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Stability of a two-fluid rod annular flow
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Two concentric fluid annuli are enclosed in the gap between an axial rod and an outer
cylinder. Motion is driven both by a pressure gradient and by axial translation of the
rod. The linear stability of the flow to axisymmetric and nonaxisymmetric disturbances
is studied. New stability regions in parameter space are found for both a stationary and
a moving rod. If the fluid viscosities differ, the flow can control the capillary instability
at the fluid interface, but may itself be unstable, both at moderate Reynolds number and
in the inviscid limit. These flow instabilities may be concentrated either at the interface
or the solid boundaries. The interplay between these instabilities depends critically on the
problem parameters, and nonaxisymmetric modes can be the most unstable. When the outer
fluid is more viscous than the inner, complete stabilization can occur for a sufficiently thick
stationary rod, whereas in the absence of the rod, the system is always unstable. Moving
the rod can have a stabilizing influence either with or without the driving pressure gradient.
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I. INTRODUCTION

Core-annular flow (CAF) arises when two fluids of different viscosities arranged in concentric
annuli are driven through a cylindrical pipe by an axial pressure gradient. Introducing a rod down
the axis of the configuration transforms the system into a rod annular flow (RAF). These flows have
numerous applications; for example, CAF is important in the understanding of fluid transportation,
oil extraction, and respiratory airflow dynamics, while RAF models well the surgical technique of
thread injection for medical implants [1] and coating technology [2]. In the latter, the moving wire
acts as a guide for a double coating of die or substrate, and the stability of the two-fluid flow is
crucial for a smooth and accurate application. The stability of RAF is nontrivially governed by
capillary action and shear stresses at the interface, as well as the presence of the rod and outer wall.
It is well known that a cylindrical column of fluid is unstable as a result of capillary forcing if the
wavelength of the perturbation is greater than the circumference of the undisturbed interface [3].
The seminal analysis for an inviscid fluid column surrounded by a vacuum has since been extended
both linearly and nonlinearly in viscous settings by many authors (for example, Refs. [4–6]). The
numerous studies show that in a stationary system, the stability condition remains the same when the
fluid column is surrounded by another fluid of different viscosity, and when the system is enclosed
by an outer wall. Moreover, Ref. [7] found the stability condition holds when a thin viscous liquid
layer coats a rod in both the inviscid and Stokes limits.
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When the fluids are set in nonuniform motion, the dynamics and stability are significantly altered.
A shearing force acts at the interface, working to move the fluid with higher viscosity toward the
region of stronger shear [8–10]. Reference [11] investigated two-fluid plane Poiseuille flow with a
long-wave approximation, demonstrating that viscous stratification can be destabilizing, to an extent
determined by the depth ratio of the two fluids. Reference [12] solved the same system numerically
for arbitrary wavelength, identifying the different possible instability mechanisms. When viscous
effects at the interface dominate, interfacial modes may be destabilized, but the presence of the
boundary walls can stabilize the flow. However, under certain parameter regimes, viscous effects
at the boundary walls are critical, and an instability develops related to shear modes in single-
fluid plane Poiseuille flow. Reference [18] shows that Reynolds stress drives the unstable shear
modes, while the interfacial modes rely on energy transfer via the tangential stress at the interface.
Interestingly, the unstable shear mode requires a thin layer of less viscous fluid at the wall, and it is
in this layer that the Reynolds stress is high.

For a CAF, Ref. [13] showed experimentally that, irrespective of the initial arrangement of fluids,
the high-viscosity liquid will always end up occupying the central location in the absence of gravity.
Reference [10] explains this using a variational criterion, illustrating how the forcing works to
maximize the mass flux by arranging the fluids such that the extremal solution has the high-viscosity
liquid in the center. Reference [9] analyzes the stability of CAF numerically, neglecting surface
tension. They find the system is stable provided the inner fluid is the more viscous and also as
long as the inner-to-outer fluid thickness ratio exceeds a critical value. Reference [14] determined
the linear stability of the system when surface tension effects are included. They found for some
viscosity ratios, where the inner fluid was more viscous, a band of stable base-flow strengths exists.
In this instance, the destabilizing effects of surface tension to long waves are dampened by the
interfacial shear resulting from a sufficiently large pressure gradient. However, if the shear is too
strong, a surface wave instability renders short waves unstable due to the jump in viscosities at
the interface. Reference [15] found that, in the presence of surface tension, the system is always
unstable if the outer fluid is the more viscous. For all viscosity ratios considered in Refs. [14,15],
axisymmetric modes were found to be the most unstable. However, experimental work carried out
in Ref. [16] suggested that nonaxisymmetric disturbances are important if the outer fluid is thin and
the inner fluid is the more viscous.

Turning to the RAF configuration, Ref. [2] studied a two-fluid Couette system, in the absence of
a pressure gradient, with the fluids contained between coaxial cylinders and with the inner cylinder
translating along its axis. They carried out a linear stability analysis, including both axisymmetric
and nonaxisymmetric disturbances, and found that axisymmetric modes are the most unstable for
the parameters considered. They also showed that the continuous translation of the inner cylinder
allows for stability when the outer fluid is the more viscous. In a related study, Ref. [17] examined
pressure-driven RAF with the axial rod stationary. Their stability analysis, which also permitted
both axisymmetric and nonaxisymmetric disturbances, focused on the case where the inner fluid
is the more viscous. They showed that the relative thicknesses of the rod and fluid layers play
an important role in determining the stability of the system. Under certain settings the rod in
the RAF configuration affords stability for a larger window of viscosity ratios than in ordinary
CAF, and interfacial modes that ordinarily derive from the viscosity difference at the interface can
be suppressed. Under certain rod and fluid thicknesses, nonaxisymmetric modes were found to
become important at large Reynolds numbers. Here, axisymmetric modes also existed, and these
were found to be a continuum from the planar unstable shear modes found by Ref. [18]. These
were named shear modes and were shown to be a result of the boundaries and background shear,
not an interfacial mode. Reference [19] examined the effect on the classical Rayleigh instability of
including a rod along the column’s axis and a base flow induced by a pressure gradient in a liquid
column surrounded by a gas. They too suggested that nonaxisymmetric modes dominate when the
pressure gradient is large. They found that when the liquid layer is thin, the base flow can dampen
destabilizing capillary effects, and that the optimal width of the annular gap for stabilization depends
on the pressure gradient, although complete stabilization is not possible. Reference [1] studied the
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stability of a viscous fluid thread that is driven by an axial pressure gradient through a pipe with a
translating rod along its axis. They found that nonaxisymmetric perturbations are the most unstable,
and that linear stability for all Reynolds numbers is obtained when the rod velocity exceeds a critical
value. Subsequently, and for the same configuration, Ref. [20] numerically computed axisymmetric
traveling-wave solutions for arbitrary Reynolds number. They found that increasing the rod velocity
always has a stabilizing effect on axisymmetric deformations. Reference [21] examined Poiseuille
flow through the annular gap between two coaxial cylinders. He found that the cylinder radius ratio
is crucial in determining stability and that, under the right conditions, nonaxisymmetric modes can
be the most unstable. A single fluid can be viewed as a special case of the two-fluid problem when
the viscosities are equal and there is no surface tension. For axisymmetric and nonaxisymmetric
disturbances, respectively, Refs. [22,23] investigated the role played by an insoluble surfactant in
the two-fluid RAF problem, allowing for a nonzero rod velocity. In the latter paper is was found
that, for some parameter sets, the flow can be stable to axisymmetric disturbances but unstable to
nonaxisymmetric disturbances.

In the light of these various findings, it appears plausible that including an axial rod may have
a stabilizing effect on CAF, when the outer fluid is more viscous, but that nonaxisymmetric modes
may be dangerous and should certainly be included in any analysis. In the present work we extend
previous investigations of RAF to allow for a more viscous outer fluid as well as the axial translation
of the rod. We allow for both axisymmetric and nonaxisymmetric perturbations. Of particular
interest is to identify stable configurations with potential implications for practical applications.
First, in Sec. IV A we consider a pressure-driven flow and a stationary rod. A more viscous inner
fluid is examined in Sec. IV A 1, extending the work of Ref. [17] to other parameter ranges, while
a more viscous outer fluid is examined in Sec. IV A 2. In Sec. IV B we allow the rod to translate
at constant speed along its axis, either in the same direction as the driving pressure-driven flow or
against it. A more viscous inner fluid is considered in Sec. IV B 1 and a less viscous inner fluid in
Sec. IV B 2.

