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Abstract

Executive function is considered fundamental to cognition and academic achievement, and exec-

utive function continues to improve with age across early childhood. However, there are major

challenges in how executive function is currently conceptualised in early development. There

is a clear need for more longitudinal studies that track the co-development of candidate com-

ponents of executive function. These components are working memory, inhibition control, and

cognitive flexibility. It is important to understand these components during infancy, however

there are few measures available to assess these components. A good starting point to address

this is using established measures of visual working memory that are robust from infancy. In

this thesis, I aim to track the co-development of visual working memory and executive function

during early development, something that no prior study has currently done. This was investi-

gated in three steps. Chapter 2 examines the longitudinal stability of visual working memory

across two tasks from 6 to 54 months of age. Findings suggest visual working memory is longi-

tudinally stable across this period. Furthermore, findings demonstrate cross-task relationships

in the first longitudinal study to examine this. Next, Chapter 3 examines the longitudinal

stability of executive function beginning in the toddler period. Findings suggest executive

function is longitudinally stable when assessed using the same measure from 30 to 78 months

of age. Importantly, results show interactions with maternal education level and gender. To

examine the co-development of these two cognitive systems, Chapter 4 examines whether early

measures of visual working memory predict later executive function. Findings show that visual

working memory measures from 6 months of age predict executive function performance at 30

months of age. These measures at 30 months also predict executive function four years later at

78 months of age. An additional measure of visual working memory capacity from a separate

task was also found to be predictive of executive function in childhood. Findings from these

three chapters all show that VWM measured in infancy and childhood robustly predicts later

executive function skills. These findings are discussed in relation to dynamic systems models of

visual working memory and executive function as well as how these findings may inform future

assessment and intervention research.
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Chapter 1

Introduction

Over the last two decades, executive function (EF) has become an increasingly ‘hot topic’

with research drawing attention from educators, parents, and commercial companies. EF is

considered fundamental to cognition and academic achievement, and EF continues to improve

with age across early childhood (Carlson et al, 2004; Carlson, 2021). Although there is no

broad consensus on the definition of EF, the most accepted definition suggests that EF is

composed of three factors: an inhibition factor, a switching factor, and an updating factor

(Diamond, 2013; Miyake et al., 2000). These are a set of goal directed skills under which

the inhibition control, cognitive flexibility, and working memory systems are engaged (Zelazo,

Blair, & Willoughby, 2016). During early childhood, there are periods of striking improvement

in young children’s inhibitory control, cognitive flexibility, and working memory abilities (Fuhs

et al., 2014; Diamond, 2013; Garon et al., 2008). Whilst there is general agreement that these

three component processes are core EFs associated with improvements in reasoning, planning,

problem solving, and adaptive behaviour (Collins & Koechin, 2012; Lunt et al., 2012; Zelazo

et al., 2013), there is disagreement surrounding how these processes interact to enable EF.

There is also disagreement about how EF should be conceptualised over development. This is

important as a developmental model of EF could usefully inform early intervention practices.

However, this is not achievable without first understanding the developmental trajectory of the

processes involved in EF. In this context, it is important to note that much of the research
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conducted within the executive function sphere has been cross sectional, raising challenges for

assessing the developmental trajectory of EF.

In this introductory chapter, I will begin by discussing current theories of EF. Whilst the

adult literature identifies the separable components of inhibitory control, cognitive flexibility,

and working memory that work together to form EF, researchers examining EF during early

development are conflicted on the dissociable nature of these components. Moreover, these

theories may be restricted by their statistical method. Consequently I will discuss a number of

other theories of EF that do not use the same methods.

From the evaluation of theory, it becomes clear that examinations of early EF are sparse. This

is likely due to the difficulty in assessing EF using tasks that do not require verbal responses.

Therefore, next I discuss the challenges of examining early EF and what measures have been

used in prior work.

Given these challenges of examining early EF, an arising new approach for understanding

early EF suggests examining the co-development of components and how they relate to EF.

Consequently, I will review the literature on the development of each candidate component,

with a focus on research conducted in infancy. Finally, I will argue for the need to understand

the role of multiple systems within EF, particularly in early development.

The main goal of this thesis is to track candidate predictors of later EF from infancy to deter-

mine if these predictors co-develop with EF skills longitudinally. The EF abilities of working

memory and updating are strongly associated with academic achievement in English, Maths,

and Science (St Claire-Thompson & Gathercole, 2006); thus, increasing understanding of how

working memory co-develops with EF skills may be crucial in increasing the effectiveness of

early EF and academic interventions. To assess working memory in infancy, I focus on the

visual cognition system which has shown to be promising in predicting later EF from infancy

(Rose et al., 2012). In particular, I track the early development of visual working memory

(VWM). This is a component system of working memory that processes visual information.

VWM develops within the first year of life (Reyes et al., 2020), so this system may allow us to

begin to track the co-development of working memory and EF from early infancy.
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1.1 Theories of Executive Function.

EF has been defined in over 32 separate ways within the literature (Goldstein & Naglieri, 2013).

These different definitions stem, in part, from a prolonged theoretical debate surrounding the

component structure of EF. Whilst we see periods of vast improvement in young children’s

working memory, cognitive flexibility, and inhibitory control abilities during early childhood

(Fuhs et al., 2014; Diamond, 2013; Garon et al., 2008), there is little agreement about whether

these components make up one unitary EF factor that differentiates across development, or

whether EF is a unified yet diverse construct with interconnected but separable components

across the entire developmental life span. The root of these disagreements stems from a reliance

on the adult literature to explain EF in childhood. Therefore, in this section I will first give

an overview of the main theories of EF proposed within the literature. I will then discuss how

the statistical approach used as the basis for investigations of EF structure and the resulting

reliance on the component structure seen in adults leads to these theoretical disagreements.

Finally, I will discuss theories of EF that are not limited by the use of this specific approach.

Due to the influence of non-executive skills, such as language ability, on widely used measures of

EF during early childhood, confirmatory factor analysis (CFA) has become a common analysis

method for attempting to understand the processes involved in executive function (see Friedman

& Miyake, 2004; Wiebe et al., 2008). CFA involves using a battery of tasks differing in stimulus

and response demands, and modelling task performance scores as indicators of underlying latent

variables to create a construct, in this case, called “purified” EF (Wiebe et al., 2011). Beginning

in adulthood, CFA of nine commonly used EF tasks with adults indicated evidence of three

subconstructs of EF: working memory, shifting (cognitive flexibility), and inhibition control.

These were shown to be correlated but discrete in adulthood and can be measured separately

(Miyake et al., 2000).

The unity yet diversity model of EF proposed by Miyake et al. (2000) suggests that working

memory, cognitive flexibility, and inhibition control are independent components of EF working

together in unity. These components are considered differentiated, meaning they are distinct

and specialised. Within this model, individual differences in these proposed executive functions
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are unable to be measured by one sole task. Instead, multiple behavioural tasks must be

used (Miyake & Friedman, 2012) from which commonality can be extracted to produce latent

variables, uncovering a ’pure’ measure of these executive functions and removing the influence of

non-executive skills. Performance on these tasks is correlated indicating a common underlying

ability, referred to as ’unity’, but during extraction the three latent variables of working memory,

cognitive flexibility, and inhibition control are revealed (Miyake et al., 2000). This three-

factor model is supported by similar empirical studies utilizing CFA to reveal working memory,

inhibition, and cognitive flexibility as EF subcomponents in adulthood (e.g., Friedman et al.,

2008; Lehto et al., 2003; Vaughan & Giovanello, 2010).

Whilst many agree EF involves working memory and cognitive flexibility, there is disagreement

surrounding the presence of an inhibition factor. Updated research with adults suggests there

is a common EF factor made up of the overlapping variance of the three proposed executive

functions, but that the separable components making up the diversity side of the model in-

volve only updating and shifting (Miyake & Friedman, 2012), representing the components of

working memory and cognitive flexibility respectively. Considerations of overlapping variance

demonstrate there is no longer unique variance attributed to inhibition. Karr et al. (2018)

report numerous studies struggling to identify inhibition control as a separable latent variable,

with the inhibition specific tasks demonstrating weak factor loadings. Instead of this separable

inhibition control factor, the updated model indicates inhibition is absorbed as a part of the

common EF factor reflecting domain general executive control (Miyake & Friedman, 2012; Best

& Miller, 2010). Here, common EF is posited as a construct representing the ability to bias at-

tention towards a particular task or goal, alongside the ability to create mental representations

of that specific task or goal enabling goal maintenance. The unity within this model stems

from shared attentional control, with the diversity reflecting the specialised subcomponents of

working memory and cognitive flexibility.

Whilst the multi-component nature of EF appears evident from around 4-years of age, this is

less conclusive in younger children. It has been proposed that EF in preschool may be best

characterised by a single unitary factor (Hughes et al., 2010; Wiebe et al., 2011). This unitary

model posits that structural differentiation may occur across development with the unitary
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model during childhood evolving into the unity-diversity structure of EF in adulthood (Wiebe

et al., 2011). Utilising the same CFA method as Miyake et al (2000), Wiebe et al. (2008) found

that at 3 to 6 years of age, a single factor model of EF best fit the observed data in contrast

to a model including separable working memory and inhibition factors. Nevertheless, Howard

et al. (2015) indicate EF may go through a period of integration, not fractionation, by school

age, with performance on working memory, inhibition control, and cognitive flexibility tasks

at 3 years being largely unrelated to one another but performance in these tasks at 4 years

becoming increasingly related. Here, a two-factor model with working memory and inhibitory

control was proposed as a best fit for the data. Similarly, Miller et al. (2012) proposed that

this two-factor model best fit the data with the inclusion of more tasks and when age ranges

were restricted. These differences in model structure may reflect the proposed hierarchical

development of EF. Garon et al. (2008) indicate that working memory emerges first, followed

by inhibition. This sequence of development then allows the emergence of cognitive flexibility.

As suggested by Zelazo (2015) and Devine et al. (2019), it is only when all of these processes

have developed and become specialised that EF may begin to differentiate. This hierarchical

view hypothesises that basic abilities are necessary before structural change in EF occurs and

children can complete complex tasks.

To date, there have been no longitudinal examinations of this potential sequence to examine this

unitary theory of EF empirically. Doing so would require the examination of EF subcomponents

from early in development, examining longitudinal stability over time. This would require

understanding the stability and development of specific components as well as the identification

of suitable tasks that can be used to track each component longitudinally from infancy. This

is further complicated by the demands of CFA. CFA requires tasks that provide only one

outcome measure per task due to the likelihood of high correlations between multiple outcome

measures. For instance, many candidate EF tasks involve measuring both reaction times and

accuracy. This is problematic as one typically does not include multiple, within-task measures

in a factor analysis. Thus, the specific tasks being administered and the specific dependent

variables chosen to include in factor analytic studies are quite constrained and may not clearly

reflect the processes thought to underlie each component (Miller et al., 2012).
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Transitioning from statistical models to examinations of brain and behaviour, there is some

evidence that changes in the brain reported over development, such as neural maturation,

supports the view of an early unified EF that becomes more diverse during early development.

Behavioural changes in EF correspond with neural maturation of the prefrontal cortex (Roberts

& Pennington, 1996). So, whilst EF may begin unified, EF is considered to develop into distinct

and separable components across childhood as the prefrontal cortex (PFC) matures. Develop-

mental changes in the structure and connectivity of PFC are important for the development

of higher order processing skills and are associated with improvements in EF (Diamond, 2002;

Welsh & Pennington, 1988). This neural development in early infancy and childhood may con-

strain the age at which EF can become stable and distinct, with evidence suggesting changes

in PFC development appear around age 4 (Fiske & Holmboe, 2019). These changes in PFC

development support longitudinal studies that propose a discrete yet related structure that has

fractionated by around 4-years of age (Brydges et al., 2014). This fractionation may be related

to emerging distinctness within working memory, inhibition control, and cognitive flexibility

systems. This view predicts an increasingly differentiated EF across early preschool years,

although other research has demonstrated components are highly related even from early child-

hood (Wiebe et al., 2011). Examined as separate components, working memory, cognitive

flexibility, and inhibition control are differentially related to developmental outcomes in early

school age children (Brock et al., 2009). The suggestion here is that whilst these processes may

begin unified, each has a unique developmental trajectory that corresponds to developmental

changes occurring in the brain, leading to separation across development. However, this neural

evidence has also been explained by a number of theories present alternatives to the unity and

diversity view of development.

For instance, Zelazo and colleagues have proposed the cognitive complexity and control theory,

which stipulates that both EF and reflective processing depend on the PFC in a similar way

(Zelazo, 2004). This cognitive complexity and control theory proposes that children’s develop-

ment occurs from hierarchical rule-representation and conscious control. Children must be able

to reflect on proposed rules and behaviours in order to make a decision and select a response;

this is EF according to the theory. Zelazo (2015) also proposes that other systems such as
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attention are more heavily involved in supporting early EF. Zelazo (2015) states EF serves to

modulate attention to fulfil a goal, and this goal may be simple or complex. By adulthood,

these lower level systems may no longer contribute as significantly. From this perspective, age-

related changes in EF are understood in terms of corresponding biological changes in the ability

to formulate higher-level hierarchical representations throughout childhood. Zelazo (2015) ac-

knowledges that EF may begin as a unified, and not diverse, system. However, it is proposed

that across development, EF begins to show diversity as components become more specialised.

Within this account, early EF is considered reactive, where behaviour is directly triggered by

a stimulus and occurs from automatic processes. Over development, attention processes, such

as attentional control, mature and EF becomes more deliberate. Children become able to fo-

cus and sustain attention to the task or problem at hand. As this occurs, EF becomes more

differentiated. Attentional control allows the ability to suppress automatic responses, leading

to reflective processing; children develop the ability to stop and think about actions before

deciding how to respond to a stimulus. This ability to utilise attentional control and sustained

attention from childhood is thought to underlie how the specialised subcomponents of working

memory and cognitive flexibility interact based on the demands of a specific task. Although

this theory has many strengths, it has been criticised for failing to explain how people form

and engage rule representations in real-time and how the dynamics of activation or inhibition

work within this proposed hierarchical system (Buss & Spencer, 2014). Furthermore, whilst

cognitive complexity and control theory has provided descriptive accounts of the integration of

both brain and behaviour, it fails to specify any neural mechanisms as the theory is a verbal /

descriptive theory.

Other theories of EF development have focused on specific tasks which show dramatic change in

early development such as the Dimensional Change Card Sort (DCCS; Frye et al., 1995) task.

This task is commonly used from 3 years of age and upwards and involves sorting bivalent

test cards according to one dimension (e.g. object colour; preswitch phase) and then according

to another (e.g. object shape; postswitch phase). For instance, children might be shown two

target cards: an orange monkey on the left and a green lion on the right. In the ’colour’ game,

orange lions would be sorted to the left while green monkeys would be sorted to the right. After
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repeatedly playing the ’colour’ game, children are asked to switch and play the ’shape’ game.

Here, orange lions would be sorted to the right and green monkeys would be sorted to the left.

This task is thought to tap the different components of EF as children have to maintain the

correct rule in working memory, switch the rule across the preswitch and postswitch phases,

and inhibit the prepotent response to continue sorting by the previous dimension.

According to the Attentional Inertia account of EF (Kirkham et al., 2003), children experience

attentional inertia during the DCCS task, and are therefore unable to inhibit thinking of the

objects’ initially relevant attribute. That is, perseveration reflects difficulty in inhibiting a

prepotent focus on the first relevant aspect of the stimulus, disengaging from that mindset,

refocusing attention to the newly relevant aspect, and then being able to switch attention.

Although compelling, this account has been criticised for a failure to consider all processes

involved within this task. For example, this account does not consider the influence of working

memory (Munakata et al., 2003).

Other researchers have argued that the ability to overcome perseveration on the DCCS task may

depend on the strength of the representation of the rules (Morton & Munakata, 2002). Here,

success in the DCCS task stems from the development of sufficiently strong active representa-

tions of the rules that correspond to current goals of the task. Switching on the DCCS occurs

when the actively maintained rules in working memory outcompete the ’latent’ representations

that correspond to the prepotent response from the pre-switch rules. To demonstrate these

ideas, Morton and Munakata (2002) built a connectionist model. This was the first attempt to

quantitatively simulate children’s behaviours in the DCCS task.

As outlined by Perone et al. (2021), cognitive complexity and control theory and the connec-

tionist model of EF have notable similarities to a recent theory of EF using the framework

of Dynamic Field Theory (DFT) proposed by Buss and Spencer (2014). This is a dynamic

systems model (Spencer & Schöner, 2003) able to capture both the micro-scale moment-to-

moment changes that influence performance in the DCCS task as well as macro-scale changes

across development. Unlike component based models of EF, DFT does not assume that specific

components are assigned unique ”jobs” in specific tasks. Rather, the theory examines how an
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integrated set of generic cortical fields interact together and support the completion of tasks in

a goal-directed manner.

In particular, DFT posits that patterns of neural activity within cortical fields underlie a diverse

array of empirical findings from the DCCS task. These cortical fields consist of neurons ‘tuned’

to specific dimensions (e.g., space, colour, orientation). The cortical fields are organised so

that neighbouring locations in a field will respond maximally to similar features, as they have

similar receptive fields. ’Peaks’ of activation form due to localised excitation. Excited neurons

become active and stimulate neighbouring neurons. At the same time, the activation of these

neurons leads to inhibition of activity for neurons coding for features distant from the activated

site in the cortical field. The excitation of these local neurons and inhibition of distant neurons

allows a peak to form and remain stable. This peak of activation, then, represents a neural

decision that a particular feature is present. The ability to maintain this peak of activation

over time reflects working memory. For example, a peak might represent a specific feature of

an object to be remembered, such as an object’s colour. The introduction of new inputs, such

as a new feature, can lead to these peaks shifting, with new peaks arising across a network

of integrated cortical fields. Importantly, inhibition plays a role in such models, reflecting the

suppression of stimulation caused by actively maintained peaks which suppress other options

via global inhibition. Similarly, dynamic fields can display aspects of flexibility as peaks can

be updated ’on the fly’ as task demands change.

DFT is able to explain performance on specific EF tasks, for example, in the widely used

DCCS task. According to DFT, when a child is asked to sort by colour, a peak will form in

a ”colour-space field” representing the specific colours of the card presented. A peak will also

form in the ”spatial field” for the side the card is consistently sorted to. For instance, if a child

is consistently asked to sort by colour and there is an orange monkey target card on the left

sorting tray in the task space, then a presentation of an orange lion test card will build a peak

at the left location in space due to the overlap between the colour orange and this feature at

the left location in space. This sorting behaviour is supported by a frontal system that is biased

by the instruction to ’sort by colour’, boosting the activity of the colour-space field and biasing

the model to sort by this dimension. When the child is then asked to switch to sorting this card
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by its shape (i.e., put the orange lion in the right tray to match the green lion), they must now

inhibit the irrelevant colour information. According to DFT, younger children (and younger

models) have weaker neural interactions and less refined connections between the frontal and

posterior cortical fields. This reflects a less organised mapping between their representation of,

for instance, the word ’colour’ and selective activation of the colour-space field. Consequently,

they are unable to robustly activate their frontal system to selectively attend to shape and they

erroneously respond by colour. Older children, by contrast, have stronger neural interactions

and more refined frontal-posterior connectivity. Thus, they are able to robustly activate the

word ’shape’, boost the shape-space field, and sort by this dimension (correctly placing the

orange lion to the right tray to match the green lion).

Buss and Spencer (2014) formalised these concepts in a DF model that quantitatively simulated

findings from 14 different DCCS conditions using the same model with the same parameters. In

addition, Buss and Spencer (2014) tested several novel predictions, including predictions about

the role of space in DCCS performance. Here, they showed how simply moving the target cards

in space at the start of the first postswitch trial could improve the performance of 3-year-old

children and impair the performance of 4-year-old children. Subsequent work has also tested

additional novel predictions derived from this theory (e.g. Perone et al., 2019; Perone et al.,

2015). Thus, the DF model of EF development has captured more data quantitively than any

other theory and has established its ability to generate novel predictions. This theory has also

led to novel insights into development. For instance, Lowery et al. (2022) demonstrated that

early label learning is related to later dimensional attention and performance on the DCCS

task, with improvements in task switching abilities being related to a child’s label learning

ability. This is supported by Spencer et al. (2025) who simulated children’s behaviour in an

expanded version of the DF model, demonstrating that dimensional label learning provides the

first quantitively defined learning mechanism to explain the development of EF.

To conclude, we can see the unity yet diversity and unitary models of EF coming from the

CFA studies are heavily reliant on the concept of latent factors. In these CFA models, we are

defining EF by the processes we attribute to specific tasks from specific dependent variables.

While this is useful, it fails to specify how these systems work together to complete the tasks
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examined. Moreover, developmental work from this perspective has yielded mixed findings.

An alternative approach has emerged using the concepts of DFT which specifies how multiple

processes are integrated to succeed on complex EF tasks, such as the DCCS task. DFT also

specifies what is changing over development, which is a unique feature of this approach.

Now that I have reviewed the key theories of the development of EF, I take a closer look at

how EF has been measured in early development in the next section.

1.2 Examining Early Executive Function.

There are significant changes in social and language development during infancy which effect

how EF can be measured at different stages of development. As a result, there are many

different tasks used to examine EF in early childhood. Within this section, I will begin by

explaining the most widely used tasks of early EF, from infancy to childhood. Early EF is

difficult to measure due to the requirement of language comprehension in many robust EF

tasks. This constrains their use until after the development of language comprehension. By

contrast, many of the tasks that do not require a language component reach ceiling levels early

on, meaning we are forced to use different tasks at different ages. Therefore, I will focus on

the use of early EF measures longitudinally and the resulting challenges. Whilst there are

statistical methods that may allow us to examine performance on separate tasks over time, we

cannot be sure we are measuring the same executive and non-executive skills across these tasks.

This creates difficulty in tracking the stability of EF from infancy.

Measures of Early EF

Over the first to second year of life, infants begin to be able to search for hidden objects (Bell,

2012; Diamond, 1990). For example, during early infancy, the A-not-B task has been used to

examine EF. A-not-B is a visual task where a desirable object is placed in one of two hidden

(e.g. closed box) locations (location “A”). After a delay, the child is then allowed to retrieve

the object. The object is repeatedly placed in location A, building a prepotent response to that
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location. The object is then hidden in the alternate location (location B; other closed box)

and the child must inhibit the prepotent response in order to correctly retrieve the object from

location B. In order to be successful in this task, the child must hold the object location within

their working memory and update this information when the object location is changed. After

this location change and a delay, the child must then flexibly switch their attention to the new

object location, and inhibit the prepotent response to the old location, in order to correctly

locate the object (Thelen et al., 2001). Therefore, this task is considered an early EF task as

it requires the use of working memory, cognitive flexibility, and inhibition control using only

visual and motor responses.

Once language comprehension develops, verbal instruction becomes possible. From two years of

age, infants can begin to play games in which they have to understand and keep multiple rules

in mind and engage cognitive flexibility. This allows us to examine 2 to 5 year old children’s

ability to switch between tasks (Prerner & Lang, 2002; Brooks et al., 2003), inhibit actions

(Steelandt et al., 2012) and maintain and use information held in working memory (Garon et

al., 2014; Cheng et al., 2020) all in the context of verbal instruction.

For instance, one key task used in this early developmental period is the DCCS task outlined

previously (Frye et al., 1995). Whilst often considered a cognitive flexibility based task, this task

does require both working memory to remember the current rule to be followed and maintain the

dimension to be attended to, and attention shifting skills to be able to switch stimulus response

mappings (Diamond, 2013). Inhibition is also involved to inhibit the prepotent responses,

similarly to the A-not-B task.

Another example of a common EF task that can start to be used from 3 to 5 years of age is the

classic ‘Simon Says’ task (Carlson, 2005). Here participants need to respond to the instructions

of the experimenter only when those instructions are preceded by the phrase “Simon says”

(e.g., “Simon says, turn around”). In this task, the prepotent response would be to perform

any action immediately when the experimenter gives the instruction. This task is traditionally

considered an inhibitory control task, requiring the child to suppress performing a behaviour

when there is no ”Simon says” stated before the instruction. Working memory is also used to
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maintain and remember the rule of only following a ”Simon says” along with remembering and

updating the actions to be performed. This task has been allocated to the group of ’Go/No-Go’

(Simpson & Riggs, 2006) tasks also used from 3 years. These tasks involve ’go’ trials where

a child is asked to respond to a stimulus or perform a specific action. ’No-go’ trials are also

recorded, where a child is asked to make no response to a different stimulus or not to perform

a specific action. Another example of this type of task is the tower-task (Kochanska et al.,

1996), where a child is asked to place a block on a tower (go), but must then wait for the

experimenter to place a block on the tower before placing another (no-go). These are used as

inhibitory control tasks, where responding on no-go trials reflects the inability to inhibit go

responses (Simpson & Riggs, 2006).

During early childhood, Stroop-like tasks such as the Day/Night task (Gerstadt et al., 1994)

are also used. This task involves asking children to respond with the name of stimuli B when

presented with stimuli A, e.g. ’Night’ when shown a picture of day, and to respond with the

name of stimuli A when presented with Stimuli B, e.g. ’Day’ when shown a picture of night.

This task involves inhibition to inhibit the natural prepotent response of saying what is seen on

the card, cognitive flexibility to switch response mappings, and working memory to remember

which word is assigned to which card.

Here, by simply detailing the requirements of widely used tasks, we begin to see the challenges of

examining early EF. The literature tends to assign each task to a specific component, ignoring

task requirements that may need engagement from other EF components, such as working

memory. Furthermore, there are differences in the level of reliance on specific EF components

that each task requires, with many of the tasks relying more heavily on inhibition control.

The level of non-executive skills required also differs across tasks. For example, the reliance

on motor skill for A-not-B is replaced with a reliance on language ability for the DCCS and

Simon Says tasks. Consequently, the longitudinal assumptions we can make by using these

tasks repeatedly over ages is limited.
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Longitudinal examinations of early EF and the current challenges faced

Few studies have examined EF longitudinally and those that have tend to focus on short inter-

vals (e.g. Miller & Marcovitch, 2015; Johansson et al., 2016; Hughes et al., 2009; Willoughby

et al., 2012). These longitudinal studies often use multiple tasks across development and of-

ten struggle to show stability from early infancy, likely due to the different requirements and

demands of the tasks.

The aforementioned A-not-B task shows relationships to increased fronto-parietal activation

from as young as 8 months (Bell, 2012). However, this task may not show longitudinal stability.

For example, Miller and Marcovitch (2015) found no correlation in performance on the A-not-B

task from 14- to 18-months of age. Moreover, whilst the A-not-B task is appropriate in early

infancy, it reaches ceiling levels from around 24-months of age. After this, other tasks are

required to examine EF performance longitudinally (Broomell & Bell, 2022).

This A-not-B task is predominantly designated as an inhibition control task within the litera-

ture, despite working memory and cognitive flexibility requirements. Therefore, in longitudinal

examinations of stability, A-not-B is often paired with more specific inhibition control tasks,

such as the go/no go tasks, later (see Broomell & Bell, 2022). Whilst the A-not-B task does

involve inhibitory control, the delay results in more of a reliance on working memory to cor-

rectly identify where the object is. The go/no-go tasks it is commonly paired with, however,

have been shown to be inherently examining inhibitory control (Prerner & Lang, 2002). Whilst

working memory is required to remember which trials are go and which are no-go, performance

on pre-potent go trials is increased over that of no-go trials, specifically in 6- to 12-year-old

children (Ciesielski et al., 2004). This failure in the no-go trials is due to increased demand on

the inhibitory control system. Using a button press task where children were asked to press

a button on the same side as a stimulus or on the opposing side to the stimulus, Wright and

Diamond (2014) indicated the order of trials on these tasks could lead to lower performance

due to an inability to update to the new rule, demonstrating a working memory difficulty.

However, it was shown that 6- to 10-year old children were generally able to remember task

rules. For instance, when the orders were reversed and incongruent, opposite side trials were
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examined first, children performed in a comparable manner to when congruent, same side trials

were examined first. This illustrates it is the inhibiting of the automatic response, such as that

posed on no-go trials, that is the challenging element of the task (Wright & Diamond, 2014).

Furthermore, the A-not-B task can be conducted without a reliance on language, but many

go/no-go tasks such as simon says have a reliance on verbal skill to understand the given in-

structions. Measures requiring language comprehension place additional cognitive load on the

child (Hughes & Graham, 2002) and these tasks requiring comprehension or verbal responses

cannot be used during early infancy. This demonstrates the main issue with examining early

EF: a lack of tasks that can be consistently used over ages longitudinally.

Stroop-like tasks have also been used to examine EF longitudinally. Johansson et al. (2016)

paired a hide and seek task at 12-months, similar to the A-not-B task, with a Stroop-like

task at 36 months. This Stroop-like task required children to identify a sound whilst viewing

a matching (e.g. picture of a dog whilst hearing a woof) or mismatching (e.g. picture of a

dog whilst hearing a car honking) stimulus. Therefore, the child must be able to effectively

identify the sounds, tapping into their auditory recognition memory. However, there was no

element of sound or requirement to match an object to a sound within the hide and seek task,

which was similar to the classic A-not-B task. Johansson et al. (2016) found no correlation

between 12-month EF tasks with EF at 24 months or 36 months, but 12-month hide and seek

task performance negatively correlated with performance on a Stroop-like task at 36 months.

Whilst both tasks may tap into inhibition and switching abilities, there are differing demands

from non-executive skills and executive skills, and this may be influencing the relationships

among measures.

By using different tasks with different requirements over time, the conflicting findings surround-

ing the structure and stability of EF may simply demonstrate a mismatch in our classification

and pairing of tasks over time rather than informing us about the development of EF. There

is support for this use of multiple tasks across development, with Fuhs and Day (2011) finding

EF tasks are invariant among preschool aged children. An invariance suggests the tasks are

examining the same construct regardless of differences in measurement as children are perform-

ing the same across tasks despite the task differences. Willoughby et al. (2012) also found
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EF tasks demonstrated strong measurement invariance from 3 to 5 years of age. However,

these researchers concluded that the battery of tasks used were not as reliable in capturing

the EF abilities of higher performing children, and this invariance was only reliable for the

low performing children. This may be related to the task impurity problem and the reliance

on a single dependent variable when using confirmatory factor analysis. The single depen-

dent variable chosen for certain tasks may not have been sensitive enough for examining the

high-performing children’s scores, where increased task demands, for example, may have been

required to capture further variance and examine EF capabilities.

Evidence from DCCS tasks shows whilst successful at sorting via the requested dimension dur-

ing a preswitch phase, most 3-year-olds continue to sort the test cards by this first dimension

during a postswitch phase. Here, the ability to inhibit interference is critical as response inhibi-

tion supports children’s ability to inhibit attention to irrelevant stimuli and sustain attention to

relevant stimuli to encode information accurately (Roderer et al., 2010). Canonical versions of

this task use bivalent test cards that match the target cards along one dimension. Adaptations

of this task have found 3-year-olds are able to demonstrate successful switching when these

dimensions are more separated, e.g. the shape, a star, is presented in the middle of the card

as black/colourless, and the colour information comes from a coloured background, e.g. blue,

behind that shape (Diamond, Calrson, & Beck, 2005). With these separated dimensions, chil-

dren can describe a patch of colour as ’blue’ and the outline of the shape as ’star’, as opposed

to attempting to apply these labels to the same object when the dimensions are not separated.

