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Abstract

In this study, a robust adaptive control strategy using a L1 theory is applied
to fulfil the motion control of a four-wheel electric vehicle. The dynamic model
includes longitudinal, and lateral velocity and yaw rate. To develop the proposed
control strategy, the vehicle dynamics are decomposed into linear and non-linear
components. The linear part is controlled by fine-tuned state feedback, with its
steady-state error addressed by a feedforward control block. The nonlinear part
is addressed based on nonlinear adaptive laws and L1 theory to mitigate adverse
effects on the linear dynamics, unwanted parameter changes, and external dis-
turbances. An essential component of the proposed approach is the incorporation
of a reference model that dictates the desired system responses. A projection
algorithm is used to instantly estimate the nonlinear part of the vehicle dynam-
ics. The performance of the closed-loop system is thoroughly evaluated over a
range of vehicle manoeuvres, assessing factors such as steady-state accuracy,
transient response and power consumption. In addition, the effectiveness of the
proposed method is compared with conventional model reference adaptive con-
trol and a recent robust control approach, particularly in terms of robustness to
uncertainties inherent in the non-linear aspects of vehicle dynamics.

Keywords: Electric vehicle, L1 adaptive control, projection algorithm, model
uncertainty, motion tracking.

1 Introduction

Electric Vehicles (EVs) are becoming increasingly important for sustainable trans-
portation. Compared to conventional internal combustion engine vehicles, EVs have
numerous benefits such as reduced greenhouse gas emissions, improved energy effi-
ciency, and lower noise pollution [1]. With many countries aiming to phase out
fossil-fuel vehicles, EVs are expected to become a major part of the global fleet [2].
However, there are still challenges around battery costs, charging infrastructure and
driving range that need to be addressed.
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Advanced modelling and control of EVs is crucial to improve their performance and
make them more competitive. Sophisticated models account for complex EV power-
train components such as motors, batteries, and power electronics [3]. Control systems
leverage these models to optimize efficiency, increase driving range [4], and enable
different energy management systems [5]. Developing robust integrated models and
implementing them with advanced adaptive control strategies is an important area of
ongoing research for EV engineers and scientists.

Various advanced control strategies have been applied to EVs to optimize their
performance. Sliding Mode Control (SMC) provides robustness against disturbances
and parameter variations for EV traction systems. It includes a nonlinear control term
to maintain internal stability and a switching term to ensure robustness. An Adaptive
backstepping SMC is introduced in [6] to improve vehicle manoeuvrability and stability
through Torque Vectoring Control (TVC). Backstepping control is a recursive control
system based on Lyapunov theory. The TVC adjusts the torque applied to individual
wheels to optimize vehicle dynamics. Backstepping technique is also used in [7] to
manage both the overall speed of the car and the speed of each wheel. It uses a detailed
model that considers factors like wind resistance, tire rolling, and grip on the road.

A variable structure control for a hybrid EV incorporating a fuel cell, superca-
pacitor, and battery is introduced in [8]. An advanced control system is proposed
in [9] for autonomous EVs that employs second-order SMC and nonlinear disturbance
observer to enhance path-following precision and stability. A disturbance observer is
an inner-loop feedback function that aims to reject the external disturbances. In [10],
A combination of fuzzy logic and super twisting SMC are used to optimize energy
storage. Super-twisting SMC overcomes the variations caused by the switching term.
An adaptive fuzzy SMC system for the regenerative braking of EVs seeks to optimize
energy recovery and braking effectiveness [11]. This method dynamically adjusts its
parameters based on real-time conditions. A SMC approach is applied to the anti-lock
braking system of EVs [12] to optimize the braking system’s response.

A disturbance observer-based SMC to optimize energy interaction between multi-
ple vehicles in EV networks is developed in [13]. In [14], a SMC dynamically adjusts
the distribution of torque and steering to optimize stability and manoeuvrability.
An integration of Active Front Steering (AFS), SMC, and an extreme learning algo-
rithm is proposed in [15] for improved stability and adaptability of EVs. AFS adjusts
the steering wheel angle by superimposing an additional angle. In [16], an adaptive
dynamic SMC system with an extended state observer is employed for throttle control
in EVs. This system regulates the power sent from the battery to the electric motor.
A modified adaptive super twisting sliding mode observer with moving-average filter
phase-locked loop enhanced control of EVs [17]. This method synchronizes the phase
and frequency of the output signal with a reference signal.

Although SMC-based methods are easy to implement and provide closed-loop
robustness, they typically face several drawbacks. These include rapid switching in
their control signals, sensitivity to noise, high control effort, and increased energy
consumption. Adaptive control in EVs involves continuously monitoring various
parameters such as battery charge level, motor temperature, and driving conditions,
and adjusting the motor’s control signals accordingly. In [18], a least mean square
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adaptive control is proposed. It makes the engines run smoother and more evenly by
keeping the motor’s movements small and controlled, which helps prevent overheating
and saves battery power. In [19], a two-layer fuzzy logic control system is proposed to
enhance the sideways stability of hybrid electric vehicles. It determines the necessary
yaw angle for stability and calculates the required braking force for the rear wheels to
achieve that angle.

