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Abstract
Technological advancement drives the growth of the Internet of Things (IoT) applications in many fields, such as smart 
homes, smart cities, smart grids, and healthcare. IoT in healthcare is called the Internet of Medical Things (IoMT), which 
provides remote patient treatment using information and communications technology. This new telemedicine technol-
ogy simplifies the regular and effective communication between medical and computing devices. Critical motivations for 
adopting the IoMT are reduced cost, increased quality of life, and timely medical intervention. IoMT is significant because 
it enables continuous, real-time patient monitoring during routine everyday activities using a variety of wearables and 
sensors. With big data, IoMT technology makes excellent use of Machine Learning (ML) to support disease detection and 
health condition prediction, alerting patients and healthcare providers. Many research studies have been conducted to 
explore several aspects of IoMT and its applications in the real world. However, it is challenging to comprehend all the 
techniques and solutions proposed by the research community. Therefore, this survey sheds light on some crucial aspects 
of IoMT technology and explores the potential research gaps and directions the research community could tackle. The 
survey examines and discusses the characteristics of IoMT standards, protocols, and types. It then delves into the layers 
of IoMT and distinguishes them into fog and edge. The studies published under each type were explored, and the limita-
tions of these works were highlighted. The research gaps and directions on IoMT approaches and technology were also 
highlighted. With such findings and research directions, further research endeavors could be carried out to address the 
issues and existing limitations in the IoMT.

1 Introduction

Smart electronic devices and telemedicine are widely used in people’s daily lives. Telemedicine refers to the remote 
treatment of patients using information and communication technology. Emerging telemedicine trends such as 
Medical cyber-physical systems (MCPS) facilitate regular and efficient interactions between medical and comput-
ing devices [1]. A Cyber-Physical System (CPS) integrates networking, physical processes, computers, and physical 
components, enabling seamless interactions between cyber services and physical components [2]. Incorporating 
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the Internet of Things (IoT) in medical care has become increasingly popular in the era of 5G technology. Many medi-
cal and healthcare applications, for example, remote health monitoring, elderly care, fitness programs, and even 
metaverse-based healthcare [3] have emerged due to the capability of many portable devices like mobile phones 
to integrate medical-related functions and easy internet access. These devices provide an efficient and effective way 
to combine medication at home with healthcare centers and keep patients who require special care under real-time 
observation. To achieve this, medical devices can be integrated into the Internet of Medical Things (IoMT) ecosystem. 
IoMT is an ecosystem that connects patients and medical activity at any time. With the assistance of 5G and IPv6, the 
IoMT can play a crucial role in medical diagnoses and treatments.

One of the key objectives of implementing the IoMT is reduced costs, increased quality of life, and timely medi-
cal intervention. A significant benefit of IoMT is the ability to use efficient scheduling. It also provides seamless and 
secure communication between the patient and the healthcare provider. IoMT supports real-time, reliable monitoring 
and early diagnosis. Utilizing public network topology, patients’ health records can be processed and stored on the 
cloud or locally, facilitating delivering real-time health services.

The IoMT aims to provide efficient solutions for delivering medical healthcare services, such as personalized devices 
for diagnosis, telemedicine systems, and electronic record systems. The importance of IoMT comes from the need 
to continuously observe patients in real-time during normal daily activities with the help of sensors and wearable 
devices. The data collected from such observation is vital to diagnose and predict health conditions in the long term, 
and it is important to observe the trends at both personal and social levels. Developing coherent and high-quality 
healthcare services becomes easy by envisioning such a trend. Furthermore, integrating IoMT into healthcare services 
helps provide faster and more cost-effective care, improves the patient experience, and saves healthcare resources. 
Moreover, the IoMT facilitates the customization and prioritization of healthcare services based on patient’s needs 
and/or health conditions.

The IoMT technology uses Artificial Intelligence (AI) to support disease detection and health condition prediction, 
alerting patients and healthcare providers [4]. A significant benefit from such a transformation is the change in medi-
cal diagnosis, which has shifted from a manual, reactive, and time-consuming method to a more intelligent, auto-
mated, and proactive one. Medical care services become more effective by combining IoMT nodes and AI algorithms 
involving Deep Learning (DL) and Machine Learning (ML), and more recently, the new federated learning-based mod-
els have been applied to improve the healthcare systems in the IoMT [5]. Applying these algorithms efficiently can 
provide successful prediction models with the highest accuracy and precision, which increases healthcare services’ 
efficacy and save many lives. However, the study of the potential of smart IoMT is still undergoing in both research 
and industry, and more work is yet to be done to use the enabling technologies and increase the involvement of 
these solutions in all aspects of the healthcare ecosystem.

As the IoMT is a multi-faceted field of research, comprehending the concepts and principles is challenging, espe-
cially for new areas. Research in IoMT could be tackled from several perspectives, including data processing, modeling, 
prediction, and security. For someone new to the area, there is always a need to survey articles that summarize the 
state-of-the-art and provide directions for moving forward with the research. Although several surveys have been 
published recently, the focus was on highlighting the latest development and proposal without sufficient emphasis 
on individual studies and subfields’ limitations. This paper addresses this issue and critically analyzes the related 
scholarly publication in IoMT. Unlike existing surveys, this paper discusses IoMT-related literature and highlights the 
contribution and limitations of each article.

Additionally, research gaps and directions for further research are given at the end of each section. With such a 
critical analysis, we hope the research community can use some of these ideas.

Section 2 provides an overview of IoMT structures, protocols, and standards. It illustrates the major components of 
IoMT systems. Section 3 discusses existing techniques in edge computing, including limitations and research direc-
tions for IoMT systems. Section 4 addresses fog computing and its related research techniques, analysis of existing 
techniques, evaluation criteria, limitations, and research directions. Section 5 emphasizes IoMT processing techniques 
that could be conducted globally in a centralized location or distributed in local nodes. Section 6 provides an overall 
summary, identifies potential constraints, and concludes the paper by highlighting the main findings from related 
literature.
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2  The IoMT structures and standards

Figure 1 shows the major components of IoMT systems as proposed by the Continua Health Alliance. The figure shows 
that the system consists of four layers: Interoperability, Application Hosting Devices (AHD), WAN Devices, and Health 
Record Devices (HRD). This system is a simplified architecture that embodies the interaction between the different com-
ponents and devices within the IoMT. In the Interoperability layer, sensors and patient-attached devices collect readings 
about vital signals [6]. These devices are wearable and, most of the time, are resource constrained. Therefore, the data 
they collect are sent immediately to the hosting device(s) in the next layer, i.e., Application Hosting Devices. The com-
munication between the Interoperability layer’s devices and the device in the next layer uses Wi-Fi technology. Each 
sensor and wearable device are embedded with wireless hardware to transfer the data into the hosting devices in the 
AHD layer. Smartwatches, portable ECGs, and thermometers are examples of Interoperability devices that collect data 
about the patient’s health condition. The AHD layer consists of several devices that have capabilities higher than the 
Interoperability layer, such as laptops and smartphones. Furthermore, the connection between the devices in the AHD 
and Interoperability layers is performed by either Wireless Body Area Networks (WBAN) or Wi-Fi [7]. These devices are 
used as local storage for data from the sensors and devices in the Interoperability layer. The third layer is the WAN devices 
layer. It collects data from several systems and stores them in one location, such as a corporate office, government office, 
or WAN data storage. Analytical processing and predictive modeling are normally conducted in this layer as the devices 
have the processing power and memory capacity to run sophisticated algorithms like deep learning to build different 
models. The WAN Devices layer is connected to the AHD layer using WAN technology such as PPPoE, Frame Relay, DSL, 
or Fibre Optic. In the fourth layer, called the Health Record Device (HRD), the data are relayed into a shared online data 
center in the cloud to be accessed over the Internet. Other types of services are also provided by this layer, like frontend 
analysis and modeling. The HRD is connected with the WAN Devices layer.

Another framework was proposed, which resembles the popular network TCP/IP framework and stacks the system 
into four layers: Transport, Network, 6 LoWPAN Adaptation, and Link & Physical [8]. Figure 2 shows the structure of this 
framework. In the application layer, several protocols and application programming interfaces are defined. This set of 
protocols includes well-known applications like HTTP, SSL, and COAP. These protocols facilitate the interaction between 
user-related applications and the network module in the operating system. Using these protocols, the application layer 
collects, prepares, formats, and packs the data before passing them into the transport layer. Control Protocol (TCP)s, User 
Datagram Protocol (UDP) and Transmission Control Protocol (TCP), are used in the transport layer to encapsulate the 
data with the necessary information for application-to-application communication between the communicating peers. 
Whether to use TCP or UDP relies on the nature of the application used by the communicating pair. TCP or UDP should 
be used if the communicating nodes need a reliable session [9].

The destination and source addresses are added to the header in the transport layer. The data from the application 
layer is encapsulated in segments, each with the same header and information about the source and destination ports. 
The data are then passed down into the network layer, where another addressing information will be attached to each 
segment’s header and encapsulated into user datagrams. In IoMT, IPv6 is used to assign both source and destination 

Fig. 1  The components of IoMT by the continua health alliance
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addresses. Another protocol type is defined in the network layer, which is the RPL responsible for routing the datagrams 
from the source to the destination. Such a routing mechanism guarantees end-to-end delivery of the data. After adding 
the IP addressing and routing information, the datagrams are passed down to the adaptation layer. This layer defines 
the power Wireless Personal Area Network, which optimizes the transmission of the IPv6 packets in 802.11.15.4 frames. 
This standard is suitable for IoMT sensors as it is low cost, low power, low bit rate, and short range. The data frames are 
converted into the binary form at the link and Physical layer and encoded into electrical signals that travel through 
transmission media between source and destination. Encapsulation, which happens at the sender end, passes data from 
the application layer down to the physical layer while attaching additional information to the header. Data travels from 
the physical layer to the application layer, and the respective header information is removed at the receiver end. This 
process is called decapsulation [10].

2.1  IoMT Data types and protocols

Data from IoMT devices and sensors contain a wide range of information, such as address, radio, historical, and com-
mand data. These devices often operate in real time, necessitating timely and efficient data processing. Address data 
consists of the node’s physical and logical addresses attached to the data packets. These addresses help to track data 
trajectories from source to destination. Radio data records the technology-specific information for each communicating 
pair and is characterized by different packet structures. Understanding the specific structure of these packets is crucial 
for optimizing communication protocols. These data are usually generated by Radio Frequency Identification Module 
(RFID), Bluetooth, LoRA, and ZigBee. Furthermore, IoMT ecosystems generate historical data, this information can include 
usage patterns, device status, and environmental factors, describing the events of different processing and interactions 
between the sensors, edge devices, and systems. Among these historical data, the commands sent from controllers to 
actuators are used to do some tasks, like sending a signal to a wearable device to recalibrate or a notification about the 
new condition to the healthcare center [11].