By 5 years of age, children are successfully able to apply these labels to less separated dimen-

sions, e.g. ”blue” and ”star” are within the same object, and switch flexibly (e.g., Dick et al.,

2005; Kirkham et al., 2003; Zelazo, Müller, Frye, & Marcovitch, 2003). The DCCS task has

successfully been examined longitudinally in different forms, such as on a tablet task, from as

young as 2 years of age and is able to capture age-related changes in EF (Carlson, 2021). Given

the robustness of this task, and the multitude of theories that have engaged with this task, a

version of the DCCS will be used within the present study. However, the use of this task still

leaves a large period of early development, early infancy, understudied.

Given the difficulty in examining EF early on in childhood, and the resulting conflicts across
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theories, the next section examines what we know about the unique developmental trajectories

of the three component processes hypothesised to underlie EF with an emphasis on studies

beginning in infancy.

1.3 Possible precursors to Executive Function.

Differing definitions of EF have led to the identification of 18 sub-components, however many of

these are overly complex and the exact number of constructs rightfully labelled as components

of EF is largely unknown (Karr et al., 2019). The most commonly emphasised components

identified within the literature remain working memory or updating, cognitive flexibility or

shifting, and inhibition control. Modelling approaches indicate the best way to further under-

stand EF and the systems involved may be to track the co-development of these components

involved in EF (Spencer et al., 2025). In this section, I will give an overview of the development

of each of these sub-components starting in infancy.

1.3.1 Inhibitory Control

Inhibitory control relates to the ability to withhold a dominant or highly practised prepotent

response, habit, or impulse to respond to a stimulus (Diamond, 2013), and often requires the

ability to redirect attention. The development of inhibitory control across early infancy has

been well documented. Inhibitory control emerges from around 6 to 12 months, observed

from the ability to inhibit dominant responses (Bell, 2012; Cuevas et al., 2012; Holmboe et

al., 2018). Holmboe et al. (2018) indicate inhibitory control begins to show stability from 6

months, although there is only a limited ability to control actions. Before 6 months, responses

are driven largely by automatic processes, such as reflexes and immediate needs. Infants may

briefly focus on a specific object or face demonstrating signs of early attention regulation.

The emergence of attention control, motor inhibition, and basic delayed gratification can be

seen from 6 to 12 months. Infants begin to hold focus on specific objects and shift attention
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away from distractions. Motor inhibition also becomes observable, where infants show hesi-

tation before reaching for forbidden objects or items out of reach (Hendry et al., 2016). As

aforementioned, infants can also demonstrate basic object permanence in simple versions of the

A-not-B task (Bell, 2012).

Garon et al. (2008) demonstrate that infants begin to engage in more complex tasks that

require inhibition, such as the A-not-B task involving motor movement/reaching from 12 to 18

months. Object permanence, often linked to inhibitory control, becomes evident and simple

rule-following also begins to emerge: toddlers show early signs of complying with rules like

”Don’t touch” or ”Stop,” though control over these actions is still inconsistent (Garon et al.,

2008).

From 14 months onwards, toddlers demonstrate delayed gratification for longer periods. Kochan-

ska et al. (2001) assessed toddler inhibitory control using tasks referred to as Do and Don’t,

for example a child was asked to put toys into a specific basket (do), or to not touch specific

toys on a shelf (don’t). Toddlers demonstrated increasingly better following of the multi-step

instructions on ’do’ trials from 14- to 45-months, and their emotional regulation also improved,

with toddlers showing the ability to inhibit immediate emotional responses like frustration by

self-soothing (Kochanska et al., 2001). However, within these stages of inhibitory control de-

velopment we can already see the influence of other EF factors. For example, to be able to

demonstrate good inhibitory control by refraining from touching certain toys, the child must be

able to utilise their working memory to remember the specific toys they have been instructed

not to touch.

Inhibitory control is the most commonly studied component of EF (Silva at al., 2022). However,

inhibition control tasks struggle to assess inhibition as a separable component, with many

requiring elements of cognitive flexibility and working memory. As discussed previously, the

contribution of inhibitory control to EF as its own isolated cognitive process is contested. This

contention may also stem from differing definitions of inhibitory control, with a separation

between the inhibition of distraction in order to focus attention and the inhibition of certain

behaviours requiring emotion regulation. Inhibition control tasks vary from a focus on inhibiting
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a prepotent response to others that focus on oculomotor inhibition (Nigg, 2000). Whilst the

study of inhibitory control has challenges, there is a well-described trajectory of inhibition

control development that would benefit from updated measures providing clarity. This is an

area currently being studied (see Broomell & Bell, 2022).

1.3.2 Cognitive Flexibility

Attention control is often used interchangeably with shifting, also referred to as cognitive flex-

ibility. This capacity to flexibly direct attention between differing mental tasks or rules is

important for being able to problem solve and switch between certain concepts. Poor cognitive

flexibility can lead to getting stuck in previous ways of completing tasks and not being able to

consider an alternative perspective (Miller et al., 2015; Stuss et al., 2000).

The foundation for complex cognitive flexibility stems from early attention shifting. As demon-

strated by the early A-not-B task, over the first year of life infants become able to shift their

attention between objects, people, and different locations (Bell 2012; Diamond, 1990). From

around 2.5 years onwards, cognitive flexibility is studied using a number of tasks, for example,

the Dimensional Change Card Sort task (DCCS; Frye et al., 1995). As described previously,

children are required to match cards based on colour/shape and then asked to switch and

match cards on the other dimension. A similar task used from 3 years onwards is the Flexible

Item Selection Task (FIST; Jacques & Zelzo, 2001). In this task, children are presented with

3 cards and asked to pair two cards up based on a specific dimension, e.g., shape. The child is

then asked to switch and pair two of the same three cards based on a different dimension, e.g.,

colour. These cognitive flexibility tasks have demonstrated that children are able to reliably

switch from one rule to another from 4-years of age (Müller et al., 2006; Zelazo et al., 2003;

Jacques & Zelzo, 2001). The main challenge of these rule-switching tasks is the requirement

to update behaviour depending on a change in rule (Blakey & Carroll, 2018). These tasks

are proposed as sole cognitive flexibility tasks, and in comparison to inhibitory control tasks,

these tasks appear to posses more commonality in terms of task requirements. However, as

demonstrated previously when discussing the DCCS task, these tasks often involve elements
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from other cognitive processes.

During early development, cognitive flexibility needs to be understood as an emerging skill sup-

ported by developments in working memory and inhibitory control (Carroll et al., 2016; Cheva-

lier et al., 2012). It is especially difficult to isolate inhibition control and cognitive flexibility

tasks, as the task possess similar requirements. Moreover, the majority of cognitive flexibility

tasks require language or motor skills, which may influence performance. The emergence of

cognitive flexibility is an important area of development to be considered for future research,

but first updated tasks more suitable for tracking cognitive flexibility from early infancy need

to be developed.

1.3.3 Working Memory

Working memory has been shown to be important for academic success (Jaroslawska et al.,

2016). Here, working memory is important not only in terms of capacity but also in terms of

working memory resources that can be devoted to attending to instructions and information

alongside the ability to remember what is required at different times or in different subjects

(Cheie et al., 2017). This requires monitoring and encoding incoming information, revising

items held in working memory, and replacing irrelevant information with new more relevant

information (Morris & Jones, 1990).

Historically, working memory has been proposed to act as a buffer between long term memory

and EF which allows for previous experiences to be brought into consideration when making

decisions or planning (Baddeley, 2000). This multi-component system reportedly involves the

phonological loop, a short term storage system for verbal information; the visuo-spatial sketch-

pad, a short term storage system for visual and spatial information; the central executive, an

attentional control mechanism directing attention between competing options to enable deci-

sion making and task completion; and the episodic buffer; a multidimensional storage system

that can access information from the long term memory store (Baddeley, 2000). Distinctions

have been made between these domains of working memory and the short term memory system

(see Cowan, 2001). Tasks measuring short-term memory are focussed only on storage, whilst
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working memory tasks are considered to require additional manipulation. The adult litera-

ture indicates this additional manipulation has stronger predictive power for higher cognitive

skills than short term memory measures, likely due to the more complex nature of the tasks

(Unsworth & Engle, 2007).

Despite claims that this multi-component model has not been challenged by a better model

over the 50 years since Baddeley and Hitch first proposed it (see Baddeley and Hitch, 1974),

there are more recent models of working memory that can explain changes in working memory

over development. For instance, DFT has been used to explain developmental changes in

working memory capacity. DFT proposes that the maintenance and retrieval processes of

working memory can be attributed to activation in specialised cortical networks. Specifically,

Wijeakumar and Spencer (2020) explain that neural systems move in and out of three attractor

states: resting; stabilised; and self-sustaining. It is in this self-sustaining state where we see

working memory. The interactions within the system itself, and between other systems, can

sustain activation after an input is removed, leaving a self-sustaining state which is maintained

and can be retrieved when an input is received. Working memory is considered to be a specific

state of the neuro-cognitive system (Spencer et al., 2025), and multiple types of information can

be actively maintained depending on the ’tuning’ of the cortical fields examined. For instance,

multiple working memory fields have been examined in prior work including spatial, visual,

and object-based working memory (Schutte et al., 2003; Schutte & Spencer, 2009; Simmering,

2016; Schneegans et al., 2014). Each of these fields can show the aforementioned self-sustaining

activation patterns. This is considered to be one hypothesis for the neural basis of working

memory within the brain (Wei et al., 2012).

Considering the consensus within the EF literature regarding the importance of the working

memory system, it is surprising to note a lack of interaction between the EF and working

memory literatures. A large focus of EF intervention research has been on inhibitory control and

shifting; many EF tasks are based on inhibition of prepotent responses, switching paradigms,

and are primarily considered cognitive flexibility tasks. Working memory seems to only be

considered when attempting to examine the structure of EF. Moreover, EF measures often rely

on what are considered to be short term memory measures to examine memory performance,
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such as the picture sequence memory test in the NIH Toolbox (Bauer & Zelazo, 2013) or span

tasks (e.g. Blankenship et al., 2019; Broomell & Bell, 2022). Basic span tasks, such as forward

span, are widely accepted as a measure of short term memory (Baddeley, 2020), but may not be

complex enough to require working memory. When short term memory tasks were made more

complex, they related more strongly to measures of general intelligence (Unsworth & Engle,

2007) and this added complexity is thought to require engagement from the working memory

system. Many EF measures that add a more complex element to attempt to examine working

memory generally only do so using measures of verbal span plus manipulation, such as backward

span tasks (e.g. Broomell & Bell, 2022). These tasks are not suitable for use during infancy

and fail to examine an integral aspect of memory: visual working memory. Visual working

memory is crucial in language development which likely supports the development of EF. For

instance, Gooch et al. (2016) found a bidirectional relationship between language ability and

EF, with visual working memory specifically being a strong predictor of language ability.

Visual working memory can be examined as young as four months of age using preferential

looking tasks (Ross-Sheehy, 2003; see Reyes et al., 2020). Between 3- and 5-years of age,

children are able to complete more complex visual working memory tasks, showing increases in

capacity on change detection tasks (Buss et al., 2014, Simmering, 2016). At this age, children

can also engage in verbal working memory tasks, such as backward span tests, which as discussed

are more commonly used within EF research. Verbal and visual-spatial working memory have

consistently been demonstrated to be separable, particularly in childhood (Gathercole et al.,

2004). However, this separability is often not accounted for within EF research.

Working memory is highly predictive of later success. For example, kindergarten working

memory predicted third-grade mathematics and reading achievement, even after accounting for

other EF skills (Nguyen & Duncan, 2019). Preschool working memory has also been shown

as the sole EF component that can predict later academic achievement at 15-years of age in

mathematics (Watts et al., 2014) and reading (Ahmed et al., 2019).

In order to increase our understanding of executive functions and how the systems involved

within EF may co-develop, we must integrate the study of EF with the existing working memory
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literature. One way to do this would be to examine the co-development of EF and visual working

memory as this system can be readily measured from infancy.

Are these components truly separable?

EF is widely viewed as a set of domain-general components that underlie higher-order goal-

direct behaviours (Miyake et al., 2000; Diamond, 2013). However, it has been argued that this

view of EF is reductive (Doebel, 2020; Perone, Simmering, & Buss, 2021).

Doebel (2020) argues for a move away from viewing EF as components that simply support other

cognitive domains. It is argued that the typical correlational analyses used cannot be indicative

of the role of EF within that domain in the way current literature tends to imply. Instead,

Doebel (2020) argues for the consideration of an individuals’ knowledge, beliefs, norms, values,

and preferences, which may be activated in the presence of specific goals. Here, EF development

reflects the use of certain skills to guide behaviour in a context-specific manner. For instance,

instead of a separable inhibitory control system, children are able to demonstrate inhibition

from utilising skills in control from previous knowledge, values, and beliefs. For example, Doebel

(2020) explains that to restrain from hitting a friend, the child will use previous knowledge of

what it feels like to be hit, engage the values that we should avoid hitting others, and assess the

belief that hitting others leads to being scolded. This aligns with the dynamic systems account

of EF that underlies DFT (Perone et al., 2021; Spencer et al., 2024).

Perone et al. (2021) explain that cognition and behaviour are part of a system involving multiple

interactive states. Development reflects the ability to enter preferred states, however these are

context dependent. For example, as a child begins learning to walk, they engage multiple

components involving muscle control and balance capacity. Over time, walking becomes a

preferred state of motion, however in certain contexts we return to the previous state of motion,

crawling. Consequently, these states are considered in real-time, only existing within a specific

moment, but are also historical and previous states can be recreated. In terms of EF, it has

been argued that there should be less focus on the separability of components, and more focus

on clarifying how this integrated system uses multiple states together to achieve different goals
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(Spencer et al., 2024). Here, the proposed components including attention, inhibitory control,

and working memory need to be further understood in terms of their integration with higher-

level cognitive control systems to enable EF.

In many real world contexts, multiple integrated systems are used to enact behaviours. The re-

lationship between pre-school working memory, EF, and later academic success (Ahmed, 2019)

may indicate this. Underlying the ability to flexibly switch between different classroom contexts

is the ability to engage a previous state of learning relevant to that particular classroom. For

example, when asked a maths question, a child must engage the working memory system to

call on and manipulate mathematical equations using the new information given in the ques-

tion. However, when going to answer this question, the child must also act in response to their

knowledge and beliefs of the classroom context, for example this question may have been asked

by a teacher who requires you write down the answer and then raise your hand. To do this,

the child must engage the motor state of raising their hand and an inhibition state where they

know calling out will lead to being scolded and they must wait to be called on. So, whilst

working memory was mapped to later academic success, the ability to engage working memory

is not solely responsible for this success. Instead, throughout schooling, multiple systems have

been integrated to allow specific states to be entered and result in the appropriate behaviour.

Similarly, Hendry and Scerif (2023) argue that individuals have an upper and lower limit of EF

ability, and the context of the environment may influence performance in momentary situations.

For example, measuring a child’s EF when they are motivated by a specific goal and the

environment is a good fit to their personal needs may lead to capturing their upper-limit of EF

capability. Whereas examining the child when under stress and the child is not motivated by a

goal may lead to capturing a lower limit of this EF capability. Consequently, the assumptions

we make about EF abilities need to account for the contexts within which they are studied. As

stated by Carlson and Zelazo (2022), EF skills do not act in isolation. It seems that knowledge,

values, language, motor skills, and specific person-environment contexts must be considered.

Specifically, Carlson (2009) indicates that understanding the role of context in terms of these

social influences, but also in terms of proximal task-related variables, is imperative to advancing

the study of EF.
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To summarise this section, a detailed look at possible precursors to EF in infancy reveals, again,

a complex literature with few longitudinal studies that begin in infancy and no studies that con-

sistently use the same tasks over time to probe the co-development of candidate ’components’

of EF with emerging EF skills. Moreover, there is emerging dissatisfaction with the component

perspective, with multiple researchers arguing for a re-conceptualisation of EF skills. In this

context, however, it is clear that one aspect of working memory that can be measured early in

development, visual working memory, has not been tracked longitudinally along with changes

in EF skills. This is a clear gap in the developmental literature. Given that working memory is

consistently identified as an important component of EF in adult studies, this will be the focus

of this dissertation. Thus, in the next section, I take a more detailed look at the development

of visual working memory beginning in infancy.

1.4 Visual working memory in early development.

Visual working memory (VWM) is important for written and verbal communication (Daneman

&Merikle, 1996), and also for creativity and innovation (Vandervert et al., 2007). For those with

a poorer VWM, deficits are associated with learning difficulties such as Dyscalculia (Szucs et

al., 2013). Consequently, VWM is demonstrated to have strong predictive value. As discussed,

VWM is also able to be examined from early infancy (Reyes et al., 2020). Consequently, VWM

is ideal for early assessment, particularly in relation to the development of EF. However, to

date, there are few examinations of the development of VWM from infancy using longitudinal

samples, and no longitudinal examinations of this system from infancy into childhood.

In early infancy research, eye-tracking tasks examining looking behaviours are a useful method

of examining visual cognition in the absence of any need for language abilities. For example,

Papageorgiou et al. (2014) revealed individual differences in infants’ looking behaviour, exam-

ined by fixation duration, were positively related to parent-report measures of infants’ effortful

control. Similarly, Blankenship et al. (2019) examined the look duration and shift rate of five-

month-old infants to examine infant attention and its relation to EF. Path analyses revealed



1.5. Summary. 26

this infant attention was predictive of EF at 10 months, and EF followed a continuous pattern

of development from 10 months to 6 years.

Although several studies have examined links between visual cognition and later EF, it is not

always clear which looking tasks in infancy robustly measure visual working memory specifically.

One task that was designed to probe this cognitive system in infancy is the preferential looking

VWM task designed by Ross-Sheehy and colleagues (2003). Later in development, researchers

tend to focus on tasks that estimate working memory capacity (although see Johnson et al.,

2014 and Shimi & Scerif, 2021 for an alternative focus on the resolution of VWM). A canonical

task here is the change detection paradigm. In this task, children are shown a memory array of,

for instance, multiple coloured squares. They must remember the array over a short delay (e.g.,

1 second) and then report if a second, test array is the ’same’ or ’different’. Capacity estimates

are consistently demonstrated to increase with age, and as such, capacity measures appear a

good candidate for examining the stability of VWM over time. However, there are differences

in capacity based on whether estimates are examined utilising visual or verbal working memory

(see Simmering & Perone, 2013 for a review).

More recently, Simmering (2016) examined how the preferential looking measure of VWM was

related to the ’change detection’ task. Simmering (2016) confirmed that performance across the

preferential looking and change detection VWM tasks were related. She then used a dynamic

neural field model of VWM development to understand how these tasks were related, showing

that the same model of VWM could capture performance from both tasks including cross-task

correlations. The present study builds on this work by tracking VWM longitudinally using

both VWM tasks.

1.5 Summary.

To summarise, there are major challenges in how EF is conceptualised in early development as

well as major challenges in assessing EF in early infancy. One clear need is for more longitudinal

studies that track candidate components of EF along with the emergence of EF skills. Here,
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I identified a clear gap in the literature with no prior work relating the early development of

VWM to EF development. Thus, the goal of this thesis is to track the co-development of VWM

and EF in a longitudinal study.

To bring together the research areas of VWM and EF, we must first understand the development

and longitudinal stability of both VWM and EF. In the next chapter, I examine the stability

of individual differences in VWM using a preferential looking task in a longitudinal sample. As

seen in Figure 1.1a, this will involve investigating two cohorts: the first cohort will start the

study at 6 months and completed the preferential looking task at 6, 18, and 30 months of age,

and a second cohort will start the study at 30 months and complete the preferential looking task

at 30, 42, and 54 months of age. Performance on this preferential looking task will be assessed

on a year-by-year basis to determine whether measures from this task are longitudinally stable

over this developmental period.

To further enrich our understanding of VWM development, I will also measure performance in

the change detection task once children reach the age of 42 months (the youngest age studied

by Simmering, 2016). As outlined in Figure 1.1b, children from cohort two will be examined

in this change detection task at 42 and 54 months of age. Previous research has related task

performance across these two VWM measures in cross-sectional samples. However, no previous

research has examined cross-task relationships within the same participants longitudinally, nor

has any study examined the stability of visual working memory from early infancy through

childhood. Thus, in Chapter 2, after exploring the longitudinal stability of each measure, I will

investigate cross-task relationships among measures from these tasks. As seen in Figure 1.2,

this will include an exploration of performance on the preferential looking task at 30 months

as a predictor for performance on the change detection task at 42 and 54 months of age.
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Figure 1.1
Overview of Chapter 2

(a) The longitudinal trajectory of VWM on a
preferential looking task (VWMPL)

(b) The longitudinal trajectory of VWM on a
change detection task (VWMCD)

Figure 1.2
Overview of Chapter 2
Does VWMPL predict performance on VWMCD?

Chapter 3 uses the same longitudinal sample to examine the longitudinal stability of executive

function. I explore performance on an executive function task from 30 to 78 months, guided

by previous literature that highlights the effects of SES (Hackman et al., 2015) and gender

(Palomino & Brudvig, 2022; Yamamoto & Imai-Matsumura, 2019) on EF development. Specif-

ically, as outlined in Figure 1.3, I will examine the trajectory of EF from 30 to 78 months of

age across both cohorts. Next, a more fine-grained, step-by-step examination of EF will ensue

using data from the second cohort. Here, EF performance will be assessed at 30, 42, 54, and

78 months of age.

Figure 1.3
Overview of Chapter 3

(a) The longitudinal trajectory of EF. (b) The longitudinal of EF, cohort two
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Where Chapter 2 and Chapter 3 will provide insights into the developmental trajectory of

VWM and EF separately, Chapter 4 synthesises these trajectories. The literature suggests we

must track the co-development of systems. Thus, in Chapter 4, I examine how VWM and

EF are related across development. No previous research has examined this issue, particularly

using measures obtained in infancy and used consistently over time. As seen in Figure 1.4a, I

will investigate performance on the preferential looking VWM task in early infancy at 6 and

18 months of age as separate predictors of EF at 30 months of age. Secondly, as outlined in

Figure 1.5, I will investigate performance on the preferential looking task at 30 months of age

as a predictor of EF at 78 months of age in both cohorts.

Figure 1.4
Overview of Chapter 4

(a) Does infant VWM at 6 months predict
toddler EF?

(b) Does infant VWM at 18 months predict
toddler EF?

Figure 1.5
Overview of Chapter 4
Does toddler VWM predict child EF?

Lastly, as seen in Figure 1.6, I will investigate performance in the change detection task to

examine whether VWM capacity at 42 months of age predicts EF at 54 months of age. This

analysis will be extended to examine VWM capacity at 42 months of age and EF at 78 months

of age. Next, as outlined by Figure 1.7, I will then examine whether VWM capacity at 54

months of age predicts EF at 78 months of age.
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Figure 1.6
Overview of Chapter 4
Does child VWM capacity predict child EF?

Figure 1.7
Overview of Chapter 4
Does child VWM capacity predict child EF?

In Chapter 5, I combine the findings from this research and discuss their contributions to the

literature. I also discuss the real-world implications of our findings and consider how expanding

our understanding of infant cognition can contribute to EF interventions.



Chapter 2

The Developmental Trajectory of

Visual Working Memory during Early

Childhood.

2.1 Introduction

Working memory is a cognitive system deemed to explain one-third to one-half of variance in

fluid intelligence (Conway et al., 2003). Moreover, working memory has been established as

a key predictor of academic attainment (Jaroslawska et al., 2016; Alloway & Alloway, 2010).

Specifically, working memory has been shown as a more powerful predictor of academic achieve-

ment than IQ (Alloway & Alloway, 2010). Preschool working memory has similarly been related

to later cognitive outcomes, being predictive of math and reading abilities at 15 years of age

(Ahemed et al., 2019). Working memory is generally considered to contain a highly limited

capacity. Deficits in this working memory capacity are associated with reduced cognitive func-

tion, with children with a reduced working memory demonstrating symptoms of inattentiveness,

distractibility, and difficulty in problem-solving and monitoring quality-control in academic set-

tings (Gathercole et al., 2008).

31
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Working memory is typically divided into separate verbal and visual-spatial subsystems (Bad-

deley, 2000), each with a limited capacity (see Cowan, 2001). Within children, individual dif-

ferences in visual-spatial memory abilities have been shown to predict future academic achieve-

ment. Bull et al. (2008) conducted a longitudinal study examining cognition and school-related

learning capacity in primary school children. Using the Corsi-blocks task, Bull et al. (2008)

established that children’s visual-spatial memory ability across the first three years of primary

school was a significant predictor of performance in mathematics. This chapter focuses on

the early development of a central type of working memory that is part of this visual-spatial

subsystem: visual working memory (VWM).

Early measures of VWM show infants begin to be able to maintain mental representations over

a short delay from five to eight months of age (Bell, 2012; Pelphrey et al., 2004), and VWM has

been analysed in infants as young as four months using change preference tasks (Ross-Sheehy

et al., 2003; Wijeakumar et al., 2019). Therefore, VWM is ideal for early assessment. Whilst

VWM has been successfully captured in early infancy, the developmental trajectory of VWM

from this early infancy period is currently unclear.

There have been few longitudinal studies examining VWM, and those that have been conducted

have focused on the mid-to-late childhood period (Heyes et al., 2016; Darki & Klingberg, 2015).

Examinations of VWM beginning in infancy are sparse, with only one study examining VWM

longitudinally from early infancy (Forbes et al., in prep). It was found that VWM, measured

using a preferential looking task (VWMPL), was longitudinally predictive across two separate

samples from the UK and India. This task involves children exploring a display with colourful

squares on the left and right side of the screen that blink on and off. On one side, one square

changes colour after each blink. The ability to detect this change utilises working memory

capabilities as children must be able to hold the colours in mind during each blink and update

their working memory when changes occur. VWM in year 1 (at 6 and 9 months of age) predicted

VWM in year 2 (at 18 and 21 months of age). However, this study only focussed on tracking

VWM over a single year period. Thus, an open question is how VWM changes from infancy

into early childhood.
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Other examinations of the VWMPL task have indicated frontal cortex activation and the in-

ability to suppress distraction may also be related to VWM performance. For example, children

show suppression in localised areas of the frontal cortex on more difficult levels of the VWMPL

task in a manner that suggests increases in demand require frontal cortex suppression to support

distraction suppression (Wijeakumar et al, 2019; McKay et al., 2021). As demand increased, ac-

tivity in the frontal cortex was suppressed allowing children to sustain attention to the changing

side and suppress the non-changing side from capturing their attention. With higher memory

loads where more squares are presented on each display, children with a reduced amount of

looking to the changing side appear unable to suppress distracting information, shifting back

and forth between displays. At the neural level, these children failed to suppress key parts of the

frontal cortex. Importantly, Wijeakumar et al. (2019) indicate children from lower educated

mothers and lower income backgrounds were more likely to perform poorly on the VWMPL

task and more likely to demonstrate this inability to suppress distraction. Given this preferen-

tial looking task is able to capture differences in VWM ability in a manner that is sensitive to

socioeconomic factors, captures individual differences in VWM from as young as four months

(Reyes et al., 2020), and has been shown to be longitudinally predictive (Forbes et al., in Prep),

VWMPL is a good candidate for examining VWM from early infancy into childhood. In line

with this previous research, maternal education will also be included.

Cross-sectional research later in development has also shed light on the development of VWM

using change detection tasks, shown to be effective in capturing VWM capacity levels in both

childhood and adulthood (Simmering, 2016). This task involves verbally responding whether

a set of stimuli in a test array, such as colourful squares or differing shapes, is the same or

different to a memory array presented one second prior to the test array. Buss, Fox, et al.

(2014) used a shape-based change detection task and found that three-year-olds had a capacity

of 1.2 items, rising to 1.8 items by four-years of age. Simmering (2016) used a colour change

detection task to examine similar age-related changes in VWM capacity. Here, three-year-olds

showed a VWM capacity of 1.5 to 2 items, raising to 2 to 3 items by five-years of age. Capacity

estimates were found to be higher in the same individuals on the VWMPL task relative to

capacity estimates from change detection, but performance across both tasks was correlated.
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There appears to be a positive relationship between VWM captured by preferential looking in

infancy and VWM captured using the widely used change detection task. Simmering (2016)

found that a higher VWM demonstrated through a higher level of looking to the changing side

on the VWMPL task was positively related to VWM capacity on the change detection task,

specifically when accounting for the number of switches between the changing displays on the

VWMPL task. Thus, the VWMPL and change detection tasks may be utilised together to

successfully track the longitudinal stability of VWM from early infancy onwards.

In order to understand how visual working memory changes over time and the robustness of

individual differences in VWM performance, VWM must be examined in a longitudinal sample,

starting in infancy. The goal of the present chapter is to conduct the first longitudinal study

of VWM across a large longitudinal range, looking at VWM from 6 to 54 months of age across

two cohorts of children.

Firstly, the stability of VWM in the VWMPL task will be assessed to answer the first research

question: is VWM, examined through preferential looking, longitudinally stable from early in-

fancy? I expect to find stability in individual differences, with VWM performance predicting

itself at each year and age-related increases in performance being demonstrated in this task.

Next, the stability of VWM in the change detection VWM task will be assessed to answer the

second research question: is VWM capacity, examined through change detection, longitudinally

stable from early childhood? I expect to replicate capacity estimates from Simmering (2016)

and to demonstrate a similar age-related increase in the first longitudinal examination of perfor-

mance in this task. The first longitudinal cross-task examination of a preferential looking and

change detection task will then be completed using the same children from 42 to 54 months of

age in both tasks. This will assess the third research question: is VWM performance captured

in a preferential looking task related to VWM performance captured in a change detection task?

I expect to replicate the positive relationship found by Simmering (2016) between measures of

performance on VWMPL and the change detection task. Given the longitudinal nature of this

study, the developmental predictability of the VWMPL task will then be examined to answer

the fourth research question: do measures of VWM examined through preferential looking pre-

dict performance on a change detection task up to two years later? Given the relatedness of the
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VWMPL and change detection task concurrently in within-subjects examinations (Simmering,

2016), I expect that VWMPL will be predictive of later change detection, with a higher level

of looking to the changing side on VWMPL predicting a higher VWM capacity in the change

detection task.

2.2 Methods

2.2.1 Participants

179 children completed the visual working memory tasks. There were two cohorts. Cohort one

began the study at six months and were tested at 6, 18, and 30 months-of-age. Cohort two

began the study at 30 months and were tested at 30, 42, and 54 months-of-age. Demographics

are shown in Table 2.1. Families of 5 children did not complete the demographics questionnaire.

Average maternal education level was a Bachelor’s Degree, and mean income was £40,404.94

(SD = 11970.63). Participants had normal or corrected-to-normal vision. Colour vision was

examined through family history of colour blindness risk; at-risk children were excluded. All

participants were full-term infants.

This project was reviewed and approved by the Ethics Committee at NHS England (IRAS ID

196063). Parents signed an informed consent form on behalf of the child. Children received a

toy and a t-shirt for participating at each lab visit. Parents were given £20 for each visit to

the lab. The data reported here are a subset of a larger study examining the neural basis of

visual working memory and attention in early development.

Data counts revealed 3 children did not complete the visual working memory preferential looking

eye-tracking task (VWMPL) in the first year of participation, referred to as year 1. There was

1 child in this first year who did complete VWMPL but did not fixate on an area of interest fast

enough to calculate the key behavioural measures of interest, and thus this child was removed.

