drivers within the epidemic at national and LTLA levels.

Conclusions

We anticipate that our experience with the AFFA and the develop-
ment of graphical and statistical outputs at the local level will
motivate more thorough evaluations of the AFFA and the outputs
leading to similar systems in other settings.
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