One of the common applications of adaptive control in EVs is the Adaptive Cruise
Control (ACC). ACC-equipped vehicles use onboard sensors to understand the posi-
tion and speed of surrounding vehicles and adjust the vehicle’s driving patterns. This
improves passenger comfort and battery energy utilization while ensuring safety [20].
The method in [21] improves cooperative ACC strategies for EVs by employing a
hybrid optimization approach. The method considers the dynamic nature of traf-
fic conditions and the need for energy-efficient driving. In [22], the control system
optimized energy consumption by dynamically adjusting the vehicle’s speed. This
approach allows the ACC to predict and adapt to the vehicle’s behaviour in real time.

ACCs use radar, cameras, or LiDAR to detect the distance and speed of leading
vehicles. However, these sensors can face limitations in adverse weather conditions,
leading to potential inaccuracies in the ACC system’s decisions. ACCs often increase
energy consumption due to more frequent acceleration and deceleration compared
to human drivers, which can reduce the vehicle’s range. Model Reference Adaptive
Control (MRAC) is a control strategy designed to make a system follow the behaviour
of a reference model. In [23], an adjustable reference model makes mode transitions
smoother. The approach creates speed profiles, adjusts model settings with an online
estimator, and uses MRAC to follow reference dynamics. In [24], the MRAC adjusts
control parameters based on real-time inputs, to ensure smooth operation of the EV.

Most of existing adaptive control strategies such as MRAC assumes perfect agree-
ment between the process model and the reference model, but real-world systems often
have uncertainties such as parameter variations and non-linearity that can affect the
performance of the adaptive control. In addition, designing MRAC systems involves
the complex selection and tuning of adaptation laws, controller gains, and reference
models, a process that tends to be complex and time-consuming. Achieving a deli-
cate balance between rapid adaptation to changing conditions and stability against
divergence is an additional challenge.

L1 Adaptive Control (L1AC) offers a promising alternative for addressing sev-
eral challenges associated with traditional control approaches. It mitigates issues such
as chattering, sensitivity to noise, and high control effort in Sliding Mode Controls
(SMCs); sensor limitations and increased energy consumption in Adaptive Cruise Con-
trol (ACC) systems; and the need for a perfect match between process and reference
models, along with sensitivity to model uncertainty in Model Reference Adaptive
Control (MRAC).

LAC is a theory for the design of robust adaptive control architectures using fast
adaptation schemes [25]. The key feature of L1 adaptive control is the decoupling of
the adaptation loop from the control loop, which allows arbitrarily fast adaptation
without sacrificing robustness. This separation between adaptation and robustness
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is achieved by explicitly building the robustness specification into the problem for-
mulation. Fast adaptation allows compensation for the unwanted effects of rapidly
changing uncertainties and significant changes in system dynamics. On the other hand,
the bandwidth-limited filter keeps the robustness bounds away from zero in the pres-
ence of fast adaptation. The bandwidth and structure of this filter define the trade-off
between performance and robustness of the closed-loop adaptive system [26].

In [27], LAC is introduced to analyse the stability properties of its control signal,
focusing on asymptotic stability. The authors then addressed the guaranteed tran-
sient performance of the controller, assessing its ability to provide stable and reliable
responses during dynamic transitions [28]. In [29], an LAC is designed for multi-
rotor vehicle attitude control and provides an adaptive and robust solution for precise
stabilisation. A safe feedback motion planning is proposed in [30], which combines
contraction theory and LAC for safe motion planning in dynamic systems. A compar-
ative study in [31] evaluates the performance of L1 adaptive controllers in different
scenarios.

A robust L1 fuzzy adaptive controller is introduced in [32] to improve the effi-
ciency and stability of grid-connected photovoltaic systems. In [33], designing and
modelling a quadcopter control system have been performed using LAC. In [34],
an LAC is investigated in safety-critical systems, emphasising its robustness and
adaptability for improved safety. In [35], the LAC addresses control challenges in
flexible spacecraft, improving stability in the presence of disturbances. In [36], LAC
for indoor autonomous vehicles is introduced aiming at flight testing. An innovative
LAC methodology for aerial refuelling is proposed in [37]. It emphasizes guaranteed
transient performance in the dynamic and precise manoeuvres involved.