Due to the heterogeneous nature of IoMT systems, the data collected is highly dimensional, which adds extra burden 
to the processing and analysis. Furthermore, the various components produce unstructured data types like text, images, 
and symbols, which makes the analysis and modeling more challenging. It is important to implement effective data 
preprocessing models to manage this complexity. Furthermore, transmitting this data to wireless networks makes them 
susceptible to noise, loss, and attacks. Such threats may negatively affect the quality and reliability of data and related 
models. Therefore, addressing these issues when addressing IoMT data is essential. IoMT’s heterogeneity is not limited 
to data verity and communication technology but also includes protocol diversity. These protocols are not restricted 
to ZigBee, RFID, LoRA, and TCP/IP. In IoMT, the processes of data acquisition, manipulation, analysis, and modeling are 
influenced by several factors. This involves several applications that require decision-making, security, and prediction. 
The heterogeneous protocols must communicate the information needed to decide resiliently and smoothly. However, 
this is challenging since the standard differences may make it difficult for some protocols to cooperate. Standardizing 
protocols could improve interoperability among IoMT devices, facilitating smoother communication. For example, an 

Fig. 2  Resembling the popu-
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IP-based hub could not directly exchange packets with a Bluetooth-based IoT-Connected Inhaler, and a converter could 
be needed [12].

IoMT needs to address data security and privacy in light of heterogeneous protocols. An ECG device running well-
secured protocols could become vulnerable when cooperating with less secure protocols. Therefore, IoMT must guaran-
tee that the data exchanged among different protocols is secure and private. The diversity, privacy, and security of data 
exchanged between IoMT components impact predictive modeling. As pointed out, the variety of data comes at the cost 
of high dimensionality, extensive pre-processing, and type incompatibility [13]. Furthermore, data privacy and security 
might become issues when dealing with diverse protocols and technologies. For instance, attackers can manipulate, 
hijack, and falsify the data in a vulnerable node. Establishing robust security measures at each node can help mitigate 
these risks. This adversely affects the accuracy of predictive modeling built based on this data.

3  Existing research in IoMT

The application of IoMT hugely relies on big data collected from sensors that are directly or indirectly attached to the 
human body [14]. Vital data are collected from these sensors in real-time simultaneously among hundreds or thousands 
of medical things. With such enormous amounts of data collected, they must be stored in servers with resources sufficient 
to process and analyze them. However, the cost of collecting and storing data is high. Thus, it is imperative to make a 
trade-off between efficiency in terms of cost and effectiveness in terms of thoroughness. Several approaches have been 
proposed to provide solutions that effectively use collected data. The following sections explore these approaches more.

3.1  Edge computing

Edge computing, called the Edge of Things (EoT), is an IoT model that embodies the middle layer between sensors and 
cloud layers. The EoT connects the IoT gateways and IoT devices’ terminal endpoints [15]. Several studies related to 
healthcare EoT data analytics have been proposed [16–18].

3.1.1  Studies in edge computing

An edge-assisted framework was proposed by [19], which controls the parameters of mobile sensors to identify anomalies 
in the collected signals in real time. Using a probabilistic approach, the framework addresses battery-imposed constraints. 
A use case evaluated it using vital signs like respiration rate, heart rate, and oxygen saturation from a Photoplethysmo-
gram (PPG) signal. Experimental evaluation shows that the framework can effectively trade between low sensing energy 
consumption and high anomaly detection accuracy. However, preserving the battery comes at the cost of signal and 
data quality, which is important in real-time scenarios. These scenarios need a continuous data stream that keeps the 
sensors and backend systems busy. Consequently, reducing energy consumption could interrupt the data stream, which 
reduces data quality and sufficiency.

The HiCH model, proposed in [16], is a hierarchical computing architecture that used for IoT-based health monitoring 
systems. The architecture tends to increase reliability, punctuality, and availability of services and overcomes intermit-
tent network connectivity with the centralized cloud-based IoT. It also tries to improve accuracy and adapts to topology 
and operating environment changes. The architecture comprises two main components: data sensing and data analyt-
ics. HiCH relies on features extracted from fog and cloud computing data to conduct the data analytics and modeling 
designed to manage healthcare IoT systems. However, the study’s centralized approach lacks the resiliency to adapt to 
topology changes that might happen in IoMT systems due to patient mobility and a harsh operating environment. The 
architecture overlooks the potential data loss in such an environment in case of connectivity disruptions due to bot-
tlenecks that a centralized gateway might introduce.

To overcome bottlenecks at the gateway level, the study by [17] suggested a Smart e-Health Gateway to position 
the gateways at the network’s edge strategically. To assess the efficacy of the proposed solution, the UT-GATE, a Smart 
e-Health Gateway prototype, was built where a set of higher-level features have been used. A case study was conducted 
to show the system’s efficiency and relevance by integrating an IoT-based Early Warning Score (EWS) for health moni-
toring. However, relying on the smart gateway is vulnerable to single-point-of-failure. Such a hierarchy also makes it 
impractical to deploy real-time monitoring without addressing connectivity disruption, transmission delay, and network 
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congestion. Data security and privacy are other concerns when applying centralized solutions, as the intruders could 
compromise the smart gateway, which puts the data and system at risk.

The study’s security concern was addressed by [18], which proposed a novel Edge of Things (EoT) framework. Fully 
homomorphic encryption was employed to preserve data privacy in the EoT framework. A distributed clustering method 
was developed to collect and analyze the enormous and heterogeneous data in the EoT devices. A case study was con-
ducted using patient biosignal data to show the efficacy of the proposed framework. Although the framework improved 
the analysis response time, the data’s completeness was compromised due to the aggregation and summarization of the 
data. Consequently, incomplete data adversely affects the efficacy of patients’ health monitoring and response.

BodyEdge, a human-centric architecture, was proposed by [20]. For healthcare applications. The architecture involves 
a mobile client module and a performing edge gateway. The gateway supports multi-radio communication to collect 
and process data from different scenarios. The gateway guarantees a flexible, robust, and adaptive healthcare service 
by exploiting components from public and private cloud environments. The efficacy of the proposed architecture was 
evaluated in terms of reduced processing time and transmitted data. The evaluation was conducted through an actual 
implementation on different hardware platforms, which shows that the BodyEdge is an efficient and cost-effective option 
for healthcare-related situations. However, relaying the processing burden to the gateway will lead to a bottleneck, which 
causes intermittent connectivity and disrupts the processing.

IoT and Edge Cloud were combined [21] for medical data retrieval. Such integration provides a secure healthcare 
monitoring framework that integrates the NDN-based IoT with the edge cloud. The framework improves the efficiency of 
medical data retrieval by exploiting the capabilities of NDN and strengthens the signature and ciphertext to support the 
security of medical data delivery. The framework was assessed quantitatively, which shows that the framework reduced 
the latent retrieval of medical data and the cost significantly compared with the existing solution. However, the cloud’s 
integration with the edge is governed by the connection quality, which might experience many disruptions due to the 
patient’s mobility.

Edge and cloud computing were exploited in the study conducted by [22]. Convolutional Neural Network (CNN) was 
used to create a classification model that conducts the classifier’s heavy tasks to the servers on the cloud side and out-
sources the hypothesis function to the edge. This hierarchy helps to improve the response time. The proposed model’s 
applicability was demonstrated by a case study on ECG classifications whose performance was evaluated regarding 
response time and accuracy. However, machine learning classifiers are static as they rely on one-time training to build 
the model. This is unsuitable for dynamic environments like IoMT, where patients are mobile and topology is ephemeral.

To address the problem of static classifiers in dynamic environments like IoMT, agile learning was proposed by [23] to 
build the EdgeCNN architecture, which utilizes the data generated and exchanged between edge and cloud computing 
for healthcare data. With the adaptation capability, deep learning was used as an inference method running on the edge 
layer to facilitate real-time analysis and diagnosis. This reduces learning latency significantly and improves network I/O, 
preserving cloud resources for massive data and large user groups. Accordingly, the cost of maintaining and building 
cloud platforms will be reduced. The intuition is that the system can make decisions faster by making data analytics closer 
to the data source. However, hosting a resource-hungry model like deep learning in resource-limited devices at the edge 
layer of IoMT makes deploying the system for real-world applications that need real-time operation difficult. Addition-
ally, data security and reliability are some of the concerns that influence the performance of such data-driven modeling.

A secure framework for SDN-based Edge computing was proposed by [24]. To address the security concerns in IoMT 
ecosystems. The framework protects edge devices and preserves the privacy of sensitive patient data. A lightweight 
authentication scheme was used to authenticate the IoMT devices at the Edge layer. Once authenticated, edge devices 
collect data from the patients they are attached to and send them to the edge servers for further processing and analysis. 
An SDN controller connected edge components (sensors and servers) and balanced the network load. However, incor-
porating SDN renders the entire system vulnerable to many attacks that tend to disrupt network operations and redirect 
the traffic in such a way that creates bottlenecks. This bottleneck makes it difficult for the system to work as a real-time 
application. To support real-time applications, an energy-efficient edge-based healthcare support system (EESE-HSS) was 
proposed by [25] and applied to diabetic patients with cardiovascular disease. The proposed system employs the hierar-
chical computing architecture that Cloud Edge provides to cater to swift diagnosis during emergencies. Therefore, deep 
learning was used at the edge nodes to enable quick decisions and satisfy emergencies. However, deep understanding 
is resource-hungry, making it unsuitable for edge nodes with limited resources and insufficient data.
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3.1.2  Limitations and research directions for edge computing in IoMT

The wide range of devices and nodes in edge computing that run different protocols and standards makes it challeng-
ing to deal with the diverse data, creating compatibility, consistency, and privacy problems. The nodes are connected 
to patients in the edge computing layer of IoMT infrastructure. These nodes are portable, which means they rely on 
batteries as a power source. Such portability means that these devices need light, affecting the battery capacity. There-
fore, battery efficiency is an important aspect that needs to be focused on. Although several studies were conducted to 
address the issue of battery limitation, they overlook the unique characteristics of IoMT devices that require a real-time 
feed of data and resource-intensive contents that these devices might acquire. Some edge IoMT nodes and sensors are 
dedicated to observing critical health conditions. They must be synchronized with the control center in real-time to allow 
a healthcare provider to deliver the service on time. The real-time operation requires that edge nodes always be active, 
which depletes the battery quickly.

In addition, the portability of IoMT edge nodes causes intermittent connection as patients move around and some-
times become out of the network’s coverage. Such disconnection disrupts the operation of the sensors and the transmis-
sion of data. This significantly complicates the analysis and predictive modeling as the data received on the processing 
side will be incomplete. Relying on incomplete data adversely affects the accuracy of analytics and modeling. Therefore, 
edge-related studies must consider patients’ mobility when designing IoMT solutions.