There were 38 children who did not complete the VWMPL task in the second year, year 2, and

50 who did not complete VWMPL in the third year, year 3 (see Table 2.2). The higher missing
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data in years 2 and 3 were due to the Covid-19 pandemic affecting our ability to collect data

in these years.

A visual working memory change detection task (VWMCD) was administered to cohort two

only. Of the 85 children in cohort two, data counts revealed 18 children who did not complete

the VWMCD task in any year. Of the 67 children who did complete this task, 9 only completed

the VWMCD in year 2 and not year 3, and a different 9 only completed the task in year 3, not

in year 2 (see Table 2.3). Data counts revealed that every child who completed the VWMCD

task at 42 and 54 months of age also completed the VWMPL task at each year of participation,

from 30 to 54 months of age (see Table 2.4).
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Table 2.1
Demographic Characteristics

Variable Cohort One Cohort Two

N = 89 N = 85

Gender

Boys 46 (52%) 41 (48%)

Girls 43 (48%) 44 (52%)

Maternal Education level

Left School before 16 2 (2.2%) 1 (1.2%)

GCSE/O Levels or equivalent 10 (11%) 14 (16%)

A Levels or equivalent 10 (11%) 11 (13%)

Trade Apprenticeship 1 (1.1%) 5 (5.9%)

Some University 6 (6.7%) 9 (11%)

Bachelor’s Degree 41 (46%) 30 (35%)

Master’s Degree 13 (15%) 11 (13%)

Doctorate or Professional Degree 6 (6.7%) 4 (4.7%)

Ethnicity

White British 75 (84%) 76 (89%)

Asian 1 (1.1%) 0 (0%)

Black African 0 (0%) 1 (1.2%)

South African 2 (2.2%) 0 (0%)

White British and Arabic 1 (1.1%) 0 (0%)

White British and South American 2 (2.2%) 0 (0%)

White British and Asian 4 (4.5%) 2 (2.4%)

White European and Asian 1 (1.1%) 0 (0%)

White British and Black African 0 (0%) 2 (2.4%)

White British and Black Caribbean 0 (0%) 2 (2.4%)

White British and Other European 3 (3.3%) 2 (2.4%)
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Table 2.2
VWMPL data counts and descriptive statistics.

Year 1 Year 2 Year 3

Variable N Mean SD N Mean SD N Mean SD

CPC 175 0.65 0.12 141 0.65 0.12 129 0.63 0.10

CPNC 175 0.43 0.14 141 0.43 0.12 129 0.42 0.13

CP10 176 0.53 0.05 141 0.53 0.05 129 0.52 0.05

Total Participants 176 141 129

Total N 179

Table 2.3
VWMCD data counts and descriptive statistics.

Year 2 Year 3

Variable N Mean SD N Mean SD

KMAX 58 1.38 0.67 58 2.08 0.68

A prime SS1 55 0.85 0.18 58 0.96 0.07

SS2 53 0.70 0.25 58 0.91 0.09

SS3 46 0.55 0.25 57 0.78 0.18

Total Participants 58 58

Total N 67
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Table 2.4
VWMPL and VWMCD data counts and descriptive statistics, cohort two.

Year 1 Year 2 Year 3

Variable N Mean SD N Mean SD N Mean SD

KMAX 58 0.72 0.72 58 2.07 0.68

CPC 67 0.66 0.10 58 0.64 0.18 58 0.63 0.16

CPNC 67 0.42 0.12 58 0.44 0.19 58 0.41 0.19

Total Participants 67 58 58

Total N 67

2.2.2 Procedure

Cohort one completed only a preferential looking visual working memory task. Cohort two

completed both a preferential looking and a change detection visual working memory task.

Participants were seated and asked whether they would like to watch a clip from Peppa Pig,

Dinosaur Train, or Paw Patrol. The selected clip was shown while the experimenter placed an

fNIRS cap over the participant’s head and a small target sticker on the participant’s forehead.

Note that the fNIRS data will not be analysed within this thesis. The eye-tracking camera

was then adjusted so that the pupil was in focus. Before all eye-tracking tasks, a calibration

procedure took place once eye-tracking adjustments had been completed. During calibration,

participants were shown a black and white geometric shape looming in five locations across the

screen - middle, top, bottom, left, and right. This mapped the raw eye position data to the

camera image data allowing the mapping of gaze position to stimulus presentation. Once a

successful calibration had been recorded, the experiment started.

Participants attended the lab twice each year for three years. All participants completed a

preferential looking visual working memory task (VWMPL) at each visit to the lab. This task

involved watching a screen with colourful squares blinking on and off on left and right displays.
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One display was randomly selected as the ”change display”, and on this side the squares changed

colour after each blink. On the no change display, the colour of the squares remained constant

for the entire trial. Three load levels were presented. At six months these were: low load,

one square on each side; medium load, two squares on each side; high load; three squares on

each side. From 18 months these were: low load, two squares on each side; medium load, four

squares on each side; high load, six squares on each side. These changes in load level are age

appropriate and allow us to detect visual working memory changes across development. The

colour of the squares was randomly selected from nine colours: green, black, violet, brown,

cyan, yellow, blue, red, and white. The colours were always different from one another on a

single display, but colours could be repeated to appear on both displays simultaneously (i.e. the

same colour could appear on both the change and no change side). The squares appeared for

500ms and disappeared for 250ms. Within this task, participants are expected to engage their

working memory to hold the colours of squares in mind, enabling the participant to detect that

one side is changing and focus on this changing display due to its novelty. Figure 2.1 shows a

schematic of the visual working memory trials.

At 42 and 54 months, cohort two also completed a change detection task (VWMCD) during one

of their visits to the lab. First, children were familiarised with the task using flashcards. A flash

card showing a memory array of colourful squares was presented. There were three set sizes,

SS1 showed one square, SS2 showed two squares, and SS3 showed three squares. The children

were asked to ”Remember the colours”. A flashcard showing a test array was then presented,

in which either all of the squares matched the memory array (no-change trials), or the colour

of one square changed (change trials). The squares were presented in the same spatial location

on the memory and test array, despite a colour change. If a change were to occur, only one

square changed regardless of set size. The children were asked if the test array card matched

the memory array presented prior. They were instructed to verbally respond with ”same” or

”different”. The experimenter either confirmed the correct response e.g. ”Yes, the cards are

different, this square changed from red to green”, or explained an incorrect response e.g. ”These

squares were different, see the red square here changed to green”. Familiarisation flashcards

were presented in a specific order: SS1, no change; SS1, change; SS2, no change; SS2, change;



2.2. Methods 41

SS3, no change; SS3, change. Once familiarised, the children watched a screen presenting the

memory array for 2000ms. After a 900ms delay, the test array was presented until a response

was received (see Figure 2.2). Memory arrays were manipulated so that the memory and test

array were presented on the left on one trial. Then, on the next trial, the memory and test

arrays were presented on the right side of the screen. This helped children identify which arrays

to compare. A gaze contingent fixation cross was presented on the side the arrays would appear

at the start of each trial to ensure children were focusing on the correct side. The experimenter

recorded the child’s verbal response on a keyboard by pressing one key for same and one key

for different.

Figure 2.1
Schematic demonstrating the VWMPL task.
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Figure 2.2
Schematic demonstrating the VWMCD task.

2.2.3 Materials

For all eye-tracking tasks, a 42-inch LCD television was connected to a PC running SR Research

Experiment Builder to display stimuli to participants. Participants were seated on a caregiver’s

lap or in a high-chair approximately 100cm from the television screen. An Eye-Link 1000 plus

eye-tracker (SR Research, Ontario, Canada) was placed on a small stand approximately 60 to

70cm from the participant. To track the participant’s head and eye position despite participant

movement, a small target sticker was placed on each participant’s forehead. The eye-tracker

used monocular recording, tracking the gaze position of a single eye using pupil and corneal

reflections of an infrared light source, at a sampling rate of 500Hz. An additional camera was

located to the left of the eye-tracker on the same stand. This recorded the participants face. A

further camera was located behind participants’ heads in the ceiling at the back of the room.

This recorded the experiment as displayed on the television monitor.
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2.2.4 Methods of Analysis

Eyetracking data were exported using SR research DataViewer on a frame-by-frame basis.

Following Spencer et al. (2023), for any cases with no recorded eye tracking data, data was

hand coded. All looking data were processed in R using the eyetrackingR package (Dink and

Ferguson, 2021). Trials were excluded in cases where more than 75% of the data were classed

as not looking to the screen.

The VWMPL task is usually analysed using a standard change preference score, CP10, at each

load level (see Ross-Sheehy et al., 2003). This is the proportion of looking to the changing

side divided by the total look duration to both the change and no change side across the full

10 second time window. However, Forbes et al. (in prep) reported that this measure is not

effective in capturing individual differences in visual working memory longitudinally. Instead,

in-depth analyses revealed two new measures of performance which will be used in the present

study. These new measures consider the location of the first fixation the child makes when the

first change array is presented, as different demands are placed on the visual working memory

system depending on the side the child first looks to. In line with Forbes et al. (in prep)

and Spencer et al. (2023), infants’ looking data were sorted into the two types of trials based

on where they were looking at the onset of the first change (at 1000 ms). As over 13 per

cent of trials had missing data within the time window from 1000-1100ms, the ‘first- look’

classification in Spencer et al. (2023) was determined based on the first frame of non-missing

eye-tracking data up to 2500ms. This reduced missing data. In addition, these two prior studies

also trimmed data from the last few seconds of each trial, focusing on the time window from

1750ms to 6750ms. These same timing parameters were used here. The two change preference

scores were then calculated similarly to CP10 by dividing the proportion looking to the change

side by the total look duration within this time window. The two ’first-look’ based measures

will be referred to as CPNC and CPC .

CPNC is the proportion of looking to the changing side when the child’s first look is to the non

changing side. This measure takes into account the additional demands placed on the visual

working memory system when starting on the non changing side. The child must first detect
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’no change’ by recognising the colours are the same, that is, the child must hold the colours

in mind, compare the colours presented on the next flash, and detecting this ’sameness’. The

child should then release fixation due to a lack of novelty, and switch to the changing side where

they must again utilise their working memory to detect that a change is occurring.

CPC is the proportion of looking to the changing side when the child’s first look is to the

changing side. This measure captures the child’s ability to sustain attention to novelty. Here,

the child must hold the colours displayed in their working memory, compare these to the colours

presented on the next flash, and detect the colour change. Due to children’s novelty preference,

the children should find this changing side more engaging and sustain attention to it.

The present study will also examine total looking time (TLT), as this has previously been

demonstrated as an important visual exploration measure within this task (Forbes et al., in

prep; Wijeakumar et al., 2023). This is the length of time the child looked to either display

across each 10 s trial. Switch rate will be examined in order to replicate analyses conducted

by Simmering (2016). This is the number of shifts in fixation from one side of the screen to

the other, divided by the total looking time in seconds, to provide a number of switches per

second.

All VWMPL measures will be aggregated over load level. Forbes et al. (in prep) found load

level was only related to CPNC , with no load effects found for the CPC measure. I aggregate

over load here to reduce missing data given the focus is to understand longitudinal changes

in visual working memory. Note that preliminary analyses showed similar results with versus

without aggregation over loads.

To analyse the VWMCD task, two scores are examined. Firstly, I calculate A’ (A prime)

which aggregates over correct and incorrect responses across change and no change trials (see

Simmering, 2016). Change trial responses are classified into hits and misses. No-change trial

responses are classified into correct rejections and false alarms. A prime was calculated using

the updated formula from Aaronson and Watts (1987):
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If H ≥ FA:

A′ = 1/2 + [(H − FA) ∗ (1 +H − FA)]/[4 ∗H ∗ (1− FA)]

If H < FA:

A′ = 1/2− [(FA−H) ∗ (1 + FA−H)]/[4 ∗ FA ∗ (1−H)]

This measure only uses the hits (correctly detected changes) and false alarms (incorrectly

detected changes i.e. the child reported a change when no change occurred). As such, the A

prime score provides us with an aggregate score measuring sensitivity to change whilst allowing

for instances where false alarms exceed number of hits.

The second score is a capacity measure using the Pashler’s K formula (Pashler, 1988). I first

calculated capacity for each set size:

K = SS ∗ (H − FA)/(1− FA)

This formula is appropriate for our variant of the change detection paradigm using a whole-array

test as opposed to presenting a single item at test (Rouder, Morey, Morey, & Cowan, 2011).

The highest estimate across set sizes is used at the maximum capacity estimate (Simmering,

2016). This is the KMAX score.

All participants were included in initial analyses. At each stage, participants were removed for

missing data in the variable being analysed at the year being predicted. The stability of visual

working memory was first examined using the CP10, CPC , CPNC , and TLT measures from

the VWMPL task across both cohorts. The stability of visual working memory will also be

examined within the canonical VWMCD task from 42 to 54 months. Concurrent relationships

between VWMPL and VWMCD will then be examined before the 30 month VWMPL task data

from cohort two will be used to examine whether individual differences in the VWMPL task at

30 months of age predict individual differences in performance at 42 and 54 months of age in

the VWMCD task.

Where maternal education level was included in models, it was entered as a scaled numerical
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variable. Here, a maternal education of ”left school at or before 16” was entered as 1, ”GCSE/O

levels or equivalent” as 2, ”A Levels or equivalent” as 3, ”Trade Apprenticeship” as 4, ”Some

University” as 5, ”Bachelor’s Degree” as 6, ”Master’s Degree” as 7, and ”Doctorate or Profes-

sional Degree” as 8. Gender was also scaled to create a numerical variable, with boys being

entered as - 0.5 and girls as 0.5 in all models.

Where models assessed one outcome variable per participant (i.e., non-nested scores and no

random effects), linear models were run using the lm function from the R package (R. C. Team,

2021). In these models, scores were split by year before being entered into the model. For ex-

ample, performance in year 1 was added as a predictor of performance in year 2. Consequently,

the outcome variable only contained one score per participant and year was not needed as a

predictor within the model. Maternal education level, gender, and cohort were added to these

models as fixed predictors. The summary function from the R package (R. C. Team, 2017) was

used to provide regression coefficients. The variance inflation factor (VIF) calculated from the

car package in R (Fox & Weisberg, 2019) is also reported to evaluate possible multicollinearity.

For significant predictors, the estimated magnitude and direction of the effect are reported.

Where outcome variables contained nested scores, such as where scores on the outcome vari-

able over time were predicted by year within the model, linear mixed effect models specifying

participant ID as a random effect were run using the lmer function from the Lme4 package in

R (Bates et al., 2015). Here, the outcome variable contained multiple scores per participant,

as scores at each year or set size were not separated as unique predictors. These variables

were entered as levelled factors. Within R, levelling the data provides the model with a ref-

erence level at which any change in the outcome variable will be examined relative to. For

instance, year was entered as a predictor with 3 levels (year 1, year 2, and year 3) with year

3 as the reference. Here year 3 was selected as the reference level due to this being the level

with the expected highest performance. Participant ID was always the grouping variable. To

indicate significance, p values were calculated using Satterthwaite’s method from the R package

LmerTest (Kuznetsova et al., 2017). A type III Wald Chi-squared test from the car package in

R (Fox & Weisberg, 2019) was used to assess the contribution of each parameter in reducing

residual deviance of the model. Where additional fixed effects were explored and model com-
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parison needed, an ANOVA and Akaike’s Information Criterion (AIC; Wagenmakers & Farrell,

2004) were used to compare models.

Normality was assessed by examining residuals from the DHARMa R package (Hartig, 2024)

producing Q-Q plots and DHARMa residuals. In all cases, final models had well-distributed

residuals. This suggests normality assumptions were not violated.

2.3 Results

2.3.1 The longitudinal stability of visual working memory examined

through preferential looking (VWMPL)

To answer the first research question of whether there is longitudinal stability in VWM assessed

through preferential looking, measures from the VWMPL task were modelled across all ages.

The following analyses were conducted with both cohorts one (enrolled at 6 months) and two

(enrolled at 30 months). As analyses were conducted cross-cohort, year refers to the year of

participation in the study. Cohort was included in all models as a covariate, with ages at each

year as follows: for cohort one, 6 months of age in year 1, 18 months in year 2 and 30 months

in year 3; for cohort two, 30 months of age in year 1, 42 months in year 2, and 54 months in

year 3.

CP10 measure

The first question was whether there was longitudinal stability in the canonical measure of the

VWMPL task, the CP10 measure, over time. This question was assessed in two stages. Firstly,

I examined whether individual differences in year 1 predicted year 2. CP10 was averaged over

loads to produce a single aggregate score for each child. A linear model predicting CP10 in

year 2 as a function of CP10 in year 1, maternal education level and gender was run. Cohort

was entered as a main effect covariate to control for possible overall differences related to age
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cohort. All predictors were added as fixed effects. 37 participants were excluded for not having

a CP10 in both year 1 and year 2. 138 participants were included in the model, run as:

lm(CP10[year2] ∼ CP10[year1] × Gender × Maternal Education level + Cohort)

The overall regression model was not statistically significant (R2 = [0.06], F (8,130) = 1.01, p

= .43), explaining only 5.8% of the variance (adjusted R2=0.00, RSE[residual standard error]

= 0.05).

Despite the non-significant overall model, mean CP10 in year 1 (M = 0.52, SD = 0.05) signifi-

cantly predicted mean CP10 in year 2 (M = 0.53, SD = 0.05) , β = - 0.21, 95% CI [ - 0.39, -

0.03], p=.0246 (see Table 1). As seen in Figure 2.3, a higher mean CP10 in year 1 predicted a

lower mean CP10 in year 2. This effect demonstrated a small to medium effect size, d = 0.37.

There was no significant main effect of age, and no significant main or interaction effects of

maternal education level or gender.



2.3. Results 49

Figure 2.3
Graph showing mean CP10 in year 1 and year 2 across both cohorts.

Note: The figure indicates two possible outliers with a mean CP10 in year 1 below 0.3. Results remained the

same upon removing CP10 scores below 0.3. As results and assumptions were not influenced, these data points

were not deemed as needing removal.

Secondly, I examined whether individual differences in CP10 in year 2 predicted individual

differences in CP10 in year 3 using a linear model predicting CP10 in year 3 as a function of

CP10 in year 2, maternal education level and gender. Cohort was entered as a main effect

covariate to control for possible overall differences related to age cohort. 51 participants were

excluded for not having a CPNC in both year 2 and year 3. 124 participants were included in

the model, run as:

lm(CP10[year3] ∼ CP10[year2] × Gender × Maternal Education level + Cohort)

The overall regression was not statistically significant (R2 = [0.02], F (8,115) = 0.36, p = .94),

explaining only 2.4% of the variance (adjusted R2= - 0.04, RSE 0.05). As seen in Table 2, there

were no significant main or interaction effects of mean CP10 in year 2. Furthermore, there were

no significant main effects of cohort, and no significant main or interaction effects of maternal
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education level or gender.

First-look based measures

Next, I examined whether the ’first-look’ based measures, CPNC and CPC , demonstrated lon-

gitudinal stability. This question was addressed in two models, firstly whether individual dif-

ferences in year 1 predicted individual differences in year 2, and secondly whether individual

differences in year 2 predicted individual differences in year 3.

CPNC

Mean CPNC averaged over loads was used to produce a single aggregate score in each year

for each child. A linear model predicting CPNC in year 2 as a function of CPNC in year 1,

maternal education level and gender was run. Cohort was entered as a main effect covariate to

control for possible overall differences related to age cohort. 37 participants were excluded for

not having a CPNC in both year 1 and year 2. 138 participants were included in the model,

run as:

lm(CPNC [year2] ∼ CPNC [year1] × Gender × Maternal Education level + Cohort)

The overall regression was not statistically significant (R2 = [0.07], F (8,129) = 1.28, p = .26),

explaining only 7.4% of the variance (adjusted R2= 0.02, RSE = 0.122).

Although the overall model was not significant, mean CPNC in year 1 (M = 0.43, SD = 0.12)

significantly predicted mean CPNC in year 2 (M = 0.43, SD = 0.12), β = 0.24, 95% CI [0.07,

0.42], p=.00663 (see Table 3). As seen in Figure 2.4, a higher mean CPNC in year 1 predicted

a higher mean CPNC in year 2. A moderate effect size indicated this to be meaningful despite

the non-significant overall model, d = 0.51. There was no significant main effect of age, and

no significant main or interaction effects of maternal education level or gender.
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Figure 2.4
Graph showing mean CPNC in year 1 and year 2 across both cohorts.

Next, I examined whether individual differences in CPNC in year 2 predicted individual differ-

ences in CPNC in year 3. A linear model predicting CPNC in year 3 as a function of CPNC

in year 2, maternal education level and gender was run. Cohort was entered as a main effect

covariate to control for possible overall differences related to age cohort. 51 participants were

excluded for not having a CPNC in both year 2 and year 3. 124 participants were included in

the model, run as:

lm(CPNC [year3] ∼ CPNC [year2] × Gender × Maternal Education level + Cohort)

The overall regression was not statistically significant (R2 = [0.08], F (8,115) = 1.31, p = .25),

explaining only 8.3% of the variance (adjusted R2= 0.02, RSE = 0.123).

Even with the non-significant overall model, mean CPNC in year 2 (M = 0.42, SD = 0.13)

significantly predicted mean CPNC in year 3 (M = 0.42, SD = 0.13), β = 0.23, 95% CI [0.05,

0.40], p=.0123 (see Table 4). As seen in Figure 2.5, a higher mean CPNC in year 2 predicted

a higher mean CPNC in year 3. A moderate effect size indicated this to be meaningful despite

the non-significant overall model, d = 0.47. There was no significant main effect of age, and
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no significant main or interaction effects of maternal education level or gender.

Figure 2.5
Graph showing mean CPNC in year 2 and year 3 across both cohorts.

Overall, CPNC showed robust longitudinal individual differences. Individual differences in

mean CPNC in year 1 predicted individual differences in mean CPNC in year 2, and individual

differences in mean CPNC in year 2 predicted individual differences in mean CPNC in year 3.

CPC

CPC was assessed for longitudinal stability in a similar manner. Mean CPC averaged over

loads was used to produce a single aggregate score in each year for each child. A linear model

predicting CPC in year 2 as a function of CPC in year 1, maternal education level and gender

was run. Cohort was entered as a main effect covariate. 37 participants were excluded for not

having a CPC in both year 1 and year 2. 138 participants were included in the model, run as:

lm(CPC [year2] ∼ CPC [year1] × Gender × Maternal Education level + Cohort)

The overall regression was not statistically significant (R2 = [0.05], F (8,129) = 0.88, p = .53),

explaining only 5.1% of the variance (adjusted R2= - 0.01, RSE = 0.124).
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Even with the non-significant overall model, mean CPC in year 1 (M = 0.65, SD = 0.11)

significantly predicted mean CPC in year 2 (M = 0.65, SD = 0.12), β = 0.22, 95% CI [0.02,

0.42], p=.0292 (see Table 5). As seen in Figure 2.6, a higher mean CPC in year 1 predicted a

higher mean CPC in year 2. A moderate effect size indicated this to be meaningful despite the

non-significant overall model, d = 0.45. There was no significant main effect of age, and no

significant main or interaction effects of maternal education level or gender.

Figure 2.6
Graph showing mean CPC in year 1 and year 2 across both cohorts.

CPC was then examined for stability from year 2 to year 3. A linear model was conducted

predicting CPC in year 3 as a function of CPC in year 2, maternal education level and gender.

Cohort was entered as a main effect covariate. 51 participants were excluded for not having a

CPC in both year 2 and year 3. 124 participants were included in the model, run as:

lm(CPC [year3] ∼ CPC [year2] × Gender × Maternal Education level + Cohort)

The overall regression was not statistically significant (R2 = [0.09], F (8,115) = 1.59, p = .14),

explaining only 9.9% of the variance (adjusted R2= 0.04, RSE = 0.096). As seen in Table 6,

there were no significant main or interaction effects of mean CPC in year 2. There were also
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no significant main effects of age, and no significant main or interaction effects of maternal

education level or gender.

In summary, the longitudinal stability of CPC varied. Individual differences in mean CPC in

year 1 predicted individual differences in mean CPC in year 2; however, this was not the case

moving from year 2 to year 3.

TLT measure

The third question was whether there was longitudinal stability in visual exploration. This was

assessed using the total looking time (TLT) measure. Mean TLT averaged over loads was used

to produce a single aggregate score in each year for each child. A linear model predicting TLT

in year 2 as a function of TLT in year 1, maternal education level and gender was run. Cohort

was entered as a main effect covariate. 36 participants were excluded for not having a TLT in

both year 1 and year 2. 139 participants were included in the model, run as:

lm(TLT [year2] ∼ TLT [year1] × Gender × Maternal Education level + Cohort)

The overall regression was partially significant (R2 = [0.10], F (8,130) = 1.59, p = .0689),

explaining 10% of the variance (adjusted R2= 0.05). The residual standard error was 1.32.

Mean TLT in year 1 (M = 5.06, SD = 1.62) significantly predicted mean TLT in year 2 (M =

5.41, SD = 1.34), β = 0.25, 95% CI [0.10, 0.41], p=.00173 (see Table 7). As seen in Figure 2.7,

higher mean TLT in year 1 predicted a higher mean TLT in year 2. This effect was found to

be of a moderate size indicating a meaningful effect even with the overall regression being only

partially significant, d = 0.54. There was no significant main effect of age, and no significant

main or interaction effects of maternal education level or gender.
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Figure 2.7
Graph showing mean TLT in year 1 and year 2 across both cohorts.

Next, I conducted a linear model predicting TLT in year 3 as a function of TLT in year

2, maternal education level and gender. Cohort was entered as a main effect covariate. 51

participants were excluded for not having a TLT in both year 2 and year 3. 124 participants

were included in the model, run as:

lm(TLT [year3] ∼ TLT [year2] × Gender × Maternal Education level + Cohort)

The overall regression was significant (R2 = [0.17], F (8,115) = 1.59, p = .004156), explaining

17% of the variance (adjusted R2= 0.12). The residual standard error was 1.18.

Mean TLT in year 2 (M = 5.47, SD = 1.33) significantly predicted mean TLT in year 3 (M

= 5.60, SD = 1.29), β = 0.28, 95% CI [0.12, 0.45], p=.00101 (see Table 8). As seen in Figure

2.8, a higher mean TLT in year 2 significantly predicted a higher mean TLT in year 3. This

effect demonstrated a moderate effect size, d = 0.62. There were no significant main effects of

age and no significant main or interaction effects of maternal education level or gender
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Figure 2.8
Graph showing mean TLT in year 2 and year 3 across both cohorts.

Overall, then, TLT showed robust longitudinal stability. Mean TLT in year 1 predicted mean

TLT in year 2, and mean TLT in year 2 predicted mean TLT in year 3.

2.3.2 The longitudinal stability of visual working memory examined

through change detection (VWMCD)

The VWMCD task is a commonly used measure of VWM, providing two measures of perfor-

mance. The first is A prime, a sensitivity to change measure examined across set sizes. The

second is KMAX , a maximum capacity measure (over set sizes). Critically, examinations of this

task across different ages have all been cross-sectional in early development. Therefore, here I

asked if these key measures of performance from this task show robust individual differences in

early development.

The following analyses contain data from cohort two only. Here, year 1 refers to 30 months of

age, year 2 refers to 42 months, and year 3 refers to 54 months.
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What influences VWMCD performance within a longitudinal sample?

Following Simmering (2016), I first examined A prime. Previous results from this cross-sectional

study showed an interaction between age and set size, with lower accuracy in set size 3 than

set sizes 1 and 2, and a larger decrease from set size 1 to set size 3 for 4-year-olds than 3- and

5-year-olds. A prime scores also increased overall from 3 to 4 years of age. Next, I examined

KMAX . Previous estimates of KMAX indicate an age related increase, with 3-year-olds’ VWM

capacity to be 1.90 items and 4-year-olds’ VWM capacity to be 2.20 items (Simmering, 2016).

A prime

To answer the question of whether performance on VWMCD is similar within our longitudinal

sample relative to Simmering (2016), A prime was examined in a linear mixed effects model

containing year and set size. This model included year as a predictor to replicate the inclusion

of age in cross-sectional models. Models also included a random effect for participant. Year

and set size were included as fixed effects, and both were levelled as factors. Within R, levelling

the data provides the model with a reference level at which any change in the outcome variable

will be examined as relative to. Here, the reference level was performance in year 3 in set size

3. Here year 3 set size 3 was selected as the reference level due to this being the level with the

expected highest performance within the hardest set size. 67 participants were included in the

model, run as:

lmer(A′ prime ∼ Y ear × Set Size + (1|Participant code))

A Wald Chi-square test indicated a significant interaction between year and set size (X2(2)

= 8.69, p = .01295). As seen in Figure 2.9, accuracy decreased across set sizes, with a larger

decrease across set sizes occurring in year 2, at 42 months of age, than in year 3, at 54 months of

age. Individually, both year (X2(1) = 137.47, p < .001) and set size (X2(2) = 26.71, p < .001)

significantly explained variance in A prime score (see Table 9 for regression coefficients and

effect sizes). These results replicate the age by set size interaction demonstrated in Simmering

(2016).
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Figure 2.9
Graph showing A prime score across set sizes in year 2 and year 3.

Next, I ran a second linear mixed effects model with the addition of maternal education level

and gender as fixed effects. Due to the increased number of predictors, year and set sizes were

scaled to be included as numeric variables. This reduced the overall number of interaction

comparisons as year and set size were entered into each interaction once, not for each level. 67

participants were included in the model, run as:

lmer(A′ prime ∼ Y ear×Set Size×Maternal Education level×Gender+(1|Participant code))

A Wald Chi-square test indicated the previous interaction between year and set size remained

(X2(1) = 6.73, p = .009461). Individually, year (X2(1) = 132.65, p <.001), set size (X2(1) =

167.86, p <.001), and maternal education (X2(1) = 7.64, p = .005704) significantly explained

variance in A prime scores (see Table 10 for regression coefficients and effect sizes). There was

no main effect of gender.

A Wald Chi-square test indicated the main effect of set size and maternal education level was

superseded by a significant interaction between maternal education level and set size (X2(1) =

4.62, p = .03161). As seen in Figure 2.10, whilst performance decreased over set size for all
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children, children with a less educated mother showed greater decrease in A prime scores across

set sizes.

A Wald Chi-square test also indicated an interaction between set size and gender was significant

(X2(1) = 5.23, p = .022204). As seen in Figure 2.11, performance decreased over set size,

with girls showing increased performance to boys in set size 2, and boys showing increased

performance to girls in set size 3.

Figure 2.10
Graph showing A prime score across set sizes and Maternal Education level.
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Figure 2.11
Graph showing A prime score across set sizes and gender.

The Q-Q plots of both A prime models indicated significant deviation of the observed values

from the expected values. This suggests normality assumptions were violated. DHARMa resid-

uals revealed quantile deviations from the predicted model were also detected. This indicates

poor goodness-to-fit. In part due to this poor fit, I opted to focus subsequent analyses on the

summary measure of change detection, KMAX .

KMAX

To examine whether KMAX demonstrated a similar age-related increase in capacity as reported

by Simmering (2016), I conducted a linear mixed effects model predicting KMAX as a function

of year, maternal education level, and gender. Participant ID was included as a random effect.

