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Abstract 

 

The vaccination game exhibits positive externalities. The standard game-theoretic approach assumes that 

parents make decisions according to the Nash protocol, which is individualistic and non-cooperative. 

However, in more solidaristic societies, parents may behave cooperatively, optimizing according to the 

Kantian protocol, in which the equilibrium is efficient. We develop a random utility model of vaccination 

behavior and prove that the equilibrium coverage rate is larger with the Kant protocol than with the Nash 

one. Using survey data collected from six countries, we calibrate the parameters of the vaccination game, 

compute both Nash equilibrium and Kantian equilibrium profiles, and compare them with observed 

vaccination behavior. We find evidence that parents demonstrate cooperative behavior in all six countries. 

The study highlights the importance of cooperation in shaping vaccination behavior and underscores the 

need to consider these factors in public health interventions. 

 

Keywords: Kantian equilibrium, Nash equilibrium, measles vaccination, free-rider problem 

JEL code: C72 D62 D63 I12
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1 Introduction 1 

 Vaccination against childhood diseases has improved child health and life expectancy dramatically 2 

over the last fifty years. Researchers from the US Center for Disease Control and Prevention (CDC) and 3 

the World Health Organization (WHO) write that in 2017, 110,000 children died of measles infection 4 

globally, and that in the period 2000-2017, 21 million lives were saved by measles vaccination (Dabbagh, 5 

Laws et alii, 2018, Table 2). The fraction of children globally who are vaccinated against measles rose in 6 

this period from 72% to 85%. Sweden and China have vaccination coverage rates in 2019 of 97% and 99%, 7 

respectively (World Bank, https://data.worldbank.org/indicator/SH.IMM.MEAS?view=map). 8 

 Our interest in this article, however, is not epidemiological, but rather theoretical. Vaccination is a 9 

choice in which cooperation among the population is important. One child’s vaccination provides a positive 10 

externality for others, because as the vaccination coverage rate increases, the probability that an 11 

unvaccinated child contracts the disease decreases. Eventually ‘herd immunity’ may be attained, when the 12 

coverage rate is sufficiently high that the virus cannot find enough hosts in the population to increase its 13 

prevalence. 14 

  Here, we model vaccination behavior as a game, in which the strategy of parents is to choose whether 15 

or not to vaccinate their child, or, in a more general version, a parent’s mixed strategy is a probability that 16 

she will vaccinate her child. Our goal is to highlight the existence of cooperation in vaccination games, by 17 

looking for evidence concerning whether parents’ behavior regarding childhood vaccination leans towards 18 

cooperation or individualistic approaches.  In other words, does it appear that parents avoid the free-rider 19 

problem by cooperating?  20 

 In order to answer that question, we propose a particular explanation for cooperation in vaccination, 21 

by contrasting the predictions of the Nash equilibrium and the multiplicative Kantian equilibrium (Roemer 22 

2010, 2015). Specifically, we develop a random utility model of vaccination behavior, we compute 23 

analytically both the Nash and Kantian equilibria, and we prove that the coverage rate is larger under the 24 

latter. We then calibrate the parameters of the vaccination game using survey data collected from six 25 

countries about parents’ beliefs regarding the costs and benefits of vaccination, and whether or not they 26 

vaccinated their child. Using these data, we compute the Nash equilibrium and the multiplicative Kantian 27 

equilibrium of the vaccination game in each country. This consists of two profiles of vaccination 28 

probabilities in the country, and their implied equilibrium coverage rates under Nash and Kant behavior. 29 

We then ask which of these equilibria appears to better explain observed vaccination behavior in the 30 

country. Do parents appear to be ‘going it alone’ as in Nash or cooperating as in Kant? Of course, the reality 31 

is surely that some people go it alone and some behave cooperatively, but we do not attempt to analyze a 32 

model that is so nuanced: we will be satisfied with the simpler question just posed.  33 

https://data.worldbank.org/indicator/SH.IMM.MEAS?view=map
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 In all six countries, we find that the Kantian model performs significantly better than the Nash model 1 

in explaining observed behavior, engendering vaccination rates that are uniformly greater than those 2 

predicted by Nash equilibrium. We then present additional empirical evidence, derived from a second 3 

survey conducted in France and the United States, showing that parents’ motivations to vaccinate their 4 

children align more closely with the Kantian approach than with the Nash framework. For instance, many 5 

parents report being motivated to vaccinate by the existence of herd immunity, rather than exploiting the 6 

protection already offered by others' vaccinations, as a Nash player would. 7 

 8 

1.1 Related Literature 9 

One of the first papers credited in the economic literature with studying the insufficient 10 

immunization rates due to the incomplete internalization of the positive vaccination externality is Brito et 11 

al. (1991). Geoffard and Philipson (1997) are the first to study the forces that make disease eradication 12 

through vaccination difficult in the context of a dynamic, SIR, model (where individuals are either 13 

susceptible, infected, or immune through recovery). The SIR model has since proved quite popular in the 14 

economic literature (see for instance Auld (2003) and Philipson (2000) for an early survey of this literature). 15 

 16 

Several recent papers in the economics literature rather model the individual choice to vaccinate in 17 

a static setting with one or two periods. They use a decision-theoretic approach where individuals choose 18 

whether to vaccinate as a function of the disease prevalence (or fraction of the population vaccinated), 19 

without strategic interactions between agents. They differ in whether vaccines are perfect (i.e., prevent the 20 

occurrence of the disease for sure) or not, in the vaccination costs (financial costs, time costs and/or side 21 

effects) and in whether prevention efforts (such as masks) are available or not. For instance, Nuscheler and 22 

Roeder (2016) study the impact of time preferences on the choice to vaccinate, while Crainich et al (2019) 23 

concentrate on risk aversion. d’Albis et al (2022) study the impact of pessimistic expectations on 24 

vaccination decisions. 25 

 26 

The use of a game-theoretic approach to the vaccination decision is more common in the 27 

epidemiology literature. The first study of vaccination behavior with a game theoretical perspective was 28 

prompted by concerns associated with the pertussis vaccine (Fine et al, 1976). Since then, epidemiological 29 

game-theory models have been formulated for several diseases, including measles (Shim et al, 2012b). 30 

Papers in this literature merge together a population-level epidemiological model for the disease 31 

transmission (à la SIR) and an individual-level calculation of payoff associated with infection and/or 32 

vaccination. These studies repeatedly show that the pursuit of self-interest would lead to suboptimal 33 
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vaccination coverage for a community. (See Bauch et al (2003, 2004) for accessible examples of this 1 

literature). 2 

 3 

All papers above assume that agents are self-interested. The paper closest to ours is Shim et al. 4 

(2012a), who first build a simple game-theoretical model where agents may exhibit some altruism. By 5 

varying the degree of altruism, one moves from the selfish Nash equilibrium with too little vaccination to 6 

the socially optimal behavior. They then resort to a survey to elicit the beliefs of agents regarding the 7 

parameters of their model, such as the efficacy and riskiness of the influenza vaccines, as well as their 8 

perceived risk of infection (risk-to-self) and of transmitting the disease (risk-to-others).  They then estimate 9 

an econometric model of the individuals’ decisions to vaccinate and compute the agent’s degree of altruism 10 

as the ratio of the coefficients of the risk-to-other divided by the risk-to-self. They obtain a baseline value 11 

of the degree of altruism of 0.25. They then compute and compare the vaccination rates for perceived 12 

parameters at the selfish equilibrium (27%), with the baseline degree of altruism (34%) and at the social 13 

optimal (46%). They also find that, for any altruism degree, the vaccination coverage is lower with the true 14 

parameters than with perceived parameters, presumably because people tend to overestimate their infectious 15 

period as well as their infection probability. So, the lack of altruism leads to too little vaccination, while 16 

perception errors lead to too much vaccination, but with the former effect being much larger than the latter. 17 

In health behavior studies, the relevance of social norms and cooperative attitudes is acknowledged 18 

in general (Vanlandingham et al. 1995) and specifically for the case of vaccination (Yang 2015). As they 19 

are rather homogeneous and not easily changed, social norms are not a prime factor in studies that aim to 20 

locally predict or influence behavior (e.g. Kreps et al. 2020, Gatwood et al. 2021). Here, more prominent 21 

variables are vaccine-related attributes such as side effects, vaccine safety and efficacy as well as political 22 

factors such as health authority approval, endorsements, party affiliation and origin of vaccine. However, 23 

in order to fully and globally understand vaccination behavior, social norms are considered important (Kan 24 

and Zhang 2018). 25 

 26 

 Section 2 introduces the theoretical concepts. Section 3 presents a random utility model of 27 

vaccination and the equilibrium theory. Section 4 describes the data. Section 5 presents our method of 28 

estimation, that is, of testing whether the Nash or Kantian model better explains vaccination behavior in 29 

six countries. Sections 6 and 7 present and discuss our major findings. Section 8 offers a short conclusion. 30 

The Online Appendix presents details that are elided in the main text. 31 

2 Theoretical concepts 32 

Here, we summarize the central game-theoretic concepts of this paper, Nash and Kantian equilibrium.   33 



 4 

 1 

Definition 1 Let 𝑽 = {𝑉1, 𝑉2…,𝑉𝑛} be a set of payoff functions for n players, where the strategy space for 2 

each player is the unit interval I and for all j, 𝑉𝑗: 𝐼
𝑛 → ℝ. An n-tuple of strategies 𝑎 = (𝑎1, 𝑎2… , 𝑎𝑛) where 3 

𝑎𝑖 is the probability that parent i vaccinates her child, is a Nash equilibrium of the game if, for all 𝑗 =4 

1, … , 𝑛:  5 

𝑎𝑗 ∈ 𝑎𝑟𝑔max
𝑥𝜖𝐼

𝑉𝑗(𝑎1,… , 𝑎𝑗−1, 𝑥, 𝑎𝑗+1,…,𝑎𝑛). 6 

 Define for any number 𝑥 ∈ 𝐼 and any number 𝜌 ≥ 0 the truncation: 7 

𝜌 ∘ 𝑥 = 𝑚𝑖𝑛[𝜌𝑥, 1].      (2.1) 8 

If a is a strategy profile, denote the mean of the function 𝜌 ∘ 𝑎  by 𝜌 ∘ 𝑎̅̅ ̅̅ ̅̅ . 9 

A multiplicative Kantian equilibrium is a profile of strategies 𝑎 = (𝑎1,… , 𝑎𝑛)𝜖𝐼
𝑛 such that no player would 10 

prefer, for some non-negative factor 𝜌, the truncated rescaled profile 𝜌 ∘ 𝑎 ≡ (𝜌 ∘ 𝑎1,… , 𝜌 ∘ 𝑎𝑛): 11 

for all j, 1 = 𝑎𝑟𝑔 max
0≤𝜌≤1/𝑎𝑗

𝑉𝑗(𝜌 ∘ 𝑎). 12 

The truncated re-scaled profile is a vector of probabilities.  13 

 A picture provides some intuition. In Figure 1, we depict a possible Nash or Kantian equilibrium 𝐴 =14 