While an analytical solution that determines the perturbation growth rates is possible in the
Stokes flow limit, in general the stability problem presents a generalized eigenvalue problem that
must be solved numerically, and this is done using a spectral method and an in-built eigenvalue
problem solver in matlab. Both when it is stationary and when it is in motion, the axial rod is found
to make a significant difference to the system’s stability, when compared to its CAF counterpart.
Novel results are found for RAF, and it is shown that nonaxisymmetric modes can be the most
unstable for both a stationary and a moving rod. The results highlight the intricate balance and
interplay of forces—namely, shear stress, surface tension, and friction—and their collective role in
dictating the stability dynamics of the system.

II. FORMULATION

The flow of two incompressible, immiscible fluids of different viscosities through a circular
cylindrical pipe centered around a rod is considered. We use a cylindrical coordinate system (r, θ, z),
where r and θ are the radial and azimuthal components and z points along the rod. The rod has radius
R̃0 and the outer wall radius R̃2. The two fluids are arranged in concentric annuli, and in equilibrium
the interface is at r = R̃1, so that fluid 1 occupies R̃0 < r < R̃1 and fluid 2 fills R̃1 < r < R̃2. The
fluids are assumed to have the same density, ρ̃, so that gravity does not affect the system. The flow
is driven by a pressure gradient applied along the pipe of magnitude G̃, and the rod translates along
the z axis with speed W̃ , which can be of either sign or zero. As a result an axial base flow, w̃1(r)
and w̃2(r), is generated in fluids 1 and 2, given in nondimensional form in Eqs. (10) and (11). A
schematic of the base state is shown in Fig. 1.

We nondimensionalize the problem using the length scale R̃1, the velocity scale σ̃ /μ̃1, the
pressure scale σ̃ /R̃1, and the timescale R̃1μ̃1/σ̃ , where σ̃ is the coefficient of surface tension at
the interface and μ̃ι the fluid viscosities, where ι = 1, 2 for fluids 1 and 2, respectively. The Navier-
Stokes equations apply in both fluids, with continuity of velocity and stress at the interface and solid
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FIG. 1. Schematic of the base state.

boundary conditions at the rod and wall. We denote the nondimensional pressure and velocity by p
and u = (u, v,w)T , where u, v, and w are respectively the radial, azimuthal, and axial components.
From here on r and z take dimensionless form. The following six dimensionless parameters appear
in the nondimensionalized governing equations: R0 and R2 denote the dimensionless rod radius and
the outer-wall radius,

μ = μ̃2

μ̃1
(1)

is the viscosity ratio of the fluids,

G = ρ̃G̃R̃3
1

μ̃2
1

� 0 (2)

measures the strength of the driving pressure gradient,

W = ρ̃W̃ R̃1

μ̃1
≶ 0 (3)

is the magnitude of the axial velocity of the rod (which can take either sign), and

J = ρ̃R̃1σ̃

μ̃2
1

(4)

is a measure of the strength of capillary forcing. We note that J is the inverse square of the Ohnesorge
number Oh = μ̃1/(̃ρR̃1σ̃ )1/2, and differs by a factor of (R̃1 − R̃0)R̃2/R̃2

1 from the J∗ defined in
Ref. [17]. Each of G, J , and W can be considered as a Reynolds number based on different scales.
We choose to nondimensionalize velocity with respect to the capillary scale in order to focus on the
interface behavior. In dimensionless variables, the Navier-Stokes equations applied in each fluid are

J
Duι

Dt
+ ∇pι = μ(ι)∇2uι, ∇ · uι = 0, (5)

where D/Dt denotes the material derivative, and

μ(1) = 1, μ(2) = μ. (6)

The stress condition at the interface is

[Tι · n] = (∇ · n)n, (7)

where Tι is the dimensionless stress tensor, given by

Tι = −pιI + μι(∇uι + (∇uι)
T). (8)
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The square brackets denote the jump across the interface of the two fluids, and n is the unit normal
vector to the interface. In general, the interface between the two fluids takes the form r = R(θ, z, t ),
and the usual kinematic equation,

D

Dt
(R(θ, z, t ) − r) = 0, (9)

is applied at r = R. Additionally, continuity of uι at the boundaries and interface is required.
The nondimensionalized base flow is solely in the axial direction, with functional form w =
Ar2 + B log r + C, where the constants take different values in the two fluids. Explicitly, it is given
in fluids 1 and 2, respectively, by

w1 = G

4J

(
R2

0 − r2 + a ln
r

R0

)
+ W

J

(
1 − b ln

r

R0

)
, (10)

w2 = G

4μJ

(
R2

2 − r2 + a ln
r

R2

)
− W b

μJ
ln

r

R2
, (11)

where

a = R2
2 − 1 + μ

(
1 − R2

0

)
ln R2 − μ ln R0

, b = μ

ln R2 − μ ln R0
. (12)

Viewed as a single function w(r), the velocity is continuous but has a jump in gradient at r = 1 if
μ �= 1. This has implications for the stability behavior at high Reynolds number, as some profiles
w(r) may be prone to an inflection-like inviscid instability. The nondimensionalized pressure in the
base state is given by

p1 = −Gz

J
+ pc + 1, p2 = −Gz

J
+ pc, (13)

where pc is a reference pressure that can be taken to be zero, and the third term in p1 is the result of
surface tension. We now determine the linear stability of the base state.

III. LINEAR STABILITY ANALYSIS

In the base state the interface is located at r = 1. We consider a small disturbance such that the
interface becomes

r = 1 + εR(Sζ ), (14)

where ζ = exp(i(kz + mθ ) + st ), ε � 1, k, m are real wave numbers with m an integer, s ≡ sr + isi

is the complex growth rate, and S is a constant which, if nonzero, can be normalized to unity. We
retain S in the problem to allow for eigenfunctions with S = 0. The real part of the perturbation is
taken in Eq. (14), and this is assumed from here on for the perturbations of all variables, but is not
written explicitly. An appropriate expansion for the velocity and pressure is assumed to be

pι = pι(z) + εζ p̂ι(r), uι = εζ ûι(r), vι = εζ v̂ι(r), wι = wι(r) + εζ ŵι(r), (15)

where we drop the hats of the perturbation variables hereafter. Substituting Eqs. (15) into the
dimensionless Navier-Stokes equations and linearizing, we obtain

(ruι)
′ + imvι + ikrwι = 0, (16)

J (s + ikwι)r
2uι + r2 p′

ι = μ(ι)(−2imvι − uι + r2u′′
ι + ru′

ι − (m2 + k2r2)uι), (17)

J (s + ikwι)r
2vι + imr pι = μ(ι)(−vι + 2imuι + r2v′′

ι + rv′
ι − (m2 + k2r2)vι), (18)

J (uιw
′
ι + (s + ikwι) wι)r

2 + ikr2 pι = μ(ι)(r2w′′
ι + rw′

ι − (m2 + k2r2)wι), (19)

where ′ denotes to the derivative with respect to r.
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For Stokes flow, J → 0 while keeping G = O(J ), wι = O(1). In this limit, Eqs. (16)–(19) have
an analytical solution. The base flow then only contributes to the imaginary part of the growth
rate as expected from the reversibility of the Stokes problem [8], and confirmed analytically.
Consequently, to allow for base-flow effects, the full system must be considered, which in general
requires numerical solution.

After the disturbance, the normal stress condition at the interface gives

p1 − p2 + 2(μu′
2 − u′

1) + (1 − m2 − k2)S = 0, (20)

and continuity of the axial and azimuthal tangential stress gives

iku1 + w′
1 = μ(iku2 + w′

2), (21)

imu1 − v1 + v′
1 = μ(imu2 − v2 + v′

2). (22)

Continuity of u at the interface results in

u1 = u2, v1 = v2, w1 + w′
1S = w2 + w′

2S. (23)

The kinematic condition at the interface requires

sS − uι + ikwιS = 0. (24)

Equations (20)–(24) are all applied at r = 1. Finally, no slip at the outer wall and rod gives

u2(R2) = 0, v2(R2) = 0, w2(R2) = 0, (25)

and

u1(R0) = 0, v1(R0) = 0, w1(R0) = 0, (26)

respectively. Importantly, the stability problem for RAF does not recover that for CAF upon taking
the limit R0 → 0 [14,17] as the appropriate boundary conditions on the axis are not the same.
More generally, even if we set the rod velocity to be equal to that of the CAF base flow at the rod
radius, the two stability problems are different because of the differing boundary conditions for the
perturbations. The results for a single fluid can be found by setting μ = 1 and letting J → 0 while
rescaling s and the perturbed variables with 1/J .