On the other hand, the nature of data exchanged between edge devices and backend servers in the IoMT ecosystem 
necessitates sufficient bandwidth allocation to accommodate vital data sent/received at a high rate. This is imperative 
when dealing with life-related decisions that need synchronous and online analytics and prediction. Also, the intermit-
tent connection might be caused by the noise emitted from a harsh environment that the patient might be in or from 
the co-located devices nearby. Such noise disrupts and distorts the signals carrying vital data, which leads to incorrect, 
incomplete, and inaccurate readings from the biosensors. As such, the IoMT solutions must be robust enough to work 
in such harsh environments.

3.2  Fog computing

Fog computing brings several benefits to healthcare such as reduced latency, location awareness, improved quality of 
service, real-time monitoring, and improving privacy. Fog computing architecture enables fast data transmission between 
IoT devices, which reduces communication delays especially for critical healthcare data. Location awareness allows for 
processing data closer to IoT devices, which helps for better understanding of the environment surrounding the patient. 
Furthermore, fog computing improves quality of service, as it addresses several changes, for example in network, fog 
computing reduces network congestion. In addition, fog computing allows for real-time monitoring, which leads to 
better response [26].

In the following subsections, we delve into fog computing. We will elaborate on characteristics and types before we 
explore studies related to the application of fog computing in IoMT.

3.2.1  Characteristics of fog computing

Fog computing expands cloud capabilities and offers the advantages of on-demand storage, network, and computing 
resources. It differs from the cloud in proximity to end-users, support for user mobility, and dense geographical distri-
bution. The Cloud computing approach could not support these features because of its distance from end-users and 
centralized structure. The primary features of fog computing can be outlined as follows:

• As fog computing is located at the network’s edge, it is closer to the end-user generating data. This indicates that Fog 
and IoT are on the same LAN, enabling them to exchange data faster. This helps us reduce delays, latency, and jitter, 
which is crucial for delay-sensitive applications such as emergency services and healthcare delivery. Dense Geographi-
cal Distribution: The fog computing approach of greater geographical distribution has numerous advantages over 
centralized cloud deployment.

• Support for Mobility: Fog computing supports the mobility of users and provides location awareness. It is made pos-
sible by geographical distribution and locating it at the network’s edge. This location gives fog computing network 
and context information collected by traffic, analytics, and several IoT devices. Location awareness is key to healthcare 
service providers supporting users’ mobility and offering a range of personalized mobile applications.
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• These features provide a significant advantage of fog computing compared to the cloud computing approach. Because 
of geographical distribution and vicinity to end-users, Fog supports users’ location awareness and mobility, reduces 
delay, latency, and jitter, eliminates data transmission in the network’s infrastructure, and enhances encrypted data’s 
flexibility, scalability, and security. However, Fog’s computing has several constraints in resource such as limitations 
in computational power, memory, and energy resources therefore it cannot replace cloud computing [27].

3.2.2  IoMT fog‑cloud computing

Fog computing is used to allow computing to be performed directly at the network’s edge, which provides new services 
and applications, particularly for the Internet’s future. For instance, commercial edge routers advertise the number of 
cores, processor speed, and built-in network storage. Such routers may become new servers. Infrastructures or facilities 
in fog computing that may provide resources for services at the network edge are called fog nodes. Fog nodes can be 
resource-poor devices like routers, set-top-boxes, access points, base stations, switches, resource-rich machines, and end 
devices like IOx and Cloudlet. Cloudlet is a resource-rich machine, and it is a small data center that provides computational 
resource closer to the edge devices, this allows of reducing the latency [28].

Managing private data centers for customers often utilizes the cloud computing model, where payment is based on 
data usage. To maintain the massive aggregation of data centers, the factors influencing data center efficiency must 
exhibit greater predictability to support high utilization with adequate performance. This includes leveraging cost-
effective power sources across different locations, as well as optimizing storage and networking resources [29]. These 
optimizations can be achieved by using fog computing, which allows services and computation to be closer to IoT devices, 
which reduces the response time and improves efficiency [30]. Fog Computing facilitates the interplay of diverse applica-
tions and services within the Fog and the cloud in data management. It operates closer to the consumer, on the network 
edge, avoiding delays and failure in the network and leading to quicker decision-making in healthcare delivery [31].

Fog computing’s function in big data analytics utilizes networking, storage, and computation of data, as well as vir-
tualization and multi-tenancy, which are attributes the same as the cloud. There are a few differences in the functioning 
of both applications. The Fog considers the applications and features that were deficient in the cloud. It aids in geo-
distributed applications such as monitoring pipelines and sensors associated with environmental data. It also enables 
the distribution of control systems on a large scale and fast mobile applications. With all these excellences, Fog comple-
ments the cloud rather than a substitution [20]. There are fog computing nodes (micro clouds) near the data source. It 
reduces the requirement of massive storage, processes a large amount of data before reaching the cloud, and reduces 
data communication duration and cost. It connects the IoT devices and the cloud data center by propelling the storage, 
networking, and cloud computing services near the end of the IoT devices [31].

In summary, from these two general architectures, it may be noted that data and applications are processed in the 
cloud in a centralized manner, which is time-consuming. In the fog case, it operates on the network’s edge, and process-
ing takes less time, thus overcoming delays. In clouds, bandwidth is expected because all data is transmitted over cloud 
channels (Internet). Alternatively, Fog does not demand more bandwidth as every bit of information is aggregated at 
certain access points within the sensor network rather than sending data over cloud channels. In clouds, servers can 
be located at remote locations, resulting in slow response time and scalability issues. Fog gateways or devices can be 
deployed at the network edge, thus overcoming response time and scalability. Hence, fog computing gateways provide 
more efficiency and reliability and help overcome latency issues in cloud-based healthcare application environments.

3.2.3  Studies in fog computing

Four criteria are proposed to evaluate the existing work for fog computing. The first criterion is heterogeneity, where fog 
nodes should provide multiple communication protocols to collect data from various IoT devices. The second criterion 
is scalability, so fog systems should handle increasing users. The fog platform must be able to deal with a huge number 
of IoT devices and users. Furthermore, they should be able to include many applications and fog nodes. The fog plat-
form should be operational on such a large scale. The third criterion is Mobility Support, in which fog computing should 
support the user’s mobility and provide location-specific information. This is achieved by geographical distribution and 
its location at the edge network. The fourth criterion is security, in which all IoT devices may pose a risk that could be 
exploited to harm users or their privacy. It is an important aspect of the fog system. The fog environment should safeguard 
personal information not accessible by a third party.
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3.2.4  Analysis of existing techniques and evaluation criteria in fog computing

A fog-based healthcare architecture (FHA) was proposed by [32], which deploys a fog gateway at the network’s edge 
to monitor a patient’s health in real-time. ZigBee technology is used to connect the patient’s health condition, mobile-
based wearable sensors collect real-time data through the ZigBee link, and data is forwarded to the Tele-lab server (TLS). 
Patients’ data are analyzed through a Laboratory Information Database (LIDB) module, which sends the information to 
the cloud server for storage and backup. In this system, the TLS transmits data over the communication channel and 
relies on FHA to manage the congestion. When FHA predicts the critical condition, it immediately sends data to the fog 
gateway to raise an emergency alert and to the cloud server to update the patient’s record. However, the study was built 
based on the assumption that the communication channel is dependable and has no data loss during the data trans-
mission. This does not hold due to the transient nature of the IoMT networks and the patient’s mobility and dynamic 
topology. Consequently, data that reaches the gateway might not be complete. Although the proposed architecture 
was designed to deal with sensors’ heterogeneity, it used fixed architecture in its simulation, which makes it outdated 
when topology changes.

The need for a transition from clinic-centered healthcare to patient-centered was discussed in [33]. This could be 
achieved by connecting hospitals, patients, and services into a layered e-health ecosystem. The layers include end nodes, 
fog, and cloud, which facilitate efficient handling of the big data generated by the system’s components. The study used 
multiple standards at the interface level to deal with a vast number of sensor devices and support fog nodes’ heterogene-
ity. Although the authors discussed scalability in detail in this paper, they did not show how to apply it in their proposed 
architecture. There is no discussion of mobility support in this paper. The authors show the significance of protecting 
and securing patients’ information. The architecture supports multi-layer security measures for access control, encryp-
tion, and authentication.

The study in [34] proposed an Adaptive Heuristic Edge assisted Fog Computing design (AHE-FCD) to improve the pro-
cessing of health data at the edge and fog layers. The authors indicated that using AHE-FCD reduces latency, increases 
data privacy, and improves real-time analysis by relocating data processing closer to the source. In addition, AHE-FCD 
can optimize resource utilization and enable scalability and flexibility when handling large healthcare data. Although 
the proposed model addressed latency and processing concerns, it could bring additional complexity when managing 
data in distributed systems.

A detailed review of the implementation of fog computing in healthcare services was provided by [31]. The study 
investigated the different cases of fog computing being used in healthcare informatics. The study categorizes the use 
cases based on specific fog device applications and functions. It discusses the processing and analytics at the network 
and fog levels. The study concluded that fog computing supports many activities in healthcare. Data analysis at higher 
network tiers is needed to overcome IoT constraints and fulfill the need to aggregate data. Although the study showed 
that a common infrastructure could be used by sensor devices to transfer their data to more comprehensive applications 
using standardized protocols, it did not show the exact mechanism to deal with the heterogeneous environment. The 
introductory study discussed fog computing’s ability to enhance the scalability of a system. Nevertheless, no technique 
was proposed. The authors described the importance of mobility and security in a fog environment but did not show 
how to apply them in their work.

As Healthcare 4.0 systems enable the use of fog computing, the study in [35] proposed an efficient resource discovery 
model that can handle data within fog computing environments. The proposed model was designed based on a peer-
to-peer (P2P) network architecture. Moreover, it addressed several problems, such as high latency, privacy concerns, and 
scalability issues. The high latency is mitigated by moving processing of data and storage near to the IoT sensor nodes 
instead of relying on cloud servers. This also allows for improving privacy, as the data is processed locally within fog nodes 
rather than the cloud. The proposed model improves scalability because the P2P architecture ensures the handling of 
large volumes of data. Therefore, it obtained benefit from P2P architecture; however it uses static peer systems, which 
does not allow for removal and adding peers dynamically.