(𝑎1∗, 𝑎2∗) in a game with two players. Suppose the strategy space for each player is [0,1]. In Nash 15 

optimization the column player 2 examines the set of counterfactual profiles consisting of the dashed 16 

vertical line through A, and the row player 1 examines the counterfactual profile of strategies where only 17 

he deviates, which is the horizontal dashed line through A.  In contrast, the Kantian players – both row and 18 

column – examine the same set of counterfactual profiles to test for an equilibrium, which is the ray through 19 

A. The mathematical expression of cooperation captured by Kantian optimization is that the players always 20 

examine a common set of counterfactual profiles. If you will, the players are acting in concert.  In contrast 21 

each player in Nash optimization is ‘going it alone—’ he treats the other player(s) as part of his 22 

environment, not as part of the action. 23 

 In a Nash equilibrium, a player contemplates how her payoff would change were she to propose a 24 

different strategy: no player can increase her payoff by such a change.  In a Kantian equilibrium, a player 25 

contemplates re-scaling the whole equilibrium profile by some non-negative constant.  At equilibrium, no 26 

player can increase her payoff by any such re-scaling.  We can see that the Kantian player ‘takes an action 27 

[re-scaling] if and only if she would be happy if her action were copied universally.’  The quotes in this 28 

sentence are meant to remind the reader of Kant’s categorical imperative: take an action only if you would 29 

wish it would be universalized.  We do not propose that Kantian players are engaging in magical thinking.   30 

Rather, their behavior is ethical: increase (or decrease) one’s strategy only if one would be content were 31 

others to do likewise.  The test internalizes the positive externality associated with vaccination.  32 
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 1 

Figure 1  The set of counterfactuals in a Nash and a Kantian equilibrium. The picture shows that, 2 
unlike Nash players, Kantian players share the set of deviations they contemplate.  3 

 4 

Definition 2 A game, as defined in definition 1, is strictly monotone increasing (decreasing) if each player’s 5 

payoff function is strictly increasing (decreasing) in the strategies of the other players. 6 

 We have: 7 

Proposition 1 Any interior Nash equilibrium of a strictly monotone game where all payoff functions are 8 

differentiable is Pareto inefficient. 9 

Proposition 2 Any strictly positive multiplicative Kantian equilibrium of a strictly monotone game is Pareto 10 

efficient.  11 

 The proof of Proposition 1 is provided in Appendix A.  Proposition 2 is proposition 3.1 in (Roemer, 12 

2019, p. 42). The Pareto inefficiency of Nash equilibrium in monotone increasing games is called, in the 13 

vernacular, the free-rider problem, whereas its inefficiency in monotone decreasing games is called the 14 

tragedy of the commons.  Thus, the content of Propositions 1 and 2 is that cooperation, conceived of as 15 

Kantian optimization, resolves the free-rider problem and the tragedy of the commons which are ubiquitous 16 

in Nash equilibria of monotone games. 17 

0 

1 

1 

(1,1) 

𝑎2 

Nash2 Kant1,2 

𝑎1 Nash1 

(𝑎1∗, 𝑎2∗) 
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 We will see that the Kantian optimization protocol does not rely on the altruism of parents.1 We 1 

identify the payoff function of the parent with the interests of her child. When a parent examines re-scalings 2 

of the proposed profile, she is forced to take into account the external effect on her own welfare brought 3 

about by the actions of others.  In this way, she internalizes the externality.  Think of the question a citizen 4 

asks herself when contemplating whether to make a small increase in her contribution to construction or 5 

financing of a public good.  A Nash player asks herself whether her own disutility from increasing her 6 

contribution is worth the small increment in the size of the public good to her.   She may well decide not to 7 

contribute under the Nash protocol.  But a Kantian player asks, “How would I like it if everyone increased 8 

his contribution to the public good in like manner?”  She tests the positive externality by asking what effect 9 

her increased contribution, if emulated by everyone, would have upon her welfare. These two different 10 

approaches are represented in Figure 1. The question the Kantian player poses induces her to take into 11 

account the positive externality of vaccination. The consequence, though perhaps not obvious, is that Pareto 12 

efficiency is achieved in the Kantian equilibrium.2  13 

 In the Kantian approach, we alter the way that players optimize in a game, but retain classical self-14 

interested preferences.  In contrast behavioral economists often alter preferences from classical self-15 

interested ones, but retain Nash optimization. In the latter, arguments like the welfare of others, fairness, 16 

warm glows, etc., are added to the domain of preferences. In Kantian equilibrium, a cooperative or fairness 17 

ethic is embodied in the manner of optimizing, not in preferences. Both approaches find that the level of 18 

vaccination in fact exceeds what is predicted by purely self-interested behavior.  19 

 20 

3 A random utility model of vaccination behavior 21 

3.1 The set-up 22 

 We model the problem of the parent who must decide whether or not to vaccinate her child against 23 

measles. We assume that laws or regulations mandating vaccination are weak or unenforced.3 If the child 24 

is not vaccinated, there is the possibility that he will contract measles and die or suffer a debilitating illness. 25 

If he is vaccinated, he will either be healthy and protected from measles, or may suffer a side effect from 26 

the vaccination of some severity (or so the parent may believe).  27 

 
1 More precisely, parents are perfectly altruistic towards their own child, but not at all towards other parents’ 

children. 
2 For a study of Kantian equilibrium, see Roemer (2019). 

3 In all six countries, at the time vaccination occurred, there was no enforced legal requirement to vaccinate one’s 

child, as we explain at the end of Section 4.  States in the US have legal requirements to vaccinate school children, 

but exemptions for ‘religious’ or health reasons are liberally granted: see ‘Activists, citing religion, aiming to limit 

child vaccine mandates,’  New York Times, December 4, 2023. 
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 We define three states of the child’s health: healthy (H), suffering a possibly severe side effect from 1 

an inoculation (I), or contracting measles and possibly suffering a very severe outcome or death (D). For 2 

an unvaccinated child, the healthy state includes both the case of not contracting measles and the case of 3 

contracting measles but not suffering severe consequences. For an unvaccinated child, the values represent 4 

the probabilities conditional on getting measles. Their probability of getting measles 𝜋 depends on the 5 

vaccination coverage rate and is defined below. 6 

Table 1Table 1 presents the parent’s beliefs about probabilities of the three health states if vaccinated and 7 

if not vaccinated, and the von Neumann –Morgenstern utilities of the parent (the decision maker) based 8 

upon the child’s health outcome. For an unvaccinated child, the values represent the probabilities 9 

conditional on getting measles. Their probability of getting measles 𝜋 depends on the vaccination coverage 10 

rate and is defined below. 11 

Table 1.  Utilities and probabilities of health states. Columns represent the three possible states of a 12 
child’s health. Rows show the utility, and the probabilities of each state for a child who 13 
was not and who was vaccinated. For an unvaccinated child, the probability values 14 
represent the probabilities conditional on getting measles. 15 

 
Healthy Side effect 

Death/Severe 

Disability 

Utility 1 𝑢 0 

Probability if not vax 1 − 𝑝0 0 𝑝0 

Probability if vax 1 − 𝑝 𝑝 0 

 16 

The utilities of the states Healthy (1) and Death (0) are a normalization that fixes the von Neumann-17 

Morgenstern utility function of the parent.4 The utility 𝑢 from the possible side effect is strictly between 18 

zero and one. We call the ordered pair (𝑝, 𝑢) the parent’s type; it is her beliefs about the utility-relevant 19 

facts concerning the side effect of vaccination. 𝑝0 is the probability of death or severe disability conditional 20 

upon contracting measles. We will take 𝑝0 to be common knowledge of parents. We assume the population 21 

is characterized by a Beta distribution 𝑄 of (𝑝, 𝑢) defined on the unit square. Thus, we assume that 0 <22 

𝑢 < 1 for all types, which is restrictive but mild. 23 

 Parent i’s mixed strategy will be a number 𝑎𝑖 ∈ [0,1], the probability with which she will vaccinate 24 

her child. The parent’s (von Neumann Morgenstern) expected utility is defined on the ordered pair (𝑎𝑖 , 𝑎 ), 25 

where �̅� is the coverage rate in the population, defined as the average probability of vaccination across all 26 

parents. There is a probability function 𝜋: [0,1] → [0,1]: �̅� → 𝜋(�̅�) which gives the probability that an 27 

 
4 The von Neumann – Morgenstern utility functions, given in (3.1) below, are non-comparable across persons and 

are specified up to a positive affine transformation, given by the normalization of the utilities of Healthy and Death.  
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unvaccinated child will contract measles if the coverage rate is �̅�. The positive externality is modeled by 1 

supposing that 𝜋 is a strictly decreasing, continuous function. Expected utility for a parent of type (𝑝, 𝑢) is 2 

given by: 3 

 𝑉(𝑝,𝑢)(𝑎, �̅�) = 𝑎 ((1 − 𝑝) ⋅ 1 + 𝑝𝑢 + 𝜀)
⏞              

𝑒𝑥 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 𝑖𝑓 𝑣𝑎𝑐𝑐

+ (1 − 𝑎) (𝜋(�̅�)(1 − 𝑝0) + (1 − 𝜋(�̅�)))
⏞                  

𝑒𝑥 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 𝑖𝑓 𝑛𝑜𝑡 𝑣𝑎𝑐𝑐

 (3.1) 4 

  The number ε is the realization of a random variable with a distribution function 𝐿(⋅) on support 5 

ℝ, which is drawn i.i.d. across all parents. The numbers ε are unobserved by the statistician, while 𝑝0, u 6 

and p are observed.  It is assumed that 99% of the support of 𝐿 lies on the non-negative real numbers: this 7 

models a positive utility saltus that the parent receives if she vaccinates her child –because she is doing 8 

what physicians and society recommend, what most of her neighbors are doing, and so on. The main 9 

motivation for inserting this random element into utility is that it will guarantee that the Nash and Kant 10 

equilibrium strategies all lie in the open interval (0,1), a property that is essential for our estimation strategy 11 

(see Section 5 below). Thus, the data of the problem are {𝑄(∙), 𝑝0, π(⋅), 𝐿(⋅)}.  12 