A. Numerical methods

The system of equations (16)–(26) forms an eigenvalue problem for s, where sr > 0 corresponds
to an unstable mode, and if for all modes sr � 0 then the system is (neutrally) stable. Following
Ref. [14] we use a pseudospectral method to solve the system of equations numerically. We elimi-
nate p(r), using the axial momentum equation to give one continuity equation and two momentum
equations applied in each fluid, along with 13 boundary conditions (20)–(26). We introduce a
truncated series of Chebyshev polynomials Tn(x) for the flow variables, such that

(uι, vι,wι) =
Nι∑

n=0

(anι, bnι, cnι)Tn(x), (27)

where each fluid region is mapped onto the canonical interval −1 � x � 1 using

x = (r − 1) + (r − R0)

1 − R0
, x = (r − 1) + (r − R2)

R2 − 1
, (28)

in fluids 1 and 2, respectively. We substitute the expansions (27) into the momentum and continuity
equations, Eqs. (16)–(19) enforcing these at interior shifted Gauss-Lobatto collocation points given
as xl = cos(π (l − 1/2)/N ), for l = 1, . . . , N , with N = N1 − 1 and N = N2 − 1 in fluids 1 and 2,
respectively. Similarly, we substitute Eq. (27) into Eqs. (20)–(26) and enforce these at x = ±1 as
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required for each fluid. This results in 3(N1 + N2 + 2) unknown Chebyshev coefficients stored in
the vector v, along with the surface deformation S, such that

Av = sBv, (29)

where A and B are (3(N1 + N2) + 7)×(3(N1 + N2) + 7) matrices with known elements. The first
3(N1 + N2 − 2) rows account for the radial and azimuthal momentum equation and the continuity
equation applied at N1 − 1 and N2 − 1 collocation points in fluids 1 and 2, respectively, and the
last 13 rows account for Eqs. (20)–(26). We solve Eq. (29) using the matlab routine eigs to find the
eigenvectors and corresponding values of s. To ensure reliability, we restrict attention to no more
than half of the modes produced, ordered by eigenvalue size.

In the absence of a rod, Ref. [14] reported the occurrence of spurious eigenvalues. We can
replicate this finding using the appropriate base flow for no rod, and replacing Eq. (26) with the
centerline conditions given by Ref. [14]. We also find nonconvergent spurious eigenvalues in the rod
annular problem. These are removed from consideration by carefully identifying those eigenvalues
which converge as N1,2 increases. Taking 90 � N1,2 � 140 we find accurate results except for very
large values of J , G, and R2, when an increase in Nι is needed. The numerical results are compared
with the growth rate for the analytical solution in the Stokes regime, with the values provided by
Ref. [23] for no surfactant and a moving rod, and with a small-k analysis (see Sec. III C), all with
excellent agreement. We also reproduce the m = 0, 1 neutral curves in Figs. 5–7 of Ref. [17], and
the neutral curves in Fig. 5(a) of Ref. [2].

B. Inviscid limit

Before presenting the results, we make some observations on the base-flow structure and its
likely implications. Our scaling is not convenient for the inviscid limit, for which W , G, and
J1/2 → ∞ at the same rate while s and the perturbed velocity scale as J−1/2, but p is O(1).
Physically, in the limit of both fluids becoming inviscid, and in the absence of surface tension,
one might expect the stability behavior to be the same as that for a single fluid with velocity profile
w(r), which has a discontinuous derivative at r = 1. Neglecting for now this discontinuity, there
is an analog of Rayleigh’s inflection point criterion for two-dimensional (2D) flow, namely, that a
necessary condition for axisymmetric inviscid instability is that it should change sign somewhere
in R0 < r < R2 [24]. If the flow is inviscidly unstable, then there will be a window of unstable k of
nonzero width. If, however, the flow is inviscidly stable, then we would expect any instability of
the slightly viscous problem only to appear as k → 0. The addition of surface tension is unlikely to
affect these long waves, though it may limit the unstable k range for an inviscid instability.

Considering now the kink at r = 1, analogy with 2D flow suggests the inviscid flow stability
will be the same as that for an infinitesimally modified smooth profile, ŵ(r). If such a profile has
single-signed (ŵ′/r)′ we would expect the discontinuous profile also to be inviscidly stable. For our
two-fluid profile, (w′/r)′ is determined solely by the logarithmic term in Eq. (10) and has the same
sign in both fluids due to the continuity of μιwι

′. Whether or not the smoothed profile (ŵ′/r)′ will
have the same sign at r = 1 as (w′/r)′ depends on whether w′/r increases across r = 1, which is
the same as whether w′ increases. This depends on whether or not μ > 1, with allowance made for
the sign of w′(1). Now in Eq. (10) the sign of (w′/r)′ is given by

ξ1 ≡ G
(
R2

2 − R2
0μ + μ − 1

) − 4μW. (30)

Whether w′/r increases across r = 1 is determined by the sign of

ξ2 ≡ (μ − 1)
[
G

(
R2

2 − R2
0μ + μ − 1 − 2 ln R2 + 2μ ln R0

) − 4μW
]
. (31)

Inviscid stability requires ξ1 and ξ2 to have the same sign. If this condition is violated, instability
usually occurs, although it should be remembered that it is not strictly guaranteed [25]. It should also
be noted that for a sufficiently large rod velocity of either sign the inviscid stability is determined
by μ ≶ 1. When μ = 0, we always have instability.
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FIG. 2. Growth rate contours sr (G, k) when μ = 0.5, R0 = 0.1, R2 = 2, and W = 0. (a) m = 0, 1 for
J = 1. (b) m = 0 for J = 1, 100. Eigenfunctions for region 2 in panel (a) when G = 1400, k = 11.0, and in
(c) m = 0, s = 0.4626−12981.9i and (d) m = 1, s = 0.4556−12982i. Region 1 is driven by surface tension,
region 2 by interfacial shear. The flow is inviscidly stable, so that region 2 disappears as J increases.

It is also possible to develop similar criteria for modes with m > 0, but these are a little more
complicated and it seems simpler to solve the entire system for large G numerically.

C. Long-wave limit

The equations simplify in the limit k → 0, keeping the other parameters O(1). We can expand

(uι, vι, kwι) = kuι1 + k2uι2 + · · · , pι = k−1 pι0 + pι1 + · · · , s = ks1 + k2s2 + · · · . (32)

The analysis is the same as in Ref. [17] apart from the inclusion of the rod velocity, W . For m = 0
we find s1 is imaginary and at leading order

sr = k2

[
α − 1

J
(βG2 + γW 2 + δW G)

]
, (33)

where α, β, γ , δ are known in terms of R0, R2, and μ. The constants α and β are given in Eq. (15)
of Ref. [17]. When W = 0, Eq. (33) agrees with the boundary of the instability region around
G = k = 0, for example, in Fig. 2(b) below. If β/α � 0 axisymmetric short waves are always
unstable. When W �= 0, there can be two positive roots for G, in which case the instability window
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shifts to larger G as indeed we will find in Fig. 10(b). As J varies, Eq. (33) predicts the observed
square root dependency on J of the critical G values.

IV. RESULTS

The problem is defined by the parameters R0, R2, μ, J , G, W and wavenumbers (k, m). For fixed
k and m we find at most one unstable mode.

A. Stationary rod: W = 0

Here we outline the results for a stationary rod, W = 0. The system is identical to that studied
in Ref. [17] and we find agreement with the conclusions presented. When the inner fluid is more
viscous, Ref. [17] finds that for certain parameters and large base-flow strengths, m = 1 modes are
rendered unstable before m = 0 modes, as the Reynolds number is increased. In Sec. IV A 1 we
investigate these modes further for other parameter values. In Sec. IV A 2 we consider the outer
fluid as more viscous. In this case, the system is always unstable for ordinary CAF [15], yet we find
for RAF, if the rod thickness exceeds a critical value, regions of stability can be found.