In this paper, the proposed robust control strategy includes a L1 adaptive control
to motion control of a simplified model of the EV. The model is first decomposed
into two linear and nonlinear parts where the linear part is compensated using state
feedback with a feedforward term. An adaptive methodology based on L1 theory and
low-pass filters are used to compensate the nonlinear part of the model. A projection
algorithm is used to estimate the nonlinear parts of the EV dynamics. The proposed
control algorithm features robustness again the model uncertainties, internally stable
due to an auto tuned state feedback, ability to adjust the transient response and
remove the effects of uncertainties.

This paper is organised as follows: Section II introduces the proposed control
methodology for motion control of the electric vehicle. Section III describes the control-
oriented dynamics of EV. Section IV includes the mathematical formulation of L1
adaptive control. Section V provides the simulation results. Conclusion is drawn in
Section VI.

2 Problem Statement

The central controller in EVs is responsible for delivering high performance by striking
a balance between desired motion and acceleration capabilities. The control system
for EVs must be robust and flexible to improve the static and dynamic performance
of these systems. Adaptability in this context means the ability of the system to
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adapt to vehicle operating parameters and changing road conditions. Fig. 1 outlines
the proposed robust adaptive control strategy aimed at achieving the desired motion
tracking in both transient and steady state conditions.

The key concept is to decompose the non-linear model of the vehicle into linear and
non-linear components. To improve control effectiveness, a model reference dynamic
is formulated to establish the desired performance pattern for the control system. The
design incorporates a state feedback mechanism, complemented by a feedforward term,
which is precisely designed to stabilise the internal linear dynamics and ensure minimal
steady-state error. This approach is critical to maintaining the vehicle’s performance
in different operating states.

Incorporating L1 theory and Lyapunov stability, a nonlinear projection adaptation
law is developed which allows the estimation of nonlinear parts of the EV even in the
presence of uncertainties, thus contributing to the adaptability of the control system.
The use of strictly monotonic filters improves the robustness of the control system to
model uncertainties. According to Fig. 1, the control signal u is utilized in the state
feedback mechanism along with a feedforward term to stabilize the internal linear
dynamics of the EV. The desired longitude and lateral velocities alongside the desired
yaw rate the target motion profile of the EV (xr). A model reference dynamic is
formulated to define the desired performance pattern xm for the control system. The
state feedback mechanism is employed to both the EV and model reference dynamics.
Using the error between the model reference and EV dynamics x̃ = xm−x, the output
of the projection adaptation law, denoted as ΘT x̃, is responsible for instantaneously
estimating the nonlinearities within the EV dynamics.

Fig. 1: Block diagram of the proposed robust adaptive control for the EV based on
the model reference dynamics, and a projection-based adaptation law.
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3 Control-Oriented EV Dynamics

In the context of planar motion, ground vehicles can be easily represented as rigid
bodies with three degrees of freedom. These degrees of freedom are defined by three
dynamic states: longitudinal velocity, lateral velocity and yaw rate. As observed in
Fig. 2, the simplified motion equations for an EV in the plane x-y can be expressed
as follows [38]:

mv (v̇x − rvy) = Fx − Cav
2
x − Crmvg

mv (v̇y + rvx) = Fy

Iz ṙ = Mz

(1)

where mv represents the mass of the EV, and vx, vy, r, and Iz respectively denote
the longitudinal velocity, lateral velocity, yaw rate, and the moment of inertia of the
vehicle about the z-axis. The coordinates x, y, and z align with the vehicle’s center
of gravity. Generalized external forces acting along the x and y axes are denoted
by Fx and Fy respectively. The generalized external torque about the z-axis is Mz.
Additionally, Cd and Cr represent the coefficients of aerodynamic resistance and rolling
resistance, while Lf and Lr signify the distances between the front and rear wheel
axes, respectively.

Fig. 2: Planar motion coordinates for Electric Ground Vehicles (EGV) [38].
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Given that each of the four vehicle motors can be started or stopped independently,
generalized forces or torques can be expressed as follows [38]:

FX = Fxfl cos δf − Fyfl sin δf + Fxfr cos δf − Fyfr sin δf + Fxrl + Fxrr,

FY = Fxfl sin δf + Fyfl cos δf + Fxfr sin δf + Fyfr cos δf + Fyrl + Fyrr,

Mz = ls (−Fxfl cos δf + Fyfl sin δf + Fxfr cos δf − Fyfr sin δf + Fxrr − Fxrl)

+ lr (−Fyrl − Fyrr) + lf (Fxfl sin δf + Fyfl cos δf + Fxfr sin δf + Fyfr cos δf )

(2)

In the above equations, the steering angles of the left and right wheels at the front
of the vehicle are considered nearly identical. They correspond to the steering angle of
the vehicle δ scaled by the calibrated scaling rate β and can be expressed as δf = αδ.
The longitudinal force for each tire of the vehicle, independent of the tire model, can
be expressed as follows using the rotational dynamics of each motor located in the
wheels and the wheel pairs [38]:

Jω̇i = Ti − FxiReff (3)

where J represents rotational inertia, and R denotes the effective radius of each
wheel, assumed to be uniform. The index i identifies different motors located in the
vehicle’s wheels. The output torque of each motor Ti is positive during acceleration
and negative during braking. Since the electrical response of a motor is much faster
than the mechanical response, the dynamics between the control voltage signal and
the motor output torque can be neglected. By defining state variables as x1 = vx,
x2 = vy, and x3 = r, the nonlinear dynamic model of the EV is given below:

ẋ1 = x2x3 −
Ca

mv
x2
1 − Crg +

1

mv

(
− J

Reff
∆1xω̇ − 2Ca sin δf

(
δf − x2 + lfx3

x1

))
+ v1

ẋ2 = −x1x3 +
1

mv

(
− J

Reff
∆2xω̇ + 2Ca cos δf

(
δf − x2 + lfx3

x1

)
+ 2Ca

lrx3 − x2

x1

)
+ v2

ẋ3 =
1

Iz

(
− J

Reff
∆3xω̇ + 2Ca cos δf

(
δf − x2 + lfx3

x1

)
− 2Ca

lrx3 − x2

x1

)
+ v3

(4)
where

ω̇ =
[
ω̇fl ω̇fr ω̇rl ω̇rr

]T
∆1x =

[
cos δf cos δf 1 1

]
, ∆2x =

[
sin δf sin δf 0 0

]
∆3x =

[
lf sin δf − ls cos δf ls sin δf + lf cos δf ls ls

] (5)

Additionally, the virtual control vd is defined as

vd =
[
v1 v2 v3

]T
= Bu,

B =
[
∆T

1x/mvReff ∆T
2x/mvReff ∆T

3x/IzReff

]T
u =

[
u1 u2 u3 u4

]T
=
[
Tfl Tfr Trl Trr

]T (6)
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It is assumed that the steering angles of the front and rear wheels are approximately
equal and proportional to the vehicle’s steering angle. Furthermore, the longitudinal
force for each tire, independent of the tire model, can be expressed based on the
rotational dynamics of the motors located at the wheel pairs as follows [38]:

Jω̇i = Ti − FxiReff, i = fl, fr, rl, rr (7)
The lateral tire frictional force is described through the tire model with the slip

angles of the front and rear tires αf and αr respectively, and can be expressed as
follows:

Fyf = Cααf = Cα

(
δf − vy + lfr

vx

)
,

Fyr = Cααr = Cα

(
lrr − vy

vx

) (8)

Based on the vehicle kinematic model in [39], the linear speed of the wheels of the
vehicle is equal to

vfl = (vx + rls) cos δfl + (vy + rlf ) sin δfl,

vfr = (vx − rls) cos δfr + (vy + rlf ) sin δfr,

vrl = vx + rls,

vrr = vx − rls.

(9)

Then, the angular speed of each wheel during the vehicle manoeuvre can be
expressed as follows [39]:

wfl =
vfl
Reff

, wfr =
vfr
Reff

, wrl =
vrl
Reff

, wrr =
vrr
Reff

. (10)

The parameters of the dynamic model for the EVare presented in Table 1. The
primary objective of the adaptive controller is initially to adapt the virtual controls
vd in equation (4) to guide the state variables x1, x2, andx3 toward their desired
values. Subsequently, these adapted controls are transformed into the actual control
u in equation (6).

Table 1: The main parameters of the electric ground vehicle [38].

Parameter Description Value

mv Vehicle mass 800 Kg
Iz Moment of inertia of the vehicle around the z axis. 729
Ca Aerodynamic resistance coefficient 0.37
Cr Rolling resistance coefficient 0.004
lf Longitudinal distance between the center and the rear wheels 0.85 m
lr Longitudinal distance between the center and the front wheels 1.04 m
ls Half of the vehicle track 0.7 m
δf Wheel steering angle π/36 rad
J Rotational inertia of the wheel 1.4Kg ·m2

g Gravity acceleration 9.8m/s2

Reff Effective radius of the wheel 0.312 m
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4 Motion Control of EV using L1 Adaptive Control

The adaptive control strategy in this paper consists of a model reference model, a state
feedback, feedforward gain and an adaptive control. The model reference is used to
provide a desired dynamics pattern corresponding to desired motion profiles. In this
section, first we extend a methodology based on the model reference adaptive control
where the basic idea is to decompose the primary system dynamics into linear and
nonlinear parts.