 We call the (infinite) set of parents of a given type (𝑝, 𝑢) a tranche.  Within each tranche, 𝜀 varies. It 13 

is assumed, in particular, that ε is distributed i.i.d. within every tranche. This means that we will observe 14 

the behavior of a type (𝑝, 𝑢) as a mixed strategy, even if every member of the tranche has a pure strategy, 15 

as long as the effect of the random variate L differs across individuals. The statistician will only observe 16 

the average probability of vaccination within each tranche, which we will denote 𝑎(𝑝, 𝑢). This is to be 17 

thought of as the fraction of those of type (𝑝, 𝑢) who decide to vaccinate, depending on their draw of the 18 

utility bump ε. 19 

 To recap, we will observe a sample of approximately 1000 parents from each country, to whom we 20 

distribute a questionnaire that enables us to estimate (for each country) the data {𝑄(∙), 𝑝0, π(⋅), 𝐿(⋅)}. We 21 

assume the parents in a country hypothetically play a game whose Nash and Kantian equilibria are 22 

calculated next.  The games possess Nash and Kantian equilibria in mixed strategies.  We interpret the 23 

observed vaccination behavior of the population as an equilibrium of the game, and wish to estimate which 24 

model, Nash or Kant, gives a better approximation to, or prediction of, observation.    25 

3.2 Nash equilibrium 26 

 A Nash equilibrium of the game, given a realization of the random variate 𝐿, is an action of ‘vaccinate’ 27 

or ‘do not vaccinate’ for every individual within every type given by: 28 

  𝑣𝑎𝑐𝑐𝑖𝑛𝑎𝑡𝑒 = {
1, 𝑖𝑓 

𝑑𝑉(𝑝,𝑢)

𝑑𝑎
≡ 𝑝(𝑢 − 1) + 𝑝0𝜋(�̅�

𝑁) + 𝜀 > 0

0, 𝑖𝑓 
𝑑𝑉(𝑝,𝑢)

𝑑𝑎
≡ 𝑝(𝑢 − 1) + 𝑝0𝜋(�̅�

𝑁) + 𝜀 < 0
 ,   (3.2)  29 
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where �̅�𝑁 is the fraction of individuals who vaccinate in equilibrium5. Formally, we say that the Nash 1 

equilibrium is a strategy α𝑁(𝑝, 𝑢, ε) for each individual (𝑝, 𝑢, ε) and a coverage rate �̅�𝑁 such that: 2 

    𝛼𝑁(𝑝, 𝑢, 𝜀) = {
1 𝑖𝑓 𝜀 > 𝑝(1 − 𝑢) − 𝑝0𝜋(�̅�

𝑁)

0 𝑖𝑓 𝜀 < 𝑝(1 − 𝑢) − 𝑝0𝜋(�̅�
𝑁)

  (3.3)  3 

and: 4 

 �̅�𝑁 = ∫ ∫ 𝑑𝐿(𝜀)𝑑𝑄(𝑝, 𝑢)
∞

𝑝(1−𝑢)−𝑝0𝜋(�̅�
𝑁)(𝑝,𝑢)

= ∫(1 − 𝐿(𝑝(1 − 𝑢) − 𝑝0𝜋(�̅�
𝑁))) 𝑑𝑄(𝑝, 𝑢)    (3.4) 5 

 Thus, vaccinate if and only if ε > 𝑝(1 − 𝑢) − 𝑝0𝜋(�̅�
𝑁), an event that occurs (in the (𝑝, 𝑢) tranche) 6 

with probability 1 − 𝐿(𝑝(1 − 𝑢) − 𝑝0π(�̅�
𝑁)). The fraction of this tranche that vaccinates is: 7 

 𝑎𝑁(𝑝, 𝑢) = ∫ 𝛼𝑁(𝑝, 𝑢, 𝜀)𝑑𝐿(𝜀)
∞

𝑝(1−𝑢)−𝑝0𝜋(�̅�
𝑁)

= 1 − 𝐿(𝑝(1 − 𝑢) − 𝑝0𝜋(�̅�
𝑁)).  (3.5) 8 

Equation (3.4) is a single equation in the unknown �̅�𝑁. We solve it for �̅�𝑁, and then compute the Nash 9 

equilibrium strategy profile from equation (3.5). Note that it appears as if the tranche (𝑝, 𝑢) has a (single) 10 

mixed strategy, 𝑎𝑁(𝑝, 𝑢), which is the aggregation of the pure strategies stated in (3.3).  See equation (3.5). 11 

This will be an important fact in what follows. 12 

 13 

3.3 Kantian equilibrium 14 

 It will be convenient to define: 15 

      𝑔(𝑢, �̅�) =
𝑝0𝜋(�̅�)

1−𝑢
.    (3.6) 16 

 A multiplicative Kantian equilibrium of the game in normal form among a continuum of players with 17 

payoff functions 𝑉(𝑝,𝑢) is a strategy profile {𝑎(𝑝, 𝑢)} and a coverage rate �̅� = ∫ 𝑎(𝑝, 𝑢)𝑑𝑄(𝑝, 𝑢) such that 18 

no player would prefer to re-scale the profile by any non-negative factor.6 We truncate the re-scaled 19 

probabilities (strategies) so that they do not exceed one upon re-scaling. The profile {𝑎(𝑝, 𝑢)} is what the 20 

statistician observes: she does not observe the realization of the random variable 𝐿. We denote the profile 21 

of vaccination strategies of individuals, who know their realization of 𝜀, by { α𝐾(𝑝, 𝑢, ε)}, whose mean is 22 

α̅𝐾 = ∫ αK(𝑝, 𝑢, ε)𝑑𝐿(ε)𝑑𝑄(𝑝, 𝑢). We call the 𝛼𝐾- profile a Kantian equilibrium of the vaccination game 23 

after the random variate 𝐿 is realized if no player (𝑝, 𝑢, ε) would like to re-scale the entire strategy profile 24 

by any non-negative factor ρ .   25 

 
5 We can ignore the null set of types for which 𝑝(𝑢 − 1) + 𝑝0π(�̅�

𝑁) + ε = 0  

 
6 This concept then requires that we focus on mixed strategies, rather than on the special case of pure strategies. 



 10 

 We must distinguish between the equilibrium after the random variable 𝐿 has assigned a value ε to 1 

every player, and what the statistician observes, not knowing the realization of 𝐿. Since at the observed 2 

equilibrium there will be players with all values of ε at a given (𝑝, 𝑢) in the support of 𝑄, and these players 3 

will have different strategies α𝐾(𝑝, 𝑢, ε), what the statistician will observe is that the (𝑝, 𝑢) − tranche is 4 

playing a mixed strategy: 5 

     𝑎𝐾(𝑝, 𝑢) = ∫ 𝛼𝐾(𝑝, 𝑢, 𝜀)𝑑𝐿(𝜀) .    (3.7) 6 

Note that  �̅�𝐾 = ∫𝑎𝐾(𝑝, 𝑢)𝑑𝑄(𝑝, 𝑢) = α̅𝐾, because we have already integrated over both (𝑝, 𝑢) and ε in 7 

the definition of α̅K. �̅�K or α̅K is the coverage rate in the population, observed by the statistician.  8 

 Define the strategy profile after the random variate 𝐿 has been realized: 9 

 α𝐾(𝑝, 𝑢, ε) = {

−𝑝0𝜋
′(�̅�𝐾)�̅�𝐾

(1−𝑢)(𝑝−𝑔(𝑢,�̅�𝐾))−ε−𝑝0π
′(�̅�𝐾)�̅�𝐾

, if ε < (1 − 𝑢)(𝑝 − 𝑔(𝑢, �̅�)) 

1 if ε ≥ (1 − 𝑢)(𝑝 − 𝑔(𝑢, �̅�))

.  (3.8) 10 

Note that on the first branch of this strategy profile (relatively small values of 𝜀), the proposed strategy 11 

(probability) is less than one. 12 

 13 

We have: 14 

Proposition 3 If π(∙) is a decreasing, convex, twice-differentiable function on [0,1], then a strictly positive 15 

multiplicative Kantian equilibrium exists and is given by the strategy profile defined in (3.8). 16 

Proof: The proof is provided in Appendix B.  17 

From the proof of Proposition 3 we obtain the following condition for the existence of a strictly positive 18 

Kantian equilibrium: 19 

    �̅�𝐾 = ∬
−𝑝0𝜋

′(�̅�𝐾)�̅�𝐾

(1−𝑢)(𝑝−𝑔(𝑢,�̅�𝐾))−𝜀−𝑝0𝜋
′(�̅�𝐾)�̅�𝐾

𝑑𝐿(𝜀)𝑑𝑄(𝑝, 𝑢)
(1−𝑢)(𝑝−𝑔(𝑢,�̅�𝐾))

−∞
+ 20 

 ∫ [1 − 𝐿 ((1 − 𝑢)(𝑝 − 𝑔(𝑢, �̅�𝐾)))]𝑑𝑄(𝑝, 𝑢), (3.9) 21 

which is an equation in the single unknown �̅�𝐾. We solve for the Kantian equilibrium (3.8) by first solving 22 

(3.9) for �̅�𝐾 and then computing the equilibrium strategy profile from (3.8).  23 

 Proposition 3 identifies a particular Kantian equilibrium, which we compute in what follows.  There 24 

is also a trivial Kantian equilibrium where all parents propose a zero probability of inoculating their child. 25 

This equilibrium exists because any re-scaling of the zero vector is the zero vector, so trivially, no player 26 

can gain by re-scaling the zero vector of strategies. There may also exist several non-trivial Kantian 27 

equilibria if equation (3.9) has multiple roots �̅�𝐾. We have no computational evidence that this occurs, 28 
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however.  In what follows, we ask whether the Nash equilibrium computed in (3.5) or the Kantian 1 

equilibrium computed in (3.8) better fits the data from our surveys. 2 

3.4 Comparison of Kantian and Nash vaccination equilibria 3 

 We noted in Section 2 that the vaccination game is a monotone increasing game. (Just check in 4 

equation (3.1) that 𝑉(𝑝,𝑢) is an increasing function of 𝑎 .) This is the mathematical consequence of the 5 

positive externality of individual vaccination. It follows that the Nash equilibrium of the game will suffer 6 

from the free-rider problem, but the multiplicative Kantian equilibrium will be Pareto efficient. Intuitively, 7 

people will vaccinate ‘too little’ in the Nash equilibrium. The precise consequence is this: 8 

Proposition 4  �̅�𝐾 > �̅�𝑁. 9 

The equilibrium coverage rate is greater in Kantian equilibrium than in Nash equilibrium. 10 

Proof: 11 

 Suppose to the contrary that �̅�𝑁 ≥ �̅�𝐾. Then 𝑔(𝑢, �̅�𝐾) ≥ 𝑔(𝑢, �̅�𝑁) and this implies that the second 12 

term in the r.h.s. of equation (3.9) is greater than the r.h.s. of equation (3.4). A fortiori, �̅�𝐾 > �̅�𝑁 because 13 

the first term on the r.h.s. of equation (3.9) is positive. This contradiction proves the claim.  14 