Year, maternal education level, and gender were included as fixed effects. Year was entered as

a levelled variable, with year 3 being the reference. 67 participants were included in the model,

run as:

lmer(KMAX ∼ Y ear × Maternal Education level × Gender + (1|Participant code))
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A Wald Chi-square test indicated year significantly explained variance in KMAX score (X2(1) =

58.42, p < .001). As seen in Figure 2.12, KMAX increased from year 2, at 42 months of age, to

year 3, at 54 months of age. Mean KMAX was found to be 1.28 (SD = 0.72) for 42 month-olds

and 2.07 (SD = 0.68) for 54month olds. Overall, these are lower capacity estimates than those

found previously for 3- and 4-year olds, but there was a greater increase in capacity from 42

months of age to 54 months of age than the increase demonstrated by Simmering (2016).

A Wald Chi-square test indicated maternal education level also significantly explained variance

in KMAX score (X2(1) = 12.80, p <.001). Table 11 provides regression coefficients and effect

sizes. As seen in Figure 2.13, children with a higher educated mother demonstrated a higher

KMAX score. Mean KMAX was found to be 1.82 (SD = 0.79) for children with a more highly

educated mother and 1.45 (SD = 0.79) for children with a less educated mother.

No interactions between terms were found. There was no dependence between year and ma-

ternal education level in their influence on KMAX (X2(1) = 0.01, p = .93). There was also no

main effect or interaction effects with gender.

Figure 2.12
Graph showing KMAX across year of participation.
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Figure 2.13
Graph showing KMAX by maternal education level.

2.3.3 Cross-task performance

How does VWMPL relate to VWMCD?

To examine the question of whether cross-sectional findings of cross-task performance on

VWMPL and VWMCD were replicated in our longitudinal sample, performance was first ex-

amined following Simmering (2016) using a hierarchical regression with three models. The first

model examined only year as a predictor of KMAX . The second model included the CP10 mea-

sure from VWMPL, examining both year and CP10 as predictors of KMAX . The third model

examined year and CP10 alongside switch rate. Simmering (2016) found the third model to

be the best fitting model. This model demonstrated three predictors that explained significant

variance in KMAX scores of 3- to 5-year-olds: age; CP10 in the VWMPL low load level (2 items

on each display); and the switch rate in the VWMPL high load level (6 items on each display).

Within all models, year was entered as year 2, representing 42 months of age, and year 3,

representing 54 months of age. As the data from the present study were longitudinal, participant
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ID was included as a random effect. 67 participants were included in the models.

As stated above, Model 1 included only year as a predictor of KMAX . As seen in Figure 2.12

above, KMAX increased from year 2 to year 3. This increase was found to be significant (see

Table 12).

Model 2 included year and CP10 at each load level: low load containing 2 squares (SS2); medium,

4 squares (SS4), and high, 6 squares (SS6). Beyond the variance explained by year, CP10 in

SS6 was found to account for a significant additional proportion of the variance in KMAX score

(see Table 12). As seen in Figure 2.14, children with a lower level of looking to the changing

side in SS6 demonstrated a higher KMAX score. These results differ to that of Simmering

(2016). Firstly, the present study found it was CP10 in the high load that was important for

KMAX , whereas Simmering (2016) found it to be CP10 within the low load. Furthermore, the

present study found CP10 was negatively associated with KMAX in the low and high loads,

with a lower CP10 in the high load significantly predicting a higher KMAX . Simmering (2016)

indicated CP10 was positively correlated with KMAX in the low and high loads.

Model 3 included year, CP10 at each load level, and switch rate at each load level. As seen in

figure 2.15, children with a higher switch rate in SS2 demonstrated a higher KMAX score. In

this model, switch rate significantly explained an additional proportion of variance in KMAX ,

beyond that of year and CP10 in SS6 (see Table 12). These results are similar to that of Sim-

mering (2016), however the present study found that switch rate in the low load was positively

associated with KMAX , whereas Simmering (2016) found positive associations with switch rate

in the high load.
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Figure 2.14
Graph showing KMAX and CP10 in SS6 at 42 and 54 months of age.

Figure 2.15
Graph showing KMAX and switch rate in SS2 at 42 and 54 months of age.
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Model comparisons were carried out on the three models. Comparisons demonstrated model

2 (AIC = 240.69) had a lower AIC than model 1 (AIC = 242.05) suggesting better model fit.

As data were longitudinal and therefore had to be examined in linear mixed effects models, a

Chi-Square likelihood ratio test was performed in place of an ANOVA. This was only partially

significant (X2= 7.36, p= .06138). Model 3 (AIC = 240.22) demonstrated the lowest AIC,

indicating the best fitting model. This reduction in AIC was very small, and a likelihood

ratio test showed model 3 was not a statistically significant better fitting model (X2= 6.47,

p=.09072). This indicates Model 3 appears to be adding unnecessary complexity.

Previous longitudinal examinations of the VWMPL task indicate TLT is an important variable

to consider when assessing preferential looking (Forbes et al., in Prep; Wijeakumar et al., 2023).

Consequently, a new model was run to assess the contribution of TLT in each load within the

present data. TLT was added to the above best fitting model, model 2. This was assessed as

model 4. Model 4 included year, CP10 in each load, and TLT in each load, as predictors of

KMAX .

As seen in Figure 2.16, children with a higher TLT in SS4 demonstrated a higher KMAX score.

In this model, TLT in SS4 explained an additional proportion of variance KMAX , but this was

only partially significant (see Table 13). The year and CP10 effects remained.
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Figure 2.16
Graph showing KMAX and TLT in SS4 at 42 and 54 months of age.

Model comparisons revealed model 4 (AIC = 236.85) had the lowest AIC out of all models.

This difference in AIC was lower than model 2, the previous best fitting model, by more than

2 points, a common threshold for indication of a best fitting model (Sutherland et al., 2023).

A likelihood ratio test also showed model 4 was a better fitting model than model 2 (X2= 9.84,

p= .01997).

As CP10 was not longitudinally predictive within earlier analyses, an additional model was run

replacing the CP10 measure with the longitudinally predictive CPNC measure. Alongside being

longitudinally stable, this measure has previously been found to capture variance in VWM

across load levels within the VWMPL task (Forbes et al., in prep). Consequently, a new model

was run to assess the contribution of CPNC in each load within the present data. This was

assessed as model 5. Model 5 included year, CPNC in each load, and TLT in each load, as

predictors of KMAX . Two participants were removed for having no CPNC .

Within this model, the previous effect of TLT in SS4, as seen in Figure 2.16, was significant.

Additional variance in KMAX was significantly explained by CPNC in SS2 (see Table 14). As

seen in Figure 2.17, a higher CPNC in SS2 predicted a higher KMAX .
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Figure 2.17
Graph showing KMAX and CPNC in SS2 at 42 and 54 months of age.

Model comparisons revealed this model 5 (AIC = 235.04), containing TLT and CPNC , was

better fitting than the original best fitting CP10 model, model 2 (AIC 237.44). A likelihood

ratio test also showed model 5 was a better fit than model 2 (X2= 8.39, p= .03854). Comparing

model 4 and 5, there was no addition to the model to make a likelihood ratio test viable; model

5 replaced CP10 with CPNC directly, so there was no additional parameter to be assessed for

improving model fit. Using only AIC, model 4 (AIC = 233.39) and 5 (AIC = 235.04) did not

differ by more than 2 points, and thus the threshold for determining a better fitting model

was not reached. As there was no significant difference in model fit, and the parameters within

model 5 are heavily motivated by recent literature, model 5 was selected as the most appropriate

model.

Overall, the present analyses partially replicates the findings of Simmering (2016) regarding the

positive shift rate effect; however, analyses did not replicate the positive relationship between

CP10 and KMAX . The CPNC measure did, however, show a positive relationship with KMAX .



2.3. Results 68

Does VWMPL predict later VWMCD?

To explore the novel question of whether cross-task performance can be examined in a longitu-

dinally predictive manner, VWMPL from 30 months of age was explored as a predictor of 42

and 54 month VWMCD capacity. To examine this relationship, the new VWMPL measures ex-

plored previously within this chapter will be examined. As before, all measures were examined

as aggregate measures over load. I first examined whether VWMPL measures at 30 months of

age predicted KMAX at 42 months of age. Then, I examined whether VWMPL measures at 30

months of age predicted KMAX at 54 months of age. Maternal education level and gender were

included in all models along with TLT as this showed robust effects in the concurrent models

above.

A linear model examining mean CPC in year 1, at 30 months of age, mean TLT in year 1,

maternal education level, and gender as predictors of 42 month KMAX was run. 58 participants

were included in the model, run as:

lm(KMAX [year2] ∼ CPC [year1] × TLT [year1]× Maternal Education level × Gender)

The overall regression was not significant (R2 = [0.29], F (15, 42) = 1.14, p = .35), although it

explained 29% of the variance in KMAX (adjusted R2= 0.04). The residual standard error was

0.71. There was the main effect of maternal education, as seen in previous models of KMAX ,

but there were no main or interaction effects of mean CPC , mean TLT, or gender (see Table

15).

Secondly, a linear model examining mean CPNC in year 1, mean TLT in year 1, maternal

education level, and gender as predictors of 42 month KMAX was run. 58 participants were

included in the model, run as:

lm(KMAX [year2] ∼ CPNC [year1] × TLT [year1]× Maternal Education level × Gender)

The overall regression was significant (R2 = [0.44], F (15, 42) = 2.19, p = .02307), explaining

44% of the variance in KMAX (adjusted R2= 0.24, RSE = 0.63).

There was a main effect of maternal education, as seen in previous models of KMAX , but



2.3. Results 69

there were no main effects of mean CPNC , mean TLT, or gender (see Table 16). There was a

significant interaction between CPNC and gender, β = 3.54, 95% CI [0.10, 0.41], p=.0426 (see

Table 16). For girls, a higher mean CPNC at 30 months of age predicted a higher KMAX at 42

months of age (see Table 17 for means). As seen in Figure 2.18, for boys, a lower mean CPNC

at 30 months of age demonstrated a higher KMAX at 42 months of age. Boys with a lower

CPNC at 30 months of age demonstrated the highest KMAX at 42 months of age.

There was also an interaction between mean CPNC and mean TLT: mean CPNC at 30 months

of age significantly predicted KMAX at 42 months of age dependent on mean total looking time

at 30 months of age, β = 1.55, 95% CI [0.07, 3.03], p=.0409 (see Table 16). As seen in Figure

2.19, for children with a higher mean TLT, a higher mean CPNC at 30 months of age predicted

a higher KMAX at 42 months of age. For children with a lower mean TLT, a lower mean CPNC

at 30 months of age predicted a higher KMAX at 42 months of age. Here, children with a lower

mean TLT and a lower mean CPNC at 30 months of age demonstrated the highest KMAX scores

at 42 months of age (see Table 18 for means). There were no interaction effects with maternal

education level.

Figure 2.18
Graph showing KMAX at 42 months and mean CPNC at 30 months by gender.
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Figure 2.19
Graph showing KMAX at 42 months and mean CPNC at 30 months by mean TLT at 30
months.

Note: mean TLT level is demonstrated here using a median split to categorise low and high levels, but TLT
was entered as continuous in all models.

This model including the interaction terms showed a large effect size, f 2=0.51, indicating that

the two interactions between mean CPNC at 30 months of age and gender, and mean CPNC and

mean TLT at 30 months of age, explained a substantial proportion of the variance in KMAX at

42 months of age.

Overall, VWMPL is predictive of VWMCD a year later, but this predictive relationship is only

found for the mean CPNC measure, and must take into account gender and TLT.

Next, I examined whether VWMPL predicted VWMCD performance over a longer two year

period. Mean CPC in year 1, at 30 months of age, mean TLT in year 1, maternal education

level, and gender were examined as predictors of year 3 KMAX , at 54 months of age. 6 children

were excluded for not having both a VWMPL at 30 months of age and a KMAX at 54 months

of age. 52 participants were included in the model, run as:

lm(KMAX [year3] ∼ CPC [year1] × TLT [year1]× Maternal Education level × Gender)
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The overall regression was not significant (R2 = [0.38], F (15, 42) = 1.69, p = .09), although

it explained 38% of the variance in KMAX (adjusted R2= 0.15). The residual standard error

was 0.63. The main effect of maternal education seen in the KMAX base model remained, but

there were no main or interaction effects of mean CPC , mean TLT, or gender (see Table 19).

Next, this question was explored with the CPNC measure. Mean CPNC in year 1 and mean

TLT in year 1, at 30 months of age; maternal education level; and gender were then examined

as predictors of year 3 KMAX at 54 months of age. The same 52 participants were included in

the model, run as:

lm(KMAX [year3] ∼ CPNC [year1] × TLT [year1]× Maternal Education level × Gender)

The overall regression was not significant (R2 = [0.37], F (15, 42) = 1.63, p = .11), although it

explained 37% of the variance in KMAX (adjusted R2= 0.14). The residual standard error was

0.63.

The significant main effect of maternal education seen in previous KMAX models remained,

and a significant main effect of gender was also found (see Table 20). These main effects were

superseded by an interaction between maternal education level, gender, and TLT. Despite the

overall non-significant model, mean TLT at 30 months significantly predicted KMAX at 54

months dependent on gender and maternal education level, β = 0.59, 95% CI [0.14, 1.04],

p=.0108 (see Table 20). As seen in Figure 2.20, girls with a more highly educated mother and

a higher mean TLT at 30 months of age demonstrated higher KMAX scores at 54 months of age.

For girls with a less educated mother, this appears inverse. Girls with a less educated mother

and a lower mean TLT at 30 months of age demonstrated higher KMAX scores at 54 months

of age. Overall, differences in boys scores were less dependent on TLT, with larger differences

between KMAX at 42 months of age appearing more dependent on maternal education level (see

Table 21 for means). Boys with a more highly educated mother demonstrated higher KMAX

scores than boys with a less educated mother.

There were no main or interaction effects of mean CPNC (see Table 20).
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Figure 2.20
Graph showing KMAX at 54 months and mean TLT at 30 months by Maternal Education
level and gender.

Note: Maternal Education level is demonstrated here using a median split to categorise low and high levels,
but Maternal Education level was entered as continuous in all models. Here, a lower education represents
below University level.

The three-way interaction between maternal education level, gender, and TLT in year 1 was

found to be meaningful. The model including the interaction terms showed a moderately

large effect size, f 2=0.319, indicating that interactions explained a moderate proportion of the

variance in KMAX .

Overall, VWMPL performance at 30 months is predictive of VWMCD performance at 54 months

and models were qualified by interactions with maternal education level, gender, and TLT.

2.4 Discussion

The present chapter has focussed on resolving a key issue within the working memory literaturea

lack of longitudinal research examining the development of working memory components from

early infancy. This study focussed on the specific component of visual working memory, as this
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has previously been reliably assessed in the early infancy period.

First, VWM was examined using the VWMPL task from 6 months of age. Previous exami-

nations of VWM in childhood have used the same VWMPL task (Ross-Sheehy et al., 2003;

Simmering, 2016; Wijeakumar et al., 2019; Delgado-Reyes et al, 2020; Forbes et al., in Prep).

These studies tend to focus on examining VWM using a change preference score referred to in

the present study as CP10. Results of the present study show this CP10 measure demonstrates

inverted longitudinal stability from year 1 to year 2, where a higher CP10 in year 1 predicted

a lower CP10 in year 2. No robust longitudinal stability from year 2 to year 3 was found. This

lack of stability from year 2 to year 3 is consistent with the lack of longitudinal stability in

Forbes et al. (in Prep). It is not clear why CP10 shows inverted stability from year 1 to year

2. It is possible this is related to the increase in set size from 6 to 18 months of age (switching

from 1, 2, and 3 squares on each display to 2, 4, and 6 squares on each display); however, the

set size was consistent for the second cohort of children from 30 to 42 months of age, so this

increase does not fully explain the inverted result. Whilst the reasons for these results are not

yet fully understood, these findings add to existing evidence that this CP10 measure is not a

suitable measure for examining VWM longitudinally.

Results from the CPC measure showed that CPC in year 1 of participation predicted CPC in

year 2, but CPC in year 2 did not predict CPC in year 3. This CPC measure is capturing the

child’s ability to detect the changing side on the VWMPL task when the child’s first look is to

the changing side. This arguably places less demand on the visual working memory system than

the CPNC measure, which captures child’s ability to detect the changing side when starting on

the non-changing side. That is, because the child starts on the changing side, change is easier

to detect which should help sustain looking to the novelty in this display. It is possible that the

lack of longitudinal stability in this measure from year 2 to year 3 indicates that it was easy

for older children to reliably stay on the changing side in this case.

Results show that the CPNC measure was longitudinally stable across all age ranges examined:

CPNC in year 1 predicted CPNC in year 2, and CPNC in year 2 predicted CPNC in year 3.

Previous research suggests children and adults are able to distribute the limited resources of
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their working memory dependent on set size demands (Scerif & Shimi, 2021). When the child

starts on the non-changing side in the VWMPL task, it is likely they will need to recruit more

resources from the working memory system to detect there is no change, release fixation and

switch to the changing side, where they must restart the process of detecting the colourful

squares in order to detect the change and sustain fixation to this changing side. Thus, CPNC

might be the most sensitive measure as it consistently places VWM in a resource-demanding

context.

Beyond these change preference measures, results showed that TLT on the VWMPL task was

longitudinally stable, with TLT in year 1 predicting year 2, and TLT in year 2 predicting year

3. This TLT measure was found to be especially important for cross-task performance, where

TLT on the VWMPL task was often positively associated with later VWM capacity on the

change detection task. TLT provides an index of the child’s ability to sustain attention to the

display, with a higher TLT indicating better sustained attention.

Interestingly, by obtaining multiple measures from the same task, we see that different aspects

of performance are robust longitudinally. There are also complex interactions among these

measures which I discuss further below. Finally, it is useful to note that within the VWMPL

task there were no effects of maternal education level or gender. This indicates that VWMPL

performance predicts itself even when controlling for these covariates.

Next, the present chapter focused on VWM capacity measured using the change detection task.

This study is the first longitudinal study examining change detection in early childhood. The

first goal was to examine if our longitudinal data replicated the findings of previous cross-

sectional research. Results showed that changes in A’ replicated cross-sectional findings from

Simmering (2016). In particular, the age-related increase in overall A’ scores was replicated,

with accuracy in each set size increasing from 42 to 54 months of age similarly to the increase

in accuracy from 3 to 4 years of age in Simmering (2016). Simmering (2016) also found lower

accuracy scores in set size 3 than set sizes 1 and 2, and a larger decrease between set size 1

to set size 3 for 4-year-olds than 3- and 5-year-olds. This interaction was replicated within

the present study, however the larger decrease between set sizes 1 and 3 was seen for children
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who were 42 months of age (3.5-years-old) rather than children who were 54 months of age

(4.5-years-old). It is important to note that whilst Simmering (2016) examined 3-, 4-, and

5-year-olds, the mean ages for 3 and 4-year-olds within the study were closer to the 3.5 and

4.5-year-old ages used within the present study.

Simmering (2016) also examined maximum capacity, KMAX from the change detection task.

Firstly, Simmering (2016) reported 3-year-old maximum capacity to be 1.90 items, and 4-

year-old maximum capacity to be 2.20 items. Whilst capacity estimates from the present

study demonstrate a similar age-related increase in maximum capacity, with 3.5-year-old mean

maximum capacity being 1.28 items and 4.5-year old mean maximum capacity being 2.07 items,

these maximum capacity estimates were found to be lower overall than those in Simmering

(2016). These capacity estimates are more in line with the 3-year-old capacity of 1.2 items and

4-year-old capacity of 1.8 items found by Buss, Fox, et al (2014) on a more challenging shape-

based detection task within this age group. Due to the timing of our study, many children

completed the VWMCD task during the Covid-19 pandemic, and there is a possibility this may

have negatively influenced capacity estimates as a result of a wide range of health and social

related changes. Investigations of this influence of the Covid-19 pandemic are currently in

progress to examine if there are differences between children examined pre- vs post-pandemic.

It is important to note that this model of KMAX also demonstrated a consistent maternal

education level effect, where children with a more highly educated mother demonstrated higher

KMAX scores regardless of age. The present study made an attempt to obtain a relatively

representative sample, and a concerted effort was made to recruit children from lower socio-

economic backgrounds. It is possible that this sample contained more children with a less

educated mother than the sample used by Simmering (2016), and this could also explain the

reductions in overall capacity estimates at each age.

Simmering (2016) found three predictors that explained significant variance in KMAX scores

of 3- to 5-year-olds: age; CP10 on the VWMPL task in a set size of 2; and switch rate on

the VWMPL task in set size 6. These relationships were all positive, with an increased age,

higher CP10 on the VWMPL task, and higher switch rate on the VWMPL task, predicting a
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higher KMAX score on the VWMCD task. Whilst the present study does replicate the age-

related increases in KMAX , the same predictive relationships with the CP10 and switch rate

measures were not found within this longitudinal sample. Switch rate was found to have a

positive relationship with KMAX , where a higher switch rate on VWMPL indicated a higher

KMAX on VWMCD. However, this was only predictive in set size 2 as opposed to set size 6 as

found by Simmering (2016). Moreover, a model without switch rate was found to better fit the

longitudinal data.

In further contrast to Simmering (2016), the present study found an inverse relationship between

CP10 on the VWMPL task and KMAX on the VWMCD task. Here, a lower CP10 in set size 6

was associated with a higher KMAX score. By contrast, Simmering (2016) indicated a higher

CP10 in set size 2 was associated with a higher KMAX . These differences were not solely

due to the difference in the set size found to significantly explain variance in KMAX . Whilst

not significant, the present study also found this inverse relationship was present in set size

2. Given the finding that CP10 is not a longitudinally stable measure, these results provide

further support that the CP10 measure does not effectively capture VWM within a longitudinal

sample, suggesting it is important to move away from this change preference measure to more

detailed measures that consider the differential demands of the task dependent on the context

of the child’s looking behaviours.

Using the same hierarchical regression structure as Simmering (2016), the switch rate and CP10

measures were replaced with the two longitudinally stable measures, TLT and CPNC . Within

this model, both CPNC at SS2 and TLT at SS4 significantly explained variance in KMAX . This

adds to our previous finding that CPNC is a more robust measure of VWM, particularly within

longitudinal examinations, than the CP10 measure used previously.

The final question examined in this chapter was whether performance on the VWMCD task

could be predicted by performance on the VWMPL task up to two years earlier. This novel

question revealed complex interactions. Firstly, only the CPNC and TLT measures from the

VWMPL task were found to relate to performance on the VWMCD task later. Once again,

these measures were the only measures to demonstrate longitudinal stability, and thus may be
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the measures most sensitive to changes in VWM across development.

Looking at the predictive nature of VWMPL over a one year period, CPNC on the VWMPL

task at 30 months of age was strongly related to KMAX on the VWMCD task at 42 months of

age. Results show that for children who had a higher TLT at 30 months of age on the VWMPL

task, a higher CPNC on VWMPL at 30 months of age predicted a higher KMAX at 42 months

of age. These higher looking children appear able to successfully release fixation from the non-

changing side, detect the change on the changing side, and hold fixation to this changing side

for longer periods of time. Whilst being able to release fixation, switch, and maintain fixation

to the changing side is important for later VWM capacity, results indicate that KMAX scores

for these children were only slightly higher than for the children with a higher TLT but lower

CPNC at 30 months of age. Consequently, it appears the overall ability to sustain attention to

the task is the stronger predictor of later VWM capacity.

Nevertheless, it was found that children with a lower mean TLT and a lower mean CPNC on

VWMPL at 30 months of age demonstrated the highest KMAX scores at 42 months of age.

These children were less able to release fixation from the non-changing side and detect the

change on the changing side, demonstrated through a lower level of looking to the changing

side when starting on the non-changing side. For these children, it appears that being able to

simply hold fixation to the side they started on, even for a reduced period of time, is important

for later VWM capacity.

The children with a lower TLT who attempted to release fixation and attend to the changing

side, showing a higher CPNC , may be demonstrating an inability to detect the change. These

children may release fixation from the non-changing side to attend to the changing side, but

become overwhelmed by the demands of the changing side, releasing fixation from the task

early. This results in a lower TLT but a higher CPNC . These children go on to demonstrate

the lowest VWM capacity at 42 months of age, indicating that those who may show a poorer

VWM, through a struggle to detect the change at 30 months of age, also show a poorer VWM

capacity of around 1.07 items at 42 months of age.

It is important to note that gender interactions were also found. For girls, a higher mean CPNC
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at 30 months of age predicted a higher KMAX at 42 months of age but for boys, a lower mean

CPNC at 30 months of age predicted a higher KMAX at 42 months of age. Consequently, it

appears that for girls being able to complete the more challenging demands of releasing fixation,

switching, and then detecting and maintaining fixation to the changing side is important for

later VWM capacity. For boys, the ability to simply hold fixation to the side they started on,

demonstrating sustained attention, is most important for later VWM capacity.

Looking at the predictive nature of VWMPL over a two year period, TLT on the VWMPL

task at 30 months of age was strongly related to KMAX on the VWMCD task at 54 months of

age. This relationship was dependent on gender and maternal education level. It was found

that for girls with a more highly educated mother, a higher TLT at 30 months of age predicted

a higher KMAX at 54 months of age. This aligns with previous findings that the ability to

sustain attention to the task is important for later VWM capacity. However, for girls with a

less educated mother, a lower TLT at 30 months of age predicted a higher KMAX at 54 months

of age. This may be related to the low TLT and low CPNC effect seen at 42 months of age,

where the ability to sustain fixation to the same side was important for later VWM capacity,

even with a reduced TLT. However, this relationship is yet to be fully understood. Deeper

investigations, such as using cluster analysis, should be conducted to determine categories of

children across each measure and how they relate to each other. Cluster analysis is a method

which identifies groups of participants that display more similar behaviour to each other across

a number of measures, but less similar to behaviours to those in different groups (Mooi &

Sarstedt, 2011). This would allow us to see whether these girls are within the same group of

children who demonstrated the low TLT and low CPNC effect on capacity at 42 months of age.

For the boys, whilst there were slight differences in KMAX at 54 months of age dependent on

TLT at 30 months of age, differences in KMAX were strongly dependent on maternal education

level. Boys with a more highly educated mother demonstrated higher KMAX scores than boys

with a less educated mother, regardless of TLT at 30 months of age. This reflects the consistent

effect of maternal education level seen in previous models of KMAX . This effect remained

robust within every model of KMAX , indicating maternal education level has a strong influence

on VWM capacity. This effect may be related to previous findings that children with a less
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educated mother show more difficulty in suppressing distractions on VWM tasks (Wijeakumar

et al., 2019), and thus these children may be struggling to successfully attend to and detect a

change when presented with more competing items, leading to a lower capacity estimate.

In conclusion, VWM may be best examined longitudinally using measures that place the VWM

system in a resource-demanding context. Using such measures, in this case CPNC , the present

study illustrates that VWM is longitudinally stable from 6 to 54 months of age. Moreover, this

measure was related to performance on the widely used change detection task. However, this

relationship also involved the longitudinally stable TLT measure. Modelling these measures

together revealed the involvement of sustained attention in the completion of VWM tasks.

Consequently, I provide support for previous research suggesting multiple factors should be

considered when examining developmental changes in VWM (Shimi & Scerif, 2021; Forbes et

al., in prep). By examining multiple measures within the same task, and when examining

cross-task performance, the multiple systems that may be involved in the completion of a task

can be revealed.



Chapter 3

The Developmental Trajectory of

Executive Function during Early

Childhood.

3.1 Introduction

Early EF improves from the first year through early childhood, with dramatic developmental

changes occurring from three to five-years of age (Carlson, 2005; Diamond, 2013, Garon et al.,

2008). As outlined previously, there are disagreements surrounding the stability of EF and its

components during early childhood. There are, however, robust measures of EF that capture

and are sensitive to age-related improvements in EF. For example, in a recent cross-sectional

examination of over 51,000 participants from different studies in the United States, perfor-

mance on the Minnesota Executive Function Scale (MEFS; Carlson & Zelazo, 2014) tablet

task improved rapidly across early childhood, with more gradual improvements through ado-

lescence (Carlson, 2021). Whilst mean level differences were found across different demographic

populations, this trend of dramatic improvement during early childhood remained.

Whilst there are many longitudinal studies examining EF as a predictor of later academic

80
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achievement (E.g. Duncan et al., 2007; McClelland et al., 2014), there are few that examine

the longitudinal stability of EF itself. Interestingly, parenting studies have contributed to this

examination of EF longitudinally. Helm et al. (2019) found that children’s performance on

the DCCS at four-years of age was positively correlated with performance on the DCCS at

six-years of age. It was concluded that four-year-olds with higher EF continued to demonstrate

this elevated level of EF by 6-years of age, suggesting there is stability in EF in early child-

hood. However, within this study a four-year-old EF measure was comprised of performance

over supposedly separate inhibition (Pig/Bull task), cognitive flexibility (DCCS), and work-

ing memory (forward digit span) tasks. A similar measure was comprised for six-year-old EF,

however the only task that remained the same was the DCCS, with a stroop-like task being

used for inhibitory control and a backward span task being used for working memory by this

age. As discussed within Chapter 1, the use of different tasks over time may lead to differences

resulting from task demands. Furthermore, this study began at school age. What do we know

about longitudinal stability earlier in development?

Early EF has been probed for longitudinal stability from 18 to 26 months of age in a study

that used different tasks at different assessment points (Bernier, Carlson, & Whipple, 2010).

For example, at 18 months of age, Bernier et al. (2010) used a hide-the-pots task (an A-not-B

style search task) and a DCCS style categorisation task. These were compared to multiple

tasks introduced at 26-months of age, for example, a delay-of-gratification and two Stroop-

like tasks. The hide-the-pots and DCCS style categorisation tasks were found to have a low

correlation at 18 months of age. Despite this, both tasks were found to be positively related

to the measure of ’conflict EF’, which consisted of performance on the two Stroop-like and

a spin-the-pots version of the A-not-B style task at 26 months of age. Moreover, hide-the-

pots was associated with later impulse control on the delay of gratification task. Once again,

it is difficult to make strong conclusions about the stability of performance over these tasks

because the tasks place different demands on children and tap different components of EF. This

is especially difficult when performance across tasks has been merged to create a specific EF

factor. Consequently, we cannot establish how well each task captured individual differences,

and do not know if correlations are driven by performance from one specific measure to another,
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or if this is consistent across each measure included within the ’conflict EF’ factor.

In summary, there are currently no longer-term longitudinal studies that examine EF from the

pre-school period using the same task over time. Due to aforementioned concerns with using

different EF measures over time, the MEFS task (Carlson & Zelazo, 2014) will be used within

the present study. This task is able to be used from 2-years of age through to adulthood.

Longitudinal assessments of EF are required to further understand the contribution of individ-

ual differences to EF development during early childhood. This is especially important given

that EF skills are predictive of important outcomes later in development, including school suc-

cess, health, and wellbeing (Moffitt et al., 2011). Moreover, examinations of childhood EF

have revealed positive correlations between EF and mathematics, specifically in low-income

communities at-risk of poverty (Blair et al., 2015). Here, stronger EF skill may be acting

as a protective factor, supporting later school success. Furthermore, homeless children with

stronger EF skills were more likely to succeed in school despite being homeless (Masten et al.,

2012). EF was found to possess unique predictive value beyond that of general IQ, once again

demonstrating better EF may protect against risk-factors, specifically demographic and home

influences.