4.1 Model Reference Adaptive Control

Consider the nonlinear dynamics of the system presented as follows:

ẋ(t) = Ax(t) +Bu(t) + f(t), x(0) = x0,

y(t) = CTx(t).
(11)

where x ∈ Rn represents the system states, A ∈ Rn×n is the state matrix, B ∈
Rn×m and C ∈ Rr×n are input and output matrices, respectively. The nonlinear term
f ∈ Rn is an unknown state-dependent term that can be described as f = BθTx,
where θ ∈ Rn×m is the matrix of unknown parameters. u ∈ Rm×1 is the control signal
vector, and y ∈ Rr×1 is the output vector. The parameters n, m, and r denote the
number of variable states, number of inputs, and number of outputs, respectively.

For a bounded continuous reference signal yd ∈ Rr×1, the objective is to find an
adaptive feedback control signal u(t) such that the output signal y(t) closely tracks the
reference signal yd, while preserving boundedness and desired tracking characteristics.
The desired control signal in the structure of the model reference control is directly
formulated as follows:

umrac(t) = −Kmx+Kgr(t)− θ̂Tx(t) (12)

where θ̂ is the estimation of θ. Considering Am as the desired closed-loop matrix
(stable matrix with desired eigenvalues), Equation (11) is rewritten as follows:

ẋ(t) = Amx(t) +B
(
u(t) + θTx(t)

)
, x(0) = x0,

y(t) = CTx(t),
(13)

where Am = A−BKm. Corresponding to (12), the adaptive control law is given
below:

uad(t) = Kgr(t)− θ̂Tx(t) (14)

The feedforward gain can be obtained as

Kg =
(
CTA−1

m B
)−1

(15)

The main goal of the control signal in (14) is to completely eliminate uncertainties
in (13) and guide the system towards the desired reference system, formulated as
follows:
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ẋm(t) = Amx(t) +BKgr(t), xm(0) = x0,

ym(t) = CTxm(t)
(16)

By substituting (14) into (16), the closed-loop dynamics will be equal to:

ẋ(t) =
(
Am −Bθ̂T (t)

)
x(t) +BKgr(t), x(0) = x0,

y(t) = CTx(t),
(17)

where θ̃(t) ≜ θ̂(t) − θ represents the vector of parameter estimation error. By
defining the tracking error signal as e(t) ≜ xm(t)− x(t), the tracking error dynamics
will be:

ė(t) = Ame(t) +Bθ̃T (t)x(t), e(0) = 0, (18)

The parameter adaptation law in direct model reference adaptive control is given
by:

˙̂
θ(t) = −ηx(t)eT (t)PB, θ̂(0) = θ̂0, (19)

where η is the adaptation gain. The positive definite matrix P = PT > 0 is
obtained by solving the following matrix algebraic equation:

AT
mP+PAm = −Q (20)

where Q = QT > 0 is an arbitrary positive definite matrix. The adaptation law
presented in equation (19) is determined based on the stability of the closed-loop
system using the Lyapunov method. In other words, consider the Lyapunov function
as follows:

=

v
(
e(t), θ̂(t)

)
= eT (t)Pe(t) +

1

η

m∑
i=1

θ̃T
i (t)θ̃i(t) (21)

where θ̃ = [θ̃1, θ̃2, ..., θ̃m]. The next step is to examine the time derivative of the
Lyapunov function given by (21):

dv
(
e(t), θ̂(t)

)
dt

= ėT (t)Pe(t) + eT (t)Pė(t) +
2

η

m∑
i=1

θ̃T
i (t)

˙̃
θi(t) (22)

By substituting the relation (18) into equation (22), we have:

v̇ = eT (t)AT
mPe(t) + xT (t)θ̃(t)BTPe(t)

+ eT (t)PAme(t) + eT (t)PBθ̃T (t)x(t) +
2

η

m∑
i=1

θ̃T
i (t)

˙̃
θi(t) (23)

Considering the following relations:

10



{
xT (t)θ̃(t)BTPe(t) ∈ R → (xT (t)θ̃(t)BTPe(t)) = (xT (t)θ̃(t)BTPe(t))T

eT (t)PBθ̃T (t)x(t) = (eT (t)PBθ̃T (t)x(t))T

The time derivative of the Lyapunov function in (23) is

dv
(
e(t), θ̂(t)

)
dt

= eT (t)(AT
mP+PAm)e(t) +

(
2

m∑
i=1

1

η
θ̃T
i (t)

˙̃
θi(t) + aiθ̃

T
i x

)
(24)

where a = eTPB = [a1, a2, ..., am] By substituting (20) into (24), the Lyapunov
function derivative will be:

dv
(
e(t), θ̂(t)

)
dt

= −eT (t)Qe(t) + 2
˙̃
θ
T

(t)

(
2

m∑
i=1

1

η
θ̃T
i (t)

˙̃
θi(t) + aiθ̃

T
i x

)
(25)

To ensure that the time derivative of the Lyapunov function to remain consistently
negative, the term inside the parentheses in (25) must be equal to zero. In other words:

m∑
i=1

1

η
θ̃T
i (t)