1. μ < 1: More viscous inner fluid

As expected from Ref. [17], there exists a window of base-flow strengths, G, where the system is
stable for a range of parameter values. We define GL and GR as critical values of G, such that there
is a band of stability given by GL < G < GR. Reference [17] finds that at low base-flow strengths,
axisymmetric modes are the most unstable, and Fig. 2 gives an example configuration where m = 0
modes are the most unstable. Two regions of instability exist when J = 1; regions 1 and 2. Region 1
is unstable only to axisymmetric modes with k � 1, as these are essentially capillary modes which
the flow is too weak to control. Increasing J increases the growth rate of the instability, and region
1 grows larger as GL ∝ √

J as given by Eq. (33) [see Fig. 2(b)]. Region 2 is unstable for moderately
large k and various m. The eigenfunctions shown in Figs. 2(c) and 2(d) display a localized behavior
to the interface of the two fluids, representing the short-wave instability discussed by Refs. [14] and
[17]. This is caused by the viscosity jump, and they are named “interface modes” in Refs. [17,18] .
Indeed, increasing the viscosity ratio pushes region 2 to the right, so that at μ = 0.9 there is stability
up to at least G = 2×104, when J = 1. Moreover, as J increases so does GR, and region 2 is moved
to the right and may disappear entirely. When J = 100 in Fig. 2 we have complete stability up to at
least G = 6.5×104, which is consistent with the base flow being inviscidly stable.

As R2 is decreased, the situation is more involved with nonaxisymmetric modes dominating for
G � Gc and J � Jc. In Fig. 3 R2 = 1.3 compared to R2 = 2 in Fig. 2, while μ and R0 remain the
same. Figure 3(a) shows that when J = 1 regions 1 and 2 exist, and increasing J causes region 2 to
move to the right, as when R2 = 2. Indeed, when J = 100 in Fig. 3(b) region 2 is stabilized, but a
third region of instability exists for G � Gc, where only m = 1 modes are unstable. We find that Gc

is unchanged by increasing J , although the growth rate decreases as 1/J . The region persists when J
is decreased to J = 1, but then region 2 modes dominate at flow strengths G � Gc. This resembles
the scenario of Figs. 6 and 7 of Ref. [17], although some care in interpretation is needed because
of the different nondimensionalization used. As R0 increases, keeping Ref. [17] other variables
constant, it appears that region 2 moves to the right. However, in terms of our scaling, this entails
a simultaneous increase of surface tension, J , which is the physical reason for the stabilization of
region 2 for fixed G.

The eigenfunction shown in Fig. 3(d) corresponds to a point in region 3, and it shows that
gradients of the flow in fluid 1 are localized near the rod boundary, while activity occurs throughout
the thinner, less viscous fluid 2 layer. In comparing Figs. 2 and 3, we find that the region occurs
once we decrease the thickness of the outer, less viscous, fluid. A similar situation occurred for
the 2D shear modes in Ref. [18], which were only destabilizing for a thin, less viscous fluid near
the wall boundary. This implies that the nonaxisymmetric region 3 modes could also consist of
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FIG. 3. Growth rate contours sr (G, k) for μ = 0.5, R0 = 0.1, R2 = 1.3, and W = 0. (a) J = 1; regions 1
and 2 exist. (b) J = 100; regions 1 and 3 exist (region 2 has been stabilized). (c) Region 1, with m = 0 modes
unstable, for J = 1, 100. (d) The eigenfunction at (G, k) = (2×104, 1) for m = 1 (this has the growth rate
s = 0.059−19.29i whose real part is near maximum). The eigenfunction is most active away from interface,
so that J has limited influence.

shear modes. To support this statement, we refer to Ref. [17], who considered the stability of
single-fluid Poiseuille flow in an annular pipe. In Ref. [17] Fig. 1 it is shown that, for a single
fluid, as the strength of the flow increases, one of the set of m = 0, 1, 2, 3 modes is made unstable
first, depending on the ratio of the inner and outer pipe radii. We observe similar behavior in our
two-fluid problem, and find that varying R0 and R2 can produce similar results, with other m modes
rendered unstable at sufficiently high G, and with similar eigenfunctions. The effect of narrowing
the annular gap is demonstrated in Fig. 4. In Fig. 4(a), R0 = 0.45 and R2 = 1.1 (cf. Fig. 3, where
R0 = 0.1 and R2 = 1.3). Here, m = 0 is unstable in region 1, but there also exists a region where
m = 2 is the only unstable mode, and the corresponding eigenfunctions see Fig. 4(b)] resemble
those of region 3 in Fig. 3. In Fig. 4(c), the rod radius is set at R0 = 0.1, and here we see a case
where m = 0 modes become unstable first with modes m > 0 losing stability at successively higher
G. The eigenfunction for the m = 0 mode is shown in Fig. 4(d). Its axial component is typical for
region 3, but the radial velocity exhibits a localized behavior towards the inner boundary in fluid 1,
whereas in fluid 2 there is a sharp drop from the interface to the outer wall. The eigenfunction for
the m = 1 mode has azimuthal and axial components resembling those in Fig. 3(d), but the radial
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FIG. 4. Growth rates, sr (G, k), and eigenfunctions, for μ = 0.5 and J = 100. (a) Growth rates plotted
when R0 = 0.45, R2 = 1.1, and W = 0, and (b) the eigenfunction at (G, k) = (110 000, 3.5) for m = 2 (s =
0.37−90.81i). (c) Growth rates plotted when R0 = 0.1 and R2 = 1.1 and (d) the eigenfunction at (G, k) =
(104, 5.5) for m = 0 (s = 0.785−32.619i).

part is different. Moreover, for low G in this region, increasing J can stabilize modes. Yet at higher
G, say G = 2×104, unstable modes still exist, and seem to be mostly unaffected by increasing J , in
a similar manner to region 3 in Figs. 3(d) and 4(b).

We find that the existence of region 3 is very sensitive to the choice of μ < 1, R0, and R2.
Increasing these three parameters independently, we find that region 3 shifts to the right from its
position in Fig. 3(b), thereby increasing Gc. On the other hand, varying J does not change the
location of region 3 much, suggesting that surface tension is not important for this instability, which
is unlikely to be due to interfacial modes. This, coupled with the work of Refs. [17,18,21], would
suggest that even the nonaxisymmetric region 3 instabilities are a result of the pipe geometry
and background shear, rather than interfacial friction or capillarity, and occur for specific fluid
thicknesses.

Furthermore, decreasing the outer-wall radius, from R2 = 2 in Fig. 2 to R2 = 1.3 in Fig. 3,
decreases GL, for both J = 1 and J = 100. Yet GR also decreases when J = 1, resulting in a smaller
range of stable G as R2 decreases. If R0 is increased to 0.45 the three regions of instability still exist,
but occur for different ranges of G. Increasing the rod radius increases GL, GR, and Gc. Thus, for
small G a smaller rod radius would be favorable, yet the converse is true at higher G. Here, and
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FIG. 5. Growth rates sr (G, k) showing instability for all G when μ = 0.5 and W = 0. (a) J = 1, R0 = 0.1,
and R2 = 2.5. (b) J = 1, R0 = 0.45, and R2 = 2. (c) J = 1, R0 = 0.9, and R2 = 1.3. (d) J = 100, R0 = 0.9,
and R2 = 1.3. When J increases, short waves are stabilized, but the system remains unstable. Both m = 0 and
m = 1 are unstable, but m = 0 has the largest growth rate. In all of the panels the base-flow profile is inviscidly
unstable and β/α < 0 so all axisymmetric short waves are unstable according to Eq. (33).

in general, GL is increased as J is increased, and region 2 is shifted to the right as J is increased.
Therefore, when G is small, a smaller value of J is favorable to achieve a stable system. However,
if there exists a stable band of G, J can be increased to dampen unstable modes provided that the
base flow is sufficiently strong and G < Gc. For certain conditions, dependent on R2 and R0, a
large base-flow strength risks nonaxisymmetric modes becoming unstable, despite an increase in J .
Nevertheless, given a prescribed G > Gc, increasing R2 or R0 can stabilize nonaxisymmetric modes.
For example, when R2 is increased from R2 = 1.3 in Fig. 3 to R2 = 2 in Fig. 2, region 3 does not
exist up to at least G = 6.5×104.