Given the significance of EF for future outcomes, specifically for at-risk children, it is important

we understand the influence of demographic factors on the development of EF during early

childhood. Variance in measures of latent EF have been related to socio-economic status in two-

to five-year-old children (Hughes et al., 2010; Wiebe et al., 2011), and studies have found socio-

economic status may be uniquely associated with the specific aspects of accuracy and reaction

time when examining EF skills (John et al., 2019). However, other studies have reported no

relationship between socio-economic status and EF (e.g. Duncan et al., 2017). Whilst there is

mixed evidence surrounding the relationship between EF and socio-economic status, a recent

meta-analysis including 8760 children found the correlation between EF and socio-economic

status was statistically significant across all studies (Lawson et al., 2018). Moreover, Hackman

et al. (2015) found effects of early socio-economic status examined through income-to-needs and

maternal education level on EF remained from early to middle childhood. Here, lower socio-
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economic status predicted lower performance on EF tasks. Specifically, maternal education level

predicted planning abilities on the Tower of Hanoi task in six- to seven-year old first graders,

a skill often denoted as an executive functioning skill. Maternal education level continued to

predict this planning ability by fifth grade. Consequently, we see the inclusion of demographic

variables in examination of longitudinal EF development is necessary. No studies have examined

whether these socio-economic measures remain impactful longitudinally, particularly starting

from early childhood.

A current debate within cognitive research surrounds the inclusion of a multitude of socio-

economic factors. Duncan and Magnuson (2012) argued that socio-economic status is too

multifaceted to be captured by one single measure. For example, education and income mea-

sures lead to the presence of different beneficial resources that assist development in unique

ways (Duncan & Magnuson, 2012). Thus, applying one measure as an overall indicator of socio-

economic status may lead to broad assumptions about the impact of socio-economic status that

are in fact related to only the specific measure used. A large number of studies have begun to

assess the unique contributions of specific socio-economic factors in shaping child development

and have found parental educational level has arisen as a strong predictor of children’s cognitive

outcomes (see Waters et al., 2021 for discussion). Furthermore, Waters et al. (2021) indicate

that only parental education level, and not income-to-needs, was associated with all EF and

academic achievement domains, including maths and reading ability. Whilst income-to-needs

reflects a family’s ability to provide educational resources, it appears that the parents own ed-

ucational background is more important for nurturing EF and academic skills. Consequently,

maternal education level will be examined within the present study to provide an examination

of the longitudinal impact of a highly predictive socio-economic measure of EF.

Gender differences in EF have been demonstrated across Western and East Asian samples

(Schirmbeck et al., 2020; Palomino & Brudvig, 2022; Yamamoto & Imai-Matsumura, 2019),

with the majority of research finding girls outperform boys, except in Iran and Tanzania where

this appears reversed (Schirmbeck et al., 2020). As such, when examining individual differences

in EF longitudinally, it is important we consider gender differences, specifically when examining

a western sample where gender differences have been shown to be prevalent during childhood.
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By including factors such as gender and measures of socio-economic status, we can further

understand the stability of EF over the early childhood period, whilst holding constant relevant

covariates that could influence the interpretations of longitudinal associations.

The goal of the present chapter is to shed light on the longitudinal stability of EF across

early childhood, utilising the same executive function task over time. I expect to find EF

measured using the MEFS task will be predictive of itself over a multi-year period, from 30 to

78 months of age, demonstrating similar age-related improvements observed in cross-sectional

research. Based on prior work showing that socio-economic status measured via maternal

education influences EF development, I expect to find children with lower educated mothers

will demonstrate lower EF ability. Given that this research was conducted in the UK, the

sample was primarily from Western backgrounds. Consequently, I also expect to see effects of

gender on EF performance, with girls outperforming boys.

3.2 Methods

3.2.1 Participants

139 children (71 girls) from the same study discussed in Chapter 2 completed the executive

function tasks. There were two cohorts. Cohort one began the study at six months and

were tested for EF skill at 30 and 78 months of age only. Cohort two began the study at 30

months of age and were tested for EF skills at 30, 42, 54 and 78 months of age. Demographics

are shown in Table 3.1. Average maternal education level was a Bachelor’s Degree, and mean

income was £40645.69 (SD = 11720.63). Participants had normal or corrected-to-normal vision.

Colour vision was examined through family history of colour blindness risk; at-risk children were

excluded. All participants were full-term infants.

This project was reviewed and approved by the Ethics Committee at NHS England. Parents

signed an informed consent form on behalf of the child. Children received a toy and a t-shirt

for participating at each lab visit. Parents were given £20 for each visit to the lab and £5 for
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home visits. At the home visit, the child also received 3 toys totalling £5. The data reported

here are a subset of a larger study examining the neural basis of visual working memory and

attention in early development.

Data counts revealed that of the 139 children who completed the MEFS task at 30 months of

age, two did not complete the follow up MEFS task at 78 months of age (see Table 3.2). Cohort

two completed the MEFS task every year of participation at 30, 42, 54, and 78 months of age.

Data counts revealed that of the 84 children from Cohort two who completed the MEFS task

in at least one year of participation, 9 did not complete the MEFS task in year 1, 26 did not

complete the MEFS task in year 2, 18 did not complete the MEFS task in year 3, and 12 did

not complete the MEFS task in year 4. The higher missing data in years 2 and 3 were due to

the Covid-19 pandemic effecting our ability to collect data in these years.
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Table 3.1
Demographic Characteristics

Variable Cohort One Cohort Two

N = 64 N = 75

Gender

Boys 33 (52%) 35 (47%)

Girls 31 (48%) 40 (53%)

Maternal Education Level

Left School before 16 1 (1.6%) 0 (0%)

GCSE/O Levels or equivalent 4 (6.3%) 10 (13%)

A Levels or equivalent 6 (9.4%) 10 (13%)

Trade Apprenticeship 0 (0%) 4 (5.3%)

Some University 5 (7.8%) 6 (8.0%)

Bachelor’s Degree 30 (47%) 30 (40%)

Master’s Degree 12 (19%) 11 (15%)

Doctorate or Professional Degree 6 (9.4%) 4 (5.3%)

Ethnicity

White British 54 (84%) 67 (89%)

Asian 1 (1.6%) 0 (0%)

Black African 0 (0%) 1 (1.3%)

South African 2 (3.1%) 0 (0%)

White British and South American 2 (3.1%) 0 (0%)

White British and Asian 1 (1.6%) 2 (2.6%)

White European and Asian 1 (1.6%) 0 (0%)

White British and Black African 0 (0%) 2 (2.7%)

White British and Black Caribbean 0 (0%) 2 (2.7%)

White British and Other European 3 (4.7%) 1 (1.3%)
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Table 3.2
MEFS data counts and descriptive statistics.

30 months 78 months

Variable N Mean SD N Mean SD

Total Score 139 15.79 5.80 137 73.27 9.56

Total N 139

Table 3.3
Longitudinal MEFS data counts and descriptive statistics, Cohort Two.

Variable N Mean SD

MEFS Total Score

Year 1 75 15.84 5.96

Year 2 58 40.78 16.83

Year 3 66 60.33 12.29

Year 4 72 75.46 9.03

Total N 75

3.2.2 Procedure

The MEFS task was completed in the lab from 30 to 54 months of age. The child was asked if

they wanted to play a new game on a tablet. The tablet was placed on a table in front of the

child. Parents were in a separate room. If the child requested the parent to be in the room,

they were sat behind the child so as to not influence the child’s responses. At 78 months of

age, the MEFS task followed a similar procedure but was conducted inside the child’s home.

The child was asked to sit on a chair at their dining table, where the tablet was located in

front of them. If no such table was present in the home, they were asked to sit on a sofa next

to the experimenter and the tablet was held on the experimenter’s knee facing the child. The

remaining procedure was identical.
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All participants completed the Minnesota Executive Function Scale (MEFS; Carlson & Zelazo,

2014). MEFS is a tablet task taking from two to six minutes (four minutes average test

duration), based on the Dimensional Change Card Sort tasks (DCCS; Zelazo, 2006). This task

involves increasingly difficult levels requiring a child to sort cards into a virtual box according

to dimensions such as size, shape, or colour (see Carlson, 2021 for examples of the MEFS task).

Before each level, the child receives a demonstration and rule checks to ensure understanding

of the rules for that level, e.g. “I have these boxes here. This one has a small elephant on it

and this one has a big elephant on it. In this game the small elephants go in the small elephant

box and the big elephants go in the big elephant box. See, here is a small elephant. It goes in

the small elephant box (experimenter drag). Can you put this elephant where it goes? (Child

drag)”. The child is given a rule to follow based on one of the aforementioned dimensions. The

rule is restated on the first two trials e.g. “If it’s a small elephant, it goes in the small elephant

box” and the relevant dimension was emphasised e.g. “Here is a small elephant”.

In the next five trials, a prompt was given to ensure the child was ready, e.g. “Get ready!”.

After five trials, the experimenter announced a ‘new game’ in which the rule was switched. The

child is asked to follow this new rule, e.g. “the small elephant goes in the small elephant box”

switches to “the small elephant goes in the big elephant box”. To complete this task, children

are required to utilise the different components of EF. The children must be able to focus on

the task and pay attention, remember and update the rule/s, inhibit the prepotent response

from the previous rule, and engage flexibility to switch rules. The MEFS task has been shown

to be valid with more than 5,000 children and is predictive of school readiness and achievement

(Carlson, Zelazo, & Faja, 2013). An age-appropriate starting level is selected automatically by

the app based on test norms. Testing continued with a criterion score of 80 percent at each

level. If the criterion score was not met at the starting level, the app automatically regressed

levels until a lower level was passed, setting the basal level.

There are seven levels within the MEFS task. The first involves simply sorting the cards by

animal category. For example, in level 1, a horse may be displayed on the left and a duck

displayed on the right. The child is asked to sort the cards by the animal displayed. First the

duck game is played: ducks go into the duck box. Next, the child must switch to the horse
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game: horses go into the horse box.

Level 2 focuses on size. For example, an elephant may be presented in the same colour and

shape in both boxes. On the left is a large elephant; on the right is a small elephant. First,

the child is asked to sort by size: large elephants go in the large elephant box, small elephants

go in the small elephant box. The child is then asked to switch the rule: small elephants go in

the large elephant box, and large elephants go in the small elephant box.

Level 3 involves sorting by colour and shape. Within level 3, the background of the card is

coloured and the shape is presented in black. For example, a frog shape with no coloured

features is presented on a red background in the box on the left. On the right, a butterfly

shape with no coloured features is presented on a blue background in the box on the right.

First, the child is asked to sort by shape (frogs go in the frog box, butterflies go in the butterfly

box), and later by colour (red background goes in red background box, blue background goes

in blue background box). Cards always have opposing features, for example, the card on the

box will show a frog with a red background, but the child will be presented a card with a frog

with a blue background.

Level 4 also involves sorting by shape and colour, however, the background is plain and it is

the colour of the shape that changes. For example, the child may be presented with a monkey

that is coloured orange in the box on the left. On the right box, a lion that is coloured green is

presented. The shapes are presented as flat 2-dimensional shapes, where only the outline of the

animal is used. Here, the child is first asked to sort by shape: monkeys go in the orange-monkey

box, lions go in the green-lion box. The child is then asked to sort by colour: orange shapes go

in the orange-monkey box, green shapes go in the green-lion box. As above, cards are presented

with opposing features.

Level 5 involves the same stimuli, however the difficulty is increased. The child is now asked

to switch between the rules every few trials. For example in a continuous flow of sorting the

cards, the child may be asked to play the colour game twice in a row, and then asked to play

the shape game. Here, the child must listen and adapt to the rule stated by the experimenter

before sorting the card. For instance, when a card is presented the experimenter will say ”Play
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the colour/shape game”.

Level 6 also involves the same stimuli, however there is the introduction of a border rule. When

a card with a black border is presented, the child must sort the card by shape, but when a card

with no border is presented, the child must sort by colour. In level 7, these rules are reversed.

The child is asked to switch the border rule so that now, a black border means the child must

sort by colour, and no border means to sort by shape.

3.2.3 Materials

For all tablet tasks, a 1st generation iPad Pro (12.9 inch) was used.

3.2.4 Methods of Analysis

Scoring was automatically calculated by the MEFS app (MEFS App™; Carlson & Zelazo, 2014).

A total score was calculated using a proprietary algorithm accounting for accuracy and reaction

time. Additional scoring measures include highest level passed (0-7) and standardised score.

Standardised score was calculated based on US norms; as our study took place in the UK,

these were not included within our analyses. Consequently, total score was selected as the most

appropriate measure of EF.

Where maternal education level was included in models, it was entered as a scaled numerical

variable. Here, a maternal education of ”left school at or before 16” was entered as 1, ”GCSE/O

levels or equivalent” as 2, ”A Levels or equivalent” as 3, ”Trade Apprenticeship” as 4, ”Some

University” as 5, ”Bachelor’s Degree” as 6, ”Master’s Degree” as 7, and ”Doctorate or Profes-

sional Degree” as 8. Gender was also scaled to create a numerical variable, with boys being

entered as - 0.5 and girls as 0.5 in all models. Considering the mixed findings on the impor-

tance of gender (Schirmbeck et al., 2020) and socio-economic status (Lawson et al., 2018), any

partially significant findings will be explored further by removing non-contributing predictors.

Preliminary analyses showed that the distribution of total score had long tails in years 1, 2, and
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4 (see Figure 3.1); thus, a Student’s t-distribution was used in all models. This approximates

the data distribution more robustly, leading to more normally distributed residuals. As total

score provided one score per participant per year, multiple regression models were run to

examine the stability of EF within individuals over time. Longitudinal models were run using

the glmmTMB R package (Brooks et al., 2017). This allowed us to capture the within-subject

nature of the data while also using the t family distribution. The summary function from

the R package (R. C. Team, 2021) was used to provide regression coefficients. For significant

predictors, the estimated magnitude and direction of the effect are reported. For models with a

random intercept, a type III Wald Chi-squared test from the car package in R (Fox & Weisberg,

2019) was used to assess the contribution of each parameter in reducing residual deviance of

the model. As total score had to be scaled to ensure a comparable scale for future cross-task

comparison analyses presented in Chapter 4, total score was scaled within all models presented

here to keep consistency in the treatment of all variables. At each stage, participants were

removed for missing data. Normality was assessed by examining residuals from the DHARMa

R package (Hartig, 2024) producing Q-Q plots and DHARMa residuals.

Figure 3.1
Histogram showing distribution of MEFS total score across years 1, 2, 3, and 4.
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3.3 Results

3.3.1 Executive Function at 30 months

The first question I examined was whether socio-economic factors and gender were important

for executive function performance at 30 months of age, the age at which the participants first

completed the MEFS task. As there was data for both cohorts at this age, the data can be

combined to provide a larger sample.

MEFS total score was assessed in a GLMM including maternal education level and gender as

predictors of executive function performance at 30 months of age. As the outcome variable

contained only one score per participant, no random intercept was added. Scale parameters

were fixed to control for overdispersion and stabilise model convergence. Maternal education

level and gender were added as fixed effects. All 139 participants were included in the model,

run as:

glmmTMB(Total Score ∼ Gender × Maternal Education level)

There was a partially significant effect of maternal education level on total score, β = 0.01, z =

1.90, p =.058. There was no effect of gender and no interaction between gender and maternal

education level (see Table 22). As seen in Figure 3.2, children with a more highly educated

mother demonstrated a higher MEFS total score at 30 months of age.
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Figure 3.2
Graph showing MEFS total score at 30 months of age by Maternal Education level

To explore this partially significant effect of maternal education level on MEFS total score, a

second model was run removing gender:

glmmTMB(Total Score ∼ Maternal Education level)

Within this model (model 2), maternal education level was found to significantly predict MEFS

total score at 30 months, β = 0.01, z = 1.99, p =.0468. Model comparisons indicate this second

model without gender provided a better model fit as the AIC was lower by more than 2, model

1 AIC = - 424.86, model 2 AIC = - 427.46. A likelihood ratio test suggested the addition of

gender did not significantly improve model fit (X2(2) = 1.39, p =.50). Therefore, model 2 was

selected as the better fitting model showing an impact of maternal eduction on EF performance

at 30 months of age.
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3.3.2 The longitudinal stability of Executive Function

Executive Function from 30 to 78 months

To examine whether EF is longitudinally stable in early childhood, the data were first assessed

across both cohorts from 30 to 78 months of age. In an initial ’baseline’ model, MEFS total score

at 78 months of age was assessed in a GLMM to examine the effect of maternal education level

and gender on executive function performance. Gender was included in the model as evidence

suggests gender is important from around 5-years of age (Palomino & Brudvig, 2022). As the

outcome variable contained only one score per participant, no random intercept was added.

Scale parameters were fixed to control for overdispersion and stabilise model convergence. 137

participants were included in this model, run as:

glmmTMB(Total Score ∼ Gender × Maternal Education level)

There was no main effect of gender or maternal education level (see Table 23). However, there

was a significant interaction between gender and maternal education level, β = 0.04, z = 2.21,

p =.0272. As seen in Figure 3.3, girls with a more highly educated mother demonstrated a

higher MEFS total score (M = 74.90, SD = 8.31) than girls with a less educated mother

(M = 71.05, SD = 8.09). This was the inverse for boys. Boys with a more highly educated

mother demonstrated a lower MEFS total score (M = 72.05, SD = 10.44) than boys with a

less educated mother (M = 73.79, SD = 11.33).
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Figure 3.3
Graph showing MEFS total score at 78 months of age by Maternal Education level and
gender.

Next, 30 month MEFS total score was added as a predictor of 78 month MEFS total score in

a GLMM model including maternal education level and gender as predictors. 16 children were

excluded for not having a MEFS total score at both 30 months of age and 78 months of age.

121 participants were included in the model, run as:

glmmTMB(Total Score[78] ∼ Total Score[30] × Gender × Maternal Education level)

MEFS total score at 30 months of age was found to significantly predict MEFS total score at

78 months of age, β = 0.88, z = 3.98, p <.001. As seen in Figure 3.4, a higher MEFS total

score at 30 months of age predicted a higher MEFS total score at 78 months of age. Mean

MEFS total score improved from 15.79 (SD = 5.80) at 30 months of age to 73.27 (SD = 9.56).

There was no main effect of gender or maternal education level (see Table 24). There was a

marginal interaction between gender and maternal education level, β = 0.03, z = 1.87, p= .061.
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Figure 3.4
Graph showing MEFS total score at 78 months of age by MEFS total score at 30 months of
age.

Executive Function from 30, 42, 54, to 78 months

The previous results within this chapter demonstrate robust individual difference in EF over

time but also a complicated relationship between the contributions of maternal education level

and gender on EF development during early childhood. To explore this further, EF performance

was examined in a more detailed model over age groups. Cohort two completed the MEFS task

across all four years of test. Consequently, MEFS total score was examined in cohort two only

at 30, 42, 54, and 78 months of age.

MEFS total score was examined in a GLMM including year, maternal education level, and

gender as predictors. As data contained multiple scores per participant, participant code was

added as a random intercept. 75 participants were included in the model, run as:

glmmTMB(Total Score ∼ Y ear×Gender×Maternal Education level+(1|ParticipantCode))

A Wald Chi-square demonstrated both year (X2(3) = 3434.48, p< .001) and gender (X2(1) =
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11.19, p< .001) significantly explained variance in MEFS total score (see Table 25 for regression

coefficients). These effects were superseded by a significant interaction of year and gender on

MEFS total score, X2(3) = 36.71, p < .001. As seen in Figure 3.5, MEFS total score increased

across years. This increase was influenced by gender, with girls demonstrating a higher increase

in MEFS total score in year 2 than boys. By years 3 and 4, both genders were comparable (see

Table 26 for means).

A Wald Chi-square test also demonstrated a significant effect of maternal education level on

MEFS total score, (X2(3) = 3434.48, p <.001) . As seen in Figure 3.6, children with a more

highly educated mother (M = 50.62, SD = 25.43) demonstrated higher overall mean total

scores on the MEFS task than children with a less educated mother (M = 44.11, SD = 25.66).

Figure 3.5
Graph showing MEFS total score over year from 30 to 78 months of age by gender.
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Figure 3.6
Graph showing MEFS total score by Maternal Education level category.

Within this model, the random intercept for participant code had a variance of 0.0012, sug-

gesting very low variability in MEFS total score across participants. This suggests fixed effects

within the model explain the majority of variance in MEFS total score across participants.

Overall, gender contributes to variance in EF but only during particular points in develop-

ment. Maternal education level had a consistent influence on EF performance during early

childhood.

3.4 Discussion

Within the present study, the goal was to explore the longitudinal stability of EF from the

toddler period through early childhood using the same measure over time in one of the first

longitudinal studies to do so.
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Previous research suggests socio-economic factors including maternal education level are impor-

tant for EF (Hackman et al., 2015; Lawson, Hook, & Farah, 2018). The results of the present

study support this. Performance on the MEFS task at 30 months of age was influenced by

maternal education level, an indicator of socio-economic status. Here, children with a more

highly educated mother demonstrated higher MEFS total scores at 30 months of age. This

effect of maternal education continued to be important at 78 months of age, however this rela-

tionship involved gender. For girls, the positive association between maternal education level

and MEFS total score remained at 78 months of age. For boys, the inverse was found. Here,

boys with a less educated mother received higher MEFS total scores at 78 months of age. It

is important to note that by 78 months of age, children who are struggling with EF skills the

most are more likely to have been identified in school, and offered intervention. These boys

with a less educated mother were the ones demonstrating lower EF scores at 30 months of age;

thus, it is possible these boys received additional support once entering school. To investigate

this further, I plan to explore which children received interventions in our cohorts in future

work.

Overall, maternal education level was consistently related to the MEFS total score, with a

main effect of maternal education also being found within the longitudinal model of EF stability.

Here, children with a more highly educated mother attained higher MEFS total scores regardless

of age or gender. This supports previous research that indicators of parental education are

strongly associated with EF development (Hackman et al., 2015; Waters et al., 2021). As

discussed by Waters et al. (2021), the present study agrees with suggestions for increased

access to education opportunities for parents, particularly those with a low-level of education,

as a means of supporting children’s cognitive development.

From examining this longitudinal model of EF, results show an expected increase in executive

function from 30 to 78 months. Importantly, the fine-grained analysis of cohort two demon-

strates a year-by-year increase in EF from 30 to 54 months of age, with a further age-related

increase to 78 months of age. These results provide evidence that EF, measured on the MEFS

task, is longitudinally stable over a 5-year period from as early as 30 months of age. The

present study supports previous research indicating performance on DCCS-based measures is
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strongly associated with age (Doebel & Zelzo, 2015). Moreover, whilst EF predicted itself at

each year, the level at which MEFS scores increased depended on gender. Both boys and girls

see a similar age-related increase in EF, however girls demonstrate a steeper increase in EF

at 42 months of age. Consistent with previous research (Schirmbeck et al., 2020; Palomino &

Brudvig, 2022), girls demonstrated higher MEFS total scores at each age, but by 54 and 78

months of age, boys and girls EF scores were more comparable. To examine the trajectory of

EF further, growth curve analyses could be modelled to produce a trajectory of average EF

growth over this time period. This could allow researchers to identify children deviating from

this developmental trajectory in order to provide intervention.

It is important to note that due to the Covid-19 pandemic, some MEFS assessments were

conducted remotely. All guidelines from Reflection Sciences (n.d.) on how to conduct remote

assessment were followed. However due to the nature of conducting this assessment online,

reaction times may have been slightly reduced. Consequently, MEFS total scores may have

been artificially reduced. Whilst this is not believed to be a highly impactful concern, I plan

to conduct additional analyses including whether the assessment was conducted remotely in

future work.

In conclusion, EF is longitudinally stable when accounting for maternal education level and

gender. Children with a higher EF at 30 months of age demonstrated a higher EF across

childhood through to 78 months of age.



Chapter 4

Visual Working Memory as a predictor

of Executive Function in Early

Childhood.

4.1 Introduction

Cognition in early childhood is strongly related to future outcomes, for example, visual cognition

measured in early childhood is predictive of EF skills up to 11 years later (Rose et al., 2012).

One aspect of visual cognition, VWM, has also been found to be particularly important for

verbal and written communication (Daneman & Merikle, 1996). VWM is a sub-system of the

working memory system that involves the ability to represent, hold, and manipulate visual

information in a limited capacity over short periods of time (Cowan, 2001). This VWM system

is implicated in EF, with representations of objects within the working memory system being

important for EF skills (Buss & Spencer, 2014). These EF skills are consistently linked to

academic achievement (McClelland et al., 2014). Recent research has suggested that to increase

our understanding of these EF skills, we must understand the development of EF early, when

the components of EF are also developing (Spencer et al., 2025).

101
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Previous research has attempted to examine EF longitudinally from the early infancy period.

For example, Broomell and Bell (2022) investigated EF from 5 months to 9 years of age. These

researchers found that a composite of EF began to show stability from 24 months of age. This

composite was created from performance on the DCCS task, the tongue task, the A-not-B task,

and a crayon delay task at 24 months of age, with alternative tasks such as the day/night task

being introduced at 36 and 48 months of age. From the 24 month time point, EF was found

to be longitudinally stable, with each composite predicting the next age-based composite of

EF. However, infant EF composites at 5 and 10 months of age, using only the A-not-B task,

demonstrated no longitudinal stability. This contradicted their previous examinations of these

data, where EF at 10 months of age demonstrated a continuous pattern of development to 6

years of age. These differences may have resulted from the use of a different dependent variable

from the A-not-B task. Other work by Carlson et al. (2004) also suggests that EF may be

stable and self-predictive from the second year of life onwards. In particular, Carlson et al.

(2004) found a similar 24-month composite of EF significantly correlated with a 39-month EF

composite.

Although this work is promising, there remains a limited ability to predict later EF from early

infancy. This may stem from different EF-related components developing at different ages.

By creating composites of EF during early infancy, we may wrongly be assuming that each

component provides an equal contribution to EF across different stages of development. It is

important to consider that each component of EF has its own developmental trajectory. Thus,

to better our understanding of EF, it may be useful to investigate the relationships between

component-level developmental trajectories and the development of EF. For instance, there are

no longitudinal examinations investigating the co-development of VWM and EF across early

childhood.

The goal of the present chapter is to investigate the co-development of the VWM and EF

systems by looking at relationships between VWM from early infancy and toddler EF, utilising

related VWM measures and the same EF task over time. I expect to find VWM measured using

the previously used VWMPL task in infancy and VWMCD task in later childhood will both be

predictive of EF on the MEFS task from 30 to 78 months of age. I expect that children who
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show a higher VWM ability will demonstrate a higher EF ability later. Based on the prior work

reviewed in Chapter 3 showing that socio-economic status measured via maternal education

influences EF development, I expect to find children with more highly educated mothers will

demonstrate an overall higher EF ability. Consequently, I expect the influence of VWM on EF

will be impacted by maternal education level.

4.2 Methods

4.2.1 Participants

151 children (76 girls) completed the visual working memory and executive function tasks.

There were two cohorts. Cohort one began the study at six months and were tested for VWM

at 6-, 18 , and 30 months and EF skill at 30 and 78 months old only. Cohort two began the

study at 30 months and were tested for VWM at 30 , 42 , 54 months and EF skills at 30 , 42 , 54

, and 78 months old. Demographics are shown in Table 4.1. Average maternal education level

was a Bachelor’s Degree, and mean family income was 40342.68 (SD = 12000.99). Participants

had normal or corrected-to-normal vision. Colour vision was examined through family history

colour blindness risk, at-risk children were excluded. All participants were full-term infants.

This project was reviewed and approved by the Ethics Committee at NHS England. Parents

signed an informed consent form on behalf of the child. Children received a toy and a t-shirt

for participating at each lab visit. Parents were given £20 for each visit to the lab and £5 for

home visits. At the home visit the child also received 3 toys totalling £5. The data reported

here are a subset of a larger study examining the neural basis of visual working memory and

attention in early development.

Data counts revealed that the 64 children from cohort one who completed the MEFS task in

year 3, at 30 months of age, all completed the VWMPL in year 1, at 6 months of age. Of these

64 children, 2 did not complete the VWMPL task in year 2, at 18 months of age, and 2 did not

complete the VWMPL in year 3, at 30 months of age (see Table 4.2).
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Cohort two completed the VWMCD task in years 2 and 3, at 42 and 54 months of age. Cohort

two also completed the MEFS task at 42 and 54 months of age, with an additional MEFS task

completed in year 4, at 78 months of age. Of the 75 children from cohort two who completed

the MEFS task in at least one year of participation, 3 did not complete the VWMCD task at

any age and were excluded. Of the total 72 children who completed both the MEFS and the

VWMCD task in at least one year of participation, 15 children did not complete the VWMCD

task and 14 did not complete the MEFS task in year 2, at 42 months of age. Of the 72 children

who completed both tasks in at least one year of participation, a separate 15 children did

not complete the VWMCD task at 54 months of age, in year 3, and 6 did not complete the

MEFS task at this age. Of the 72 children who completed both tasks in at least one year of

participation, all completed the MEFS task in year 4, at 78 months of age (see Table 4.3).

Both cohorts completed the VWMPL task at 30 months of age and the MEFS task at 78

months of age. Of the 137 children who completed the MEFS task at 78 months of age, 8 did

not complete the VWMPL task at 30 months of age (see Table 4.4).
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Table 4.1
Demographic Characteristics

Variable Cohort One Cohort Two

N = 67 N = 84

Gender

Boys 35 (52%) 40 (48%)

Girls 32 (48%) 44 (52%)

Maternal Education Level

Left School before 16 1 (1.5%) 1 (1.2%)

GCSE/O Levels or equivalent 4 (6.0%) 14 (17%)

A Levels or equivalent 6 (9.0%) 11 (13%)

Trade Apprenticeship 0 (0%) 5 (6.0%)

Some University 5 (7.5%) 8 (9.5%)

Bachelor’s Degree 33 (49%) 30 (36%)

Master’s Degree 12 (18%) 11 (13%)

Doctorate or Professional Degree 6 (9.0%) 4 (4.8%)

Ethnicity

White British 57 (85%) 75 (89%)

Asian 1 (1.5%) 0 (0%)

Black African 0 (0%) 1 (1.2%)

South African 2 (3.0%) 0 (0%)

White British and South American 2 (3%) 0 (0%)

White British and Asian 1 (1.5%) 2 (2.4%)

White European and Asian 1 (1.5%) 0 (0%)

White British and Black African 0 (0%) 2 (2.4%)

White British and Black Caribbean 0 (0%) 2 (2.4%)

White British and Other European 3 (4.5%) 2 (2.4%)
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Table 4.2
VWMPL and MEFS data counts and descriptive statistics, cohort one.

Year 1 Year 2 Year 3

Variable N Mean SD N Mean SD N Mean SD

CPC 64 0.64 0.18 62 0.66 0.20 62 0.63 0.15

CPNC 64 0.45 0.18 62 0.43 0.19 62 0.44 0.19

MEFS Total Score 64 15.74 5.65

Total Participants 64 62 64

Total N 64

Table 4.3
VWMCD and MEFS data counts and descriptive statistics, cohort two.

Year 2 Year 3 Year 4

Variable N Mean SD N Mean SD N Mean SD

KMAX 57 1.28 0.68 57 2.06 0.68 72

MEFS Total Score 58 50.3840.78 15.93 66 60.33 12.29 72 75.46 9.03

Total Participants 58 66 72

Total N

Table 4.4
VWMPL and MEFS data counts and descriptive statistics across cohorts.