 15 

 In fact, we can say more. Note that although we have defined a parental type as an ordered pair of 16 

traits/beliefs (𝑝, 𝑢), in fact the population profile of traits can be more parsimoniously written as depending 17 

only on the single variable 𝑤 = 𝑝(1 − 𝑢). For we can write the Nash and Kantian equilibrium policies, 18 

from equations (3.5) and (3.9) respectively as: 19 

   �̃�𝑁(𝑤) = 1 − 𝐿(𝑝(1 − 𝑢) − 𝑝0𝜋(�̅�
𝑁)) = 1 − 𝐿(𝑤 − 𝑝0𝜋(�̅�

𝑁)).  (3.10) 20 

and: 21 

 �̃�𝐾 = ∫
−𝑝0𝜋

′(�̅�𝐾)�̅�𝐾

𝑤−𝑝0𝜋(�̅�
𝐾)−𝜀−𝑝0𝜋

′(�̅�𝐾)�̅�𝐾
𝑤−𝑝0𝜋(�̅�

𝐾)

−∞
𝑑𝐿(𝜀) + 1 −  𝐿(𝑤 − 𝑝0𝜋(�̅�

𝐾)). 7  (3.11) 22 

Since the domain of (𝑝, 𝑢) is the unit square, the domain of 𝑤 is [0,1]. We can plot the difference 23 

of the two equilibrium profiles 24 

𝛥�̃�(𝑤) = �̃�𝐾(𝑤) − �̃�𝑁(𝑤).    (3.12) 25 

See Figure 3a in Section 6 below. When 𝑤 is small then either 𝑝 is small or 𝑢 is close to one, or 26 

both, so the parent either believes that the probability of a severe side effect from vaccination is small, or 27 

if the side effect occurs, it is not severe (𝑢 close to one means the health status of a child with the side effect 28 

 
7 Note we have written the coverage rates in equations (3.10) and (3.11) as �̅�𝑁 and �̅�𝐾. We could have written these 

as 𝑎  ̅𝑁and 𝑎  ̅𝐾. The coverage rates will be the same whether we integrate 𝑑𝑄(𝑝, 𝑢) or 𝑑�̃�(𝑤), where �̃�(⋅) is the 

distribution function of 𝑤 induced by 𝑄. 
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is close to full health). So parents with 𝑤 close to zero will be likely to vaccinate according to our model 1 

and parents with 𝑤 close to one will be likely not to vaccinate.   2 

 We emphasize that our model assumes that either all players are Nash optimizers or all players 3 

are Kantian optimizers. A more complex model would postulate that each player is either a Nash or 4 

Kantian optimizer, and that the population is heterogeneous in this choice.  The fully heterogeneous 5 

model would be significantly more complicated than the one we analyze here.  Simplicity dictates our 6 

modelling choice.  We are running a horse race between the pure Kantian model and the pure Nash 7 

model, but not trying to compute a model with some agents who are Kantian and some who are Nash 8 

players. 9 

4 Producing the data 10 

 The data we require to compute the Kantian and Nash equilibria for a society are 𝑝0, the bivariate 11 

Beta distribution 𝑄 of (𝑝, 𝑢), and the function π(⋅). We describe the choice of the logistic variate 𝐿 below. 12 

We have administered the survey to adults aged 20 to 45 in the US, the UK, Germany, France, Canada, and 13 

Mexico. The survey is presented in Section IV of the Online Appendix. Table 2 shows some descriptive 14 

statistics. 15 

 16 
 The probabilities 𝑝 and 𝑝0 representing the individual’s beliefs are ascertained in a standard way in 17 

the questionnaire. Although variations in 𝑝0 might explain variations in vaccination decisions empirically, 18 

we treat all parents as agreeing on the probability 𝑝0 for simplicity.   19 

 20 

 Table 2.  Descriptive statistics of the country surveys. Rows represent, respectively, the 21 
mean average among respondents, the percentage of females among respondents, the 22 
percentage of recent parents (those who had a child after in 2011 or later), and the 23 
percentage of those who vaccinated their child.  24 

 Canada France Germany UK US Mexico 

Mean age 35.3 34.7 33.1 33.9 33.2 31.3 

Female % 49.1 53.5 54.3 52.3 60.3 55.6 

Parents since 2011 % 32.3 56.1* 33.8 41 32.8 56.5 

Measles vaccine % 88.9 90.3 89.3 89.2 82.9 96.8 

N 1052 1188 1146 1054 1210 1063 

* In the French survey the question asked was "Do you have a child born in or before 2018?". 25 
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We estimate 𝑢 by presenting the respondent with a series of binary choices over pairs of lotteries. This 1 

technique allows us to place the respondent’s value of 𝑢 in a relatively small interval within [0,1]. The 2 

method assumes the individual is an expected utility maximizer.8 We pose the question: 3 

• In the following scenario, would you prefer event A or event B:  4 

A. For your child to have a bad side effect from a measles vaccination, or 5 

B. For your child to face an unrelated risk in which he/she has a 99% chance of being healthy, and a 1% 6 

chance of dying. 7 

Suppose the respondent answers B. If utility is normalized as in Table 1, then we conclude that 8 

(0.99 × 1 + 0.01 × 0) = 0.99 > 𝑢. Next, we ask: 9 

• In the following scenario, would you prefer event A or event B:  10 

A. For your child to have a bad side effect from a measles vaccination, or 11 

B. For your child to face an unrelated risk in which he/she has a 95% chance of being healthy and a 12 

5% chance of dying. 13 

Suppose the respondent answers A. Then we conclude that 𝑢 > (0.95 × 1 + 0.05 × 0) = 0.95, and hence 14 

we know that 𝑢 ∈ (0.95,0.99). We assign this respondent a value of 𝑢 chosen randomly from this interval. 15 

Thus, we ascertain the respondent’s value of 𝑢 by posing a series of such questions about lottery choice. 16 

By construction, 𝑢 ∈ (0,1). 17 

 We then fit a bivariate Beta distribution defined on [0,1]2 to the respondents’ values of (𝑝, 𝑢). The 18 

Beta distribution is calculated knowing the observed means and variances of 𝑝 and 𝑢, and their covariance. 19 

Table 3 presents these data for our six countries. 20 

Table 3.  Data from the country surveys. The probabilities 𝑝, the probability of side effects from 21 
vaccination, and 𝑝0, the probability of death or severe disability conditional upon 22 
contracting measles, are ascertained in a standard way in the questionnaire. The utility 23 
𝑢 ∈ (0,1) from the possible side effects is estimated from a series of binary choices over 24 
pairs of lotteries. The utility of a healthy child is normalized to 1. 25 

 26 

 Mean 𝑝 Var 𝑝 Mean 𝑢 Var 𝑢 𝐶𝑜𝑣(𝑝, 𝑢) Median 𝑝0 

US 0.048 0.026 0.851 0.061 -0.009 0.003 

UK 0.020 0.009 0.891 0.043 -0.004 0.002 

Germany 0.020 0.010 0.863 0.054 -0.004 0.002 

France 0.022 0.011 0.743 0.094 -0.002 0.003 

Canada 0.017 0.052 0.874 0.052 -0.0009 0.001 

Mexico 0.035 0.015 0.774 0.068 -0.0005 0.005 

 
8 See Holt and Laury (2002) for a description of this approach to estimating the distribution of u. 
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 1 

 We choose the common value of 𝑝0 from the survey to be the median response to the appropriate 2 

question on the survey. The median is a better choice than the mean value, as the latter is distorted by 3 

several very high and unreasonable values for 𝑝0.
9 4 

 We comment on the value of 𝑝0, the median value of respondents’ opinions on the probability of 5 

dying from a measles infection. Dabbagh, Laws et alii (2018, Table 1) report that in 2017, for the continent 6 

of Europe the actual value is 𝑝0 = 0.004 = 0.4%, slightly larger than the median respondent’s opinion. 7 

Unfortunately, this article does not present the value for the United States. But for Africa, the reported value 8 

of 𝑝0 has a point estimate of 0.66, and the lower-bound estimate in the 95% confidence interval is 0.31. 9 

Measles can be a deadly disease if medical care is poor.  10 

 The most severe side effect of MMR (measles, mumps, rubella) vaccination is aseptic meningitis, 11 

which occurs in 1 in 10 million cases. The probabilities 𝑝 that respondents to our survey give are greater 12 

than this by four orders of magnitude; however, from the values of 𝑢 respondents provide, they are on 13 

average viewing side effects as not terribly severe (a value of 𝑢 = 0.85 says that good health is 15% reduced 14 

by the side effect). The possibly bad outcomes of measles are considerably worse, and include, besides 15 

death, anaphylaxis, febrile seizures, thrombocytopenic purpura and encephalitis (see Strebel and Orenstein, 16 

2019, which also gives the probabilities). The anti-vaccination movement is often motivated by fears that 17 

vaccination may cause autism, which were falsely aroused in a 1998 article published in Lancet, later 18 

retracted by Lancet in 2010.  19 

 We use the following parametric form for the probability function: 20 

      π(�̅�) = (1 − �̅�)𝛾,     (4.1) 21 

where �̅� is the observed measles vaccination coverage rate for the country (see Table 4). We chose the 22 

parameterization (4.1) as possibly the simplest functional form that gives a decreasing function passing 23 

through the points (0,1) and (1,0). In Appendix C, we describe the precise definition of the function π and 24 

how we estimate γ. For Canada and the United States, we estimate γ =3.1. For the UK, France, Germany 25 

and Sweden, we estimate 𝛾 = 1.995.10 We split our set of countries in two because the number of cases of 26 

measles in the last five years in Europe has been an order of magnitude larger than in North America 27 

(Canada and the US), despite the higher coverage rates enjoyed by the European countries. We presume 28 

 
9 However, we report the mean values of 𝑝 and 𝑢 because these are used to fit the Beta distribution 𝑄 to the data. 
10 We had planned to include Sweden in our sample of countries, and so included it in the estimation of γ. 