The effect of incorporating IoT in healthcare was investigated by [36]. It was found that fog computing helps pro-
vide sufficient storage, processing, and networking resources. Fog also improves real-time analysis and supports online 
decision-making. Furthermore, the fog device’s data collected by sensors can be managed immediately while minimiz-
ing latency and jitter. Two scenarios, “Daily Monitoring and Healthcare Service Provisioning” and “Extended eCall Service 
Delivery,” were investigated considering the heterogeneity of communication protocols that allow data aggregation 
from different heterogeneous IoT devices. However, the fog environment’s scalability was overlooked, which is crucial as 
the heterogeneity implies the interoperability between many devices and sensors that grow exponentially in real-world 
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deployment to support mobility and allow data gathering from different IoT technologies. Security and privacy concerns 
are also overlooked, which could have severe consequences for the entire system.

The FedHealthFog model was proposed in [37], which integrates federated learning and fog computing. The federated 
learning eliminates storing data in a central sever and instead it stores data in local devices. FedHealthFog was used in 
healthcare systems to enable connected wearables devices, such as smartwatches to monitor health. Therefore, collected 
data can be processed locally which allows for faster response and protects patient privacy. The proposed model solves 
the problem of conventional models that relieve a central server which causes slow process of the healthcare data. In 
addition, it uses less energy compared with conventional models. FedHealthFog may face challenges with unclear or 
uncertain data, which could disturb the decision-making processes in healthcare systems.

The authors of [38] proposed architecture to enable the efficient processing and storage of data to enhance the 
existing smart meter infrastructure. In their proposed architecture for the fog computing platform, smart meters are 
gathered to process a cluster that acts as a data node. Among these data nodes, one will be chosen to function as a 
master node. The master node is responsible for managing the file system. It is also responsible for storing metadata that 
holds the needed data, such as the file name and the storage location. However, the study does not show how to deal 
with the nodes’ heterogeneity on the fog or cloud layers. Nevertheless, one of the advantages of this solution is that the 
architecture has a Plug-and-Play feature, which reduces the need for manual configuration. Consequently, the scalability 
criteria are met. The mobility support was not discussed. Even though the authors showed the importance of security 
and privacy when aggregating data to the cloud, they did not implement any security measures.

Researchers in [39] proposed R2AM model, which was designed to manage resource allocation in IoT transportation 
system through fog computing. IoT transportation systems require processing data collected from e.g., sensors, vehi-
cles traffic cameras, GPS devices, in real-time and they involve critical decision-making. The collected data is placed in 
a queue for processing by fog nodes. Data is assigned to a fog node based on its processing capacity, so a node with 
higher capability has the priority to handle the data. The fog computing was used to process the data collected nearby 
fog devices to reduce load in cloud and enables low energy consumption. A limitation of the R2AM model is that it does 
not account for the range of capabilities and distances of communication devices, which could affect the scalability.

The authors of [40] introduced an architecture for big data analysis in smart cities. They proposed hierarchical Fog 
Computing architecture. The main objective of their work is to support a large number of infrastructures and services 
in future smart cities. Their architecture consists of four layers. Layer one is the Cloud for Data Management, which has 
a data center that gathers data from the intermediate layer. Layer two is the Intermediate Computing Node for Event 
Recognition, which is connected to many edge devices that govern the community-level sensors. Layer three is the edge 
device for feature extraction. It is responsible for detecting possible risk patterns on the received data streams from sen-
sors and extracting features for computing at the higher layer. Layer four is the Sensing Network, consisting of numerous 
sensory nodes deployed at public infrastructures to monitor condition changes over time. The proposed architecture 
can support fast, providing intelligence and great performance in future smart cities.

In a distributed fog computing environment, an optimization policy for multi-user small cell clustering was proposed 
in [41]. The authors use a small cell clustering network to reduce power consumption and manage resource sharing. 
The load is distributed among small cell clusters. Their simulation results showed that the users were satisfied, and the 
consumption of communications power was reduced. Heterogeneity is proposed in their system, where each small cell 
cluster has various devices. The authors addressed the scalability of the clusters according to the requirements of com-
putation requests. Mobility and security were not described.

The authors of [42] propose architecture for resource allocation that allows efficient workload distribution over the fog 
and the cloud layer. The authors proposed their design model to handle resource allocation issues in the fog paradigm. 
They designed the proposed architecture in a cloud-fog environment. Therefore, the architecture has three layers. The 
first layer is the client layer, the second is the fog layer, and the third is the cloud layer. The authors implemented the 
algorithm in the client and the fog layer to serve the clients with the required resources. The request will be directed to 
the cloud if no resource is available in the fog layer.

Latency in the fog layer of IoMT was also investigated by [41], and a 3-tier fog-assisted health monitoring archi-
tecture was proposed. All sensors, such as medical, environmental, and actuators, exchange the data with the Fog 
layer’s application, where they are fused and processed. As data are locally analyzed, network traffic is minimized, 
preserving the bandwidth and decreasing the latency. Storing data locally also protects security and maintains the 
privacy of patients’ information.

Preserving the resources within the fog layer’s IoMT layer was investigated in [42].  Employing a task scheduling 
algorithm prioritizes the tasks properly based on their relevance. The study developed a Task Classification and 
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Virtual Machine Categorization (TCVC) method that prioritizes task significance. The tasks were categorized into 
high-importance, medium-importance, and low-importance tasks based on the patient’s health status. MAX-MIN 
scheduling algorithm was employed to determine the performance of the proposed method. However, the method 
does not consider the task size when estimating the priority, which hinders the full utilization of the fog layer’s 
resources. The 3-tier approach was also used in [43].  To build an analytical healthcare IoT model. By combining 
reinforcement learning and fuzzy logic in the fog computing environment, network latency was decreased. Patient 
health data were collected by sensors and sent to the fog layer, where they were prepared and used for training the 
model. The model then classifies the new readings as high-risk, low-risk, and normal. The purpose of reinforcement 
learning is to support real-time decision-making and prioritize time-sensitive data. Nonetheless, the study ignores 
task size when prioritizing resources. It is also unclear how the model decides whether data is time sensitive. Relying 
on a fixed definition does not fit the dynamic nature of health status, changing the context.

An energy-efficient fog-to-cloud architecture was used by [44].  To reduce energy consumption in IoMT devices. 
This architecture works in three modes to preserve sensors’ battery energy: periodic, sleep-renew–renew and con-
tinue. The IoMT sensors are divided into several clusters, each with a dedicated cluster head such that cluster members 
use the cluster head as their gateway to the cloud and are connected to gateways called cluster heads. The cluster 
heads forward data to a respective fog, which is processed and then forwarded to the cloud for further processing. 
This technique enabled all sensing modes, which collected the patient data according to their health condition. 
However, cluster heads in this architecture are sign-point-of-failure and bottlenecks that cause data loss. Such data 
loss is caused by faulty cluster heads or mobility of the nodes within a cluster, which sometimes becomes unreach-
able to the centroid.

An efficient analytical model was proposed in [45] to reduce computational complexity regarding processing power 
and memory and to suit the resource constraints in IoMT. A network of queues that help in estimating minimum com-
puting resources was integrated into the model. The gateway sends sensitive data to a private cloud to protect patients’ 
data. In contrast, non-sensitive data is sent to fog nodes connected to a public cloud where thorough data analytics 
is conducted. However, the model assumes that communication channels are stable, and data delivery is dependable, 
which does not hold when the patient is mobile. Healthcare sensors work in harsh environments.

A 5-tier architecture [46] was proposed to process and analyze the data generated by different devices and equip-
ment in IoMT. This architecture supports real-time event detection and shows the alerts on monitoring dashboards run 
at the fog layer. Nodes in the fog layer receive and process data collected from sensors through gateways before they 
are transmitted to the cloud for additional processing. Time-sensitive healthcare applications can make real-time deci-
sions by relying on the fog layer for processing and analyzing data. However, the architecture’s multi-layer nature cre-
ates additional overhead on the system as it needs extra work when passing data between layers. This adversely affects 
the efficiency of the architecture and delays the response in real-time applications. A detection model [47] was created 
in the fog layer to notify people about real-time fall activity. The model used the One-Class Support Vector Machine 
(OC-SVM). A new kernel matrix calculation technique was developed and incorporated into the classifier for real-time 
applications. The caregivers can get real-time notification despite losing the cloud and fog node connection. Although 
the kernel efficiently calculates the model’s parameters, it does not account for the noises generated during a patient’s 
mobility or the harsh environment.

The fog-based model for predicting, monitoring, and controlling the real-time risks of remote diabetic patients based 
on their physiological condition was proposed by [48]. By training a J48 decision tree, the risk level of the diabetic 
patient can be predicted. Multiple parameters like blood glucose levels, ECG, and physical activities were used as input 
parameters to train the model and support high accuracy. However, the model does not consider the special nature of 
data that arrives at the fog layer contaminated with noises. This could mislead the model and decrease the detection 
accuracy. Smart e-Health Gateways for IoMT were investigated in [17], which could support many services like real-time 
data processing, local storage, and embedded data mining. These gateways were incorporated into the fog layer and 
strategically positioned between the sensor nodes and the cloud. The model overcomes the challenges related to energy 
consumption, mobility, reliability, and scalability issues by relaying the processing to the fog layer. However, gateways 
could be a single point of failure that causes much data loss. Table 1 summarizes the studies related to fog computing 
based on the named criteria.

An improvement for the IoMT health monitoring system was proposed in [49], which employs fog computing at smart 
gateways to perform tasks such as distributed storage, embedded data mining, and notification service at the network’s 
edge. The features were obtained from cardiac disease data from the electrocardiogram (ECG). ECG signals were analyzed 
in smart gateways with extracting features, such as heart rate, P wave, and T wave, through a flexible template based on 
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a lightweight wavelet transform mechanism. However, analyzing data at smart gateways creates additional overhead 
on these nodes, which causes time delays.

Transferring computing intelligence from the cloud to the fog network was utilized in [36], which lowers the response 
time and minimizes network failures. The servers in the fog layer relay all protocol conversions, data storage, processing, 
and evaluation to the cloud and only focus on decision-making. Therefore, faster and more accurate treatment delivery, 
reduced medical costs, and improved doctor-patient interaction could be achieved. However, fetching the cloud data 
increases Fog’s time to detect and/or predict a serious condition. A low-cost health IoMT system that integrates end-node 
sensors with a fog layer to provide continuous remote monitoring of ECG together with automatic analysis and notifi-
cation was proposed by [25]. The sensors collect data about body temperature, respiration rate, and ECG and transmit 
them to a smart gateway where healthcare providers can access them. The data are represented in a form suitable for 
automatic decision-making. However, sending data about vital signs introduces a risk of noise and dropped packets, 
harming the user and the data quality.

A fog-assisted-IoT IoT-enabled patient health monitoring model has been proposed by [52]. The idea was to utilize fog 
computing at the smart gateway to process the massive amount of data collected by healthcare-related sensors at the 
end nodes close to patients. The Bayesian belief network algorithm was used to construct the classifier. Event triggering-
based data transmission method was implemented to process real-time patient data at the fog layer. The temporal min-
ing concept analyzes adversity by calculating the patient’s temporal health index. However, temporal features do not 
accurately reflect the context in which data is collected. This negatively affects the data quality and the model’s accuracy.