Variable N Mean SD

CPC at 30 months 129 0.65 0.16

CPNC at 30 months 129 0.43 0.18

MEFS Total score at 78 months 137 73.27 9.56

Total N 137
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4.2.2 Procedure

For cohort one, participants completed the VWMPL task outlined in Chapter 2 and the MEFS

task outlined in Chapter 3. For cohort two, participants completed the VWMPL and VWMCD

tasks outlined in Chapter 2 and the MEFS task outlined in Chapter 3.

4.2.3 Materials

For the VWMPL and VWMCD eyetracking tasks, an Eye-Link 1000 plus (SR Research, Ontario,

Canada) was used (See Chapter 2, Materials for details). For the MEFS tablet task a 1st

generation iPad Pro (12.9 inch) was used.

4.2.4 Method of Analysis

Given the stability of MEFS total score over time within our longitudinal data (see Chapter

3 for details), total score will be used as the measure of executive function performance for

cross-task examinations. Visual working memory will be included in models as a predictor of

EF, first using the measures from VWMPL outlined in Chapter 2, CPC and CPNC . To follow

the previous strategy used when applying these variables as predictors, TLT will be added

alongside CPC and CPNC . VWM will then be examined as a predictor of EF using the KMAX

measure from VWMCD (see Chapter 2 for details).

Where maternal education level was included in models, it was entered as a scaled numerical

variable. Here, a maternal education of ”left school at or before 16” was entered as 1, ”GCSE/O

levels or equivalent” as 2, ”A Levels or equivalent” as 3, ”Trade Apprenticeship” as 4, ”Some

University” as 5, ”Bachelor’s Degree” as 6, ”Master’s Degree” as 7, and ”Doctorate or Profes-

sional Degree” as 8. Gender was also scaled to create a numerical variable, with boys being

entered as - 0.5 and girls as 0.5 in all models.

As MEFS total score will be the dependent variable, the analytical strategy from Chapter 3

will be followed. Due to the longitudinal nature of the data resulting in hierarchical data, and
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the need to handle non-normally distributed data, generalized linear mixed models (GLMM)

were used. The glmm function from the glmmTMB R package (Brooks et al., 2017) was used

to enable the use of Student’s t-distribution by using the t-family function in R. The summary

function from the R package (R. C. Team, 2021) was used to provide regression coefficients.

For significant predictors, the estimated magnitude and direction of the effect are reported.

For models with a random intercept, a type III Wald Chi-squared test from the car package in

R (Fox & Weisberg, 2019) was used to assess the contribution of each parameter in reducing

residual deviance of the model. Due to the non-normal distribution of scores, total score

was scaled in all models. Any variables entered as a predictor of EF were scaled and centred

accordingly. At each stage, participants were removed for missing data. Normality was assessed

by examining residuals from the DHARMa R package (Hartig, 2024) producing Q-Q plots and

DHARMa residuals.

4.3 Results

4.3.1 Does VWMPL during infancy predict EF later?

To begin to capture the longitudinal relationship between VWM and EF, I will first examine

how the measures from the VWMPL task in infancy relate to performance on the MEFS task

later. This analysis will be conducted using data from cohort one only. Here VWMPL data

was examined at 6- and 18 months of age, and MEFS was examined at the earliest available

time-point of 30 months of age.

First, performance on the VWMPL task at 6 months of age was examined as a predictor of EF

at 30 months of age. A GLMM predicting MEFS total score at 30 months of age as a function

of mean CPC at 6 months of age, mean TLT at 6 months of age, maternal education level

and gender was assessed. As the outcome variable contained only one score per participant,

no random intercept was added. Scale parameters were fixed to control for overdispersion and

stabilise model convergence. Maternal education level and gender were added as fixed effects.
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One child was excluded for not having both a MEFS total score at 30 months of age and a

CPC at 6 months of age. 63 participants were included in the model, run as:

glmmTMB(Total Score ∼ CPC × TLT ×Gender ×Maternal Education level)

There were no significant main effects found in the model (see Table 27). There was a significant

interaction between gender and mean TLT at 6 months of age, β=0.02, z =2.19, p =.02874.

This was superseded by an interaction between maternal education level, gender, and mean

TLT at 6 months of age, β= - 0.03, z = - 2.58, p = .00991. As seen in Figure 4.1, girls showed

a positive trend with TLT, where a higher TLT at 6 months of age predicted a higher MEFS

total score at 30. months of age, particularly for girls with a less educated mother. This was

inverse for boys, although the relationship were generally weaker. For boys, a higher TLT at 6

months of age predicted a lower MEFS total score at 30 months of age, particularly for boys

with a less educated mother (see Table 28 for means). Overall, children with a more highly

educated mother tended to demonstrate higher MEFS total scores, with less dependence on

TLT at 6 months of age.
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Figure 4.1
Graph showing MEFS total score at 30 month of age by mean TLT at 6-months of age,
gender, and Maternal Education level category.

Note: The GLMM prediction is demonstrated alongside the linear model fit in order to aid visual depictions of
effect directionality. Maternal education level is demonstrated here using a median split to categorise low and
high levels, but maternal education was entered as continuous in all models. Here, a lower education
represents below University level.

Next, performance on the VWMPL task at 6 months of age was examined using the CPNC

measure as a predictor of EF at 30 months of age. A GLMM predicting MEFS total score at 30

months of age as a function of mean CPNC at 6 months of age, mean TLT at 6 months of age,

maternal education level and gender was assessed. The same 63 participants were included in

the model, run as:

glmmTMB(Total Score ∼ CPNC × TLT ×Gender ×Maternal Education level)

There were no significant main effects found in the model (see Table 29). There was a marginally

significant interaction between maternal education and mean TLT at 6 months of age, β= -

0.01, z = - 1.67, p =.09598. This was superseded by an interaction between maternal education

level, gender, and mean TLT at 6 months of age, β= - 0.03, z = - 2.59, p = .00953. This effect,

seen in Figure 4.1, was therefore robust across both analyses.
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The extent to which early VWM is predictive of EF at 30 months of age was then further

examined using the measures from the VWMPL task at 18 months of age. A GLMM predicting

MEFS total score at 30 months of age as a function of mean CPC at 18 months of age, mean TLT

at 18 months of age, maternal education level and gender was assessed. Maternal education

level and gender were added as fixed effects. All 62 participants were included in the model,

run as:

glmmTMB(Total Score ∼ CPC × TLT ×Gender ×Maternal Education level)

There were no significant main effects of mean TLT at 18 months of age, gender, or maternal

education level (see Table 30). There was a significant main effect of mean CPC at 18 months

of age on MEFS total score at 30 months of age, β = 0.09, z = 2.17, p =.02981. This was

superseded by an interaction between maternal education level and mean CPC at 18 months of

age, β = - 0.12, z = - 2.61, p =.00917. As seen in Figure 4.2, for children with a less educated

mother, a higher mean CPC at 18 months of age predicted a higher MEFS total score at 30

months of age. Children with a less educated mother and a higher mean CPC at 18 months of

age demonstrated a mean MEFS total score at 30 months of age (M = 16.50, SD = 5.01) on

par with that of children with a more highly educated mother. Children with a less educated

mother who had a lower mean CPC at 18 months of age showed the lowest mean MEFS total

score at 30 months of age (M = 11.89, SD = 5.30).

A significant interaction between maternal education level and TLT was also found, β = - 0.01,

z = - 2.58, p =.00989. As seen in Figure 4.3, children with a less educated mother and a higher

mean TLT at 18 months of age had a higher MEFS total score at 30 months of age. Overall,

children with a more highly educated mother demonstrated higher MEFS total scores at 30

months of age, regardless of mean TLT at 18 months of age (see Table 31 for means).
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Figure 4.2
Graph showing MEFS total score at 30 month of age by mean CPC at 18 months of age and
Maternal Education level category.

Note: The GLMM prediction is demonstrated alongside the linear model fit in order to aid visual depictions of
effect directionality. Maternal education level is demonstrated here using a median split to categorise low and
high levels, but maternal education was entered as continuous in all models. Here, a lower education
represents below University level.

Figure 4.3
Graph showing MEFS total score at 30 month of age by mean TLT at 18 months of age and
Maternal Education level category.

There was also a significant interaction between maternal education level and gender, β= -

0.03, z = - 2.55, p =.01065. As seen in Figure 4.4, a higher maternal education level predicted



4.3. Results 113

a higher MEFS total score at 30 months of age, particularly for boys.

Figure 4.4
Graph showing MEFS total score at 30 month of age by gender and Maternal Education level.

Note: The GLMM prediction is demonstrated alongside the linear model fit in order to aid visual depictions of
effect directionality. Maternal education level is demonstrated here using a median split to categorise low and
high levels, but maternal education was entered as continuous in all models. Here, a lower education
represents below University level.

Finally, there was a significant interaction between maternal education level, gender, mean CPC

at 18 months of age and mean TLT at 18 months of age, β= - 0.31, z = - 3.03, p =.00244.

This four-way interaction must be interpreted with caution due to a reduced sample size and

the high number of predictors. For example, within this model there were only 10 boys with

a lower educated mother, and 6 girls with a lower educated mother. When these groups are

split further to account for TLT and CPC level at 18 months, the data were highly unbalanced.

Whilst GLMM is sensitive to unbalanced data, there is increased likelihood of over-fitting of

the data. Given these concerns, I did not attemp to interpret the four-way interaction further.

Note that the significant two-way interactions above were each contained within the four-way

interaction.

Performance on the VWMPL task at 18 months of age was then examined using the CPNC

measure as a predictor of EF at 30 months of age. All 62 participants were included in the

model, run as:
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glmmTMB(Total Score ∼ CPNC × TLT ×Gender ×Maternal Education level)

There were no significant main effects within the model (see Table 32). Consistent with the

previous model, there was a significant interaction of mean TLT at 18 months of age and

maternal education level, β= - 0.01, z = - 2.22, p =.0266. This is the same effect seen in Figure

4.3, showing consistency across models.

There was a significant interaction between gender and mean TLT at 18 months of age, β= -

0.02, z = - 2.48, p =.0131. There was also a significant interaction between mean CPNC at

18 months of age and mean TLT at 18 months of age, β= 0.09, z = 2.03, p =.0428. These

two-way interactions were superseded by a significant three-way interaction between gender,

mean CPNC at 18 months of age, and mean TLT at 18 months of age, β= 0.19, z = 2.22, p

=.0267. As seen in Figure 4.5, for children with a higher mean CPNC at 18 months of age, a

higher TLT at 18 months of age predicted a higher MEFS total score at 30 months of age. For

children with a lower CPNC at 18 months of age, we see differences in the influence of TLT

dependent on gender. For boys with a lower CPNC at 18 months of age, a higher mean TLT

at 18 months of age predicted a higher MEFS total score at 30 months of age (see Table 33 for

means). For girls with a lower CPNC at 18 months of age, this was inverse. It is important to

note that girls with a lower mean CPNC at 18 months of age demonstrated the highest MEFS

total scores at 30 months of age.
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Figure 4.5
Graph showing MEFS total score at 30 month of age by gender, mean TLT at 18 months of
age, and CPNC category at 18 months of age.

Note: The GLMM prediction is demonstrated alongside the linear model fit in order to aid visual depictions of
effect directionality. NC level refers to mean CPNC at 18 months of age and is demonstrated here using a
median split to categorise low and high levels, but CPNC was entered as continuous in all models.

There was also a significant interaction of gender, maternal education level, and mean CPNC

at 18 months of age, β= - 0.28, z = - 2.06, p =.0397. As seen in Figure 4.6, a higher mean

CPNC at 18 months of age predicts a higher MEFS total score at 30 months of age for boys.

Similarly, girls with a less educated mother who have a higher mean CPNC at 18 months of

age perform better on the MEFS task at 30 months of age (see Table 34 for means). For girls

with a more highly educated mother, this relationships seems inverse. Here, a lower CPNC at

18 months of age predicted a higher MEFS total score at 30 months of age.
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Figure 4.6
Graph showing MEFS total score at 30 months of age by gender, Maternal Education level,
and CPNC category at 18 months of age.

Note: The GLMM prediction is demonstrated alongside the linear model fit in order to aid visual depictions of
effect directionality. Maternal Education level is demonstrated here using a median split to categorise low and
high levels, but maternal education was entered as continuous in all models. Here, a lower education
represents below University level.

Overall, there tend to be positive trends with the VWMPL measures, where a higher TLT,

CPC , and CPNC at 18 months of age predict a better MEFS total score at 30 months of age,

particularly for children with a less educated mother.

4.3.2 Does toddler VWMPL during predict EF later?

To continue to examine the longitudinal predictability of VWM, the data were examined across

both cohorts. This allowed for a longer period of prediction. Both cohorts completed the

VWMPL task at 30 months of age and the MEFS task at 78 months of age. Consequently, I

examined performance on the VWMPL task from 30 months of age as a predictor of EF at 78

months of age. Given the use of MEFS total score at 78 months of age as an outcome variable,

it is important to note that whilst the majority of children were 78 months of age during this

year 4 examination, effects of covid-19 resulted in some children being tested at an older age

(see Figure 4.7). Consequently, age at test will be included in models examining year 4 (78
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month) MEFS as an outcome variable.

Figure 4.7
Histogram demonstrating age at test for MEFS total score in year 4.

Performance on the VWMPL task at 30 months of age was then examined using the CPC

measure as a predictor of EF at 78 months of age. A GLMM predicting MEFS total score at

78 months of age as a function of mean CPNC at 30 months of age, mean TLT at 30 months of

age, maternal education level and gender was assessed. To account for possible variation due

to age at test, age at test of MEFS was added as a fixed effect with no interaction terms. All

129 participants with both a CPC at 30 months of age and a MEFS total score at 78 months

of age were included in the model, run as:

glmmTMB(Total Score ∼ CPC × TLT ×Gender

×Maternal Education level + MEFS Age at test)

There was a main effect of mean TLT at 30 months of age on MEFS total score at 78 months

of age, β= 0.02, z = 2.30, p =.0217. As seen in Figure 4.8, a higher mean TLT at 30 months
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of age predicted a higher MEFS total score at 78 months of age.

Figure 4.8
Graph showing MEFS total score at 78 month of age by mean TLT at 30 months of age.

There was also a significant main effect of mean CPC at 30 months of age on MEFS total score

at 78 months of age, β= 0.20, z = 2.108, p =.0350. As seen in Figure 4.9, a higher mean CPC

at 30 months of age predicted a higher MEFS total score at 78 months of age.
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Figure 4.9
Graph showing MEFS total score at 78 months of age by mean CPC at 30 months of age.

Note: The GLMM prediction is demonstrated alongside the linear model fit in order to aid visual depictions of
effect directionality. Maternal Education level is demonstrated here using a median split to categorise low and
high levels, but maternal education was entered as continuous in all models. Here, a lower education
represents below University level.

There were no main effects of gender or maternal education level (see 35 for regression coeffi-

cients). There was a marginal interaction between gender and maternal education level, similar

to that of the model of MEFS total score at 78 months presented in Chapter 3.

Performance on the VWMPL task at 30 months of age was then examined using the CPNC

measure as a predictor of EF at 78 months of age. A GLMM predicting MEFS total score at

78 months of age as a function of mean CPNC at 30 months of age, mean TLT at 30 months

of age, maternal education level and gender was assessed. All 129 participants were included

in the model, run as:

glmmTMB(Total Score ∼ CPNC × TLT ×Gender

×Maternal Education level + MEFS Age at test)
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There was a main effect of mean TLT at 30 months of age on MEFS total score at 78 months

of age, β= 0.02, z = 2.14, p =.0325. This is the same effect as can be seen in Figure 4.8,

showing consistency across models. There were no main or interaction effects of mean CPNC

at 30 months of age, gender, or maternal education level (see Table 36). There was no main

effect of age at test of MEFS.

4.3.3 Does VWMCD predict later EF?

To further understand how VWM relates to later EF, the question of whether VWM capacity

predicts later EF was assessed. Performance on the VWMCD task at 42 and 54 months of age

was examined, using data from cohort two only. Data collection in year 3, at 54 months of age,

was impacted by the covid-19 pandemic similarly to the year 4 data. Consequently, age at test

will be included within this model.

Firstly, VWMCD at 42 months of age was examined as a predictor of EF at 54 months of age.

A GLMM predicting MEFS total score at 54 months of age as a function of maximum capacity,

KMAX , at 42 months of age, maternal education level and gender was assessed. To account for

possible variation due to age at test, age at test of MEFS was added as a fixed effect with no

interaction terms. 17 participants were excluded for not having both a KMAX at 42 months of

age and a MEFS total score at 54 months of age. 55 participants were included in the model,

run as:

glmmTMB(Total Score ∼ KMAX ×Gender ×Maternal Education level + Age at test)

There was a significant main effect of KMAX at 42 months of age on MEFS total score at 54

months of age, β= 0.04, z = 2.17, p =.0302. As seen in Figure 4.10, a higher KMAX at 42

months of age was related to a higher MEFS total score at 54 months of age. There was also a

marginally signifiant main effect of gender, β= - 0.05, z = - 1.95, p =.0514. There were no main

or interaction effects with maternal education level or AgeMEFS (see Table 37 for regression

coefficients).
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Figure 4.10
Graph showing MEFS total score at 54 months of age by KMAX at 42 months of age.

Next, VWMCD at 42 months of age was examined as a predictor of EF at 78 months of age. A

GLMM predicting MEFS total score at 78 months of age as a function of KMAX at 42 months

of age, maternal education level and gender was assessed. 20 participants were excluded for

not having both a KMAX at 42 months of age and a MEFS total score at 78 months of age. 52

participants were included in the model, run as:

glmmTMB(Total Score ∼ KMAX×Gender×Maternal Education level+MEFS Age at test)

There was no main effect of age at test (see Table 38 for regression coefficients). There was a

significant main effect of gender on MEFS total score at 78 months of age, β= - 0.05, z = -

2.49, p =.01266, and a significant main effect of maternal education level on MEFS total score

at 78 months of age, β= 0.02, z = 2.16, p =.03116. There was also a significant interaction of

maternal education level and gender, β= 0.05, z = 2.80, p =.00518, and a significant interaction

of maternal education level and KMAX at 42 months of age, β= - 0.04, z = - 2.03, p =.04248.

These effects were superseded by a significant interaction between maternal education level,
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gender, and KMAX at 42 months of age, β= 0.16, z = 4.40, p <.001. As seen in Figure 4.11, a

higher KMAX at 42 months of age predicted a higher MEFS total score at 78 months of age for

girls with a more highly educated mother and for boys with a less educated mother. This was

inverse for boys with a more highly educated mother. For boys with a more highly educated

mother a lower KMAX at 42 months of age predicted a higher MEFS total score at 78 months

of age. Girls with a less educated mother showed the least dependency on KMAX at 42 months

of age, with MEFS total scores at 78 months of age being comparable despite a higher or lower

KMAX at 42 months of age (see Table 39 for means).

Figure 4.11
Graph showing MEFS total score at 78 months of age by Maternal Education level, gender,
and KMAX at 42 months of age.

Note: The GLMM prediction is demonstrated alongside the linear model fit in order to aid visual depictions of
effect directionality. Maternal Education level is demonstrated here using a median split to categorise low and
high levels, but maternal education was entered as continuous in all models. Here, a lower education
represents below University level.

Finally, VWMCD at 54 months of age was examined as a predictor of EF at 78 months of age.

A GLMM predicting MEFS total score at 78 months of age as a function of KMAX at 54 months

of age, maternal education level and gender was assessed. 20 participants were excluded for

not having both a KMAX at 54 months of age and a MEFS total score at 78 months of age. 52

participants were included in the model, run as:
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glmmTMB(Total Score ∼ KMAX×Gender×Maternal Education level+MEFS Age at test)

There were no main effects or interactions of maternal education level, gender, or KMAX at 54

months of age on MEFS total score at 78 months of age (see Table 40). There was also no main

effect of age at test.

Overall, we see VWMCD is predictive of later executive function, with KMAX at 42 months

predicting MEFS total score at 78 months when accounting for maternal education level and

gender.

4.4 Discussion

Within the present chapter, the goal was to investigate the co-development of the VWM and

EF in the first study to track these systems longitudinally from early infancy. The first research

question was whether measures from a VWM task during early infancy could predict individual

differences in toddler EF. Results showed that at both 6 and 18 months of age, a measure of

visual exploration on the VWMPL task, TLT, consistently predicted performance on the MEFS

task at 30 months of age. This measure of visual exploration demonstrates children’s ability to

sustain attention to the task, and was previously found to be longitudinally stable from 6 to

54 months of age.

At 6 months of age, TLT was particularly important for girls with a less educated mother. In

particular, a higher TLT predicted a higher MEFS total score for these girls. By contrast, girls

with a more highly educated mother showed less dependency on their looking behaviour at 6

months of age. For boys with a less educated mother, an inverse relationship was found with

a lower TLT at 6 months predicting a higher MEFS total score at 30 months of age. This

is an unexpected finding, however by 18 months of age children with a less educated mother

demonstrated a positive effect of TLT for both genders. This may suggest that boys with a

less educated mother who struggle to maintain fixation to the task, resolve this behaviour by

18 months of age, attend to the task, and go on to obtain a higher MEFS total score at 30



4.4. Discussion 124

months. In summary, results generally showed that better sustained attention at 6 months of

age predicted higher EF at 30 months of age.

At 18 months of age, TLT predicted a higher MEFS total score at 30 months for all children

with a less educated mother, although children with a less educated mother had lower MEFS

total scores overall. Given the longitudinal stability of TLT shown previously, it is possible that

better sustained attention at 18 months carries over to impact performance on the MEFS task

with better sustained attention in that task as well. This may facilitate flexible dimensional

attention to the appropriate features on the cards in the MEFS task, an ability that is proposed

to underlie successful sorting on this task (Buss & Kerr-German, 2019). In addition, the CPC

measure at 18 months predicted a higher MEFS total score at 30 months of age, particularly

for children with a less educated mother. A higher CPC indicates the ability to detect and

sustain attention to novelty. It may be that directing attention to novelty early facilitates the

flexible allocation of attention later in the MEFS task.

More complex interactions were found with the CPNC measure at 18 months of age. In general,

higher CPNC scores at 18 months predicted higher MEFS scores at 30 months, except for girls

with a more highly educated mother. In addition, higher TLT at 18 months predicted higher

MEFS scores at 30 months, except for girls with lower CPNC scores. It is not clear why girls

showed these inverse patterns. Girls with a more highly educated mother consistently obtained

higher MEFS total scores. Moreover, there was a great deal of variation in MEFS total scores

for the girls with a more highly educated mother who showed a lower CPNC at 18 months of

age. It may be that a higher maternal education level is acting as a protective factor, and some

of these girls are able to arrive at higher EF skills despite poorer VWM earlier in development.

The next research question assessed whether measures of VWM during the toddler period were

related to later EF, over a longer four year period. Results show that a higher mean TLT

at 30 months of age was found to predict higher EF at 78 months of age. Once again, the

ability to sustain attention to the task was important for later EF. A higher mean CPC at

30 months of age was also important for EF at 78 months of age. Note that although CPC

showed less longitudinal stability in Chapter 2, this measure was longitudinally stable in year



4.4. Discussion 125

1 which included the 30-month-olds from cohort 2. As discussed by Buss and Spencer (2014),

DCCS-type tasks do not place high demands on the working memory system; however, it is

critical to use VWM to detect and contrast the features on each target card to sort the features

correctly. It has been suggested that the ability to orient attention within working memory

contributes to the ability to form internal representations of objects (Scerif & Shimi, 2021).

The present study may be demonstrating this: in the less demanding context of starting on the

changing side, 30 month-old children who are better able to orient their attention to attend to

the novel colours in the VWMPL task, may be better able to utilise these skills at 78 months

of age to successfully sort cards on the MEFS task.

The final question evaluated whether VWM capacity was related to performance on the MEFS

task across childhood. Firstly, this was assessed over a one year period. Results show that a

higher maximum capacity on the VWMCD task at 42 months of age predicted a higher MEFS

total score at 54 months of age. This was then assessed over a three year period. Generally,

a higher maximum capacity at 42 months of age also predicted a higher MEFS total score at

78 months of age, with one exception—boys with a more highly educated mother. For these

boys, an inverse relationship between maximum capacity and MEFS total score was found.

This may demonstrate that whilst a higher capacity may enable children to perform better on

the MEFS task, this is not a requirement for success. As discussed previously, the working

memory requirements of the MEFS task are not overly challenging (Buss & Spencer, 2014). As

the working memory requirements in the MEFS task are lower, a higher capacity may not be

necessary to succeed in the task. These boys with a more highly educated mother continuously

demonstrate relationships where measures of sustained attention are important for their EF.

Consequently, boys with a higher educated mother may rely less on VWM capacity and more

on the ability to attend to the task, and the correct features in the task. So, for these boys being

able to sustain attention and having a more highly educated mother may help them overcome

a lower VWM capacity.

It is also important to note that girls with a less educated mother showed little dependency on

capacity at 42 months of age for performance on the MEFS task at 78 months of age. These

girls demonstrated lower MEFS total scores regardless of capacity. This may also support the
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proposal that VWM capacity does not fully determine success on the MEFS task.

By 54 months of age, maximum capacity was not found to be related to EF at 78 months of age.

This may support the idea that the capacity itself is not as important for MEFS, and instead

previous relationships are a reflection of the multiple systems engaged during the VWMCD

task that are also important within the MEFS task. However, by 54 months of age there is

also much less variance in capacity scores, with all children being at ceiling level in SS1. Given

the reduced sample size and lower variance for capacity estimates, the statistical power in the

present study may not have been enough to assess the differences between children with a lower

or higher capacity estimate at this age.

It is important to note that the reported effects were consistently stronger for children with

a less educated mother, particularly boys. Whilst children with a less educated mother were

found to show lower MEFS scores across almost all ages, these relationships may demonstrate

that having a good VWM and ability to sustain attention from an early age is an important

protective factor for these children. In conclusion, the present study finds that the development

of VWM and EF are related across multiple ages in early childhood. Generally, measures of

VWM were positively related to later EF from early infancy. In the final chapter, I place these

findings in the context of the broader literature.



Chapter 5

General Discussion

5.1 Summary and Integration of Findings

Throughout this thesis, I have aimed to investigate how the VWM system is integrated with

emerging EF skills in early development. To assess this, it was necessary to first understand

the development of the VWM system in, to my knowledge, the first longer-term longitudinal

study to do so from early infancy. It was also necessary to assess the longitudinal stability of

EF across early childhood using a consistent measure over time. After these assessments were

made, it was possible to examine the co-development of VWM and EF to begin to understand

how these systems interact over time. In the present chapter, I will review the key findings

from each chapter and integrate these findings with the broader literature to address how this

thesis contributes to our understanding of EF. I will consider challenges and limitations within

this project, including a discussion of the statistical methods used. I will finish the discussion

by considering the real world implications of the findings presented within this thesis.

In chapter 1, a review of the literature unveiled discontent with the current component-based

approach to examining EF over development. Importantly, this component approach is in-

formed by the adult literature. When applied to EF in childhood, there is little consistency

across findings. This may, in part, be due to the statistical methods used. Confirmatory factor

analysis methods of examining EF have repeatedly been criticised for their overzealous ap-
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proach to latent variables (Miller et al., 2012). As discussed, multiple researchers have argued

for a re-conceptualisation of EF, moving beyond this latent variable approach, particularly

early in development where multiple systems are likely co-developing together (Spencer et al.,

2025). In order to provide an informed re-conceptualisation, we must first understand more

about the role of multiple systems in EF from early infancy. However, the literature review

made it clear that whilst one of the systems heavily involved in EF, working memory, can be

tracked from early infancy using the sub-component of VWM, there have been no studies of

the co-development of VWM and EF in the literature. Having identified this clear gap, the

goal of the thesis was to understand the co-development of VWM and EF from early infancy.

In chapter 2, I used two VWM tasks: a preferential looking task to be used from infancy and

a canonical change detection task to anchor our understanding of the preferential looking task

in childhood. I then conducted the first longitudinal examination of VWM from early infancy.

This allowed me to assess the replicability of findings from prior cross-sectional work.

I began by assessing the longitudinal stability of measures from the VWMPL task. Findings

revealed that two measures from this preferential looking task are stable from 6 to 54 months

of age. The first measure was TLT, a measure of sustained attention to the task. The second

measure was CPNC . This CPNC measure captures a child’s ability to detect and sustain

attention to novelty in a resource-demanding context. In particular, this measure assesses

a child’s detection of the changing side when they start the task on the non-changing side.

Consequently, the child must consolidate each item in working memory, detect that no change

is occurring, release fixation from the non-changing side and switch to the changing side. Once

on this changing side, the child must then consolidate the new display in working memory,

detect any changes, and update working memory as new colours are presented. This measure

showed longitudinal stability where the previous widely used measure of change preference,

CP10 did not.

The next measure from this task, CPC , assesses the child’s ability to detect change when

starting on the changing side. This measure showed longitudinal stability from year 1 to year

2, but not from year 2 to year 3. It is possible the lack of longitudinal stability from year
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2 to year 3 reflects the simpler demands placed on the child when they start looking at the

changing side in the VWMPL task. That is, this measure might show less subject-specific

variance in year 3 because it was relatively easy for older children to remain on the changing

side when starting there. I acknowledge, however, that this is likely not the complete story

as cohort 1 failed to show longitudinal stability in this measure from 18 to 30 months, while

cohort 2 showed longitudinal stability from 30 to 42 months. Thus, there is variability in the

developmental trajectory of this measure. More generally, however, results from analyses of

the VWMPL task generally showed that VWM is stable longitudinally from infancy to later

childhood, particularly when examined in resource-demanding contexts.

An assessment of cross-task relationships revealed that the data did not replicate the findings

of Simmering (2016) within a longitudinal sample. This is likely due to the limitations of the

measures used. When re-examining these models using the longitudinally stable measures of

CPNC and TLT, I found that both measures were positively related to performance on the

VWMCD task. These findings add further support for the use of the new ’first-look’ measures

for assessing performance on the VWMPL task. Going forward, future research should make

use of these measures, replacing the previous measures which do not account for the differing

levels of demand based on the context of the child’s looking behaviour.

Importantly, the CPNC and TLT measures predicted performance on the VWMCD task up

to two years later, although some of these interactions were complex. Interestingly, these

findings revealed the impact of maternal education level on VWM. The effect of maternal

education level was consistent across all models predicting maximum VWM capacity, including

in interactions with CPNC and TLT. This aligns with previous research indicating that the

VWM system is influenced by maternal education level, with children with a less educated

mother demonstrating difficulty in suppressing distraction on the VWMPL task (Wijeakumar

et al., 2019). The findings from this thesis add to these prior findings, highlighting that the

effect of maternal education level extends to measures of VWM capacity.

In chapter 3, I introduced the literature assessing the longitudinal stability of EF from early

childhood. Whilst studies have attempted to examine EF from early childhood, longitudinal
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studies have typically used different tasks across different ages. Thus, the goal of chapter 3 was

to examine the longitudinal stability of EF from early childhood using a consistent measure of

EF at all ages. Thus, I used the MEFS task and studied the developmental trajectory of EF

from 30 to 78 months in the same longitudinal cohorts studied in chapter 2.