When either the outer-wall radius or the rod radius exceeds a critical value, we found that there
are no windows of stability in G. In fact the system is unstable for all of the values of G and J that
we examined. Four examples are shown in Fig. 5. In Fig. 5(a) we see that the stability windows
in Figs. 2 and 3 have been closed by increasing the outer-wall radius to R2 = 2.5 (with the other
parameters fixed). In Fig. 5(b), increasing the rod thickness to R0 = 0.45 has rendered all modes
unstable, when the system was stable for R0 = 0.1 in Fig. 2. Similarly, increasing the rod radius to
R0 = 0.9 in Fig. 5(c) renders all modes unstable, when for these parameters the system was stable
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FIG. 6. Growth rates sr (G, k) for μ = 1.5, R0 = 0.1, and W = 0. (a) R2 = 2 and J = 1. (b) R2 = 2 and
J = 100. (c) R2 = 1.3 and J = 1. For these parameter values, the system is always unstable, but increasing J
stabilizes short waves. Modes with m > 1 are also unstable with a smaller growth rate and at larger Gc. For all
of the panels the base-flow profiles are inviscidly unstable and β/α < 0 in Eq. (33).

for R0 = 0.45. In fact, we did not find a stable configuration when R0 = 0.9 and μ < 1, suggesting
the system is unstable when the ratio between the rod radius and the inner fluid thickness exceeds
a critical value. Lastly, although increasing J widens the band of stable G values for systems that
already exhibit regions of stability, when the system is unstable for all G, increasing J will dampen
short waves but cannot produce a stable system, as seen when comparing Figs. 5(c) and 5(d). As
G increases beyond the displayed range, the neutral curve seems to approach a constant value of k
which is determined by the specific parameter values. This agrees with the analysis of Sec. III B,
since the base-flow profiles for the parameter sets in Figs. 5(a)–5(d) are unstable in this inviscid
limit.

The results shown thus far are for μ = 0.5, and the general trends apply for other values with
μ < 1, but for different ranges of parameter values. As Ref. [17] noted, the μ threshold for a stable
configuration does indeed increase with the addition of the rod.

2. μ > 1: More viscous outer fluid

For a stationary rod when the outer fluid is more viscous, there exists a critical rod thickness,
Rc, where for R0 > Rc the system can be stabilized for a range of parameter values. It is shown in
Fig. 6 that the system is unstable to all base-flow strengths when R0 = 0.1. However, increasing the
rod thickness to R0 = 0.45 produces stable regions, as can be seen in Fig. 7, which has otherwise
the same parameter values as Fig. 6(a). Figure 7(a) reveals a stability window GL < G < GR that
separates a band of unstable axisymmetric modes for 0 < G < GL, labeled region 1, and a region
of unstable modes for G > GR, labeled region 2. Interestingly, for region 2, it is nonaxisymmetric
modes which are destabilized first as G increases beyond GR. The eigenfunctions for m = 0, 1 in
regions 1 and 2 behave similarly to those in Sec. IV A 1. Figure 7(d) gives an example of an m = 3
eigenfunction in region 2, whose behavior is still localized to the interface. Increasing J shifts region
2 to the right, thereby increasing GR, but simultaneously increasing GL. Figure 7(b) shows that
increasing J from J = 1 to J = 100 renders larger G unstable in region 1 and increases the growth
rate for each G. When J = 100, region 2 has been stabilized to at least G = 105, but another region
of instability appears for sufficiently large G, G > Gc, shown in Fig. 7(c). Here, m = 1 modes are
the only unstable modes, and the region exhibits eigenfunctions typical of the instabilities of region
3 in Sec. IV A 1. Note that the greatest activity is in fluid 1, the thinner, less viscous fluid, with
a small gradient in fluid 2 near the outer wall. This concurs with the findings of Sec. IV A 1 and
Ref. [18]. Thus, increasing J has widened the band of stable G, and when J = 100 there is stability
between regions 1 and 3. Similarly to Sec. IV A 1, for sufficiently low values of G, a smaller J is
preferable for a stable system, whereas high values of G require a larger J . Nevertheless, for G > Gc

region 3 remains as J increases, and the growth rate decreases ∝ 1/J .
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FIG. 7. Growth rates sr (G, k) for μ = 1.5, R0 = 0.45, R2 = 2, and W = 0. (a) J = 1 and a band of stable
G exists between regions 1 and 2. (b) Enlarged image of region 1 with m = 0 isolines for J = 1 and J = 100.
When J = 100 there is a band of stable G between region 1 and another region, which is similar to region
3 in Sec. IV A 1. (c) Enlarged view of region 3 for m = 1 and J = 100; the inset shows the eigenfunction
when s = 0.04−30.1i, k = 0.75, G = 60000. (d) The eigenfunction when J = 1, G = 500, k = 3.5, m = 3,
s = 0.04163−425.5i. The eigenfunctions for unstable m = 0, 1 modes in regions 1,2,3 all behave similarly to
those described in Sec. IV A 1.

Increasing R0 further, from R0 = 0.45 in Fig. 7 to R0 = 0.9 in Fig. 8, renders all modes unstable.
Increasing J pushes region 2 in Fig. 8(a) to the right. Once J = 100 in Fig. 8(d), we see an increase
in J from 1 to 100, which stabilizes m = 2 modes, shifts the unstable region for m = 1 to the right,
and results in a decreased growth rate of the unstable modes. Meanwhile, the unstable region for
m = 0 expands to larger values of G and exhibits an increased growth rate. When, however, the
radius of the outer wall is decreased to R2 = 1.3, stability can be achieved when R0 = 0.9 but not
when R0 = 0.45, suggesting that a decrease in R2 must be matched by an increase in R0. A larger
stable band of G exists between regions 1 and 2 than in Fig. 7, and we do not see region 3. When
J = 100, we have stability from G ≈ 1200 to at least G = 7×104. This suggests there may be a
critical Gc(R0, R2) for region 3 to exist when μ > 1 also. Indeed, when retaining the parameters
in Fig. 7(c) whereas increasing or decreasing R0 significantly, Gc increases, but Gc decreases while
increasing R2 and retaining R0 = 0.45. Additionally, increasing μ appears to increase Gc. Although
at large G the parameters R0 = 0.9 and R2 = 1.3 favor stability more than the values R0 = 0.45 and
R2 = 2 of Fig. 7, the converse is true at low G, due to an increase in GL. Thus, the optimal geometry
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FIG. 8. Growth rates sr (G, k) and eigenfunction for μ = 1.5, R0 = 0.9, and R2 = 2. (a) J = 1, (b) an en-
larged image of (a), and (c) an eigenfunction when G = 200, J = 1, k = 0.4, m = 1, and s = 0.005−4.029i.
(d) J = 100. Increasing J has stabilized region 2 and m = 2 modes. As G increases, k → 0 for unstable m, k
modes, since the profile is inviscidly stable.

for stability is determined by the required base-flow strength. Furthermore, as in Sec. IV A 1, once
R2 is sufficiently large, all G will be unstable.

The results shown here for μ = 1.5 hold also for other μ > 1 with different critical values.
Interestingly, taking μ = 10, for example, we find that the system is now stable for R0 = 0.9, R2 = 2,
whereas it was unstable for μ = 1.5. Regions 1 and 2 exist at low J , and increasing J from J = 1
to J = 100 widens the range of stable G, but increases region 1, following the trends previously
outlined.

B. Moving rod: W �= 0

Translating the rod along its axis with dimensionless velocity W adds another parameter to
an already complex system. A moving rod can be stabilizing or destabilizing depending on the
parameter values. In Sec. IV B 1 we discuss the effect of the moving rod when the inner fluid is
the more viscous, μ < 1, first considering regions 1, 2, and 3, and then configurations that were
unstable for all G when W = 0. Section IV B 2 contains a corresponding discussion when the outer
fluid is the more viscous, μ > 1. In general, moving the rod in the direction of the pressure-driven
flow (W > 0) is most effective at stabilizing configurations with μ < 1, whereas W < 0 is favorable
for μ > 1. However, counterexamples can be found as will be described below.
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FIG. 9. Growth rates sr (G, k) for moving rod, μ = 0.5, R0 = 0.1, R2 = 1.3, J = 1. (a) Differently shaped
m = 0 instability regions are found as W varies, as indicated by the k → 0 result of Eq. (33) for region 1. Re-
gion 2 exists for m � 0 but m = 0 has the greatest growth rate. (b) An enlarged image of region 1 in (a). (c) W =
100, (d) W = −200. Eigenfunctions for points in (d) are given in (e) W = −200, G = 100, m = 1, k = 3.5,

s = 1.0522 + 40.006i and (f) W = −200, G = 270, k = 0.1, m = 1, s = 0.001105−2.578i. Varying W shifts
the regions of instability.