A Reduced Variable Neighborhood Search (RVNS) based Sensor Data Processing Framework (REDPF) [53] was proposed 
to enhance the reliability of data transmission and processing speed between the nodes and fog layer in IoMT systems. 
The framework was used to evaluate the health status of older people. The framework provides reliable data transmission 
and rapid data processing by adopting self-adaptive filtering, fault tolerant data transmission, and data-load-reduction 
processing. Therefore, it significantly improves the efficacy of IoMT applications. Self-adaptive filtering that recollects 
lost data is achieved by using the RVNS model to extract important information from raw data at fog devices. However, 
the study assumes that the data retention period at sensory devices is sufficient to hold the data until recollection is 
successful. This does not hold for resource-restricted devices in IoMT that have no sufficient space or memory to hold 
data for long periods.

In the study carried out by [54], the security of fog-driven IoT healthcare systems was investigated. Two security param-
eters (authentication and key agreement) have been explored. Specifically, a three-party authenticated key agreement 
protocol from bilinear pairings was proposed. The security model was formally proved so it can be used to protect fog 
nodes deployed in remote and unprotected places. However, attackers could hijack a legitimate user account and easily 
break into the system. In such a case, the data and services will be fully or partially accessible to the attacker, who could 
compromise the integrity of the data and the privacy of the patient’s information.

The cognitive Fog (CF) model [55] was developed to safeguard the integrity of the data exchanged among the nodes 
in IoMT. The model provides secure data transmission between smart healthcare services and allows people to opt in and 
out of running processes, utilizing new processes when necessary and providing security for Fog’s operational processes 
system. The proposed Ensemble learning security showed better performance compared with K-Nearest Neighbor (K-NN), 

Table 1  Fog computing 
studies are categorized based 
on several criteria

Refs Category Heterogeneity Scalability Mobility Security

[32] Healthcare ✓ × ✓ ✓
[33] × ✓ ✓ ×
[34] ✓ ✓ ✓ ✓
[31] ✓ × ✓ ✓
[35] ✓ ✓ × ✓
[36] × × × ×
[37] ✓ ✓ ✓ ✓
[38] Smart Living × ✓ × ×
[39] ✓ × ✓ ×
[40] × × × ×
[50] Energy Consumption ✓ × × ×
[51] Resource Management ✓ × × ×
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Density-Based Spatial Clustering of Applications with Noise (DBSCAN), and Decision Trees (DT) when classifying the data as 
normal or suspicious.

Fog layers have been employed to enhance IoT-based healthcare systems’ capabilities, and they have demonstrated their 
worth by providing fast response time and low latency. However, such development poses a significant challenge in preserv-
ing users’ privacy and addressing security/privacy issues. Being in an infant stage, such technology has invariably become 
more prone to privacy issues. Therefore, the study by [56] proposed an e-healthcare framework that deals with electronic 
medical records (EMRs) in the fog layer while preserving data privacy. However, the heterogeneity of data and services at 
the fog layer was overlooked, resulting in the risk of unauthorized parties exposing data by exploiting vulnerabilities in Fog’s 
weekly secured services.

A multi-modal fog-assisted system [48] was proposed to support remote patients with diabetes. The system combines 
data from multiple vital sensors measuring heart rate, ECG, and blood sugar. The data processing is conducted at the fog 
layer instead of the sensors, which preserves the resources at the sensory layer. The sensor’s battery lifetime is prolonged by 
offloading the processing on the fog layer. The J48 decision tree was utilized to predict the diabetes risk level with higher 
classification accuracy. An emergency alert is generated immediately for preventive actions by using fog computing. However, 
making decisions at the fog level involves some delay, which is not recommended for time-sensitive and life-threatening 
applications. A virtual machine (VM) partitioning technique [57] IoMT services’ security at the fog layer was proposed to be 
reconsolidated. The Elliptic Curve Cryptography technique created the output token for user authentication. This authentica-
tion method was implemented into identity management to prevent security breaches. However, the attacker could take over 
a legitimate identity and utilize it to gain access to the system, where he can decrypt the data and access the resources freely.

3.2.5  Limitations and research directions for fog computing in IoMT

In general, fog computing aims to bridge the gap between IoT and cloud computing. It distributes the processing among 
resources, which enables the comprehensive analysis of a huge amount of data while maintaining the efficient utilization of 
the resources at the sensory layer. This is important for IoMT as the end nodes will be freed up and only dedicated to acquir-
ing the data and communicating with other components. By integrating fog technology into the IoMT infrastructure, the 
workload will be relayed to devices with higher capacity and stronger processing power. However, the research community 
has addressed several issues regarding data analytics and predictive modeling in fog computing for IoMT.

The compatibility issue between the distributed infrastructure components is a major issue that needs further investiga-
tion. This is due to a lack of standardization in interoperability between the IoMT’s fog devices. The fog devices manufactured 
by different vendors run different software and protocols. This creates interoperability issues as these protocols are not 
necessarily compatible. Although there is ongoing research to address such an issue, most studies tackled the problem from 
the application perspective and overlooked the nature of the data. Some devices use the IPv4 protocol, whereas others run 
the IPv6. To ensure that data prepared to be one protocol can pass through a route containing devices that run the other 
protocol, a tunneling mechanism must be in place. Such tunneling requires that data be packed in datagrams of a size suit-
able for both protocols. This might be challenging with the heterogeneous and multi-type data generated in IoMT. There is 
a need to highlight the data compatibility aspect in the fog computing layer of IoMT.

The lack of standardization in IoMT fog layer devices has another complication related to the susceptibility to attacks that 
exploit the vulnerabilities in one or more protocols to penetrate the well-secured nodes. Although several solutions have 
been proposed to secure the data transmission within the fog layer in IoMT, most ignore the multi-faceted nature of the data, 
combining (non-compatible) types like numerical, textual, and image. Unlike other IoT applications, devices in the fog layer 
of IoMT must distinguish and isolate the noise data caused by wearable sensors’ non-stationary nature on the patient side.

4  IoMT processing

Processing data in IoMT could be conducted globally in a centralized location or distributed in local nodes. Processing 
data globally needs all nodes to send data to a central location, i.e., a server in the cloud. Distributed processing, on 
the other hand, is an approach where the data are processed in local nodes. The research community has investigated 
both approaches to make IoMT applicable in real-world deployment and addressed the issues that hinder the efficacy 
of such approaches.
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4.1  Distributed processing

Researchers proposed a high-reliability and low-latency framework for Internet of Medical Things (IoMT) applications 
[58]. This framework uses an edge computing layer composed of Fog nodes controlled and managed by a Software-
Defined Networking (SDN) system. The SDN system has distributed controllers and OpenFlow switches with limited 
resources. Blockchain technology is used to ensure secure decentralization. Based on their current workload, the frame-
work includes a data offloading algorithm that allocates different processing and computing activities to the OpenFlow 
switches. Additionally, a traffic model was proposed to analyze and model traffic in different network parts. Simulations 
and a testbed were used to test the proposed algorithm. However, offloading based on workload only does not allocate 
resources properly, as it reflects the critical nature of the tasks. This is why some tasks are time-critical, and others are 
not, and treating both types of tasks negatively impacts the response time of the IoMT systems.

IoMT is vulnerable to many security threats in distributed environments, including internal and external attacks. There-
fore, an adaptive security context framework was proposed in [59]. The data exchange between various components 
of the IoMT be properly tracked. The framework achieves accountability by tracking information propagation between 
services and devices in the system. However, auditing the local node activities is challenging because intruders use 
legitimate identities to conduct tasks within the internal system. They can also access and manipulate data in auditing 
files, which results in concealing and erasing these data. Data leakage and collusion attacks are among the threats that 
could cause the distributed IoMT. As such, the Privacy Protector framework [60] investigated the challenges during data 
collection. The framework employs secret sharing and repairs mechanisms, particularly in cases of data loss or com-
promise, to safeguard the privacy of patients data. The Slepian-Wolf-coding-based secret sharing (SW-SSS) was utilized 
to implement the concept. A distributed database consisting of multiple cloud servers was utilized to ensure that the 
privacy of patients’ data remains protected as long as one of the servers is uncompromised. The solution assumes that 
compromising one server does not impact the other server in the distributed infrastructure. This does not hold, as the 
compromised server could share manipulated data with other servers in the distributed database. The attacker also could 
compromise all other servers if he managed to penetrate the system.

The study by [61] The integration of EHR and IoT into a highly heterogeneous system of devices, network standards, 
platforms, types of data, and connectivity while maintaining secure and private data. The proposed solution utilizes bio-
metric-based blockchain technology with the EHR system. It introduced a mechanism that utilizes a patient’s fingerprint 
to secure patients’ access control on their EHRs without compromising their privacy and identity. A secure distributed 
healthcare system (SDHCARE) is designed to uniquely identify patients and enable them to control and secure access 
to their EHRs that are exchanged and synchronized between distributed healthcare providers. However, the solution 
does not consider the threats that could alter the data within a local node. This is important since attackers could use 
authenticated identities to steal, manipulate, or delete the data.

Addressing the security concerns in distributed healthcare IoT solutions was investigated by [62]. The study proposed a 
health data aggregation scheme as a privacy-preserving solution that securely gathers health data from multiple sources 
and guarantees fair incentives for contributing patients. Signature techniques were employed to ensure fair incentives 
for patients. In addition, noises were added to the health data for privacy. Boneh-Goh-Nissim cryptosystem and Shamir’s 
secret sharing were combined to safeguard data obliviousness, security, and fault tolerance. The study asserts that noise 
follows a certain distribution that may differ from reality as the noise could be random and vary based on the context.

The authors of [63]. They demonstrated the challenges that fog computing faces for time-critical IoT applications 
regarding latency and energy efficiency requirements. Due to the availability of data and computing resources, it is prom-
ising to take advantage of applying intelligence in the system operations. This paper proposes human- and device-driven 
intelligence to reduce latency and energy consumption. In this paper, two case studies are used to demonstrate their 
technique. The first case study uses machine learning to identify the users’ behaviors, and then the algorithm performs an 
adaptive low-latency MAC layer scheduling between sensor devices. It uses adaptive sampling and high-resolution data 
only whenever needed. ML module determines human activities, which can trigger the MAC-layer scheduler to allocate a 
timeslot to the requesting sensor(s). Three ML classifiers are used, i.e., decision tree, Support Vector Machine (SVM), and 
Gaussian Naive Bayes (GNB). In the second case study, they designed an algorithm to take advantage of nearby multiple 
fog nodes where the end-user device can perform an intelligent offloading task. In fog, nodes are deployed in a dense 
environment. The paper considers an end user with independent tasks; each task can be offloaded to a CPU of any fog 
node or locally processed by the end user’s CPU.
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Authors in [64] proposed an IoMT architecture approach to reduce the fog layer’s computation. Their approach is imple-
mented based on two phases of ML; first, ML is used to detect the priority of employees’ medical records in a workplace. 
Therefore, an employee with a record with stress data is considered a priority record; in contrast, an unstressed record 
is a non-priority record. A priority record is transmitted to a second ML to classify the cause of stress. In the meantime, 
non-priority records are sent to the cloud for archiving. They compared the performance of several ML models, but the 
artificial neural network (ANN) showed the best F1-score value, reaching 99.97%. In the study, the authors assumed that 
the priority records usually happen to be less than non-priority records, which could be true in some applications. How-
ever, with more priority records, more records will be directed to the fog, which could lead to computation overhead. 
Table 2 summarizes the techniques that are utilized in literature.