Using the MEFS task, EF was found to be longitudinally stable from 30 to 78 months of age. At

each age, age-related developments in EF were reflected by an increase in MEFS total score, and

individual differences in the total score were predictive over development across both cohorts

of children. Thus, EF is longitudinally stable from 2.5 to 6.5 years of age and MEFS provides

a robust measure of individual differences in EF that can be used consistently across this age

range. These findings further support previous research suggesting that EF is stable from the

second year of life (Carlson et al., 2004).

Importantly, maternal education level was found to be an important predictor of MEFS total

score. Generally, children with a more highly educated mother had higher MEFS total scores

across all ages. This aligns with previous research showing parental education is strongly

associated with EF development (Hackman et al., 2015; Waters et al., 2021). The implications

from this finding are discussed below.

The present study also clarified that effects of gender on MEFS performance were isolated to

the 42-month time point. Girls and boys scores on the MEFS task were comparable, except

at 42 months of age where girls showed a much sharper increase in MEFS performance than

boys. By 54 months of age, the boys showed a similar sharp increase resulting in MEFS scores

being more comparable from this age. Whilst the present study did find an influence of gender

on EF at 78 months of age, this was discussed in relation to maternal education level effects

and the possibility that some children were receiving interventions. This remains an important

issue to investigate in future work with this cohort.

It is useful to note here that there is disagreement regarding the nature of the MEFS task. Some

researchers have viewed this as a cognitive flexibility task, while other researchers emphasise

the involvement of multiple systems including working memory to remember the rules and

inhibitory control to inhibit the prepotent response (see Spencer et al. 2025). The interpretation
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of this task is important when placing these findings in the context of chapter 4 where I looked

at the co-development of VWM and EF.

Chapter 4 explored how the trajectories of VWM and EF co-develop across early development.

Integrating the measures used previously in this thesis, chapter 4 assessed this question in three

stages. First, I explored the relation between VWM in early infancy and toddler EF, at the

first possible point of assessment using the MEFS task. Next, I assessed the relation between

VWM at 30 months of age and MEFS at 78 months of age. Finally, I examined the relationship

between VWM measured on the VWMCD task and EF from 42 to 78 months of age. Here, I

will integrate and discuss these findings, considering theories of EF and prior research.

Results showed consistent relationships between measures from the VWMPL task in infancy

and EF at 30 months of age. At 6 and 18 months of age, TLT positively predicted MEFS

total score in most instances. At 18 months of age, this relationship was particularly important

for children with a less educated mother. This TLT measure is an indication of the ability to

sustain attention to a task. Results also demonstrated that this TLT measure at 30 months of

age was positively predictive of MEFS total score at 78 months of age. TLT may be important

in two ways. First, a low TLT may demonstrate an inability to suppress distraction. Poor

suppression of distraction has been linked to poorer performance on the VWMPL task (Wi-

jeakumar et al., 2019). Whilst every effort was made to ensure the research environment did

not contain distractions, children may still have been distracted by other items in the room,

such as their own clothing or a piece of reflective equipment. Children with a low ability to

suppress distraction would be expected to perform worse on the MEFS task, as they may fail to

inhibit distraction from the prepotent response on post-switch trials. Thus, a higher TLT and

a higher MEFS total score may be explained through a better ability to suppress distraction

in both cases. An alternative explanation is that a low TLT performance may be an indica-

tor of a VWM system that is unable to cope with the task demands. Children may become

overwhelmed when attempting to process the information on each screen, leading to a reduced

TLT as the child releases fixation to reduce stress on the VWM system. Further investigations

are necessary to tease these explanations apart. One method that may assist in doing this is

creating quantitative simulations to model children’s behaviour.
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Previous simulations of a dynamic field model have provided insights into the requirements

in DCCS-type tasks. Buss and Kerr-German (2019) showed that dynamic field models that

were able to succeed on the DCCS task were those able to attend to the dimensions on the

card, build up a stronger memory trace of the relevant dimension, and engage this dimensional

representation when prompted on test trials. The representation of feature dimensions within

VWM in this model was important for success on DCCS-type tasks, such as the MEFS task.

The VWM system facilitates the detection and contrast of features on each target card to

enable the correct sorting of the features (Buss & Spencer, 2014).

Findings from this thesis provide support for this role of ’feature contrast’ within the VWM

system in the MEFS task. At 18 and 30 months of age, the CPC measure was found to be

important for later EF. A higher CPC at 18 months of age predicted a higher MEFS total score

at 30 months of age, particularly for children with a less educated mother. A higher CPC at 30

months of age also predicted a higher MEFS total score at 78 months of age. As discussed in

Chapter 2, this CPC measure does not place the VWM system in a highly demanding context,

similar to the less demanding VWM context of the MEFS task. Within this less demanding

context, children who can correctly contrast features and orient attention to novel colours from

18 and 30 months of age go on to be successful in the MEFS task at 78 months of age. In

both the VWMPL and MEFS task, children must orient their attention to the correct features.

The CPC measure captures the ability to orient attention to novel colours, whereas the MEFS

task captures the ability to orient attention to the correct dimension. Thus, the relationship

between these measures may demonstrate a commonality in the multiple systems involved in

both tasks.

This provides support for the role of VWM in EF in the manner described by dynamic sys-

tems models (Buss & Spencer, 2014; Buss & Kerr-German, 2019). Indeed, a recent dynamic

field model of visual exploration and word learning has shown that scene representations and

word-feature representations, such as dimension labels like ’colour’, are linked (Spencer et al.,

2025). Children’s learning and representations of individual feature words, such as for indi-

vidual colours, map onto words such as ’colour’ to drive dimensional attention when cued, for

example, when asked to ’play the colour game’ in the MEFS task. The features attended to in
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the task are driven by the words used in the task. Within the dynamic field model (Spencer

et al., 2025), this feature information is consolidated within working memory, feeding down

to a contrast layer in the model. This is the same layer that detects changes, such as those

presented in the VWMPL and VWMCD tasks (see Simmering, 2016). Here, we see the same

systems involved in the detection of changes in VWM and the top-down attention necessary

for the MEFS task. This may explain the strong links between the CPC measure and later

performance in MEFS reported here.

Further support for the role of VWM in EF skill was demonstrated from the CPNC measure;

however this measure was only found to be robustly related to EF at 18 months of age. Results

show that, in general, a higher CPNC at 18 months predicted higher MEFS total score at

30 months. This measure captures a child’s ability to orient attention to novel colours when

starting on the non-changing side. As discussed previously, this requires increased resources

from the VWM system. Whilst this measure was important for future EF at 18 months of age,

no relationship was found from 30 months age. This may reflect the reduced working memory

demands of the MEFS task. More generally, these findings show how investigating multiple

measures of performance in the VWM task can reveal more complex relationships between

VWM and EF. This contrasts with the CFA approach which typically assesses a single measure

from each task.

The final research question evaluated within this thesis was whether measures of VWM capacity

were related to EF skill across childhood. Results showed that VWM capacity at 42 months

of age was positively predictive of EF at both 54 and 78 months of age. Whilst there was

no relationship between VWM maximum capacity at 54 months of age and EF at 78 months

of age, this was discussed in relation to limitations of statistical power. However, it is also

possible this, again, reflects the lower working memory demands of the MEFS task. There was

a complex interaction found for boys with a more highly educated mother who obtained higher

MEFS total scores with a lower maximum capacity at 42 months of age. These findings may

reflect that capacity itself is not critical for later EF, although this conclusion must be anchored

to how EF was assessed in the present study using MEFS. It is possible that other EF tasks

that place more demands on working memory capacity would show stronger links to working
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memory capacity measures earlier in development.

In many of the analyses reported here, maternal education level was seen to consistently in-

fluence VWM capacity and EF. From 30 to 54 months of age, children with a more highly

educated mother showed higher MEFS total scores and higher VWM capacity estimates. It is

possible that maternal education level acts as a protective factor with some children, that is,

these children are able to obtain higher level of EF skills in spite of poorer VWM. One impor-

tant factor here may be that mothers with a higher education may themselves have better EF

skills and model such skills during interactions with the child. For example, Kao et al. (2018)

demonstrated that parents who performed better on EF tasks had children who also performed

better on EF tasks. However, no relationship with parental education level was found in this

study. Other studies have found that highly educated parents promote children’s cognitive

development in a number of ways, including engaging in more stimulating activities, spending

more time with their children, and engaging in more complex speech patterns (Landry et al.,

2006). Other researchers have suggested that correlations between a parent’s education level

and child outcomes may be the result of parental characteristics that lead parents to be both

a good student and good parent (see Duncan & Magnunson, 2012 for a review). Thus, there

are many factors that could explain why a higher maternal education level supports a child’s

EF, however this interaction does have important implications discussed below.

Overall, the present study found that measures of VWM were positively related to later EF

from early infancy. These findings suggest that VWM is a key system that enables us to keep

track of what is where in the world, an ability that feeds into later EF skills. For instance, Buss

and Spencer (2014) emphasise that this ability to track features in the world is important in

EF tasks as demonstrated through modelling of behaviour from the DCCS task.

5.2 Challenges and Future Work

Although many aspects of the findings from this thesis are compelling, it is important to

acknowledge several limitations. First, I note that data from this thesis was part of a larger
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scale project examining the emergence of VWM. Consequently, children took part in a number

of other tasks. This likely led to some fatigue and certainly impacted children’s ability to

complete all tasks at all ages. Furthermore, fNIRS data was collected during the VWM task.

This involved the children wearing a cap which may have been distracting and may have led to

increased discomfort and data loss. In order to limit the impact of missing data, analyses were

conducted using aggregate measures and analyses focused on year on year predictions. Whilst

this successfully allowed me to examine the longitudinal data whilst reducing the impact of

missing data, some of the analyses still suffered from limited power. To push beyond these

limitations, future work should conduct examinations of growth curve analyses with this data

set (Mirman, 2014) that model group effects in each measure over multiple years. Differences

between individuals in the context of this model of overall growth can then be identified.

Children who deviate from the ’typical’ growth pattern can be identified and the specific reasons

for this deviation explored in more detail.

This thesis was further limited by using statistical methods that focused on single outcome

measures rather than looking at multi-variate patterns across measures. Whilst the majority of

interactions described in this thesis were simple, there were a number of complex interactions

that are yet to be fully understood. Due to previously reported correlations between the CPC

and CPNC measures (Forbes et al., in prep), predictive relationships with these measures were

unable to be explored due to the likelihood of multicollinearity. As discussed in Chapter 2,

a method that may allow further understanding of these complex interactions involving both

measures is cluster analysis (Mooi & Sarstedt, 2011). Conducting such an analysis would

confirm suspicions that certain complex interactions were related to each other. For example,

I proposed that the finding that girls with a less educated mother who demonstrated a lower

TLT at 30 months of age and yet obtained a higher maximum capacity at 42 months of age may

be related to a previous interaction between TLT and CPNC . These explanations cannot be

confirmed without grouping children based on their behaviour across measures and evaluating

performance as a result of that behaviour. For example, a cluster analysis may reveal that the

children with a lower TLT and a lower CPNC demonstrated a higher level of CPC , and this

was more important for a higher capacity. This would be a beneficial analysis for future work
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to consider.

Many of the conclusions in this thesis would be strengthened with the inclusion of other mea-

sures, for example measures that examine infant attention or inhibitory control. Examining

these measures alongside the current measures presented in this thesis would allow future re-

search to explore the involvement of these other systems in more detail, and this may provide

additional insights into the emergence of EF in early development. A key challenge here, how-

ever, is that it is not clear we have measures of other candidate components, such as inhibitory

control that can be used across multiple ages and are longitudinally predictive. Future work

should build on current understanding of inhibitory control to construct these measures. It is

important to note that the robustness of the VWMPL task is relatively unique, and there are

few tasks which are able to demonstrate longitudinal stability from infancy through childhood.

Future work should attempt to replicate these findings, to provide further evidence for these

longitudinally stable relationships.

An important question that arose from Chapter 1, and is yet to be answered within this thesis,

is whether the candidate components of EF are separable. This question arises from literature

taking a strong latent variable approach, which identifies common sources of variance and

labels the non-shared variance as specific components based on commonly studied processes.

As discussed heavily within this thesis, this approach is problematic. The alternative is to

understand how multiple processes co-develop over development and support each other. This

was the approach taken in this thesis, aligning with the approach used in recent modelling

research (Spencer et al., 2025). This may pave the way for a move from the component style

thinking towards one of an integrated systems perspective. Instead of trying to compare tasks

using one measure of a latent variable of EF or VWM, this thesis embraced the approach of

reviewing multiple measures. Whilst at the surface level, the tasks used appear to be examining

different processes, when we look deeper we see multiple related systems are involved in success

on both VWM tasks and the MEFS task. For example, representations of colour features are

important to be able to detect change on the two VWM tasks. Within the MEFS task, these

feature representations are important for successful sorting. Suppressing distraction has also

been demonstrated as important for the VWM tasks (Wijeakumar et al. 2019), in a similar
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manner to the necessary suppression of distraction from the non-probed dimension in the MEFS

task. To further understand how these multiple integrated systems can lead to higher-order EF

skills, and understand how the same system functions in these two VWM tasks, we should utilise

models of integrated neural systems such as the dynamic field model (Spencer et al., 2025). For

instance, can we create models with individual differences in parameters to demonstrate high

vs low performers within each measure? From these models, would we then be able to predict

differences in EF performance in a similar manner to reproduce / simulate the data presented

here? Future work should probe how we can use these integrative neural architectures to model

these longitudinal data directly.

Given the push for the use of neural models, it is also important to consider the neural systems

that underlie changes in VWM and EF. As aforementioned, the data within this thesis was a

part of a larger scale longitudinal study that included fNIRS data at each year for the VWM

task. Future analyses should bring together these behavioural findings with this fNIRS data

to understand more about the changing neural systems underlying VWM over time, and how

these changes may relate to the interactions found between VWM and EF in this thesis.

5.3 Real World Implications

This research provides support for the use of preferential looking tasks in examining VWM

from early infancy. Given the importance of working memory and EF for children’s future

academic success, these early measures may allow identification of at-risk children in infancy.

More data would be needed to replicate these findings and create categories of performance

across measures, but it may be possible in future work to use these measures to identify ’at

risk’ infants. For instance, it may be possible to use the VWMPL task to generate a ’cognitive

growth score’ indicating whether the child’s performance was on track or of concern in the

context of age-specific norms. The VWMPL task would also have to be adapted into a more

transportable set up, such as on a laptop, so that the task could be taken to children’s centres

or general practitioner surgeries for assessment purposes. Doing this may allow the use of
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this task to identify children with difficulties in engaging VWM from as young as four to six

months of age. This would allow intervention measures focussed on supporting VWM to be

put in place from early infancy, for example parenting interventions focussed on nurturing

parent-child interaction that have been shown to improve child cognition (Landry et al., 2008).

Moreover, the findings of this thesis consistently show that a stronger VWM supports children

with a less educated mother. However, the nature of this relationship is not yet fully understood.

It is clear that maternal education level influences child executive functioning. Consequently,

this thesis provides support for intervention strategies that call for greater access to education

for parents, in order to improve child cognition (Waters et al., 2021). One example of a possible

intervention strategy is family learning programmes. Many councils in the United Kingdom

offer Family Learning, Literacy, and Numeracy (FLN) courses (see Cara & Brooks, 2012).

These courses aim to improve literacy and numeracy skills of less educated parents, in hopes of

improving their confidence to engage in educational activities with their children. The findings

of this thesis offer support for such programmes, in hopes that increasing parental education

levels provides a good environment for the development of stronger EF skills.

5.4 Conclusions

To conclude, this thesis provides important insights to the VWM and EF literatures. Firstly, I

demonstrated that VWM is longitudinally stable from early infancy through childhood in the

first longitudinal study to examine this. These findings emphasise the importance of utilising

new measures of visual cognition that account for differing task demands dependent on the

child’s own looking behaviour. Secondly, this thesis concluded that EF shows stability from 2.5

years of age to 6.5 years of age in, to my knowledge, the first longitudinal study to examine this

using a consistent measure over early childhood. Third, evidence from this thesis shows that

the development of VWM and EF are related from infancy through early childhood with early

measures of VWM predicting later EF outcomes. Consequently, we may be able to identify

children who will struggle with EF using performance on the VWM preferential looking task
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during early infancy. This could help us identify at-risk infants early in development, facilitating

the delivery of effective interventions during infancy.
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.1 Appendices

.1.1 Appendix A

Table 1
Regression results for predicting CP10 from year 1 to year 2.

Predictor B SE t 95% CI VIF p

[LL, UL]

(Intercept) 0.52*** 0.00 115.65 [0.52, 0.53] <.001

CP101 - 0.21* 0.09 - 2.28 [ - 0.39, - 0.03] 1.004 .0246

Age - 0.00 0.01 - 0.46 [ - 0.02, 0.01] 1.031 .64

Gender 0.00 0.01 0.20 [ - 0.02, 0.02] 1.004 .84

Maternal Ed 0.01 0.00 1.51 [ - 0.00, 0.02] 1.004 .13

CP101:Gender 0.18 0.18 0.97 [ - 0.19, 0.54] .33

CP101:Maternal Ed 0.08 0.13 0.60 [ - 0.18, 0.34] .55

Gender:Maternal Ed 0.01 0.01 0.95 [ - 0.01, 0.03] .35

CP101:Gender:Maternal Ed 0.08 0.26 0.31 [ - 0.43, 0.60] .75

N 138

R2 0.05

Adj R2 - 0.01

Note: CPC1 refers to mean CPC in year 1. LL and UL indicate the lower and upper limits of a confidence
interval, respectively. * indicates p < .05, ** indicates p< .01, *** indicates p <.001.
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.1.2 Appendix B

Table 2
Regression results for predicting CP10 from year 2 to year 3.

Predictor B SE t 95% CI VIF p

[LL, UL]

(Intercept) 0.52*** 0.00 109.10 [0.51, 0.53] <.001

CP102 0.01 0.10 0.13 [ - 0.18, 0.20] 1.003 .90

Age - 0.01 0.01 - 1.30 [ - 0.03, 0.01] 1.022 .20

Gender - 0.00 0.01 0.16 [ - 0.02, 0.02] 1.003 .88

Maternal Ed - 0.00 0.01 - 0.59 [ - 0.01, 0.01] 1.003 .56

CP102:Gender 0.17 0.19 0.88 [ - 0.21, 0.55] .38

CP102:Maternal Ed - 0.03 0.10 - 0.24 [ - 0.23, 0.18] .81

Gender:Maternal Ed - 0.01 0.01 - 0.61 [ - 0.03, 0.01] .54

CP102:Gender:Maternal Ed - 0.16 0.21 - 0.75 [ - 0.57, 0.26] .45

N 124

R2 0.02

Adj R2 - 0.04

Note: CP102 refers to mean CP10 in year 2. LL and UL indicate the lower and upper limits of a confidence
interval, respectively. * indicates p < .05, ** indicates p< .01, *** indicates p <.001.
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.1.3 Appendix C

Table 3
Regression results for predicting CPNC from year 1 to year 2.

Predictor B SE t 95% CI VIF p

[LL, UL]

(Intercept) 0.42*** 0.01 39.47 [0.40, 0.44] <.001

CPNC1 0.24** 0.09 2.76 [0.07, 0.42] 1.003 .007

Age Cohort - 0.00 0.02 - 0.12 [ - 0.05, 0.04] 1.023 .91

Gender 0.01 0.02 0.43 [ - 0.03, 0.05] 1.003 .67

Maternal Ed 0.00 0.01 0.07 [ - 0.02, 0.02] 1.003 .94

CPNC1:Gender - 0.05 0.18 - 0.28 [ - 0.40, 0.30] .78

CPNC1:Maternal Ed 0.09 0.10 0.97 [ - 0.09, 0.27] .34

Gender:Maternal Ed - 0.01 0.02 - 0.24 [ - 0.05, 0.04] .81

CPNC1:Gender:Maternal Ed - 0.13 0.19 - 0.71 [ - 0.50, 0.23] .48

N 138

R2 0.07

Adj R2 0.02

Note: CPNC1 refers to mean CPNC in year 1. LL and UL indicate the lower and upper limits of a confidence
interval, respectively. * indicates p < .05, ** indicates p< .01, *** indicates p <.001.
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.1.4 Appendix D

Table 4
Regression results for predicting CPNC from year 2 to year 3.

Predictor B SE t 95% CI VIF p

[LL, UL]

(Intercept) 0.42*** 0.01 36.91 [0.40, 0.44] <.001

CPNC2 0.23* 0.09 2.54 [0.05, 0.40] 1.004 .0123

Age - 0.02 0.02 - 0.72 [ - 0.06, 0.03] 1.030 .47

Gender - 0.00 0.02 - 0.18 [ - 0.05, 0.04] 1.004 .86

Maternal Ed - 0.01 0.01 - 1.09 [ - 0.04, 0.01] 1.004 .28

CPNC2:Gender 0.16 0.18 0.90 [ - 0.19, 0.51] .37

CPNC2:Maternal Ed 0.09 0.09 0.99 [ - 0.09, 0.26] .32

Gender:Maternal Ed - 0.01 0.02 - 0.28 [ - 0.06, 0.04] .78

CPNC2:Gender:Maternal Ed - 0.14 0.17 - 0.81 [ - 0.49, 0.20] .42

N 124

R2 0.08

Adj R2 0.02

Note: CPNC2 refers to mean CPNC in year 2. LL and UL indicate the lower and upper limits of a confidence
interval, respectively. * indicates p < .05, ** indicates p< .01, *** indicates p <.001.
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.1.5 Appendix E

Table 5
Regression results for predicting CPC from year 1 to year 2.

Predictor B SE t 95% CI VIF p

[LL, UL]

(Intercept) 0.65*** 0.01 59.40 [0.62, 0.67] <.001

CPC1 0.22* 0.10 2.21 [0.02, 0.42] 1.006 .0292

Age - 0.02 0.02 - 0.88 [ - 0.06, 0.03] 1.041 .38

Gender - 0.00 0.02 - 0.04 [ - 0.04, 0.05] 1.006 .97

Maternal Ed 0.01 0.01 0.81 [ - 0.01, 0.03] 1.006 .42

CPC1:Gender 0.16 0.20 0.80 [ - 0.24, 0.56] .43

CPC1:Maternal Ed 0.02 0.11 0.18 [ - 0.19, 0.23] .85

Gender:Maternal Ed 0.02 0.02 1.05 [ - 0.03, 0.07] .30

CPC1:Gender:Maternal Ed 0.04 0.22 0.17 [ - 0.39, 0.47] .86

N 138

R2 0.05

Adj R2 - 0.01

Note: CPC1 refers to mean CPC in year 1. LL and UL indicate the lower and upper limits of a confidence
interval, respectively. * indicates p < .05, ** indicates p< .01, *** indicates p <.001.
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.1.6 Appendix F

Table 6
Regression results for predicting CPC from year 2 to year 3.

Predictor B SE t 95% CI VIF p

[LL, UL]

(Intercept) 0.63*** 0.01 70.49 [0.61, 0.65] <.001

CPC2 0.08 0.07 1.07 [ - 0.06, 0.21] 1.003 .29

Age - 0.01 0.02 - 0.60 [ - 0.05, 0.02] 1.024 .55

Gender - 0.02 0.02 - 1.18 [ - 0.06, 0.01] 1.003 .24

Maternal Ed - 0.01 0.01 - 0.81 [ - 0.03, 0.01] 1.003 .42

CPC2:Gender 0.06 0.14 0.43 [ - 0.22, 0.34] .67

CPC2:Maternal Ed 0.12 0.08 1.58 [ - 0.03, 0.28] .12

Gender:Maternal Ed 0.03 0.02 1.71 [ - 0.01, 0.07] .09

CPC2:Gender:Maternal Ed 0.29 0.16 1.83 [-0.59, .07

N 124

R2 0.10

Adj R2 0.04

Note: CPC2 refers to mean CPC in year 2. LL and UL indicate the lower and upper limits of a confidence
interval, respectively. * indicates p < .05, ** indicates p< .01, *** indicates p <.001.
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.1.7 Appendix G

Table 7
Regression results for predicting TLT from year 1 to year 2.

Predictor B SE t 95% CI VIF p

[LL, UL]

(Intercept) 5.40*** 0.12 46.55 [5.18, 5.63] <.001

TLT 1 0.25** 0.08 3.20 [0.10, 0.41] 1.012 .00173

Age - 0.17 0.24 - 0.71 [ - 0.65, 0.31] 1.084 .47

Gender 0.07 0.23 0.29 [ - 0.39, 0.53] 1.012 .77

Maternal Ed 0.13 0.13 1.07 [ - 0.12, 0.39] 1.012 .29

TLT 1:Gender 0.17 0.15 1.07 [ - 0.14, 0.47] .29

TLT 1:Maternal Ed - 0.01 0.09 - 0.10 [ - 0.19, 0.17] .92

Gender:Maternal Ed - 0.25 0.25 - 1.03 [ - 0.74, 0.23] .31

TLT 1:Gender:Maternal Ed - 0.06 0.18 - 0.33 [ - 0.42, 0.30] .74

N 139

R2 0.10

Adj R2 0.05

Note: TLT 1 refers to mean TLT in year 1. LL and UL indicate the lower and upper limits of a confidence
interval, respectively. * indicates p < .05, ** indicates p< .01, *** indicates p <.001.
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.1.8 Appendix H

Table 8
Regression results for predicting TLT from year 2 to year 3.

Predictor B SE t 95% CI VIF p

[LL, UL]

(Intercept) 5.6*** 0.11 51.06 [5.38, 5.82] <.001

TLT 2 0.28** 0.08 3.38 [0.12, 0.45] 1.003 .00101

Age 0.41 0.22 1.90 [ - 0.02, 0.85] 1.023 .06

Gender - 0.14 0.22 - 0.62 [ - 0.57, 0.30] 1.003 .54

Maternal Ed 0.12 0.12 1.01 [ - 0.12, 0.36] 1.003 .32

TLT 2:Gender 0.01 0.17 0.07 [ - 0.32, 0.34] .95

TLT 2:Maternal Ed 0.08 0.09 0.88 [ - 0.10, 0.27] .38

Gender:Maternal Ed - 0.35 0.24 - 1.49 [ - 0.82, 0.12] .14

TLT 2:Gender:Maternal Ed 0.09 0.19 0.48 [ - 0.28, 0.47] .63

N 124

R2 0.17

Adj R2 0.12

Note: TLT 2 refers to mean TLT in year 2. LL and UL indicate the lower and upper limits of a confidence
interval, respectively. * indicates p < .05, ** indicates p< .01, *** indicates p <.001.
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.1.9 Appendix I

Table 9
Regression results for predicting A’ prime by year and set size, using A’ prime in set size 3
and year 3 as the criterion.

Predictor B SE t df p

(Intercept) 0.56*** 0.03 20.70 318.01 <.001

Year 0.12*** 0.01 11.50 286.28 <.001

Set size 1 0.17*** 0.03 5.03 254.61 <.001

Set size 2 - 0.05 0.03 .19

Year:Set size 1 - 0.04 0.01 - 2.95 253.55 <.001

Year:Set size 2 0.02 0.01 1.52 251.93 .13

N 67

Observations 327

Pseudo R2 0.59

Pseudo R2 (Fixed effects) 0.40

AIC - 543.83

BIC - 513.51

Note: * indicates p < .05, ** indicates p< .01, *** indicates p <.001.
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.1.10 Appendix J

Table 10
Regression results for predicting A’ prime by year, set size, maternal education level, and
gender.

Predictor B SE t df p

(Intercept) 0.85*** 0.01 99.07 54.85 <.001

Year 0.12** 0.01 11.52 282.66 <.001

Set Size - 0.08*** 0.01 - 12.96 246.56 <.001

Gender - 0.01 0.02 - 0.48 54.85 .63

Maternal Ed 0.02** 0.01 2.77 56.38 .00769

Year:Set Size 0.03* 0.01 - 1.06 246.61 .01003

Year:Gender - 0.01 0.02 - 0.31 282.66 .74

Year:Maternal Ed - 0.01 0.01 - 1.06 285.29 .29

Set Size:Gender - 0.03* 0.01 - 2.29 246.56 .02305

Set Size:Maternal Ed 0.01* 0.01 2.149 247.42 .03258

Gender:Maternal Ed 0.01 0.02 0.65 56.38 .52

Year:Set Size:Gender - 0.00 0.02 - 0.04 246.61 .97

Year:Set Size:Maternal Ed - 0.01 0.01 - 1.04 247.44 .30

Year:Gender:Maternal Ed 0.01 0.02 0.39 285.29 .70

Set Size:Gender:Maternal Ed 0.01 0.01 0.45 247.42 .65

Year:Set Size:Gender:Maternal Ed 0.00 0.03 0.16 247.44 .88

N 67

Observations 327

R2 (Total) 0.60

Pseudo R2 (Fixed effects) 0.43

AIC - 473.74

BIC - 405.52

Note: * indicates p < .05, ** indicates p< .01, *** indicates p <.001.
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.1.11 Appendix K

Table 11
Regression results for predicting KMAX by year, maternal education level, and gender, using
KMAX in year 3 as the criterion.

Predictor B SE t df p

(Intercept) 1.67*** 0.07 23.68 54.67 <.001

Year 2 - 0.41*** 0.05 - 7.64 48.83 <.001

Maternal Ed 0.26*** 0.07 3.58 52.95 <.001

Gender - 0.10 0.14 - 0.74 54.67 .46

Year 2:Maternal Ed - 0.00 0.05 - 0.09 46.88 .93

Year 2:Gender 0.12 0.11 1.13 48.83 .26

Maternal Ed:Gender - 0.02 0.14 - 0.14 52.95 .89

Year 2:Maternal Ed:Gender 0.10 0.11 0.95 46.88 .35

N 67

Obs 115

R2(Total) 0.56

R2(Fixed effects) 0.34

AIC 263.21

BIC 290.66

Note: * indicates p < .05, ** indicates p < .01, *** indicates p < .001.
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.1.12 Appendix L

Table 12
Hierarchical regression results for predicting KMAX .

Predictor B SE t df p R2

(Total, Fixed)

Model 1 0.56, 0.24

(Intercept) -0.31 0.27 -1.15 62.84 .25

Year 0.79*** 0.10 7.62 53.76 p<.001

Model 2 0.60, 0.28

(Intercept) 0.79 0.71 1.12 89.71 .27

Year 0.78*** 0.10 7.68 51.04 p<.001

CP10 SS6 - 1.95* 0.76 - 2.57 95.55 .0116

CP10 SS4 0.29 0.78 0.38 78.07 .71

CP10 SS2 -0.41 0.80 -0.50 96.91 .61

Model 3 0.61, 0.31

(Intercept) 0.39 0.76 0.51 88.43 .61

Year 0.79*** 0.11 7.39 59.55 p<.001

CP10 SS6 - 2.15** 0.76 - 2.85 95.51 .0054

CP10 SS4 0.54 0.82 0.67 84.32 .51

CP10 SS2 - 0.14 0.81 - 0.17 96.58 .87

Switch rate SS6 - 0.03 0.43 - 0.07 80.44 .94

Switch rate SS4 - 0.52 0.41 -1.26 106.92 .21

Switch rate SS2 0.76* 0.34 2.24 101.28 .0274

Random Effects SD

Model 1 Participant Code (Intercept) 0.46

Residual 0.53

Model 2 Participant Code (Intercept) 0.46

Residual 0.52

Model 3 Participant Code (Intercept) 0.45

Residual 0.51

N 67

Obs 115

Note: * indicates p < .05, ** indicates p< .01, *** indicates p <.001.
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Table 13
Regression results for Model 4, predicting KMAX from year, CP10, and TLT.