Unfortunately, doing so was eventually not possible. Estimating the European value of γ without Sweden gives a value 

of 2.007. Based on the small difference between this value and 1.995, we elected not to re-run all the equilibrium 

calculations for the UK, France, and Germany with γ = 2.007, a costly procedure.  
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the infection process therefore differs between recent European experience and the North American, 1 

justifying different values of γ in equation (4.1).11 2 

 At the WHO-reported12 coverage rate of 0.916 for the US, the probability that an unvaccinated child 3 

in a given cohort in the US contracts measles before the age of five, defined as the number of measles cases 4 

in her birth cohort divided by the number of unvaccinated children in her cohort, is 4.5 × 10−4, or about 5 

0.045%.  6 

 The last year measles was endemic in the United States was 2000.13 The aforementioned WHO data 7 

set reports that in 2019, measles was endemic in Germany and France. It is probably also endemic in 8 

Mexico, although the data are incomplete. We cannot use the SIR model to compute the probability of 9 

contracting measles because this model is not applicable to analyzing very small occurrences of the disease 10 

that are quickly stamped out14. In any case, the SIR model will not give us a probability as a function of the 11 

coverage rate only: in that model, the probability that a susceptible individual contracts the disease is a 12 

function of two numbers –for instance, the fraction of susceptible (uninoculated) individuals (S), and the 13 

fraction of recovered individuals (R).  14 

 Our definition of the function π as the probability that a child who is unvaccinated contracts measles 15 

by the age of five is meant to model the relevant probability that a parent needs in order to decide whether 16 

or not to vaccinate her child.  17 

 18 

Table 4.  Coverage rates for measles, five-year average, according to the World Health 19 
Organization. 20 

 21 
Country US UK Germany France Canada Mexico 

Coverage 91.6% 92.% 97.% 90.2% 89.6% 86% 

 22 

It is important to note that measles vaccination in our six countries is, or was until recently, de jure 23 

voluntary. In the United States, there is no federal law requiring children be vaccinated –such laws are left 24 

to the states. All 50 states require children be vaccinated against measles before attending childcare or 25 

public school; however, all states permit exemptions for medical, religious, or reasons of conscience, and 26 

the standards are not strict. See footnote 3.  In Canada, vaccination policies are taken at the provincial level. 27 

 
11 Without morbidity data for Mexico, we use the European value of γ = 1.995. Nevertheless, results do not change 

significantly when using the North American value. 
12 Data source https://apps.who.int/immunization_monitoring/globalsummary/. 
13 A contagious disease is endemic if an outbreak induces a sequence of contagion that does not terminate within a 

year. 
14 A useful description of the SIR model is found in Avery, Bossert et al (2020). 

https://apps.who.int/immunization_monitoring/globalsummary/
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Only three provinces (Ontario, New Brunswick and Manitoba) have legislated requirements; however, 1 

exemptions are granted on medical or religious grounds, or simply out of conscience in these provinces. In 2 

the UK, childhood vaccination is not mandatory. In Germany, a federal law now requires measles 3 

vaccination, but only since March 1, 2020. In our German survey, we asked parents whether they vaccinated 4 

or did not vaccinate their child prior to that date. In France, vaccination was only recommended prior to 5 

2018, and in the French questionnaire, we asked parents for the vaccination status of their child prior to 6 

2018. Mexico has no law requiring vaccination. 7 

5 Estimation procedure 8 

 We wish to decide whether the Nash model or the Kantian model provides a better explanation of 9 

observed vaccination behavior in a country. We have samples of roughly 1000 (N) respondents for each 10 

country. Each respondent is characterized by a triple (𝑝, 𝑢, 𝑣) where (𝑝, 𝑢) ∈ [0,1]2 is the vector of 11 

respondent traits and 𝑣 ∈ {0,1} indicates that the respondent did (1) or did not (0) vaccinate her child. We 12 

call  𝒗𝑜𝑏𝑠,𝑠
0
= (𝑣1, … , 𝑣𝑁) the observation or observed vaccination behavior of the original sample. The 13 

superscript 𝑠0 refers to the original survey sample for the country. 14 

 There are three sources of randomness in our models. First, there is a logistic variate 𝐿, 99% of whose 15 

mass lies on the positive real line (more below). Each parent who chooses to vaccinate draws a realization 16 

of this variate i.i.d. across individuals, which is interpreted as a (usually) positive saltus in utility that the 17 

parent enjoys if she vaccinates her child (see (3.1)). Secondly, since the equilibrium strategies observed by 18 

the statistician in both the Nash and Kantian model are mixed strategies, there is a random process which 19 

must determine whether a player with an equilibrium strategy 𝑎 ∈ (0,1) chooses 𝑣 = 0 or 1. Third, there 20 

is a ‘trembling hand’ introduced below: with some probability 𝑞 each player, when choosing the action 𝑣, 21 

misreads the coin flip that determines what her behavior should be. (These trembles will be i.i.d.) The 22 

purpose of the first and third sources of randomness is to make the models more realistic, so as to achieve 23 

a better fit to the observed vaccination behavior, and to guarantee that the Nash and Kant equilibrium 24 

strategies are all strictly mixed strategies (lie in the open interval (0,1)). The second source is due to the 25 

mixed-strategy character of the equilibria. 26 

5.1 The logistic variate 𝐿 27 

 It is useful for computation to have the support of 𝐿 be the entire real line: this guarantees that all 28 

equilibrium strategies, Nash and Kant, are in the open interval (0,1). This motivates our choice of a logistic 29 

distribution. See equations (3.5) and (3.11), which guarantee that the probabilities of vaccination are never 30 

zero or one when 𝐿’s support is ℝ. We shall determine 𝐿 by a single parameter, its mean value μ. The 31 
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logistic variate is in fact characterized by two parameters, denoted (μ, β) . Denote by 𝐿(μ,β) the c.d.f. of the 1 

logistic with parameters(μ, β). Given μ, we choose β so that: 2 

      𝐿(μ,β)(0) = 0.01;     (5.1) 3 

that is, 99% of 𝐿’s mass is on the positive real line. Hence 𝐿 is chosen from a single parameter family, 4 

where the parameter is μ. We chose μ = 0.003 and performed a robustness check by running the program 5 

for other values of μ. (See Section III of the Online Appendix.)15 6 

 7 

5.2 Nash and Kantian equilibria 8 

 We will perform the estimation procedure outlined in this section for 1200 bootstrapped samples, 9 

obtained from the original survey sample 𝑠0 by sampling from it with replacement. Here we describe the 10 

estimation procedure using the mother sample 𝑠0; the identical procedure will be carried out for every 11 

bootstrap sample 𝑠. 12 

 Given the sample 𝑠0, we fit a bivariate Beta distribution 𝑄0 to the observed distribution of (𝑝, 𝑢). μ 13 

is chosen to be a small positive number. For any choice of μ , the logistic distribution 𝐿(μ,β) is determined, 14 

see (5.1). Given 𝐿 and 𝑄0 we can compute the Nash and Kantian equilibria of the vaccination game 15 

observed by the statistician as described in Section 3. The Nash equilibrium is a profile of strategies 16 

(probabilities of vaccinating) 𝑎𝑁(𝑝, 𝑢: 𝑠0, μ) and the Kantian equilibrium is a profile of strategies 17 

𝑎𝐾(𝑝, 𝑢: 𝑠0, μ). 18 

 Given these two equilibria, we can compute the log likelihood of the observed vaccination behavior 19 

 𝒗𝑜𝑏𝑠,𝑠
0
. This is defined, for the Nash equilibrium, as: 20 

 Φ𝑁𝑎(𝑠0, μ, 𝒗𝑜𝑏𝑠,𝑠
0
 ) = ∑ log 𝑎𝑁(𝑝, 𝑢; 𝑠0, μ){(𝑝,𝑢)|𝑣=1} +∑ log(1 − 𝑎𝑁(𝑝, 𝑢; 𝑠0, μ)){(𝑝,𝑢)|𝑣=0} ,  (5.2) 21 

and for the Kantian equilibrium as: 22 

 Φ𝐾𝑎(𝑠0, μ, 𝒗𝑜𝑏𝑠,𝑠
0
 ) = ∑ log 𝑎𝐾(𝑝, 𝑢; 𝑠0, μ){(𝑝,𝑢)|𝑣=1} + ∑ log(1 − 𝑎𝐾(𝑝, 𝑢; 𝑠0, μ)){(𝑝,𝑢)|𝑣=0} ,  (5.3) 23 

where the original sample is the collection of triples {(𝑝, 𝑢, 𝑣)}. 24 

 Since the strategies are all in the open interval (0,1), the two log likelihood functions are well-25 

defined. Because of precision problems in computation, we in fact encounter some zero values in the 26 

computation of 𝑎𝑁(𝑝, 𝑢). Rather than eliminating these respondents from the sample, we replace the zero 27 

 
15 We also tried to estimate μ as the value that maximized the average likelihood among all the bootstrapped samples. 

We generated 1000 bootstrapped samples and computed the likelihoods for each 𝜇 ∈ {0.001, 0.002,… , 0.008}. The 

average likelihood maximizers were not the same for the Nash and the Kantian equilibria, making the comparison 

ineffective. We opted then for choosing the value of 𝜇 that most frequently maximized the likelihood across samples 

and run a robustness check. 
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values of 𝑎𝑁(𝑝, 𝑢) with 𝑟𝑎𝐾(𝑝, 𝑢)  where 𝑟 = mean
{(𝑝,𝑢)|𝑎𝑁(𝑝,𝑢)>0}

[𝑎𝑁(𝑝, 𝑢) 𝑎𝐾(𝑝, 𝑢)⁄ ]. It will turn out that 𝑟 <1 

1, because 𝑎𝑁(𝑝, 𝑢) < 𝑎𝐾(𝑝, 𝑢) for all (𝑝, 𝑢).  2 

 3 

5.3 Analyzing the sample 4 

 Next, we ask: Could it be that 𝒗𝑜𝑏𝑠,𝑠
0
 can be explained as an outcome of Nash behavior, but amended 5 

by a trembling hand that causes each respondent to choose the opposite behavior from what the Nash coin-6 

flip produces? Let’s say the tremble occurs i.i.d. for each respondent with probability 𝑞. In this case, an 7 

agent (𝑝, 𝑢) chooses to vaccinate (𝑣 = 1) with probability: 8 

    𝑎∗𝑁(𝑝, 𝑢) = (1 − 𝑞)𝑎𝑁(𝑝, 𝑢) + 𝑞(1 − 𝑎𝑁(𝑝, 𝑢)).    (5.4) 9 

Suppose we run a large number, Λ, of trials with this model, all with the sample 𝑠0. The only thing that 10 

differs across trials is the realization of the coin flips that implement the tremble: the expected value of the 11 

coin flip for an agent (𝑝, 𝑢) is always given by 𝑎∗𝑁(𝑝, 𝑢) in (5.4). Denote the index of the trial by l. Define: 12 

𝟏𝑞
𝑙 = {(𝑝, 𝑢)|𝑎∗𝑁(𝑝, 𝑢) coinflip 𝑙 → 1}, 𝟎𝑞

𝑙 = {(𝑝, 𝑢)|𝑎∗𝑁(𝑝, 𝑢) coinflip 𝑙 → 0} 13 

 14 

 Before endogenizing the value of the trembling hand parameter, 𝑞, we set it to zero and plot the 15 

equilibrium coverage rates in the Nash and Kant equilibria of our 1200 bootstrap samples for each of the 16 

six countries (Figure 2). Upon a first visual of the data, coverage in Kant equilibria appears consistently 17 

higher than in Nash equilibria for all samples. 18 
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Figure 2 Coverage rates at the Nash equilibrium strategies (�̅�𝑁) and at the Kantian equilibrium strategies (�̅�𝐾) for the 1200 bootstrap samples 

without the trembling hand (𝑞 = 0).