4.2  Limitations and research directions for distributed processing in IoMT

Distributed computing allows for simplifying the processing and analyzing of a high-volume of data generated in the 
IoMT. It handles that by dividing the massive data into smaller samples, each managed by a dedicated machine/service. 
Distributed infrastructures like Hadoop Distributed File System (HDFS) are the main enablers for distributed big data 
analytics in IoMT [65]. Existing research on big data distributed analytics and predictive modeling caters to efficient 
processing and low-cost deployment. However, the main challenge of such distributed processing is the insufficiency 
and incompleteness of data when broken down into smaller chunks. For the IoMT ecosystem, data insufficiency and 
completeness are crucial for accurately diagnosing critical health conditions. Building analytical and predictive decisions 
requires fully available data, especially for those with urgent and critical health conditions.

Nevertheless, such a challenge is overlooked by the ongoing research in IoMT, as they assume that the subsets are 
as descriptive as the original data with the same distribution and characteristics. This does not hold, as the data selec-
tion for each subset is not necessarily even. The subsets are built by randomly selecting data instances from the original 
data set. Random sampling does not guarantee that samples represent the same distribution and characteristics as the 
original data.

Scaling IoMT solutions at large could bring further practical challenges, especially when managing the flow of large 
data into multiple devices. The IoMT generates a vast amount of health data, therefore it requires enabling scalable 
network architectures. In addition, using devices from different manufacturers increases the complexity of the interop-
erability of those devices, especially without standardization of protocols. Handling ethical issues of patient data is also 
considered a challenge in IoMT. As IoMT architecture allows for collecting sensitive patient information, this increases 
the risk of privacy and security problems. Patients have concerns about their information and want to know how their 
data is handled and controlled. Sharing patient data with a third party could lead to unauthorized access or misuse of 
their data, this should be carefully addressed at the time when designing IoMT systems [66].

On the other hand, the distributed processing in IoMT relies mostly on wireless communication to support patient 
portability and mobility. However, such mobility could disrupt the operation of the network. Consequently, the col-
laborative analysis and prediction will be adversely affected as the aggregation will not be aware of data lost due to 
intermittent signals. Furthermore, the distributed processing can be interrupted due to hardware or software failure in 
the distributed file system architecture. The collaborative analysis must know of any loss or changes in network compo-
nents and topology changes.

4.3  Centralized processing

In their paper, referenced as [67], the authors presented architecture for integrating IoT-based healthcare systems in 
a cloud environment. The proposed platform runs the framework on fog computing. The study collects health data 
from sensors and securely transmits it to near-edge devices. These devices then transfer the data to the cloud, making 
it accessible to healthcare professionals. The system employs an authentication and authorization mechanism for all 
devices and maintains records of those devices. It also utilizes asynchronous communication between the applications 
and data servers in the cloud environment. However, this approach does not support critical IoMT applications that 
require real-time data.

In their research paper [68], proposed a fog-assisted information model that delivers healthcare services through 
IoT devices as a cloud service. This model is designed to manage heart patient data effectively received through user 
requests. It addresses the data processing issue that does not consider the requirements of a centralized cloud environ-
ment. The proposed solution suits deadline-oriented cloud applications like health monitoring, where low latency is 
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crucial. However, when a large amount of data is received, it creates a bottleneck at the cloud edge, which can increase 
response time.

A framework that coordinates processing between the edge and cloud has been developed by integrating the char-
acteristics of both platforms [69]. This framework uses historical information and network-wide knowledge at the cloud 
center to guide edge computing units in achieving the performance needs of heterogeneous wireless IoT networks. The 
study highlights the synergies and differences between cloud and edge processing, including main features, key enablers, 
and big data analytics challenges. However, coordinating between the edge and cloud incurs additional expenditure, 
which can lead to increased delay.

A cluster-based hierarchical approach [70] that preserves energy and monitors the patients was proposed. The 
approach provides a cluster head to gather data from other cluster members by organizing the monitoring devices into 
clusters of equal sizes. The cluster head sends the data to a centralized base station. The approach outlines the power 
consumption cluster members in several states: idle, sleep, awake, and active. However, the approach does not con-
sider a particular device’s capacity, making it unfair to treat cluster members equally. It is also essential to consider the 
proximity to the cluster head when calculating the load. An advanced federated learning framework [71] was built to 
train deep neural networks for modeling data collected from sensors in the IoMT. Most powerful server training opera-
tions are managed by executing model training in the cloud. The sparsification of activations and gradients significantly 
reduces the communication overhead. However, data collected at sensors are naturally heterogeneous, which needs to 
be pre-processed before it becomes suitable for modeling. This adds another layer of overhead that delays the real-time 
response, which is crucial for sensitive and critical healthcare applications.

4.4  Limitations and Research directions for centralized processing in IoMT

As the centralized processing in IoMT gathers all information required into one location, it addresses incomplete data 
distributed in different locations. Accordingly, the accuracy of data analysis and predictive modeling is high. However, 
the enormous data collected from multiple IoMT sensors and nodes puts a heavy load on the analysis machine and 
requires more time. This is an issue for the applications that need real-time interaction and might be unable to work 
promptly. These applications need a prompt response, especially when dealing with patients with critical conditions. 
Therefore, centralized analysis needs to make the trade-off between thorough processing and efficiency. Nevertheless, 
such compromise is ignored by most of the related studies, and they focus on how to collect as much data as possible 
to support accurate decisions.

On the other hand, the data in centralized IoMT systems are collected from different types of devices that produce dif-
ferent data types. Consequently, the different data types must be federated into one set to facilitate centralized process-
ing. Yet, merging incompatible data is an extra overhead that adversely affects the system’s efficiency. Such an overhead 
exacerbates real-time systems’ latency, which is unacceptable in IoMT applications that deal with patients with critical 
conditions. Although some centralized processing studies try to address the issue by carrying out data fusion and pre-
processing offline before retraining, this might not be sufficient in real-time applications that need a prompt response 
from the service provider based on developing a patient’s health condition. Additionally, retraining is another overhead 
that might disrupt the analysis, especially with highly dynamic environments like IoMT. The dynamic environment trig-
gers retraining more frequently. As such, it is imperative that IoMT applications can resiliently receive, pre-process, and 
integrate the incoming data without causing any additional overhead or disrupting normal operation.

4.5  Analysis techniques

Increased time delay for data transmission due to the large volume of data and multiple hops counts between IoT devices 
and cloud servers, can render healthcare data inadequate and irrelevant for end-users. Healthcare applications that are 
sensitive to time constraints require genuine data. Traditional cloud servers cannot meet healthcare IoT devices and 
end-users minimum latency requirements. Computation latency, communication latency, and network latency need to 
be minimized for IoT data transmission to reduce high latency. Fog computing (FC) can provide storage, processing, and 
data analysis from cloud computing to network edges to reduce high latency. An analytical model based on a hybrid 
fuzzy-based reinforcement learning algorithm [72] has been proposed to address the high latency issue due to the large 
volume of data that causes network congestion. The proposed solution aims to reduce the high latency on the Internet 
of Medical Things (IoMT). The FC analytical model utilizes a fuzzy inference system and reinforcement learning to extract 
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features and select them. However, the dynamic nature of IoMT makes it unsatisfactory to train the model only once, as 
the system’s topology changes continuously. Therefore, the model should adapt to such changes.

The privacy-preserving analytics model [73] was built to provide privacy protection for IoMT systems. The model 
adopts kHealth, a personalized digital healthcare information system for disease monitoring. Likewise [74], proposed 
a random forest-based model for real-time, remote health monitoring (IoMT). The model was trained using data lying 
in the cloud. However, one-time training is unsuitable for real-time applications with dynamic IoMT environments. The 
Decision Tree, Random Forest, and Naive Bayes machine learning classifiers were used [75]. To diagnose Parkinson’s dis-
ease based on IoMT sensors. The IoT-based node receives the data and offers a faster classification solution to help with 
decision-making. However, offloading the sensors’ decision is an additional overhead that drains the sensor’s memory, 
CPU, and battery.

A Grey Filter Bayesian Convolution Neural Network (GFB-CNN) model was proposed in [76] to address two significant 
issues in heterogeneous IoMT sensors: connectivity and convergence between communicating parties, such as between 
patients and hospitals. The accuracy rate of medical data analysis was improved by introducing the volume alignment 
softmax CNN algorithm in the GFB-CNN method. However, relying on Bayesian filters has an underlying assumption 
that the data follows Bayesian distribution. This does not hold for data generated in harsh environments like IoMT. In 
such a case, the method could be suboptimal. A Fuzzy Rule-based Neural Classifier [77] was developed to diagnose the 
disease and identify its severity. It is a cloud-based Mobile IoMT that monitors, predicts, and diagnoses serious diseases. 
As part of this framework, a systematic approach was used to generate diabetes disease and related medical data using 
the UCI dataset and medical sensors. However, determining the severity of the disease requires real-time updates on 
the patient’s status, which might not be applicable when patients are in remote locations with no streamlined data feed.

In a study by [78], researchers developed a user-dependent data mining approach using IoT technology to classify 
offline human activity. They also created a robust and precise human activity recognition model. The proposed model 
uses a dataset containing records of vital signs and body motion from ten volunteers with different profiles, each per-
forming twelve physical activities for human activity recognition purposes. The researchers studied machine learning 
algorithms like Artificial Neural Network (ANN), K-NN, DT, RF, and SVM. However, they found that static data is not suitable 
for modeling dynamic environments where patients are mobile. The researchers also investigated Collaborative Machine 
Learning in IoMT by presenting a holistic multi-layer architecture [79]. This architecture enables real-time actionable 
insights, ultimately improving patients’ and healthcare providers’ decision-making powers. To demonstrate the feasibility 
of the architecture, a case study was conducted on ECG-based arrhythmia detection using deep learning and Convo-
lutional Neural Network (CNN) methods distributed across endpoint IoT Devices, Edge (Fog) nodes, and Cloud servers. 
However, the multilayer architecture is unsuitable for real-time applications due to the need to exchange and convert 
data between layers. In such collaborative efforts, compatibility becomes an issue [79]. Also, in [80], a Deep Learning-
based Internet of Health Framework for detecting Alzheimer Patients was proposed. The framework comprises three main 
components: a recurrent neural network-based Alzheimer prediction scheme, an ensemble approach combining CNN 
and NLP, and an IoT-based assistance mechanism for elderly patients. However, the ensemble approach is insufficient as 
it requires investigating data from different perspectives.