1. μ < 1: More viscous inner fluid

We first discuss the effect of taking W �= 0 on the unstable regions 1, 2, and 3 that were
highlighted in Sec. IV A 1. Fixing the parameters as in Fig. 3, we see in Fig. 9 that when μ = 0.5 the
unstable regions 1 and 2 both exist for a range of rod speeds W . Figures 9(a) and 9(b) reveal that for
small |W |, W > 0 stabilizes region 1, and W < 0 expands it to the right. In contrast, region 2 extends
to the left when W > 0, and W < 0 has a stabilizing effect, pushing region 2 to the right. When |W |
is taken to be sufficiently large, there is instability for all G. For example, when W = 100 regions 1
and 2 have merged [Fig. 9(c)]. Increasing |W | when W < 0 causes region 1 to eventually extend past
region 2, despite region 2 continuing to move further to the right [see Fig. 9(c), W = −200], where
the regions remain distinct to at least W = −5000. An example of the m = 1 mode eigenfunction
for the left-hand unstable region in Fig. 9(d) is shown in Fig. 9(e), with all components showing a
localized behavior at the interface, suggesting an interfacial mode caused by shearing from the rod,
and a viscosity difference at the interface. The m = 0 modes have similar behavior. In Fig. 9(d) we
observe a band of G where only m = 1 modes are unstable. Figure 9(f) shows the eigenfunction at
the point (k, G) = (0.1, 270) inside this region. Here, the real parts of w and v are at least a factor
of 103 greater than the other parts of the eigenfunction.

When W = 0 and μ < 1 we found that increasing μ pushed region 2 to the right, so that when
μ = 0.9 only region 1 was present up to at least G = 104. Figure 10 shows that the effect of
switching the sign of W when μ = 0.9 is similar to when μ = 0.5. However, when W = 50 region
1 is completely stabilized, and total stabilization therefore occurs to at least G = 104. Although
W < 0 initially destabilizes more modes in Fig. 10(a) (e.g., W = −10), W = −50 shifts region
1 to the right, so that there is stability when G = 0, a phenomenon not observed when μ = 0.5.
An eigenfunction, shown in Fig. 10(d), located in the shifted unstable region when W = −50,
shows a heightened activity near the rod. At larger rod speeds more modes are rendered unstable,
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FIG. 10. Growth rates sr (G, k) for moving rod, μ = 0.9, R0 = 0.1, R2 = 1.3, J = 1. Region 2 is absent
up to at least G = 104 when W = 0. (a) m = 0 instability for region 1 as W varies. (b) W = 150, μ = 0.9,
and only m = 0 is unstable, but not for k = 0. (c) W = −150, μ = 0.9, and both m = 0, 1 are unstable. For
(a)–(c) the range of stable G extends up to at least G = 10 000. For W = −50 the unstable region can be shifted
to the right, for W = 10 the band of stable G is widened, and when W = 50 the system is stable for G � 10000.
Past a critical value of |W |, modes are rendered unstable. (d) Eigenfunction when μ = 0.9, W = −50, G = 50,
m = 0, k = 0.7, and s = 0.000859−1.066i.

as shown when W = 150 [Fig. 10(b)] and W = −150 [Fig. 10(c)], with m > 0 modes important for
W = −150. Further increase of |W | renders m � 0 modes unstable irrespective of the sign of W .

We now examine the effect of moving the rod on region 3 in Fig. 11. Referring to Fig. 3(b), and
keeping the same parameter values (here J = 100 and μ = 0.5), we find that region 3 is shifted to the
right when W > 0. If W is too large, then small G causes significant destabilization, as can be seen
in Fig. 11(a) when W = 1000. Increasing W continues to shift region 3 to the right, and destabilizes
low G. We observe that G � 2.5×104 is unstable when W = 5000, despite pushing region 3 to
G > 2.5×104. In contrast, translating the rod in the opposite direction to the pressure-driven flow
initially destabilizes m = 1 shear modes, so that region 3 expands to the left, as shown in Fig. 11(b)
when W = −1000. Yet, past a critical |W | the region is shifted to the right. For example, when
W = −5000 in Fig. 11(c), we have a stable band of G.

Interestingly, the complete stabilizing influence of the rod’s motion, seen in Fig. 10 when μ =
0.9, is not observed if we increase the rod radius to R0 = 0.45, or if we increase the outer-wall
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FIG. 11. Growth rates when μ = 0.5, R2 = 1.3, R0 = 0.1, J = 100 and in (a) W = 1000, (b) W = −1000,
and (c) W − 5000. Region 3 in Fig. 3(b) is shifted as W is varied.

radius to R2 = 2, nor for the smaller viscosity ratio μ = 0.5. In fact, when μ = 0.9, translating the
rod can produce stability when the pressure gradient is switched off, so that G = 0. In this case the
sign of W is irrelevant. Figure 12(a) shows a stable region exists when μ = 0.9 in this instance, and
we find the left and right unstable regions merge when μ decreases, so that μ = 0.5 is unstable for
all W . Eigenfunctions for the left-side and right-side unstable regions are shown in Figs. 12(b) and
12(c), respectively. In Fig. 12(b) the eigenfunction is largest at the interface, but there is heightened
activity near the rod in fluid 1, whereas in Fig. 12(c) the gradient is smooth in u and w is localized
near the interface of the two fluids, suggestive of an instability due to interfacial effects.

We find that allowing the rod to translate can have a stabilizing effect on systems that are unstable
for all G when W = 0. In the case when μ = 0.5, R0 = 0.9, R2 = 1.3, and J = 1, Figure 13
shows that stabilization is possible over a range of G values for certain choices of W �= 0 (the
system is unstable for all G when W = 0). Typical eigenfunctions for m = 0 and m = 1 at a point
in the leftmost unstable region of Fig. 13(a) are shown in Figs. 13(d) and 13(e) for m = 0 and
m = 1, respectively, where u and w (and v for m = 1) are of comparable size, suggesting traveling
waves. Upon comparing the eigenfunctions in Figs. 13(e) and 13(f), we see increasing the rod
speed and pressure gradient produces more activity in the real part of v in fluid 1. The inviscid
limit is achieved as either G → ∞ and W = O(1), W → ∞ and G = O(1), or both W, G → ∞.
Here, as G increases, and the parameters in Figs. 13(a)–13(c) are held fixed, and the flow profile
becomes inviscidly unstable, as to be expected since the system is inviscidly unstable when W = 0
[see Fig. 5(c)].

FIG. 12. (a) Growth rates sr (W, k) for m = 0 when μ = 0.9, R0 = 0.1, R2 = 1.3, J = 1. Decreasing
μ to μ = 0.5 the unstable left and right regions merge. Eigenfunctions in left- and right-hand regions
of (a) are given in (b) W = 10, k = 0.7, J = 1, m = 0, G = 0, s = 0.0007234−0.7607i and (c) W = 1000,

J = 1, k = 3.9, m = 0, G = 0s = 4.238−427.7i, respectively.
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FIG. 13. Growth rates sr (G, k) for moving rod when μ = 0.5, R0 = 0.9, R2 = 1.3, J = 1, G = 0. (a)
W = 50, (b) W = 150, and (c) W = −50. The eigenfunctions for the left-hand region of (a) are given in (d) for
W = 50, G = 500, k = 5.2, m = 0, s = 0.1726 − 261.9i, and (e) for W = 50, G = 500, k = 5.2, m = 1,
s = 0.1642−261.95i. The eigenfunction for the m = 1 unstable region on the right-hand region of (a) resem-
bles Fig. 9(f). (f) The eigenfunction for the right-hand region of (b) when m = 1, k = 6, G = 3500,W = 150,

s = 0.72−1152i. Stable regions exist for 0 < W < 150 at least. Large W < 0 is unstable for all G. The flow is
inviscidly unstable in each case.