 

Next, we provide a rigorous argument based on a trembling hand comparison to show that Kantian 1 

equilibrium performs better than Nash equilibrium. We ask: What log likelihood would this observed 2 

vaccination outcome 𝒗𝑜𝑏𝑠,𝑠
0
 have if we mistakenly thought the true Nash model (absent the coin-flip) were 3 

the correct model? That likelihood is given by: 4 

 Ψ(𝑞, 𝑙; 𝑠0, μ) = ∑ log 𝑎𝑁(𝑝, 𝑢; 𝑠0, μ)(𝑝,𝑢)∈𝟏𝑞
𝑙 +∑ log(1 − 𝑎𝑁(𝑝, 𝑢; 𝑠0, μ))(𝑝,𝑢)∈𝟎𝑞

𝑙 .   (5.5) 5 

We are taking the log likelihood of the observed behavior from the trembling-hand coin-flip experiment 6 

and evaluating it with respect to the pure Nash model, without the trembling hand. 7 

 8 

 We want to compute the expected value of Ψ(𝑞, 𝑙) over 𝑙 = 1,2,… , Λ. We can write the expected log 9 

likelihood of the experiment as the number of trials Λ becomes large as: 10 

𝑀(𝑞) ≡ lim
Λ→∞

1

Λ
∑ Ψ(𝑞, 𝑙)Λ
𝑙=1 = ∑ [𝑎∗𝑁(𝑝, 𝑢) log 𝑎𝑁(𝑝, 𝑢) + (1 − 𝑎∗𝑁(𝑝, 𝑢)) log(1 − 𝑎𝑁(𝑝, 𝑢))(𝑝,𝑢) ].  (5.6) 11 

This is the key step. It’s true because if we look at the sums in (5.5) over all l, by definition, a given (𝑝, 𝑢) 12 

will lie in the set 𝟏𝑞
𝑙  for a fraction 𝑎∗𝑁(𝑝, 𝑢) of the Λ trials, as Λ becomes large. And (𝑝, 𝑢) will lie in 𝟎𝑞

𝑙  a 13 

fraction 1 − 𝑎∗𝑁(𝑝, 𝑢) of the time. 14 

 Our strategy is to ask how large a tremble is needed to produce the log likelihood Φ𝑁𝑎(𝑠, μ, 𝐯𝑜𝑏𝑠,𝑠
0
). 15 

Our claim is: the smaller the tremble needed to ‘rationalize’ the observed vaccination behavior, the better 16 

explanation the model provides of observed behavior. In other words, since we view the trembling hand as 17 

a device for inserting randomness into the Nash (or Kant) model, then the less randomness required to 18 

explain the observed behavior, the better the model’s explanatory power. 19 

 Consequently, we wish to solve the following program for the tremble 𝑞:  20 

     min
𝑞
(𝑀(𝑞) − Φ𝑁𝑎(𝑠, μ, 𝐯𝑜𝑏𝑠,𝑠

0
))
2
.     (5.7) 21 

 Note, from the definition (5.6), that 𝑀(⋅) is a linear function of 𝑞. So we can solve program (5.7)) by setting 22 

the derivative of the objective equal to zero. Compute from (5.6) that: 23 

   𝑀′(𝑞) = ∑ (1 − 2𝑎𝑁(𝑝, 𝑢)) log
𝑎𝑁(𝑝,𝑢)

1−𝑎𝑁(𝑝,𝑢){(𝑝,𝑢)|0<𝑎𝑁(𝑝,𝑢)<1}    (5.8) 24 

Now the f.o.c. for program (5.7) is: 25 

     2 (𝑀(𝑞) − Φ𝑁𝑎(𝑠0, μ, 𝑣𝑜𝑏𝑠,𝑠
0
))𝑀′(𝑞) = 0.   (5.9) 26 

From (5.8), we see that generically, 𝑀′(𝑞) < 0. (Each term in the sum in (5.8) is negative, except if 27 

aN =1/ 2  .) Therefore, the solution of (5.9) requires: 28 

      𝑀(𝑞) = Φ𝑁𝑎(𝑠0, μ, 𝑣𝑜𝑏𝑠,𝑠
0
).     (5.10) 29 

Recalling that M is linear, we easily solve (5.10) for 𝑞, giving: 30 



 21 

 𝑞𝜇
∗Nash =

Φ𝑁𝑎(𝑠,μ,𝐯𝑜𝑏𝑠,𝑠
0
)−[∑ 𝑎𝑁 log𝑎𝑁{(𝑝,𝑢)|0<𝑎𝑁<1} +∑ (1−𝑎𝑁) log(1−𝑎𝑁){(𝑝,𝑢)|0<𝑎𝑁<1} ]

∑ (1−2𝑎𝑁) log
𝑎𝑁

1−𝑎𝑁{(𝑝,𝑢)|0<𝑎𝑁<1}

.  (5.11) 1 

Actually, this is the solution if the quantity on the r.h.s. of (5.11) lies in [0,1]. If the r.h.s. of (5.11) is greater 2 

than 1, then 𝑞𝜇
∗𝑁 = 1 and if it is less than 0, then 𝑞𝜇

∗𝑁 = 0.  In other words, if the true solution of (5.9) were 3 

at a corner of [0,1], the f.o.c. (5.10) becomes an inequality.1 4 

 This completes the estimation procedure for the sample 𝑠0. We repeat the estimation procedure for 5 

each of our 1200 bootstrap samples. Denote, for bootstrap sample 𝑠, the 𝑞’s defined in equation (5.11) as 6 

𝑞∗𝐽(𝑠), for 𝐽 =Nash, Kant. 7 

  We finally define two functions for all bootstrap samples 𝑠: 8 

 Δ(𝑠) = 𝑞∗𝐾(𝑠) − 𝑞∗𝑁(𝑠) and Γ(𝑠) = Φ𝐾(𝑠, μ, 𝐯𝑜𝑏𝑠,𝑠) − Φ𝑁(𝑠, μ, 𝐯𝑜𝑏𝑠,𝑠),  (5.12) 9 

and deduce statistics on Δ and Γ using the 1200 bootstrap samples. For instance, if we find that the mean of 10 

the distribution Δ(𝑠) is negative and more than two standard deviations below zero, we will say that the 11 

Kant model provides a better explanation of vaccination behavior than the Nash model, at the 95% 12 

significance level. A similar inference would be drawn if Γ(𝑠) is positive and at least two standard 13 

deviations away from zero. 14 

6 Major findings 15 

 We summarize the main findings of our analysis, namely the Nash and Kantian equilibrium strategy 16 

profiles for types (𝑝, 𝑢) and their empirical fit with the observed vaccination behavior. The Online 17 

Appendix offers details on the survey, the bootstrap strategy, and the country-specific results, as well as 18 

brief historical discussions of measles vaccination in each country. 19 

6.1 Equilibrium strategy profiles 20 

 For all countries, we find that the profile of Kantian equilibrium strategies dominates the profile of 21 

Nash equilibrium strategies: that is, for all types (𝑝, 𝑢), 𝑎𝐾(𝑝, 𝑢) > 𝑎𝑁(𝑝, 𝑢) or, equivalently, for all 𝑤, 22 

�̃�𝐾(𝑤) > �̃�𝑁(𝑤). This is illustrated in two different spaces in Figure 3. Kantians always vaccinate with 23 

higher probability than Nashers. The continuous functions Δ�̃�(𝑤) are graphed in Figure 3a (recall the 24 

definitions in equations (3.10) – (3.12)). The observed values of 𝑤 in any country sample comprise a set of 25 

approximately 1000 values, which will lie along these curves. Figure 3b presents the graphs of the actual 26 

equilibrium profiles in the space (𝑎𝑁(𝑝, 𝑢), 𝑎𝐾(𝑝, 𝑢)). 27 

 
1 It turns out that for all our countries and samples, the numbers 𝑞∗𝐽(𝑠), for 𝐽 =Nash, Kant are in (0,1). This means 

that, at the optimal values of 𝑞, 𝑀(𝑞∗𝐽(𝑠)) = Φ𝐽(𝑠, μ, 𝐯𝑜𝑏𝑠,𝑠). We are able to adjust the tremble so that the expected 

value of the log likelihood of the trembling-hand model is precisely the observed log likelihood for that sample and 

model.  



 22 

 From Figure 3a, note that the differences between the Nash and Kantian strategies are greatest for 1 

Mexico: this is verified for the empirical distributions in the Mexican graph in Figure 3b. Contrast Mexico 2 

with Canada. We see from Figure 3a that the differences Δ�̃�(𝑤) are very small in Canada: this is verified 3 

in Figure 3b, where we see that observed strategy pairs are very close to (but lie above) the 45º line. We 4 

emphasize that the graphs in Figure 3a are derived from the estimated beta-distributions of types 𝑄 in the 5 

six countries. 6 

 From Figure 3b, it appears that the Kant and Nash equilibrium probabilities occur densely in the 7 

unit interval.  That is, if our data (𝑝, 𝑢) were dense in the unit square, equilibrium probabilities would 8 

likewise be dense in [0,1].9 



 23 

 

 

 

 

 

Figure 3a. The difference between the Kantian and the Nash equilibrium strategy profiles Δ�̃�(𝑤) across types of agents. The horizontal 

axis, 𝑤 = 𝑝(1 − 𝑢), is the single variable that characterizes an agent’s beliefs. 
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Figure 3b. Equilibrium strategy profiles from the original survey data. Kantian vs. Nash strategies for the observed strategy pairs 

(�̃�𝑁(𝑤), �̃�𝐾(𝑤)). Kant and Nash equilibrium probabilities appear to occur densely in the unit interval. 

Figure 3. Kantian vs. Nash strategy profiles. We observe that Kantians always vaccinate with higher probability than Nashers, and that the 

differences between the Nash and Kantian strategies vary across countries, being greatest for Mexico and small for Canada. The observed 

values of 𝑤 in any country sample comprise a set of approximately 1000 values. 