4.6  Existing works in IoMT

The authors in [81] proposed a framework for creating sustainable and secure IoMT solutions. Their work aimed to focus 
on the issues regarding sustainability and security in the medical field. They used a case study to assess the effectiveness 
of their study; they carried out the case study in a private medical clinic. They implemented an IoMT system for monitor-
ing patients, particularly their vital signs. Their results show that they achieved positive results when they implemented 
an IoMT system that can meet sustainability and security requirements. Also, their case study has findings that include 
monitoring patients’ vital signs in real-time. This helped them improve care quality and detect some complications in 
the early phases. They have used two types of datasets, including simulated and clinical datasets, to analyze and test the 
framework’s performance. They achieved an accuracy of 89%. The researchers in [82] reviewed state-of-the-art techniques 
to secure IoT systems when transmitting, collecting, and storing data. They have explored several security requirements 
and challenges behind the designs; also, they reviewed several security techniques to make the IoMT systems more 
secure. The authors tried to describe what the researchers have done in the field and the current proposals, outlining 
several future trends and research challenges. The study in [83] proposed an intrusion detection system (IDS) with two 
algorithms, including AdaBoost and particle swarm optimization, to detect and classify records regarding malware in 
health platforms. They used a dataset called NSL-KDD with instances of 125,973 and features of 41; the dataset is divided 
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into two parts: 20% for training and 805 for testing. They have identified 12 features that are relevant for detecting intru-
sion by using particle swarm optimization. Their IDS has shown effectiveness in detecting attacks like Probe attacks, 
Root-to-local (R2L), User-to-root (U2R), and Denial of Service (DoS). They compared their results with naïve Bayes and 
KNN (K-Nearest Neighbours). Their results were promising, and the AdaBoost achieved the highest value in accuracy of 
98.5% and recall of 96.67%.

The work in [84] reviews several papers on the Internet of Medical Things (IoMT) to explore customized intelligence, 
connectivity, and healthcare systems. Also, they explored other cutting-edge technologies like blockchain, artificial intel-
ligence, cloud computing, and big data that support healthcare services to be more personalized and convenient. They 
discussed the technologies in the healthcare domain that exist in the literature. They covered topics about connected 
health and smart health, bibliometric analysis, and the global market; they discussed the healthcare industry’s evolu-
tion from 1.0 to 5.0. Also, they pointed out important aspects of the next step in healthcare, which will be focusing on 
a patient-centric approach and a personalized one. Furthermore, healthcare architecture based on IoMT is introduced, 
which helps prioritize security integrated with devices. They outlined research challenges and future trends that will help 
researchers before delving into the field. The authors in [85] stated that a few researchers have focused on bio-inspired, 
combined with IoT. Therefore, they started reviewing papers in this field by providing an overview of IoT based on bio-
inspired, explaining how this concept started, and exploring and discussing the status, ecosystem, advantages, future 
trends, and challenges of bio-inspired IoT. They mentioned bio-inspired solutions, including robotics, Materials and 
structures, sustainability and energy, healthcare, and optimization. They stated that bio-inspired techniques can help 
the IoT system to be more scalable and durable. Their paper might be useful for researchers trying to get information 
about bio-inspired IoT.

The researchers’ aim in [85] was to address the issues of data fusion in the field of IoMT, also discussing the security 
challenges and possible solutions that are lacking in the existing works. They stated that the data collected from IoMT 
devices can affect the accuracy of predictions due to quantity, quality, and relevance. There is an algorithm called Epilepsy 
seizure detector-based Naive Bayes (ESDNB) that has achieved an accuracy of 99.53–99.99%, which is considered the 
highest obtained value in the IoMT. The data collection, protection, and storage methods should be improved based on 
their analyses. Several future research trends mentioned, including cross-platform methods when detecting the mal-
ware, can be considered as future work that can tackle the heterogeneous environment of IoMT systems. The research 
in [86] proposed a framework that helps refine the classification activities of people and detect the wellness related to 
the people’s routines. Based on their findings, the framework has improved the accuracy of classifying individuals’ activi-
ties. Their researchers have integrated the sensor data fusion based on IoMT into multimodal data processing to imple-
ment patterns of daily living activities and detect anomalies. Their model, AiCareLiving, is based on IoMT and artificial 
intelligence. This model’s objective is to get low false positives when detecting anomalies and predicting; their model 
achieved the highest accuracy of around 95%.

Authors in [64] proposed an IoMT architecture approach to reduce the fog layer’s computation. Their approach is imple-
mented based on two phases of ML; first, ML is used to detect the priority of employees’ medical records in a workplace. 
Therefore, an employee with a record with stress data is considered a priority record; in contrast, an unstressed record 
is a non-priority record. A priority record is transmitted to a second ML to classify the cause of stress. In the meantime, 
non-priority records are sent to the cloud for archiving. They compared the performance of several ML models, but the 
artificial neural network (ANN) showed the best F1-score value, reaching 99.97%. In the study, the authors assumed that 
the priority records usually happen to be less than non-priority records, which could be true in some applications. How-
ever, with more priority records, more records will be directed to the fog, which could lead to computation overhead.

Authors in [87] proposed a resilient security framework for the IoMT model. Their framework is implemented by com-
bining a Tri-layered Neural Network (TNN) and a blockchain model. TNN is used to capture cyberattacks from patient 
data collected by medical sensors. Therefore, malicious data is dropped from the IoMT architecture while normal data is 
transmitted to the blockchain in the fog layer for data integrity and immutability. The TNN achieved a 99.99% F1-score, 
and the blockchain met the expected performance. The research assumes that the TNN operates close to the sensor layer 
of IoMT; however, it does not provide details on how the TNN functions within that layer.

Authors in [88] introduced meta-learning to enhance ensemble-based IDS for the IoMT. They compared the accuracy 
performance of their proposed model, ME-IDS, with Stack-IDS, a Distributed Intrusion Detection System for the IoT (DIS-
IoT), and an Ensemble Deep Learning Intrusion Detection System (EDL-IDS). The comparison results demonstrated that 
the research proposed model, ME-IDS, achieved the highest accuracy across different numbers of features, ranging from 
5 to 45. The authors used a dataset called WUSTL-EHMS-2020 and discussed the number of features used. However, they 
did not provide details about the number of samples for each label in the dataset.
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Authors in [89] proposed a novel IDS technique named the SafetyMed, which merges CNN and LSTM models. 
Therefore, their proposed model can defend against sequential and grid-structured malicious data. The average 
accuracy of the proposed model was 97.63%. SafetyMed is considered a comprehensive model; however, combin-
ing CNN and LSTM could increase the complexity of the model. The research in [90] compared various ML models, 
which are K-NN, NB, SVM, ANN, and DT, used as IDS for IoMT. They evaluated the performance of each ML model using 
the Bot-IoT dataset. According to the authors’ findings, DT achieved the best performance, reaching 100% accuracy 
compared to the other ML models.

Authors in [91] presented an IDS implemented based on a deep learning approach for the IoMT. Their model lever-
ages combining features extracted from network flow and patient biometrics to enhance its accuracy. They handled 
the imbalanced dataset using a cost-sensitive learning approach. The proposed model accuracy reached an accuracy 
of 99% with combined features. However, it achieved 95% with network features and 89% with patient biometrics. The 
authors focused on cyberattacks injected into the IoT gateway and the cloud network. Authors in [92] also combined the 
features extracted from network flow and patient biometrics when designing their IDS model for IoMT. The proposed IDS 
was implemented using a particle swarm optimization (PSO) deep neural network (DNN). The PSO was used for feature 
selection, and DNN was used to detect intrusions. However, the accuracy of the proposed model reached 96%, which is 
less than the research in [91], which achieved 99%, as mentioned. This study in [93] presented an IDS implemented based 
on fuzzy learning and LSTM for IoMT. The fuzzy logic adjusts the number of training epochs, eliminating underfitting and 
overfitting. As a result, it enhances the accuracy of the model. However, adjusting the number of epochs alone is insuf-
ficient to prevent overfitting and underfitting fully. Authors in [94] proposed an IDS used in the fog layer for IoMT. Their 
model addresses the limitations of traditional IDSs built into embedded devices or cloud systems. Therefore, the model 
combines host and network attack detection using several classifiers that utilize adaptive online settings, which enable 
updating and learning in real time to avoid retraining the model. The model reached approximately 100% accuracy. 
Table 3 shows the summary of the works that have been discussed above.

In [95], the authors explored the integration of Artificial Intelligence (AI) for the Internet of Medical Things (IoMT), 
which combines AI techniques with old medical technologies, resulting in what is known as AIoMT. AIoMT has achieved 
vast momentum, specifically due to the COVID-19 epidemic, due to its ability to renovate healthcare sections through 
the real-time collection, processing, and interpretation of massive capacities of patient data. Such data is acquired by dif-
ferent AIoMT devices supplied with smart sensors to tailor patient treatment and improve overall healthcare proficiency. 
On the other hand, data security, device compatibility, and regulatory obstacles must be solved. The authors have also 
referred to open research concerns that require more exploration to reinforce the nonstop advancement and effective 
utilization of AIoMT in healthcare.

In [96], the contributors proposed a distinctive approach for addressing coronary artery disease prediction models 
that use AI and IoMT. Their proposed model uses real-time physiological data from connected devices such as heart rate 
monitors and ECGs via IoMT to render tailored risk assessments. Also, the model utilizes advanced AI algorithms, such as 
TabNet for feature selection and catBoost for categorical data, to enhance the prediction accuracy while lowering model 
overfitting. To ensure that the model is adaptable across populations, the model has been trained on wide and diverse 
datasets. This real-time data processing facilitated the instant predictions to modernize preventive healthcare situations. 
By allowing for rapid and precise risk assessments, the approach enables the creation of individualized preventive treat-
ment measures, thereby improving cardiovascular health outcomes.

In [97], the authors presented a hybrid methodology for examining IoMT applications in the medical libraries of Paki-
stan. They collected quantitative data from 63 librarians, and in-depth interviews with 10 librarians show that IoT devices 
such as smart air conditioners, fire alarms, hand sanitizer dispensers, automated notifications, and smart gates are rarely 
used. Benefits include cost savings, remote access, and increased security, while drawbacks include high expenditures, 
data security difficulties, integration requirements, and a shortage of experienced workers. This study, the first thorough 
survey in Pakistan, intends to help libraries integrate IoT technology in emerging nations.