˙̃
θi(t) + aiθ̃

T
i x = 0 →

dv
(
e(t), θ̂(t)

)
dt

= −eT (t)Qe(t) ≤ 0 (26)

Therefore, if the following relation holds, the time derivative of the Lyapunov
function will always be negative, and the closed-loop system will be asymptotically
stable:

m∑
i=1

1

η
θ̃T
i (t)

˙̃
θi(t) + aiθ̃

T
i x = 0 → ˙̃θi = −ηaix(t) → ˙̃θ = −ηxeTPB

→ (
˙̂
θ − θ̇) = −ηxeTPB → ˙̂

θ = −ηxeTPB

(27)

Given the above relations, under the adaptation law in (27), the error signals e(t),
θ̂(t) will remain bounded. Since x(t) = xm(t)− e(t) and xm(t) represent stable model
states, the boundedness of e(t) corresponds to the boundedness of the main system
states. To investigate whether the tracking error ultimately converges to zero, we take
the second-time derivative of the Lyapunov function.

v̇(t) = −eT (t)Qe(t) (28)

Given that ė(t) is a bounded signal, the second-time derivative of the Lyapunov
function is also bounded, and its first derivative is continuously uniform.

11



4.2 L1 Adaptive Control

Considering the system dynamics described in (11), the L1 control law is given below:

u(t) = um(t) + uad(t), um(t) = −KmxT (t) (29)

By substituting (29) into (13), the closed-loop system dynamics transforms as
follows:

ẋ(t) = Amx(t) +B(θTx(t) + uad(t)), x(0) = x0

y(t) = Cx(t)
(30)

where θ is the unknown parameter matrix. Consider the following model reference
dynamics:

ẋm(t) = Amxm(t) +BKgr(t), xm(0) = x0

ym(t) = Cxm(t)
(31)

To estimate the nonlinear parts of EV dynamics, the projection adaptation law is
given by:

˙̂
θ(t) = ηProj(θ̂(t),−x(t)eT (t)PB), θ̂(0) = θ̂0 (32)

where ˙̃x(t) = xm(t)−x(t) is the prediction error, and the adaptation gain is η. The
matrix P = PT > 0 is determined by solving the algebraic equation AT

mP+PAm =
−Q, and for any positive definite symmetric matrix Q. Consider a closed convex set
with a smooth boundary as follows:

Ωc = {θ ∈ Rn|f(θ) ≤ c}, 0 ≤ c ≤ 1, (33)

where f(θ) the convex uniformly continuous function is defined as follows:

f(θ) =
(ϵθ + 1)θTθ − θ2max

ϵθθ2max

(34)

where θmax is the upper bound of θ, and ϵθ is a positive-valued threshold. The
projection operator is defined as follows:

Proj(θ,y) =

{
y if f(θ) < 0 or (f(θ) ≥ 0 and ∇fTy ≤ 0)

y − ∇f
∥∇f∥2∇fTy if f(θ) ≥ 0 and ∇fTy > 0,

(35)

According to (35), the projection operator will not change the value of y as long
as θ belongs to the set Ω0 = {θ ∈ Rn|f(θ) ≤ 0}. However, if f(θ) is positive,
the change in θ depends on the sign of ∇fTy. If ∇fTy is positive, the projection
operator shrinks the vector y proportional to a vector normal to the boundary of the
set Ωf(y) = {θ ∈ Rn|f(θ) = f(y)}. This process transforms the uniform vector y into
a tangent vector in the vector field Ω1 = {θ ∈ Rn|f(θ) ≤ 1}. The adaptive control
law uad(t) in Laplace transform form is defined as follows:

Uad(s) = −C(s)(µ(s)−KgR(s)) (36)
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where R(s) and µ(s) represent the Laplace transforms of r(t) and θ̂Tx(t), respec-
tively. The feedforward gain is given by Kg = −(CTA−1

m B)−1, and C(s) is a strictly
proper and stable filter with a DC gain of zero. This filter is to enhance the closed-loop
robustness.

4.3 L1 Adaptive Control Transient and Steady State Analysis

Consider the non-adaptive system for the closed-loop reference system below:

ẋref (t) = Axref (t) +B(θTxref (t) + uref (t)), xref (0) = x0,

uref (s) = −C(s)(θTxref (s)−KgR(s))−KT
mxref (s),

yref (s) = Cxref (s).

(37)

The L1 adaptive controller structure in (37) aims to compensate for the uncertain-
ties of the system within the bandwidth of C(s).

Lemma 1: If ∥G(s)∥L1 < 1/L is true, then the system presented in (37) is stable
and has bounded-input, bounded-output properties with respect to r(t) and x0 [25].