Next we consider the effect of enlarging the annular gap by increasing the outer-wall radius from
R2 = 1.3 up to R2 = 2. The results are shown in Fig. 14. As for Fig. 13 the effect of increasing W is
to shift the stable G window to the right. Increasing J is found to narrow the stable G window. The
eigenfunctions for the leftmost and rightmost unstable regions of Figs. 14(a) and 14(b) resemble

FIG. 14. Growth rates sr (G, k) when μ = 0.5, R0 = 0.9, R2 = 2, J = 1. (a) W = 10 and (b) W = 150.
The stable G band shifts to the right as W is increased.
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FIG. 15. Growth rates plotted when μ = 1.5, R2 = 2.0, R0 = 0.45. (a) W = −10, J = 1, (b) W = −50,

J = 1, (c) W = 100, J = 1, (d) W = −5000, J = 100 (stability to at least G = 6.5×104), (e) W = 100,

J = 100, and (f) an enlarged image of (e) at small G. Varying J and W shifts the unstable regions that exist
when W = 0 in Fig. 7.

those shown in Figs. 13(d)–13(f) when the unstable modes are close to the stable region. If G
is increased so as to move away from the stable region, the eigenfunction becomes increasingly
localized at the interface, as expected.

Finally, in most cases considered when G �= 0, W < 0 renders modes unstable, and W > 0 is
favorable for stabilizing modes. However, clearly region 2 is a caveat to this, as well as the existing
examples where W < 0 would stabilize a given G, whereas W > 0 would not.

2. μ > 1: More viscous outer fluid

When μ > 1 and the outer fluid is the more viscous, switching the sign of the rod velocity
has the opposite effect on region 1 and region 2 modes to that seen for μ < 1. However, region
3 is shifted in the same manner for W �= 0 when μ < 1 and μ > 1. This is seen upon comparing
Fig. 7 when W = 0 and Fig. 15 where W �= 0. In Fig. 15(a) W = −10, and region 2 has grown to
the left. Although m = 0 in region 1 has been stabilized, m = 1 modes are destabilized at small G.
Increasing |W | to W = −50 in Fig. 15(b) causes regions 1 and 2 to merge, and all G are unstable.
Conversely, W > 0 shifts m = 0 region 1 modes to the right, but also destabilizes m > 0 modes for
small G [see Fig. 15(c)]. Region 2 modes are shifted to the right, allowing for a range of stable G that
were unstable when W = 0 (cf. Figs. 7 (W = 0) and 15(c) (W = 100). As W is increased further,
the stable region between regions 1 and 2 is continuously shifted to the right, and this is observed
for W > 0 to at least W = 1000. When J = 100 and W = 0 we have stability between region 1 and
region 3 in Fig. 7. When W < 0, small |W | pushes region 3 to the left, destabilizing modes. But, past
a critical value, region 3 is stabilized and when W = −5000 in Fig. 15(d), region 3 has disappeared
for G � 6.5×104. What’s more, m = 0 modes in region 1 are stabilized, but m > 0 are unstable
for sufficiently small G. Increasing W > 0 immediately shifts region 3 to the right. Yet, m � 0
modes are rendered unstable at lower G [see Figs. 15(e) and 15(f), where W = 100, J = 100].
Upon comparing Figs. 15(c) and 15(f) we see that increasing J has stabilized m > 1 modes, but the
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FIG. 16. Growth rates sr (G, k) for μ = 1.2, R0 = 0.9, R2 = 1.3. (a) m = 0, W = 0, J = 1, 100, and there
is stability up to at least G = 10 000); (b) J = 1, W = −1000; (c) J = 1, W = 10; (d) J = 1, W = 50; (e)
J = 100, W = 50; (f) J = 100, W = 150. In panels (c)–(f) there is stability up to at least G = 10 000. Varying
W > 0 and J shifts the regions of instability. Moreover, there is complete stabilization for the range G � 10 000
when W ranges from −10 down to at least −400 and J = 1, 100.

range of unstable G is increased slightly. Thus, large G favors large |W | for stability, but small G
will likely be unstable.

Complete stabilization of region 1 is possible when μ > 1 and W < 0, in contrast to μ < 1 which
required W > 0 (see Fig. 10). This is observed when R2 is reduced, and R0 is increased to give
R2 = 1.3, R0 = 0.9. Consequently, if region 2 does not exist for G < GR, we find complete stability
for 0 � G � GR for a critical range of W < 0 that depends on the other parameters. For a stationary
rod, increasing J or decreasing μ > 1 caused region 2 to shift to the right. We find 0 � G � 104 is
stable when J = 100, μ = 1.5 and W ranges from W � −50 to at least W = −150. Alternatively,
decreasing μ to μ = 1.2 pushed region 2 to G > 104 when J = 1. Region 1 for J = 1, 100 when
μ = 1.2 is shown in Fig. 16(a), and complete stabilization occurs for J � 1, 0 � G � 104, and
W � −10. However, W < 0 shifts region 2 to the left, and region 2 appears for G � 104 when
W = −500, J = 1. Maintaining J = 1 and increasing |W | results in region 2 expanding further to
the left, and when W = −1000, J = 1 in Fig. 16(b) it joins with the y axis and all G are unstable.
Nevertheless, increasing J stabilizes this region, so that when J = 100 there is complete stability
for 0 � G � 10 000 when −1000 � W � −10.

Moreover, for these same values of R2 = 1.3, R0 = 0.9, moving the rod in the same direction as
the driving pressure gradient translates region 1 to the right, away from G = 0, so that 0 � G � GL

is stable. This is markedly illustrated by the case when μ = 1.2, but also observed when μ = 1.5.
The remaining panels in Fig. 16 show the effect of translating the rod in the same direction as the
driving pressure gradient. At W = 10 [Fig. 16(c)] the instability remains axisymmetric but now
spans a window of G values away from zero. The window boundaries are accurately predicted
by the long-wave analysis in Sec. III C. When W = 50 the first nonaxisymmetric mode, m = 1, is
destabilized [Fig. 16(d)] and increasing W renders more modes unstable. Figures 16(e) and 16(f)
show the effect of increasing J and hence the capillary force at the interface. Comparing Figs. 16(d)
and 16(e), we see that increasing J has stabilized m = 1 modes, but in destaciziled (c → b) m = 0
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FIG. 17. Growth rates sr (W, k) when μ = 1.5, R0 = 0.9, R2 = 1.3, G = 0: (a) J = 1 and (b) J = 100.

modes. Increasing W from W = 50 in Fig. 16(e), to W = 150 in Fig. 16(f), destabilizes m = 1
modes, but also produces a stability window over 0 � G < 1000.

In the absence of a pressure gradient, Fig. 17 shows the effect of the rod translation when μ= 1.5.
In this case it is possible for the only unstable modes to be nonaxisymmetric. Increasing J from
J = 1 to J = 100 extends the stable W range, although at relatively low W , J = 1 is favorable.
This suggests that the leftmost region is a capillary instability, whereas the rightmost region is an
outcome of shearing from the translation of the rod that can be dampened by increasing J . We find
decreasing μ increases the band of stable W values too.

When W = 0, increasing the outer-wall radius to R2 = 2.0 resulted in an unstable configuration
(see Fig. 8), but a stable range of G can be achieved by translating the rod. We observe that increasing
|W | with W < 0 stabilizes m = 0 in the lower unstable region of Fig. 8, but m > 0 remain unstable
at small k. However, W > 0 can produce a band of stable G, GL � G � GR. The lower unstable
region is shifted to the right as W increases, but a new region of unstable m = 1 modes is produced
for G < GL. This is shown when W = 100 in Fig. 18, where in Fig. 18(a) J = 1 and in Fig. 18(b)
J = 100. Comparing Figs. 8(a) and 18(a), we observe region 2 is shifted to the right by the increase
in W , as expected, and m > 2 modes are destabilized in the right-hand lower unstable region. If W
is too large, a new region of unstable short waves emerges when J = 1 [see Fig. 18(c), W = 500].
An eigenfunction for the region [see Fig. 18(d)] shows a localized behavior near the interface,
suggesting that when the shear from the rod is strong enough, and the inner fluid sufficiently thin, a
short-wave interfacial instability occurs. Indeed, upon increasing capillary forcing at the interface,
this region is stabilized.