Predictor B SE t df p

(Intercept) 0.40 0.72 0.55 94.09 0.58

Year 0.73*** 0.10 7.01 52.92 <.001

CP10 SS6 - 2.07** 0.75 - 2.77 97.43 0.007

CP10 SS4 0.04 0.78 0.06 81.21 0.96

CP10 SS2 - 0.40 0.80 - 0.49 96.83 0.62

TLT SS6 0.03 0.07 0.48 100.81 0.63

TLT SS4 0.14 0.07 1.96 101.45 0.05

TLT SS2 - 0.05 0.07 - 0.72 92.90 0.47

Random Effects SD

Participant code (Intercept) 0.41

Residual 0.53

N 67

Obs 115

R2 (Total) 0.58

R2 (Fixed effects) 0.33

Note: * indicates p < .05, ** indicates p < .01, *** indicates p < .001.
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Table 14
Regression results for Model 5, predicting KMAX from year, CPNC, and TLT.

Predictor B SE t df p

(Intercept) -1.36 0.44 -3.06 95.06 0.003

Year 0.82*** 0.11 7.33 53.66 <.001

CPNC SS6 -0.00 0.29 -0.01 84.11 0.99

CPNC SS4 -0.32 0.34 -0.95 99.78 0.35

CPNC SS2 0.91* 0.39 2.35 90.81 0.02

TLT SS6 0.03 0.07 0.37 103.27 0.71

TLT SS4 0.16* 0.08 2.18 102.55 0.03

TLT SS2 -0.07 0.07 -0.93 97.70 0.35

Random Effects SD

NIHCode (Intercept) 0.36

Residual 0.56

N 65

Obs 113

R2 (Total) 0.53

R2 (Fixed effects) 0.34

Note: * indicates p < .05, ** indicates p < .01, *** indicates p < .001.
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Table 15
Regression results for predicting KMAX at 42 months from 30-month mean CPC, 30-month
mean TLT, maternal education level, and gender.

Predictor B SE t 95% CI VIF p

[LL, UL]

(Intercept) 1.22*** 0.11 11.01 [0.99, 1.44] <.001

Maternal Ed 0.28** 0.11 2.61 [0.06, 0.50] 1.34 .01237

Gender 0.09 0.22 0.39 [ - 0.36, 0.53] 1.38 .70

CPC 0.82 1.29 0.63 [ - 1.78, 3.42] 1.85 .53

TLT - 0.02 0.11 - 0.21 [ - 0.25, 0.20] 2.70 .84

Maternal Ed:Gender 0.23 0.22 1.05 [ - 0.21, 0.66] .30

Maternal Ed:CPC 0.01 1.23 0.00 [ - 2.48, 2.50] 1.00

Gender:CPC - 3.31 2.58 - 1.29 [ - 8.51, 1.89] .21

Maternal Ed:TLT 0.08 0.13 0.58 [ - 0.19, 0.34] .57

Gender:TLT - 0.26 0.22 - 1.18 [ - 0.71, 0.19] .24

CPC :TLT 0.48 1.11 0.43 [ - 1.76, 2.73] .67

Maternal Ed:Gender:CPC - 1.87 2.47 - 0.76 [ - 6.85, 3.11] .45

Maternal Ed:Gender:TLT 0.25 0.26 0.95 [ - 0.28, 0.78] .35

Maternal Ed:CPC :TLT 0.14 1.48 0.10 [ - 2.84, 3.13] .92

Gender:CPC :TLT 1.50 2.22 0.67 [ - 2.99, 5.99] .50

Maternal Ed:Gender:CPC :TLT 1.41 2.96 0.48 [ - 4.56, 7.38] .64

N 58

R2 0.29

Adj R2 0.04

Note: LL and UL indicate the lower and upper limits of a confidence interval, respectively. * indicates p <
.05, ** indicates p < .01, *** indicates p < .001.
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Table 16
Regression results for predicting KMAX at 42-months from 30-month mean CPNC, 30-month
mean TLT, maternal education level, and gender.

Predictor B SE t 95% CI VIF p

[LL, UL]

(Intercept) 1.19*** 0.10 11.73 [0.98, 1.39] <.001

Maternal Ed 0.25* 0.11 2.25 [0.03, 0.48] 1.83 .0299

Gender - 0.02 0.20 - 0.11 [ - 0.43, 0.39] 1.46 .91

CPNC - 0.69 0.85 - 0.81 [ - 2.40, 1.02] 1.44 .42

TLT 0.03 0.08 0.42 [ - 0.13, 0.20] 1.87 .67

Maternal Ed:Gender 0.24 0.22 1.07 [ - 0.21, 0.69] .29

Maternal Ed:CPNC 0.34 0.83 0.42 [ - 1.33, 2.01] .68

Gender:CPNC 3.54* 1.69 2.09 [0.12, 6.96] .0426

Maternal Ed:TLT 0.13 0.11 1.22 [ - 0.09, 0.35] .23

Gender:TLT - 0.24 0.16 - 1.47 [ - 0.57, 0.09] .15

CPNC :TLT 1.55* 0.73 2.11 [0.07, 3.03] .0409

Maternal Ed:Gender:CPNC 0.50 1.65 0.30 [-2.84, 3.83] .77

Maternal Ed:Gender:TLT 0.28 0.21 1.33 [ - 0.15, 0.72] .19

Maternal Ed:CPC :TLT 0.68 0.98 0.69 [ - 1.30, 2.66] .49

Gender:CPNC :TLT 1.24 1.47 0.84 [ - 1.73, 4.20] .40

Maternal Ed:Gender:CPNC :TLT - 1.18 1.96 - 0.60 [ - 5.14, 2.78] .55

N 58

R2 0.44

Adj R2 0.24

Note: LL and UL indicate the lower and upper limits of a confidence interval, respectively. * indicates p <
.05, ** indicates p < .01, *** indicates p < .001.
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Table 17
Means and Standard Deviations of KMAX Scores at 42-months by gender and CPNC category
at 30-months.

Gender CPNC Cat Mean SD

B Higher NC 0.96 0.70

B Lower NC 1.47 0.61

G Higher NC 1.39 0.82

G Lower NC 1.23 0.70

Note. B = Boys, G = Girls. SD = Standard Deviation. CPNC category was calculated using a median split.
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Table 18
Means and Standard Deviations of KMAX Scores at 42-months by TLT category and CPNC

category at 30-months.

TLT Cat CPNC Cat Mean SD

Higher TLT Higher NC 1.29 0.85

Higher TLT Lower NC 1.23 0.64

Lower TLT Higher NC 1.07 0.72

Lower TLT Lower NC 1.41 0.69

Note. SD = Standard Deviation. CPNC and TLT category were calculated using a median split.
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Table 19
Regression results for predicting 54-month KMAX from 30-month mean CPC, 30-month mean
TLT, maternal education level, and gender.

Predictor B SE t 95% CI VIF p

[LL, UL]

(Intercept) 2.02 0.10 20.98 [1.83, 2.21] <.001

Maternal Ed 0.24* 0.11 2.17 [0.06, 0.50] 1.74 .03543

Gender - 0.24 0.19 - 1.25 [ - 0.36, 0.53] 1.35 .22

CPC 1.16 1.08 1.08 [ - 1.78, 3.42] 1.68 .29

TLT 0.02 0.10 0.23 [ - 0.25, 0.20] 2.64 .82

Maternal Ed:Gender - 0.21 0.22 - 0.98 [ - 0.21, 0.66] .33

Maternal Ed:CPC 1.31 1.27 1.04 [ - 2.48, 2.50] .31

Gender:CPC 0.13 2.15 0.06 [ - 8.51, 1.89] .95

Maternal Ed:TLT 0.07 0.12 0.59 [ - 0.19, 0.34] .56

Gender:TLT 0.08 0.21 0.37 [ - 0.71, 0.19] .71

CPC :TLT - 1.98 1.28 - 1.55 [ - 1.76, 2.73] .13

Maternal Ed:Gender:CPC 0.66 2.53 0.26 [ - 6.85, 3.11] .79

Maternal Ed:Gender:TLT 0.30 0.25 1.21 [ - 0.28, 0.78] .23

Maternal Ed:CPC :TLT 0.85 1.32 0.64 [ - 2.84, 3.13] .52

Gender:CPC :TLT - 3.47 2.55 - 1.36 [ - 2.99, 5.99] .18

Maternal Ed:Gender:CPC :TLT 2.53 2.64 0.96 [ - 4.56, 7.38] .34

N 58

R2 0.38

Adj R2 0.15

Note: LL and UL indicate the lower and upper limits of a confidence interval, respectively. * indicates p <
.05, ** indicates p < .01, *** indicates p < .001.
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Table 20
Regression results for predicting KMAX at 54-months from 30-month mean CPNC, 30-month
mean TLT, maternal education level, and gender.

Predictor B SE t 95% CI VIF p

[LL, UL]

(Intercept) 2.05*** 0.10 20.67 [1.85, 2.25] <.001

Maternal Ed 0.28* 0.12 2.29 [0.03, 0.52] 2.11 .0273

Gender - 0.42* 0.20 - 2.11 [ - 0.82, - 0.02] 1.41 .0412

CPNC - 0.15 0.95 - 0.16 [ - 2.06, 1.77] 1.81 .88

TLT - 0.12 0.09 - 1.34 [ - 0.30, 0.06] 1.89 .19

Maternal Ed:Gender - 0.10 0.24 - 0.39 [ - 0.59, 0.39] .70

Maternal Ed:CPNC 0.22 0.97 0.22 [ - 1.75, 2.18] .83

Gender:CPNC 1.11 1.90 0.59 [ - 2.72, 4.94] .56

Maternal Ed:TLT 0.19 0.11 1.73 [ - 0.03, 0.41] .09

Gender:TLT - 0.01 0.18 - 0.06 [ - 0.37, 0.34] .95

CPNC :TLT 0.02 0.74 0.03 [ - 1.48, 1.52] .98

Maternal Ed:Gender:CPNC - 0.95 1.94 - 0.49 [ - 4.87, 2.98] .63

Maternal Ed:Gender:TLT 0.59* 0.22 2.67 [0.14, 1.04] .01083

Maternal Ed:CPNC :TLT 0.64 0.97 0.66 [-1.32, 2.61] .51

Gender:CPNC :TLT 1.64 1.49 1.10 [-1.36, 4.65] .28

Maternal Ed:Gender:CPNC :TLT 2.02 1.95 1.04 [-1.91, 5.94] .31

N 58

R2 0.37

Adj R2 0.14

Note: LL and UL indicate the lower and upper limits of a confidence interval, respectively. * indicates p <
.05, ** indicates p < .01, *** indicates p < .001.
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Table 21
Means and Standard Deviations of KMAX at 54-months by Maternal Education category,
gender, and TLT category at 30-months.

Maternal Ed cat Gender TLT Cat Mean SD

Higher Edu B Higher TLT 2.43 0.53

Higher Edu B Lower TLT 2.45 0.67

Higher Edu G Higher TLT 2.12 0.70

Higher Edu G Lower TLT 1.97 0.55

Lower Edu B Higher TLT 1.74 0.56

Lower Edu B Lower TLT 1.78 0.95

Lower Edu G Higher TLT 1.40 0.53

Lower Edu G Lower TLT 2.27 0.73

Note. B = Boys, G = Girls. SD = Standard Deviation. Maternal Ed and TLT category were calculated using
a median split.
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Table 22
Generalized Linear Mixed Model results for predicting MEFS total score at 30-months from
Maternal Education level and gender.

Predictor B SE z p

(Intercept) 0.15*** 0.00 40.87 < .001

Maternal Education level 0.01. 0.00 1.90 .058

Gender 0.01 0.01 1.17 .243

Maternal Education level:Gender 0.00 0.01 0.03 .974

logLik 217.4

σ2 0.0017

Note. AIC = - 424.9, BIC = - 410.2. logLik = log-likelihood. σ2 = Dispersion parameters for Student’s t. *p
< .05, **p < .01, ***p < .001.
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Table 23
Generalized Linear Mixed Model results for predicting MEFS total score at 78-months from
Maternal Education level and gender.

Predictor B SE z p

(Intercept) 0.73*** 0.01 92.89 < .001

Maternal Education level 0.01 0.01 0.56 .570

Gender 0.00 0.02 0.14 .890

Maternal Education level:Gender 0.0357* 0.02 2.21 .0272

logLik 131.1

σ2 0.0069

Note. AIC = - 252.1, BIC = - 237.5. logLik = log-likelihood. σ2 = Dispersion parameters for Student’s t. *p
< .05, **p < .01, ***p < .001.
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Table 24
Generalized Linear Mixed Model results for predicting MEFS total score at 78-months from
MEFS at 30-months, Maternal Education level, and gender.

Predictor B SE z p

(Intercept) 0.74*** 0.01 87.25 < .001

Total Score (30) 0.88*** 0.22 3.98 < .001

Maternal Education level - 0.00 0.01 - 0.39 .698

Gender - 0.00 0.02 - 0.10 .924

Total Score (30):Maternal Education level - 0.16 0.20 - 0.81 .420

Total Score (30):Gender - 0.45 0.44 - 1.01 .314

Maternal Education level:Gender 0.03 0.02 1.87 .062

Total Score (30):Maternal Education level:Gender - 0.59 0.40 - 1.48 .139

logLik 121.0

σ2 0.0065

Note. AIC = - 224.1, BIC = - 198.9. logLik = log-likelihood. σ2 = Dispersion parameter for Student’s t. *p <
.05, **p < .01, ***p < .001.
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Table 25
Generalized Linear Mixed Model results for predicting MEFS total score from year, Maternal
Education level, and gender, using total score (TS) in year 4 as criterion.

Predictor B SE z p

(Intercept) 0.49*** 0.01 74.45 < .001

TS Year1 - 0.33*** 0.01 - 45.78 < .001

TS Year2 - 0.07*** 0.01 - 5.60 < .001

TS Year3 0.13*** 0.01 16.41 < .001

Maternal Ed 0.03*** 0.01 3.91 < .001

Gender 0.05*** 0.01 3.35 .0008

TS Year1:Maternal Ed - 0.02* 0.01 - 2.33 .020

TS Year2:Maternal Ed 0.01 0.01 1.26 .208

TS Year3:Maternal Ed 0.01 0.01 0.84 .403

TS Year1:Gender - 0.04* 0.02 - 2.34 .019

TS Year2:Gender 0.17*** 0.03 5.82 < .001

TS Year3:Gender - 0.06*** 0.02 - 4.07 < .001

Maternal Ed:Gender 0.02 0.01 1.30 .195

TS Year1:Maternal Ed:Gender - 0.00 0.01 - 0.26 .797

TS Year2:Maternal Ed:Gender - 0.00 0.02 - 0.12 .908

TS Year3:Maternal Ed:Gender - 0.01 0.02 - 0.70 .487

logLik 258.7

σ2 0.0026

Random Effects SD Variance

Participant code (Intercept) 0.033 0.001

Note. AIC = - 479.3, BIC = - 410.7. logLik = log-likelihood. σ2 = Dispersion parameter for Student’s t. TS
refers to Total Score. *p < .05, **p < .01, ***p < .001.
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Table 26
Means and Standard Deviations of MEFS total score by Year and Gender

Year Gender Mean SD

1 B 14.77 4.23

1 G 16.78 7.07

2 B 33.88 16.86

2 G 46.21 14.90

3 B 60.00 14.88

3 G 60.56 9.42

4 B 75.42 10.23

4 G 75.49 8.02

Note. B = Boys, G = Girls. SD = Standard Deviation.
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Table 27
Generalized Linear Mixed Model results for predicting MEFS Total Score at 30-months of age
from mean CPC at 6-months of age, mean TLT at 6-months of age, Maternal Education level,
and gender.

Predictor B SE z p

(Intercept) 0.16*** 0.01 24.97 < .001

Maternal Education level 0.01 0.01 1.28 .199

Gender 0.01 0.01 0.87 .383

CPC - 0.00 0.06 - 0.05 .961

TLT 0.01 0.01 1.55 .121

Maternal Education level:Gender 0.00 0.01 0.10 .919

Maternal Edcuation level:CPC 0.08 0.08 1.02 .307

Gender:CPC - 0.10 0.12 - 0.83 .405

Maternal Education level:TLT - 0.01 0.01 - 1.37 .172

Gender:TLT 0.02* 0.01 2.19 .02874

CPC :TLT 0.03 0.03 1.00 .317

Maternal Education level:Gender:CPC 0.09 0.16 0.57 .569

Materanl Education level:Gender:TLT - 0.03** 0.01 - 2.58 .010

Maternal Education level:CPC :TLT - 0.03 0.04 - 0.58 .561

Gender:CPC :TLT 0.07 0.07 1.04 .301

Maternal Education level:Gender:CPC :TLT - 0.07 0.09 - 0.73 .468

logLik 104.7

σ2 0.0014

Note. AIC = - 175.4, BIC = - 139.0 logLik = log-likelihood σ2 = Dispersion parameter for Student’s t. *p <
.05, **p < .01, ***p < .001.
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Table 28
Mean and Standard Deviations of MEFS Total Score at 30-months of age by Maternal
Educational Level, Gender, and TLT Category at 6-months of age.

Maternal Education level category Gender TLT category Mean SD

Higher EDU B Higher TLT 16.09 2.70

Higher EDU B Lower TLT 15.18 3.79

Higher EDU G Higher TLT 18.00 10.16

Higher EDU G Lower TLT 16.36 3.97

Lower EDU B Higher TLT 10.86 5.52

Lower EDU B Lower TLT 14.33 2.89

Lower EDU G Higher TLT 20.50 7.78

Lower EDU G Lower TLT 15.25 1.71

Note. Maternal Education and TLT categories were determined using a median split. Maternal Education
level and TLT were both entered in the model as continuous variables.
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Table 29
Generalized Linear Mixed Model results for predicting MEFS Total Score at 30-months of age
from Maternal Education level, Gender, mean CPNC at 6-months of age, and mean TLT at
6-months of age.

Predictor B SE z p

(Intercept) 0.15*** 0.01 21.74 < .001

Maternal Education level 0.01 0.01 1.00 .318

Gender 0.02 0.01 1.06 .289

CPNC 0.02 0.06 0.42 .677

TLT 0.00 0.00 0.91 .361

Maternal Education level:Gender - 0.01 0.02 - 0.42 .675

Maternal Education level:CPNC 0.05 0.07 0.68 .495

Gender:CPNC 0.14 0.11 1.24 .217

Maternal Education level:TLT - 0.01. 0.01 - 1.67 .096

Gender:TLT 0.01 0.01 1.45 .147

CPNC :TLT 0.02 0.03 0.56 .573

Maternal Education level:Gender:CPNC 0.07 0.15 0.49 .621

Maternal Education level:Gender:TLT - 0.03** 0.01 - 2.59 .00953

Maternal Education level:CPNC :TLT 0.06 0.04 1.30 .194

Gender:CPNC :TLT 0.01 0.06 0.08 .936

Maternal Education level:Gender:CPNC :TLT 0.17. 0.09 1.94 .0519

logLik 105.5

σ2 0.0014

Note. AIC = - 177.1, BIC = - 140.7. logLik = log-likelihood. σ2 = Dispersion parameter for Student’s t. *p <
.05, **p < .01, ***p < .001.
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Table 30
Generalized Linear Mixed Model results for predicting MEFS Total Score at 30-months of age
from Maternal Education level, Gender, mean CPC at 18-months of age, and mean TLT at
18-months of age.

Predictor Estimate SE z p

(Intercept) 0.16*** 0.01 31.21 < .001

Maternal Education level 0.01 0.01 1.08 .280

Gender 0.02 0.01 1.56 .119

CPC 0.09* 0.04 2.17 .02981

TLT 0.00 0.00 0.19 .853

Maternal Education level:Gender - 0.03* 0.01 - 2.55 .01065

Maternal Education level:CPC - 0.12** 0.05 - 2.61 .00917

Gender:CPC 0.12 0.08 1.46 .144

Maternal Education level:TLT - 0.01** 0.01 - 2.58 .00989

Gender:TLT - 0.02. 0.01 - 1.95 .05105

CPC :TLT - 0.02 0.03 - 0.69 .490

Maternal Education level:Gender:CPC - 0.08 0.09 - 0.87 .387

Maternal Education level:Gender:TLT 0.00 0.01 0.25 .806

Maternal Education level:CPC :TLT - 0.08 0.05 - 1.60 .109

Gender:CPC :TLT - 0.01 0.06 - 0.19 .851

Maternal Education level:Gender:CPC :TLT - 0.31** 0.10 - 3.03 .00244

logLik 109.4

σ2 0.0011

Note. AIC = - 184.8, BIC = - 148.7. logLik = log-likelihood. σ2 = Dispersion parameter for Student’s t. *p <
.05, **p < .01, ***p < .001.
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Table 31
Mean and Standard Deviations of MEFS Total Score at 30-months of age by Maternal
Educational Level and TLT Category at 18-months of age.

Maternal Education level category TLT category Mean SD

Higher EDU Higher TLT 16.27 6.28

Higher EDU Lower TLT 16.62 5.04

Lower EDU Higher TLT 16.60 5.55

Lower EDU Lower TLT 12.30 5.186521

Note. Maternal Education and TLT categories were determined using a median split. Maternal Education
level and TLT were both entered in the model as continuous variables.
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Table 32
Generalized Linear Mixed Model results for predicting MEFS Total Score at 30-months of age
from Maternal Education level, gender, mean CPNC at 18-months of age, and mean TLT at
18-months of age.

Predictor B SE z p

(Intercept) 0.16*** 0.01 26.58 < .001

Maternal Education level 0.01 0.01 1.52 .127

Gender 0.02 0.01 1.59 .113

CPNC 0.06 0.06 1.04 .298

TLT - 0.00 0.01 - 0.32 .746

Maternal Education level:Gender - 0.02 0.01 - 1.36 .174

Maternal Education level:CPNC - 0.11 0.07 - 1.64 .101

Gender:CPNC 0.17 0.12 1.43 .152

Maternal Education level:TLT - 0.01* 0.01 - 2.22 .0266

Gender:TLT - 0.02* 0.01 - 2.48 .0131

CPNC :TLT 0.09* 0.04 2.03 .0428

Maternal Education level:Gender:CPNC - 0.28* 0.14 - 2.06 .0397

Maternal Education level:Gender:TLT - 0.00 0.01 - 0.05 .963

Maternal Education level:CPNC :TLT - 0.07 0.06 - 1.23 .218

Gender:CPNC :TLT 0.19* 0.09 2.22 .0267

Maternal Education level:Gender:CPNC :TLT - 0.04 0.12 - 0.35 .728

logLik 105.7

σ2 0.0014

Note. AIC = - 177.4, BIC = - 141.3. logLik = log-likelihood. σ2 = Dispersion parameter for Student’s t. *p <
.05, **p < .01, ***p < .001.
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Table 33
Mean and Standard Deviations of MEFS Total Score at 30-months of age by gender, CPNC

category at 18-months of age, and TLT category at 18-months of age.

Gender CPNC category TLT category Mean SD

B Higher NC Higher TLT 16.11 2.62

B Higher NC Lower TLT 13.57 5.26

B Lower NC Higher TLT 15.00 2.00

B Lower NC Lower TLT 13.40 5.36

G Higher NC Higher TLT 16.13 5.74

G Higher NC Lower TLT 15.57 1.27

G Lower NC Higher TLT 17.75 10.54

G Lower NC Lower TLT 19.14 6.84

Note. CPNC and TLT categories were determined using a median split. Both CPNC and TLT were entered
into the model as continuous variables.
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Table 34
Mean and Standard Deviations of MEFS Total Score at 30-months of age by gender, Maternal
Education level category, and CPNC category at 18-months of age.

Gender Maternal Education Category CPNC category Mean SD

B Higher EDU Higher NC 16.36 2.50

B Higher EDU Lower NC 15.00 3.82

B Lower EDU Higher NC 12.00 5.43

B Lower EDU Lower NC 11.80 5.17

G Higher EDU Higher NC 15.08 3.45

G Higher EDU Lower NC 18.92 9.27

G Lower EDU Higher NC 19.00 6.08

G Lower EDU Lower NC 15.00 2.83

Note. Maternal Education level and CPNC categories were determined using a median split. Both CPNC and
Maternal Education level were entered into the model as continuous variables.
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.1.35 Appendix II

Table 35
Generalized Linear Mixed Model results for predicting MEFS Total Score at 78-months of age
from mean CPC at 30-months of age, mean TLT at 30-months of age, Maternal Education
level, and gender.

Predictor B SE z p

(Intercept) 0.55*** 0.12 4.49 < .001

CPC 0.20* 0.09 2.11 .0350

TLT 0.02* 0.01 2.30 .0217

Gender -0.00 0.02 -0.15 .881

Maternal Education level 0.01 0.01 1.52 .129

AgeMEFS 0.00 0.00 1.38 .167

CPC :TLT -0.06 0.08 -0.75 .455

CPC :Gender -0.10 0.18 -0.53 .596

TLT:Gender 0.02 0.01 1.22 .221

CPC :Maternal Education level -0.10 0.10 -0.92 .357

TLT:Maternal Education level -0.00 0.01 -0.21 .833

Gender:Maternal Education level 0.03. 0.02 1.89 .0595

CPC :TLT:Gender -0.23 0.17 -1.37 .170

CPC :TLT:Maternal Education level 0.13 0.10 1.23 .220

CPC :Gender:Maternal Education level -0.36 0.22 -1.65 .100

TLT:Gender:Maternal Education level -0.02 0.02 -1.19 .233

CPC :TLT:Gender:Maternal Education level 0.07 0.19 0.37 .708

logLik 133.30

σ2 0.00581

Note. AIC = -230.5, BIC = -179.0. logLik = log-likelihood. σ2 = Dispersion parameter for Student’s t. *p <
.05, **p < .01, ***p < .001.
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.1.36 Appendix JJ

Table 36
Generalized Linear Mixed Model results for predicting MEFS Total Score at 78-months of age
from Maternal Education level, Gender, mean CPNC at 30-months, and mean TLT at
30-months of age.

Predictor B SE z p

(Intercept) 0.56*** 0.12 4.74 < .001

CPNC 0.01 0.07 0.15 .885

TLT 0.02* 0.01 2.14 .0325

Gender 0.01 0.02 0.42 .671

Maternal Education level 0.01 0.01 1.26 .209

MEFS Age at test 0.00 0.00 1.40 .162

CPNC :TLT 0.07 0.06 1.07 .284

CPNC :Gender 0.06 0.14 0.44 .658

TLT:Gender 0.01 0.01 0.98 .329

CPNC :Maternal Education level 0.05 0.08 0.65 .516

TLT:Maternal Education level -0.00 0.01 -0.43 .666

Gender:Maternal Education level 0.03 0.02 1.86 .063

CPNC :TLT:Gender 0.09 0.13 0.74 .459

CPNC :TLT:Maternal Education level - 0.08 0.07 - 1.11 .267

CPNC :Gender:Maternal Education level 0.13 0.15 0.87 .385

TLT:Gender:Maternal Education level - 0.03 0.02 - 1.58 .114

CPNC :TLT:Gender:Maternal Education level - 0.11 0.15 - 0.74 .457

logLik 128.70

σ2 0.00635

Note. AIC = -221.5, BIC = -170.0. logLik = log-likelihood. σ2 = Dispersion parameter for Student’s t. *p <
.05, **p < .01, ***p < .001.
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.1.37 Appendix KK

Table 37
Generalized Linear Mixed Model results for predicting MEFS Total Score at 54-months of age
from Maternal Education, Gender, and KMAX at 42-months of age.

Predictor B SE z p

(Intercept) - 0.12 0.52 - 0.22 .826

Maternal Education level 0.02 0.01 1.65 .098

Gender - 0.05. 0.03 - 1.95 .051

KMAX 0.04* 0.02 2.17 .0302

MEFS Age at test 0.01 0.01 1.39 .166

Maternal Education level:Gender - 0.00 0.03 - 0.02 .981

Maternal Education level:KMAX 0.00 0.02 0.21 .833

Gender:KMAX 0.02 0.04 0.63 .529

Maternal Education level:Gender:KMAX 0.08 0.05 1.77 .076

logLik 57.50

σ2 0.00548

Note. AIC = -95.0, BIC = -75.0. logLik = log-likelihood. σ2 = Dispersion parameter for Student’s t. *p <
.05, **p < .01, ***p < .001.
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.1.38 Appendix LL

Table 38
Generalized Linear Mixed Model results for predicting MEFS Total Score at 78-months of age
from Maternal Education level, Gender, and KMAX at 42-months of age.

Predictor B SE z p

(Intercept) 0.77*** 0.01 71.61 < .001

Maternal Education level 0.02* 0.01 2.16 .03116

Gender - 0.05* 0.02 - 2.49 .01266

KMAX 0.02 0.01 1.20 .232

Age at test 0.00 0.00 1.53 .126

Maternal Education level:Gender 0.05** 0.02 2.80 .00518

Maternal Education level:KMAX - 0.04* 0.02 - 2.03 .04248

Gender:KMAX - 0.01 0.03 - 0.50 .619

Maternal Education level:Gender:KMAX 0.17*** 0.04 4.40 < .001

logLik 70.10

σ2 0.00332

Note. AIC = -120.2, BIC = -100.7. logLik = log-likelihood. σ2 = Dispersion parameter for Student’s t. *p <
.05, **p < .01, ***p < .001.
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.1.39 Appendix MM

Table 39
Mean and Standard Deviations of MEFS Total Score at 78-months of age by Gender,
Maternal Education level category, and KMAX category at 42-months of age.

Gender Maternal Education Category KMAX Category Mean SD

B Higher Edu Higher K 76.56 8.35

B Higher Edu Lower K 82.00 5.83

B Lower Edu Higher K 87.00 0.00

B Lower Edu Lower K 74.00 5.97

G Higher Edu Higher K 79.42 6.57

G Higher Edu Lower K 76.00 7.27

G Lower Edu Higher K 70.67 14.19

G Lower Edu Lower K 72.57 5.03

Note. Maternal Education level and KMAX categories were determined using a median split. Both KMAX and
Maternal Education level were entered into the model as continuous variables.
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.1.40 Appendix NN

Table 40
Generalized Linear Mixed Model results for predicting MEFS Total Score at 78-months of age
from Maternal Education level, gender, and KMAX at 54-months of age.

Predictor B SE z p

(Intercept) 0.78*** 0.01 57.72 < .001

Maternal Education level - 0.01 0.01 - 0.39 .695

Gender - 0.01 0.02 - 0.29 .771

KMAX 0.02 0.02 1.06 .290

MEFS Age at test - 0.00 0.00 - 0.42 .673

Maternal Education level:Gender 0.01 0.03 0.28 .776

Maternal Education level:KMAX - 0.03 0.02 - 1.63 .104

Gender:KMAX 0.03 0.03 0.77 .442

Maternal Education level:Gender:KMAX 0.00 0.03 0.15 .882

logLik 63.70

σ2 0.00455

Note. AIC = -107.3, BIC = -87.6. logLik = log-likelihood. σ2 = Dispersion parameter for Student’s t. *p <
.05, **p < .01, ***p < .001.