 25 

6.2 Empirical fit 1 

 Our estimation procedure shows that the optimal tremble for the Kantian model, over all bootstrap 2 

samples, is significantly less than the optimal tremble for the Nash model. Figure 4 shows that, in all six countries, 3 

the difference of the optimal trembles (𝑞𝐾 − 𝑞𝑁) is significantly less than zero at the 99.9% significance level 4 

(that is, ∆(𝑠) < 0). Figure 4 also plots the graph of the density function of the normal distribution with mean and 5 

standard deviation of the histogram, over the interval ± three standard deviations from the mean, verifying our 6 

claim concerning significance levels. Our interpretation of this fact is that the Kantian model provides a 7 

significantly better explanation of vaccination behavior than the Nash model, as we discussed in Section 5.  8 

 In Figure 5, rather than just the differences, we provide the histogram over all bootstrap samples of the 9 

values of the optimal tremble for the Nash and Kant model.2210 

 
22 Section II of the Online Appendix provide similar representations for the log likelihood functions and coverage rates. 
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Figure 4. Probability density histogram of the differences between the optimal trembles (𝛥 = 𝑞∗𝐾 − 𝑞∗𝑁), and the PDF of a Normal distribution 

𝑁(𝑚, 𝜎) with 𝑚 = Mean (𝛥) and 𝜎 = StaDev (𝛥), truncated at three standard deviations from the mean. The graphs show that the 

difference of the optimal trembles is significantly less than zero at the 99.9% significance level, supporting the inference that the 

Kantian model provides a significantly better explanation of vaccination behavior than the Nash model.  
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Figure 5. Histograms over all bootstrap samples of the values of the optimal tremble for the Nash (𝑞∗𝑁) and Kantian (𝑞∗𝐾) equilibrium. 
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7 Further empirical evidence on Kantian vs Nash models 1 

Previous sections have shown that the Kant model is superior to the Nash model because it gives 2 

uniformly higher probabilities of vaccination than the latter, and the coverage rates in the Kantian equilibria 3 

are closer to the observed coverage rates in our samples than the Nash coverage rates. Even though the 4 

Kantian equilibrium strategies appear to be not much larger than the Nash probabilities for many types, the 5 

fact that they are always larger than the latter, on the space of types, makes the likelihood of the Kantian 6 

equilibrium significantly greater than the likelihood of the Nash equilibrium.  7 

 To shed further light on the motivation to vaccinate, which was inadequately covered in our first 8 

survey, we administered a second survey in the US and France, two countries that have significant anti-vax 9 

movements. We report the key findings of both surveys in the next three tables. In our follow-up survey we 10 

received 1243 responses from Americans and 1490 responses from French residents.23 Herd immunity and 11 

vaccination behavior of others is clearly indicated to be encouraging rather than discouraging own 12 

vaccination, which is in line with Kantian optimization, but not with Nash equilibrium. (A Nash optimizer 13 

will be discouraged to vaccinate her child if herd immunity is approached.) In a scenario of well-established 14 

herd immunity for a child illness, 68.4% of US respondents (57.5% of French ones) are either ‘strongly 15 

encouraged or encouraged’ to vaccinate their own child (Table 5), while only 6.24% (7.04%, resp.) are 16 

discouraged. 17 

Table 5.  Distribution of responses to the question Q4.6 “Imagine herd immunity is already well-18 
established for a specific child illness because of a high vaccination rate. Would that 19 
encourage or discourage you from vaccinating your own child?” in the US and France 20 
surveys. 21 

 US France 

 Frequency Percent Frequency Percent 

Strongly encourage 475 43.58 372 28.48 

Encourage 271 24.86 379 29.02 

Leave unchanged 276 25.32 463 35.45 

Discourage 41 3.76 58 4.44 

Strongly discourage 27 2.48 34 2.60 

N 1,090 100 1,306 100 

 22 

 
23 These counts include all responses (including those who simply declined consent and ended the survey) but exclude 

any responses classified as “spam” by Qualtrics.  
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The same reaction is observed to an individual act of vaccination. Learning that others have vaccinated 1 

their child ‘strongly encourages or encourages’ 61.4% of US respondents (and 45.9% of French ones, see 2 

Table 6). Likewise, own vaccination is expected to strongly encourage or encourage others’ vaccination 3 

by 64.6% of US respondents (and 50.4% of French ones, see Table 7). Both results are consistent with the 4 

Kantian optimization approach, rather than with the free-riding behavior embedded in the Nash 5 

optimization protocol. 6 

Table 6.  Distribution of responses to the question Q4.3 “If you learn that others have vaccinated 7 
their child, would that encourage or discourage you to vaccinate your child?” in the US and 8 
France surveys. 9 

 
USA France 

 Frequency Percent Frequency Percent 

Strongly encourage 390 35.78 236 18.02 

Encourage 279 25.60 365 27.86 

Leave unchanged 368 33.76 673 51.37 

Discourage 25 2.29 15 1.15 

Strongly discourage 28 2.57 21 1.60 

N 1,090 100 1,310 100 

 10 

Table 7. Distribution of responses to the question Q4.4 “When you vaccinate your child, would you 11 
expect others to be encouraged or discouraged by your action to also vaccinate their child?” 12 
in the US and France surveys. 13 

 USA France 

 Frequency Percent Frequency Percent 

Strongly encouraged 360 33.03 255 19.47 

Encouraged 344 31.56 405 30.92 

Leave unchanged 351 32.20 624 47.63 

Discouraged 19 1.74 16 1.22 

Strongly discouraged 16 1.47 10 0.76 

N 1090 100 1310 100 

 14 

 For those respondents who have or would vaccinate their child, 73.5% of US respondents (and 15 

72.6% of French ones) indicate that “Vaccination protects my child from disease” is a very important reason 16 

for that decision. Other reasons that relate to herd immunity are also deemed very important by large 17 



 30 

fractions of respondents, “Vaccination of my child contributes to herd immunity” by 54.9% of US 1 

respondents (46.2% of French ones) and “I vaccinate because other parents I know choose to vaccinate” by 2 

35.4% of US respondents (20.4% of French ones). Conversely, for those respondents who have not or would 3 

not vaccinate their child, side effects and choice autonomy are deemed as very important more often than 4 

matters of herd immunity. This can be seen in the contrast between “There are possibly severe side effects 5 

to vaccination” (56.4% in the US, 61.6% in France) and “Vaccination should be a matter of free choice” 6 

(54.3% in the US, 58.0% in France) on the one side and on the other side “If vaccination coverage is already 7 

high in the community, my child will be safe without vaccination” (30.9% in the US, 24.1% in France) and 8 

“Other parents I know are choosing not to vaccinate” (31.9% in the US, 32.1% in France). 9 

Overall, these additional empirical findings provide stronger support for the Kantian optimization approach 10 

compared to the Nash framework. 11 

 12 

8 Conclusion 13 

 The vaccination of children can be modelled as a game with significant positive externalities from 14 

the individual’s choice to vaccinate; we say the game is monotone increasing. The Nash equilibria of such 15 

games are inefficient (Proposition 1), a fact colloquially known as the free-rider problem. The Kantian 16 

equilibria of such games are efficient (Proposition 2). We have shown, in a sample of six countries, that the 17 

Kantian model provides a superior explanation of vaccination behavior compared to the Nash model. We 18 

have also presented additional empirical evidence suggesting that parents' motivations to vaccinate their 19 

children align more closely with Kantian optimization principles than with Nash behavior. For instance, 20 

many parents report being encouraged to vaccinate their children by the presence of herd immunity, rather 21 

than being disincentivized by it, as would be expected under Nash equilibrium reasoning. 22 

  23 

 That said, we limit our analysis to a comparison between the pure Kantian model and the pure Nash 24 

model. Other frameworks might offer a better fit to the data. A plausible extension could incorporate a 25 

mixed model where some agents act as Kantians while others behave as Nash players. Furthermore, our 26 

approach does not fully explain cross-country differences or variations in the alignment between observed 27 

and predicted vaccination rates. We hypothesize that these discrepancies arise partly from behavioral 28 

differences and partly from institutional variations across countries (e.g., whether vaccinations are 29 

mandated or administered in schools, reducing the need for voluntary parental initiatives, as suggested by 30 

a reviewer). Addressing these questions remains an avenue for future research. 31 



 

APPENDIX A. Proof of Proposition 1 

Proposition 1 Let 𝑉𝑖: 𝐼1 × 𝐼2 ×…× 𝐼𝑛 → ℜ be differentiable payoff functions for 𝑖 = 1,2, … , 𝑛 for an 𝑛-

player strictly monotone game, where 𝐼𝑖 is a non-negative real interval.  Then any interior Nash equilibrium 

of the game is Pareto inefficient.  

Proof: 

1. The conditions for Pareto efficiency of an interior Nash equilibrium (𝑥1, … , 𝑥𝑛) ∈ ℜ++
𝑛  are given 

by the solution of the following program: 

𝑀𝑎𝑥
(𝑥1,𝑥2,…,𝑥𝑛)

𝑉1(𝑥1, … , 𝑥𝑛)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

(∀𝑗 = 2, … , 𝑛)(𝑉𝑗(𝑥1, … , 𝑥𝑛) ≥ 𝑘𝑗)           (𝜆𝑗)

   (A.1)  

2. The Kuhn-Tucker conditions for the solution of (A.1) are: 

 

𝑉1
1 + 𝜆2𝑉1

2 +⋯+ 𝜆𝑛𝑉1
𝑛 = 0

𝑉2
1 + 𝜆2𝑉2

2 +⋯+ 𝜆𝑛𝑉2
𝑛 = 0

…
𝑉𝑛
1 + 𝜆2𝑉𝑛

2 +⋯+ 𝜆𝑛𝑉𝑛
𝑛 = 0

     (A.2)  

where 𝑉𝑗
𝑖 =

𝜕𝑉𝑖

𝜕𝑥𝑗
 for all 𝑖, 𝑗. 

3. Suppose that 𝑛 ≥ 3. Assume that the game is strictly monotone increasing. By the interiority of the 

equilibrium, we have 𝑉𝑖
𝑖(𝑥) = 0 for all 𝑖 = 1,… , 𝑛. By monotonicity of the game, 𝑉𝑗

𝑖 > 0 for all 

(𝑖, 𝑗) with 𝑗 ≠ 𝑖. Hence, we can rewrite the first two equations in (A.2) as: 

𝜆2𝑉1
2 + 𝜆3𝑉1

3 +⋯+ 𝜆𝑛𝑉1
𝑛 = 0       ( since 𝑉1

1 = 0)

𝜆3𝑉2
3 +⋯+ 𝜆𝑛𝑉2

𝑛 = −𝑉2
1 ( since 𝑉2

2 = 0)
 (A.3) 

By the positivity of 𝑉𝑗
𝑖 and the non-negativity of 𝜆𝑗 for all 𝑗 > 1, we immediately have from the 

first equation in (A.3) that 𝜆𝑗 = 0 for all 𝑗 = 2,… , 𝑛. Therefore the second equation in (A.3) says 

0 = −𝑉2
1, a contradiction to strict monotonicity that establishes the result. 