For a stationary rod, the case when μ = 1.5 and R0 = 0.1 (and various R2, J) was seen to be
unstable for all G in Fig. 6. A window of stability can be created by translating the rod such that
W < 0. This is shown in Fig. 19 for the pairs (R2, J ) = (1.3, 1) and (2, 1); compare Figs. 6(a)
and 6(c) for a stationary rod. The eigenfunctions for the left and right regions in Figs. 19(a) and
19(b), and the right unstable regions in Figs. 19(c) and 19(d), behave similarly to the left and right
eigenfunctions in Fig. 13. The corresponding eigenfunctions for the left-most unstable region in
Figs. 19(c) and 19(d), consisting of m = 1 modes, have notably more activity in fluid 1, and an
example is shown in Fig. 19(e). Those in Fig. 19(f), related to the upper island of shorter wave
instabilities in Fig. 19(d), are localized around the interface. As |W | increases, we observe the island
expanding to the left, and it eventually reaches G = 0, suggesting an interfacial instability caused by
the shearing of the rod coupled with the base flow. When R2 = 2.0, increasing |W | and J shifts the
stable region to different values of G, and a sufficiently large J stabilizes the upper unstable island.
For R2 = 1.3, as |W | increases, the stable window is shifted to the right until, at a critical W , the
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FIG. 18. Growth rates sr (G, k) for μ = 1.5, R0 = 0.9, and R2 = 2.0. (a) W = 100, J = 1 and (b)
W = 100, J = 100. (c) W = 500, J = 1, and a new region of instability exists, where (d) an eigenfunction
is shown for the region when m = 1, k = 30, G = 50,W = 500, s = 0.988−12310.4i. Increasing J dampens
the instability caused by the moving rod.

m = 0 neutral curves that border the stability window collide and the system becomes unstable for
all G. Moreover, we find increasing J is undesirable when R2 = 1.3, and is more unstable than J = 1.
Similarly, increasing R0 to R0 = 0.45 when R2 = 1.3 destabilized the system, and we observed no
stability for W = 0 or a translation of the rod. This suggests a suitable ratio of fluid thicknesses is
required for stability when μ > 1.

Finally, for μ > 1 the preferable sign of W for stability depends on the desired G, although in
general we found W < 0 tends to produce more of a stabilizing effect than taking W > 0. However,
exceptions to this include region 2, which is destabilized to lower G by W < 0, and the parameters
in Fig. 18 which required W > 0 for stable values of G.

V. CONCLUDING REMARKS

We have studied the stability of rod annular flow (RAF) of two concentrically arranged viscous
fluids moving through a cylindrical pipe with a solid rod mounted along its axis. The flow is
driven by an axial pressure gradient and/or the translation of the rod along its axis at constant
speed. Investigating the stability of this configuration is a complex problem which depends on
eight independent parameters (μ, G, J, R0, R2,W, k, m). It is therefore impractical to establish the
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FIG. 19. Growth rates sr (G, k) when μ = 1.5, R0 = 0.1, and J = 1. (a) W = −50, R2 = 1.3, (b)
W = −150, R2 = 1.3, and once W = −250 the unstable regions have merged. (c) W = −50, R2 = 2.0, (d)
W = −150, R2 = 2.0. Increasing |W | shifts the stable region to the right, and past a critical value the system
is unstable for all G. (d) Eigenfunctions corresponding to the m = 1 unstable regions, where (e) R2 = 2,
W = −150, G = 125, k = 0.3 and m = 1, s = 0.061 − 6.13i, and (f) R2 = 2, W = −150, G = 125, k = 3.7
and m = 1, s = 0.0036−79.70i, corresponding to the upper circle region. The left and right regions in (a) and
(b) behave similarly to the eigenfunctions in Fig. 13.

optimal arrangement for stability, whichever fluid is the more viscous. The stability behavior is quite
sensitive to the geometry, but some comments on the general trends can be made. The axisymmetric
capillary instability can in some circumstances be controlled by the flow but, equally, the system
may be unstable to all axisymmetric long waves for any base-flow strength. Furthermore, the flow
may be prone to instabilities of various types. In broad terms, the group we categorize as “region 2”
can have m � 0 and fairly large k. Stronger surface tension can control these at least partially.
The “region 3” modes do not feel surface tension greatly, as their eigenfunctions are localized
away from the interface itself, and they appear to be connected with the shear modes described
by Refs. [17,18,21]. The unstable k values appear to approach zero as G increases. In contrast, there
is also a class of flows for which the gradient change at r = 1 is contrary to the general profile
shape, which are inviscidly unstable. Such flows are often unstable for all values of G when the rod
is stationary.

For a stationary rod, if the inner fluid is more viscous, μ < 1, the flow is unstable when the rod
radius exceeds a threshold value or when the outer fluid is too thick. Conversely, if the outer fluid is
the more viscous, μ > 1, but not too thick, then the rod radius must be sufficiently large to achieve
stability. In both cases, if the parameter set is such that there exists a band of stable G values, between
“regions 1 and 2,” then this band is widened by increasing the capillary parameter J . Otherwise,
if such a G band does not exist, then raising J can stabilize short waves, but the system will
remain unstable. Moreover, for critical ranges of R2, R0, μ, a sufficiently strong pressure gradient
destabilizes nonaxisymmetric modes, while axisymmetric modes remain stable if J is sufficiently
large. Thus, for a strong pressure gradient, that is a large value of G, nonaxisymmetric modes are
important and should not be neglected. This is in line with what has been found in previous works
[1,17,19,21].
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The system is even more complex when the rod is moving. The stabilizing influence of W
depends greatly on the direction of the translation and μ, where W > 0 moves in the same direction
as the pressure-driven flow, and W < 0 moves counter to the driven flow. In general, longer-wave
instabilities seem to be dampened by W > 0 when μ < 1, but short waves, like region 2 modes, are
destabilized when W > 0. When μ > 1, the converse is true. However, region 3 with W �= 0 behaves
the same irrespective of μ > 1 or μ < 1, consolidating the theory that it is not an interfacial mode.
Physically, W moving in the direction of the pressure-driven flow effectively reduces the friction at
the inner boundary. However, W < 0 creates a larger friction at the inner boundary for small |W |.
When W < 0 is large enough, it counteracts the pressure-driven flow, and a larger G is required for
region 3 modes. Generally, a strong enough J will still dampen short waves, but m = 0 long waves
seem more susceptible to capillary instabilities when the rod is moving than when it is stationary.

A stable configuration can be identified upon moving the rod, for rod radii that were unstable
when the rod is stationary. For μ < 1, this occurs when the rod radius is large and the outer fluid
thicker than the inner fluid, where W > 0 produces new stability regions in parameter space. When
the rod radius is small, and the inner fluid is thicker than the outer fluid, and W > 0 can produce
stability for a much larger range of G than when W = 0, including G = 0. However, this seems to
happen when the viscosity ratio μ is close to unity. Similarly, when μ > 1, a thick rod is no longer
required once W �= 0. If the inner fluid is comparably thicker than the outer fluid, W < 0 is required,
whereas W > 0 is required if the outer fluid is a lot thicker. Moreover, if a range of stable G existed
when W = 0, and the outer fluid is thicker with μ > 1, W < 0 can produce stability for a larger
range of G than when the rod was stationary. If G = 0 then complete stabilization can occur, with a
larger range of stable W when μ is just above unity. Taking J larger seems to have a destabilizing
effect in most cases for G �= 0, suggesting the system is more susceptible to an inertial instability
when the rod is moving, than when it is stationary.

There appears to be a small range of rod velocities that will produce stabilizing effects for the
parameter values considered, in contrast to a one-fluid Couette-Poiseuille flow, where a sufficiently
large rod velocity W > 0 can always stabilize the system [1,20]. We have found that for both a
stationary and a moving rod, the relative sizes of the rod radius and the fluid thicknesses are of great
importance for stability, and this is in keeping with what has been seen in the literature on RAF and
CAF.

In conclusion, these findings hold significant importance for practical applications and future
experimental work. In particular, they demonstrate that with the introduction of a central rod, a
two-fluid CAF can be sustained, even when the outer fluid is more viscous than the inner fluid.
In contrast, without the rod, the fluid with higher viscosity will inevitably occupy the center [13].
Nevertheless, the limitations of a linear analysis should be remembered. Even the stable states may
be prone to subcritical bifurcations at higher Reynolds numbers. Future work could involve a weakly
nonlinear analysis of the problem to provide further insight into the instability when either the inner
fluid or the outer fluid is thin. Allowing the rod to rotate would also be of interest, but likely would
be destabilizing. Driving an electric current along the rod to create an azimuthal magnetic field
leads to further possibilities of interest in magnetohydrodynamics and ferrohydrodynamics. In the
latter case, the work of Ref. [26] suggests that by allowing one of the two fluids to be a ferrofluid,
which interacts with the magnetic field, the stability of the system can be controlled further. These
extensions are the subject of ongoing investigations.
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