In [98], the authors investigated the use of wearable sensors in the IoMT to collect real-time health data. However, 
even small instruments have limits, leaving raw data susceptible to inaccuracies. Data refining is critical before process-
ing, but current approaches can be difficult or resource intensive. This research provides a unique two-tier, lightweight 
data fusion technique tailored for IoMT wearables and server modules. Each device applies local data fusion to its sen-
sor data to increase accuracy, utilizing lessons from previously sent data. This method may even deal with unexpected 
physiological changes like heart attacks. Furthermore, an overall data blending step on the server can help enhance 
the system’s accuracy by removing redundant data obtained by adjacent devices. Simulations exhibit that this two-tier 
procedure substantially raises the data accuracy and precision.
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While the IoMT revolutionized healthcare by providing real-time patient data, centralized cloud storage introduces 
dangers. Therefore, the investigators in [99] suggested a new and safe approach that integrates IoT and blockchain tech-
nologies to establish a decentralized intelligent medical system. Blockchain technology has improved system security 
by eliminating centralized single points of failure and recovering data integrity through its immutable ledger. Besides, 
this research emphasized a comprehensive comparative analysis of preceding models that employ blockchain to secure 
IoMT systems, concentrating on imperative issues such as system design, data integrity approaches, secure information 
exchange, and granular access control. Moreover, in this research, the authors provided a clue about the existing security 
challenges, open research problems, and research gaps. Their work provided a fundamental roadmap for researchers 
examining this pioneering approach to IoMT data security.

Due to the initialization of wearable health monitors, IoMT connectivity has expanded considerably through the 
apparent increase in connected devices that provide nonstop health intuitions and life-saving warnings for irregularities. 
Therefore, the research developed in [100] reported a three-layer architectural design to meet the Quality of Service (QoS) 
requirements of IoMT networks. The proposed design utilizes the indispensable IEEE 802.11 WLAN technologies (such 
as multi-link operation (MLO) for ultra-low latency) to ensure real-time communication. To assess MLO performance, a 
case study of ambient assisted living (AAL) has been used where it exhibited the effectiveness of the MLO module. Fur-
thermore, their proposed architectural design usefulness has been assessed for several other latency-critical healthcare 
applications (beyond AAL), including remote operations, e-consultations, and even pandemic response efforts.

In a similar perspective, the authors in [101] studied how integrating AI and IoMT has improved digital health and 
diagnosis. This integration was later renamed to AIoMT. AIoMT facilitates real-time data analysis from wearable medical 
devices and smart sensors, ensuring more adapted and effective medical care systems. The collected data is further pro-
cessed through big data, mobile internet, cloud computing, microelectronics, and PowerAI apps to improve the medical 
care system by producing prompt outcomes and providing instantaneous drug supply. They also reported on various 
AIoMT devices to realize the full potential of AIoMT. They highlighted the importance of ensuring proper data security 
and interoperability and overcoming regulatory difficulties. Finally, by resolving such significant issues, intelligent IoMT 
technology can be used to replace outdated healthcare systems.

The authors in [96] introduced a heart disease prediction model that spans cholesterol checks to state-of-the-art 
machine learning algorithms. The existing studies in the field of heart disease prediction via machine learning models 
like TabNet and CatBoost seem to uncover many crucial gaps that need deeper probing. One is the pooling of data infor-
mation, especially unstructured data like medical imaging and clinical notes, leading to improvement in the accuracy of 
predictions. Moreover, even datasets from different parts of the US have been used in numerous models to make predic-
tions specifically on data from certain states or localities leading to concern about the possibility of generalizing how 
well these models perform in predicting healthcare outcomes equally for wider population structure requiring external 
validation. Additionally, real-time monitoring and adaptability will need improvement because as it stands the current 
implementations only go so far into ongoing learning while receiving new data inputs much of which emanate from 
wearable devices. In addition, while TabNet provides interpretability tools, better enabling us to explain predictions is a 
high priority for clinicians who wish to trust and utilize these models effectively in clinical practice.

Other potential target areas to fill gaps include: (1) addressing missing or incomplete data by developing methodolo-
gies robust to missing data; and (2) focusing on more longitudinal analyses since the vast majority of current published 
studies are cross-sectional in nature (without proper considerations for time-varying effects and changing risk factor 
distributions). The inclusion of patient-reported outcomes and preferences could add new dimensions to model predic-
tions that may enrich patient engagement in their own healthcare plans. Advancing these recommendations will vastly 
improve the power of ML models in heart disease prediction, resulting in improved patient outcomes and more personal-
ized healthcare strategies. Although the authors state that machine learning-generated features are incorporated, they 
did not explain how a comprehensive explanation of what exact techniques are used for feature generation (e.g., PCA, 
feature selection methods), the idea of “derived features” is confusing and lacks evaluation metric orientation. A brief 
explanation of the metrics to calculate model performance (accuracy, precision, recall, F1-score, AUC-ROC) is discussed, 
but it misses how hyperparameter tuning is done to optimize.

4.7  IoMT applications and case studies

The IoMT includes a wide range of applications ranging from mobile health (mHealth) application to complex remote 
monitoring setups and smart healthcare environments. The mHealth [102] is system that has cloud storage, secure data 
management and real-time participant interaction including wearable devices. In other words, the application has the 
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following abilities such as obtaining streams of health data, interpret the data, trigger actions, and provide feedback. 
Another application is called Remote Biomarker Detection [103] that is affordable and self-sufficient sensing gadget 
depending on a galvanic cell structure for detecting H2S that allows monitoring of non-invasive and integration of 
wearable. Hybrid RFID-IoT Scrub Distribution [104] tracks the usage of medical scrub via RFID and IoT to enhance control 
of infection and reduce cross-contamination in hospitals. IoT-Based Disease Prediction [105] utilizes ML and Arduino/
ESP8266 sensors to collect and analyze symptoms of a patient and essentials for accurate diagnosis of telemedicine. 
Table 4 summarizes the IoMT applications by considering the technologies used and the purpose of each application.

To fully understand the practical IoMT applciations real world case studies can provide important insights into the 
way that these technologies are developed in several environments of healthcare. Several examples that are based on 
IoMT applications will be presented that ranges from remote patient monitoring to smart post surgical and inhalers 
monitoring tools. These case studies show the advantages of IoMT in healthcare that are enhanced patient outcomes, 
cost savings and increased independency. Table 5 is a summary of the case studies that has the case study, the descrip-
tion and the outcome. The summarized information in Table 5 has been adapted from [106] that provides an in-depth 
analysis of IoMT implementations in healthcare settings.

4.8  Limitations and research directions for techniques in IoMT

The studies on intelligent techniques used for modeling and analyzing the data acquired from the IoMT can be cat-
egorized based on the topology and functionality. The techniques are categorized into cloud-based and ad-hoc from a 
topology perspective. From the literature survey, it can be noticed that most of the techniques rely on cloud services to 
offload the heavy analytical processing to the backend platform. This helps to preserve the computational and energy 
resources on the sensors at the edge network, which prolongs these sensors’ lifetime and guarantees interrupted ser-
vices. However, reliable communication needed to achieve synchronization and real-time interaction can be difficult 
due to the patient’s mobility and the harsh environment in which IoMT works. Likewise, the analytics on the cloud side 
may impose an additional cost, making it sometimes not appealing for both customer and service provider to rely on.

Furthermore, outsourcing the analytics and modeling in IoMT creates privacy and security concerns. This can be 
observed from several studies focusing on this issue and trying to address the problem by proposing techniques that 
provide secure communication channels between end nodes and backend servers on the cloud side. However, these 
solutions overlook the possibility that attacks could originate from nodes inside the network, which is challenging as 
they could falsify the data at the local node. This approach neutralizes the conventional attack detection and protection 
strategies that rely on observing data as they travel through the communication channel. Therefore, more innovative 
techniques are needed to thwart the internal threats in IoMT.

On the other hand, the modeling techniques in IoMT are categorized based on learning strategies into shallow and 
deep learning. In shallow learning, existing studies use several algorithms like SVM and DT. However, these algorithms 
lack the resiliency and ability to deal with a huge amount of data. These algorithms need much work in the pre-processing 
phase to prepare data and make them suitable for modeling. This is crucial, especially with data generated in IoMT, whose 
types are heterogeneous. Although some studies addressed this issue by employing deep learning methods and algo-
rithms when building the models, this approach’s main challenge is the availability of labeled data. Big data is difficult 
to manage, making the labeling more complicated, especially when data comes from multiple sources, which could 
contain conflicting and inconsistent labels. Such inconsistency is problematic when dealing with supervised learning, 
which degrades the model’s performance. AI-driven IoMT has several challenges in terms of data privacy and power 
consumption at the edge of the network that need to be addressed. However, it offers tremendous benefits that can 
be tackled by researchers regarding real time data processing and immediate responses that can enhance healthcare 
systems by providing real time monitoring and alerting systems, cost reduction, and improving decision making.

Furthermore, the energy consumption of sensor devices for IoMT is another challenge that researchers should focus 
on to efficiently continuously monitor patient’s health condition while managing the energy consumption during data 
transmission. As the sensors devices are recourse constrained several techniques can be developed to adjust the sampling 
rate based on the critical condition of the patient such as continuous monitoring during emergencies, sleep awake mode 
and periodic sampling during less critical periods. Additionally, in future research, it is crucial to investigate deeper into 
energy harvesting solutions in which sensor devices generate their power by capturing and converting ambient energy 
from their environment such as solar, mechanical energy and thermal. Generating sustainable energy is important to 
enhance IoMT systems.
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5  Conclusions

This survey explored research on the techniques and models proposed for IoMT, emphasizing the limitations of each 
proposed method. The survey began by discussing the characteristics of IoMT standards, protocols, and types. A detailed 
analysis of research papers on adopting fog and edge computing for IoMT was provided. For each study, the proposed 
method, technique, or model is described, followed by its limitations and suggestions for further improvement. A thor-
ough discussion about research directions and gaps regarding different IoMT approaches and technologies was provided 
such that further research endeavors could be carried out to address these issues and limitations. IoMT applications would 
prevail by addressing those limitations, and trust in automated healthcare services would increase. The emerging trends 
in IoMT will facilitate the interactions between patients on the customer side and medical devices and computing devices 
on healthcare service size. Reduced cost, increased quality of life, and timely medical intervention are among the imme-
diate outcomes of adopting IoMT. Future work in IoMT could be focused on enhancing security and data privacy, elec-
tromagnetic compatibility issues, synchronization, and real-time interaction, and integrating AI and Machine Learning.
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