4. The case of 𝑛 = 2 is disposed of even more quickly. The case of strictly monotone decreasing 

games has the same proof with a change of sign.    
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APPENDIX B: Proof of Proposition 3 

 Recall the definition of 𝜌 ∘ 𝑎̅̅ ̅̅ ̅̅  from (2.1). The expected utility of the parent in a profile re-scaled by 

the factor 𝜌 is given by: 

�̃�(𝑝,𝑢,ε)(α, �̅�, ε; ρ) =

{
 
 

 
 
�̃�(𝑝,𝑢)
+ (α, �̅�, ε; ρ) ≔ ρα ((1 − 𝑝) ⋅ 1 + 𝑝𝑢 + ε)⏞              

ex utility if vacc

+ (1 − ρα) (π(𝜌 ∘ 𝑎̅̅ ̅̅ ̅̅ )(1 − 𝑝0) + (1 − π(𝜌 ∘ 𝑎̅̅ ̅̅ ̅̅ ))⏞                      
ex utility if not vacc

if ρ > 1

�̃�(𝑝,𝑢)
− (α, �̅�, ε; ρ) ≔ ρα ((1 − 𝑝) ⋅ 1 + 𝑝𝑢 + ε)⏞              

ex utility if vacc

+ (1 − ρα) (π(ρ�̅�)(1 − 𝑝0) + (1 − π(ρ�̅�)))
⏞                    

ex utility if not vacc

 if ρ ≤ 1

 

(B.1) 

Note the function �̃�(𝑝,𝑢,ε) is continuous, since lim
𝜌↓1
𝑉(𝑝,𝑢,𝜀)
+ (α, �̅�, ε; ρ) = 𝑉(𝑝,𝑢,𝜀)

− (α, �̅�, ε; 1), although 

it is not differentiable at 𝜌 = 1.  Furthermore, we have that for 𝜌𝜖[1,1/𝛼(𝑝, 𝑢)]: 

 �̃�(𝑝,𝑢)
+ (α, �̅�, ε; ρ) − �̃�(𝑝,𝑢)

− (α, �̅�, ε; ρ) = (1 − 𝜌𝛼)𝑝0(𝜋(𝜌�̅�) − 𝜋(𝜌 ∘ 𝑎̅̅ ̅̅ ̅̅ )) < 0, (B.2) 

because 𝜌�̅� > 𝜌 ∘ 𝑎̅̅ ̅̅ ̅̅  on this interval.  

To prove the existence of such an equilibrium,  we need to show that there is a number �̅�𝐾such that 

the strategy profile defined by (3.8) indeed integrates to �̅�𝐾 . In part A of the proof, we prove that if a value 

�̅�𝐾 exists which is consistent with this definition of the strategy profile, then eqn. (3.8) defines a Kantian 

equilibrium. In part B, we prove the existence of such a value of �̅�𝐾 .  

 

Part A.  The strategy profile in (3.8) is a multiplicative Kantian equilibrium, if �̅�𝐾 exists consistent with 

this profile.  

• Case 1   ε < (1 − 𝑢)(𝑝 − 𝑔(𝑢, �̅�)) 

(a) In this case, α𝐾(𝑝, 𝑢, ε) is defined by the first branch of (3.8) Note that 𝛼𝐾 ∈ (0,1) , since the 

probability of vaccinating on the first branch is strictly less than one. 

(b) Calculate the derivative along the first branch of �̃�(𝑝,𝑢,ε):   

𝑑−

𝑑ρ
|ρ↗1�̃�(𝑝,𝑢)

− = α[𝑝(𝑢 − 1) + ε + 𝑝0π(�̅�) + 𝑝0π
′(�̅�)�̅�] − 𝑝0π′(�̅�)�̅� 

(c) Calculate that on the interval 0 ≤ ρ ≤ (
1

α𝐾(𝑝,𝑢,ε)
),  

𝑑2𝑉−

𝑑ρ2
= −(1 − ρα𝐾)𝑝0�̅�

2𝜋′′(ρ�̅�) + 2α𝐾𝑝0𝜋′(ρ�̅�)�̅�,  

which is negative on this interval, because by assumption 𝜋 is a convex, decreasing function. 
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(d) Hence �̃�(𝑝,𝑢)
−  is a concave function of ρ on this interval. Observe that by definition of �̃�(𝑝,𝑢)

−  in (B.1), 

𝑑𝑉(𝑝,𝑢)
−

𝑑ρ
= 0 at ρ = 1. Therefore the concave function �̃�(𝑝,𝑢)

−  is maximized for ρ ∈ [0,
1

α𝐾(𝑝,𝑢,ε)
] at ρ =

1.  

(e) Next, we need to show that �̃�(𝑝,𝑢) as a function of ρ is maximized at ρ = 1 on the interval 

ρ ∈ [1,
1

α𝐾(𝑝,𝑢,ε)
]. This follows from part (d), because �̃�(𝑝,𝑢)

+ (α, 𝑎,̅ ε; ρ) is dominated by 

�̃�(𝑝,𝑢)
− (α, 𝑎,̅ ε; ρ) on this interval  (see (B.2)). We use the fact that the maximum of �̃�(𝑝,𝑢)

− (α, 𝑎,̅ ε; ρ) 

on the entire interval [0,
1

α𝐾(𝑝,𝑢,ε)
] is attained at 𝜌 = 1. This establishes the claim for this case.  

• Case 2 ε ≥ (1 − 𝑢)(𝑝 − 𝑔(𝑢, �̅�)). 

In this case, 𝛼𝐾 = 1. It is only necessary to maximize �̃�(𝑝,𝑢) over the interval ρ ∈ [0,1], so we need only 

consult the left-hand derivative in part (b). Substituting 𝛼𝐾 = 1 into this expression, we have, in this case, 

that 
𝑑−

𝑑ρ
|ρ↗1�̃�(𝑝,𝑢,𝜀) ≥ 0. It follows immediately that �̃�  is maximized at ρ = 1 in this case, and hence the 

proposed strategy profile is a Kantian equilibrium. 

 

Part B.  A value of �̅�𝐾 exists consistent with the strategy defined in (3.8). 

The statistician sees only the average coverage rate for each tranche (𝑝, 𝑢). This is given by 

integrating α𝐾𝑑𝐿(ε): 

𝑎𝐾(𝑝, 𝑢) = ∫
−𝑝0π

′(�̅�𝐾)�̅�𝐾

(1 − 𝑢)(𝑝 − 𝑔(𝑢, �̅�𝐾)) − 𝜀 − 𝑝0π′(�̅�𝐾)�̅�𝐾
𝑑𝐿(ε)

(1−𝑢)(𝑝−𝑔(𝑢,�̅�𝐾))

−∞

+ 

 1 − 𝐿 ((1 − 𝑢)(𝑝 − 𝑔(𝑢, �̅�𝐾))). (B.3) 

Then integrating over all (𝑝, 𝑢): 

�̅�𝐾 =∬
−𝑝0π

′(�̅�𝐾)�̅�𝐾

(1 − 𝑢)(𝑝 − 𝑔(𝑢, �̅�𝐾)) − ε − 𝑝0π′(�̅�𝐾)�̅�𝐾
𝑑𝐿(ε)𝑑𝑄(𝑝, 𝑢)

(1−𝑢)(𝑝−𝑔(𝑢,�̅�𝐾))

−∞

+ 

 ∫ [1 − 𝐿 ((1 − 𝑢)(𝑝 − 𝑔(𝑢, �̅�𝐾)))] 𝑑𝑄(𝑝, 𝑢), (B.4) 

which is an equation in the single unknown �̅�𝐾. Existence requires showing that a value �̅�𝐾exists satisfying 

(B.4).  Define the expression on the right-hand side of (B.4) to be 𝑧(�̅�𝐾). A fixed point of z is a solution of 

(B.4). Clearly the function z is continuous.  We must show z maps the interval [0,1] into itself. The first 

(double) integral in the definition of z is less than 𝐿 ((1 − 𝑢)(𝑝 − 𝑔(𝑢, �̅�𝐾))), since the integrand is always 

less than one. Hence, by (B.4), the mapping z sends the unit interval I into itself. Since z is a continuous 

function, the Brouwer Fixed Point Theorem tells us that a solution �̅�𝐾of (B.4) exists.     



 34 

APPENDIX C: Estimation of the parameter 𝛾  

 We use the source “WHO vaccine-preventable diseases: Monitoring system, 2020 global summary,” 

https://apps.who.int/immunization_monitoring/globalsummary/, which contains data for a large set of 

countries on infectious disease immunization rates and morbidity. 

 A cohort of children is the set of children in the country born in a given year. 

 For a particular country, let: 

𝑛′ = total population of children ages 0-5 in year 𝑡, 𝑡 = 2015, … ,2019 

𝑟′ = measles immunization coverage rate, children under 5, year t 

𝑐′ = number of measles cases, year t 

�̅� = number of susceptible children under 5 in a given cohort 

�̅� =
∑ 𝑛𝑡5
𝑡=1

5
;     �̅� 5⁄ = number of children in a given cohort 

𝑟 =
∑ 𝑟𝑡5
𝑡=1

5
   

𝑐 =
∑ 𝑐𝑡5
𝑡=1

5
   

𝑝 = probability that a susceptible child of a given cohort contracts measles in a given year 

π = probability that a susceptible child of a given cohort contracts measles by five years of age 

 By definition, �̅� =
�̅�

5
(1 − 𝑟 ). The median age of contracting measles is age five. Therefore, the 

number of cases of measles of children under five in a given cohort in a given year is 
𝑐 

10
. Therefore 𝑝 =

𝑐 10⁄

𝑢
=

𝑐 

10𝑢
 . 

 Assume that an unvaccinated (susceptible) child in a given cohort has a probability 𝑝 of contracting 

measles in each year under five. Then: 

π = 𝑝 + 𝑝(1 − 𝑝) +⋯+ 𝑝(1 − 𝑝)4 = 𝑝
1 − (1 − 𝑝)5

𝑝
= 1 − (1 − 𝑝)5. 

 In our model we have π(𝑟) = (1 − 𝑟)γ. We propose that π(𝑟) is precisely the value π defined above: 

as a parent, I am concerned with the probability that my young child contracts measles if I choose not to 

vaccinate her, knowing that the coverage rate is r.  

 As described in the text, we assume the contagion process in North America (Canada and the US) is 

different from in Europe (UK, Germany, France). For each country 𝑗, we compute a data point (𝑟, π). 

Hence, we compute two values of γ: γNA gives the best fit of the function π(⋅) to the points 

{(𝑟US, πUS), (𝑟Can, πCan)} and γEUR gives the best fit of the function π(⋅) to the points {(𝑟𝑗 , π𝑗)| 𝑗 ∈

{UK, France, Germany}}. See Figure B.1 and Figure B.2. 

 Unfortunately, the data set does not provide measles morbidity for Mexico.

https://apps.who.int/immunization_monitoring/globalsummary/


 

 

 

 

Figure B.1 Fitting the function 𝜋(⋅) for the US and Canada: 𝛾𝑁𝐴 = 3.110. 

 

Figure B.2 Fitting the function 𝜋(⋅) for the four European countries (Sweden included): 𝛾𝐸𝑈𝑅 = 1.995.  
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