Now consider the following dynamics:

˙̃x(t) = Amx̃(t) +B( ˜θ(t)x(t)), x̃(0) = 0 (38)

where θ̇(t) = θ(t)− θ.
Lemma 2: The prediction error in (38) is uniformly bounded. In other words,

|x|∞ ≤

√
θmax

λmin(P )
η, θmax = 4max |θ|2 (39)

where λmin(P ) is the smallest eigenvalue of the matrix P .
Proof : Consider the following Lyapunov function:

V (x̂(t),θ) = x̂T (t)P x̂(t) +
1

η
θT (θ(t)− θ) (40)

Using the projection adaptation law in (32), the time derivative of (40) will be
equal to:

V̇ (t) = x̂T (t)Px(t) + x̂T (t)Px(t)+

1

η

(
θT (AmT + PAm)x(t) + 2x̂T (t)PBθT (t)x(t) + 2θT (θ(t)− θ)

)
= −x̂T (t)Qx(t) + 2x̂T (t)PBθT (t)x(t)

+2θT (θ(t)− θ)Proj(θ(t)− x(t)x̂T (t)PB)

≤ −x̂T (t)Qx(t) + 2θT (t)
(
x(t)x̂T (t)PB + Proj(θ(t)− x(t)x̂T (t)PB)

)
≤ −x̂T (t)Qx(t)

(41)

Assuming x̂(0) = 0, we can write
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λmin(P )|x̂(t)|2 ≤ V (t) ≤ V (0) =
θT (0)θ(0)

η
(42)

Therefore, the projection law ensures that θ remains inside a closed convex set,
which means that

θT (0)θ(0)

η
≤ 4max |θ|2

η
(43)

The above relation implies that the tracking error is bounded. In other words,

|x(t)| ≤ θmax

λmin(P )η
(44)

Using the control law in (29) and condition presented in Lemma 1, the tracking
error asymptotically converge to zero, i.e. limt→∞ x(t) = 0 [25].

The robustness of the proposed algorithm relies on the adaptation laws, which are
tasked with estimating the nonlinearities in EV dynamics. To validate this robustness,
it is sufficient to demonstrate that these adaptation laws converge to the optimal esti-
mations. Using Lyapunov theory, we established the convergence of the adaptation
laws through equations (21) and (28). There were no specific assumptions or limita-
tions imposed in determining the adaptation law. The convergence and stability of
the projection-based adaptation law described in equation (32) have been rigorously
proved and discussed in Section 4.3.

5 Simulation Results and Discussion

The basis of the proposed adaptive control in this research is to separate the nonlinear
dynamic model of the system under control into linear and nonlinear parts. To achieve
this, the angular velocity dynamics of the vehicle’s wheels must first be rewritten
in terms of state variables. According to (9) and (10), the derivative of the wheels’
angular velocities is given by:

ω̇fl =
ẋ1 cos δf + ẋ3(lf sin δf + ls cos δf )

Reff
, ω̇rl =

(ẋ1 + lsẋ3)

Reff
, (45)

ω̇fr =
ẋ1 cos δf + ẋ3(lf sin δf − ls cos δf )

Reff
, ω̇rr =

(ẋ1 + lsẋ3)

Reff
(46)

It’s assumed that the product of vehicle lateral speed and front wheel steering
angle is negligible. The nonlinear dynamic model of an EV can be described using the
following parametric coefficients:

ẋ1 = x2x3 + α1x
2
1 + α2 + α3∆1xω̇ + α4fa(x) + v1

ẋ2 = −x1x3 + β1∆2xω̇ + β2fa(x) + β3fb(x) + v2

ẋ3 = γ1∆1xω̇ + γ2fa(x) + γ3fb(x) + v3

(47)

where
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α1 =
−Ca

m
, α2 = −Crg, α3 = − J

mvReff
, α4 = −2Ca sin δf

mv
,

β1 =
J

mvReff
, β2 = −2Ca cos δf

mv
, β3 =

2Ca

mv
,

γ1 = − J

IzReff
, γ2 =

2Ca cos δf
Iz

, γ3 =
−2Ca

Iz
,

fa(x) = δf − x2 + Lfx3

x1
, fb(x) = −Lrx3 − x2

x1

Equation (46) can be described in the following quasi-linear state-space form
dependent on the state:

ẋ = A(x)x+Bv + f(x) (48)

where

A(x) =

h11x1 h12x3 h13x2

h21x1 h22x3 h23x2

h31x1 h32x3 h33x2

 ,B =

g11 g12 0
g21 g22 0
g31 g32 1

 ,f(x) =

h14 h15 fa(x)
h24 h25 fb(x)
h34 h35 fg3


with the coefficients

h11 = −α1 − α2α3β1

da
, h12 = −α1α3

da
, h13 =

α3α4

da
,

h14 =
α1 + α2α3β1

da
, h15 = −α1α3

da
, h21 = −1 + α1α3

da
,

h22 =
β2 − α1α3β2

da
, h23 = h21, h24 = h21, h25 = h22.

h31 = γ1α1 + γ2, h32 = γ1β1 + γ2, h33 = γ1β2,

h34 = γ1 + γ2, h35 = γ1 + γ3,

g11 = −α1

da
, g12 = −α1

da
, g21 = g11, g22 = −α3β1

da
,

g31 = γ1(g11 + g21), g32 = γ1(g21 + g31), g33 = γ1(g11 + g31),

fg1 = −α1α2β1

da
, fg2 =

α2α4β1

da
, fg3 =

α1

da
.

The primary EV dynamics are initially presented in equations (1), (2), and (3),
which are not expressed in state-space form. These equations are integrated into a
state-space model because the proposed L1 adaptive control strategy, along with its
relevant analysis and the procedure for deriving the adaptation laws, relies on a vector-
matrix state-space representation of the EV dynamics.

By converting the vehicle dynamics into a state-space model, we can more effec-
tively apply the L1 adaptive control strategy, which is designed to work within a
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state-space framework. This approach allows for a detailed and precise formulation
of the control strategy, taking into account the specific dynamic characteristics of
the vehicle. The state-space model enables us to efficiently prove the internal stabil-
ity, obtain the minimum steady-state error using a feedforward gain and particularly
determine an explicit form for adaptation laws.

In this section, two different manoeuvres are conducted to validate the proposed
L1 Adaptive control design using simulation results. The performance in terms of EV
planar motion tracking, torque distribution, and power consumption is compared with
the conventional Model Reference Adaptive Control (MRAC) and the Super Twisting
Sliding Mode Control (STSMC) proposed in [35]. The first reference model for the
vehicle planer motion tracking control is given below:

vxr =

{
0.4667t+ 5.6, if t ≤ 6

8.4, otherwise
,

vyr =


0.01, if t ≤ 10

0.01 + 0.035(t− 10), if 10 < t ≤ 14

0.15, otherwise

,

rr =


0.01, if t ≤ 10

0.01 + 0.03(t− 10), if 10 < t ≤ 14

0.13, otherwise

(49)

This paper focuses on low speed manoeuvres as we wanted to address the robust-
ness of the proposed approach. The desired longitudinal speed ranges from 5 m/sec
to about 8.5 m/sec, corresponding to about 18 km/h to 31.7 km/h (or about 11.2
mph to 19.7 mph). The lateral speed ranges from 0 to 0.15 rad/sec. These speeds are
appropriate for typical urban driving or low speed manoeuvring. This range indicates
a maximum lateral speed of approximately 0.15 rad/sec, which equates to approxi-
mately 8.6 degrees per second. This is reasonable for typical low speed cornering and
manoeuvring. A yaw rate of 0.12 rad/sec is approximately 6.9 degrees per second.
This range is suitable for moderate steering manoeuvres.

The sampling time and simulation time are set to 0.001 and 20 seconds, respec-
tively. The adaptation gain is set to 0.01, and the desired poles of the reference model
are set to -5. All simulations were conducted using Simulink in MATLAB. Figure 3
shows the control algorithm simulated in Simulink.

According to Fig. 4, the velocity gradually increases from zero towards the desired
velocity, following a typical S-shaped curve indicative of controlled systems. Lateral
velocities remain relatively small throughout the observed period. The yaw rate ini-
tially accelerates from zero, overshoots the desired rate, and then stabilizes to the
desired constant value. Three virtual control signals exhibit distinct behaviours: one
decreases sharply, another rises rapidly before stabilizing, and the third settles to a
constant positive value after an initial spike.
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Fig. 3: Proposed control algorithm simulated in Simulink of MATLAB.

Fig. 5 illustrates the dynamic behaviour of torque outputs applied to individual
wheels of the vehicle. During the first 6 seconds, the torque signals start at approxi-
mately 70 N.m and gradually decrease to around 15 N.m. Between 6 and 10 seconds,
these torque signals further reduce to about 2 N.m. Throughout this 10-second period,
the longitudinal velocity gradually increases, while the lateral velocity and yaw rate
remain at zero. As the longitudinal velocity stabilizes and both the lateral velocity and
yaw rate begin to increase, the torques applied to the forward and rear wheels on the
left side gradually decrease to around zero. In contrast, the torques for the forward
and rear wheels on the rightside increase and converge to approximately 1 N.m.

The results illustrate the correlation between torque signals and vehicle kinematics,
highlighting how torque adjustments are utilized to control the vehicle’s motion. The
initial reduction in torque corresponds to the phase where the vehicle is accelerating in
the longitudinal direction. As the vehicle transitions to a state where lateral velocity
and yaw rate are introduced, torque redistribution occurs to maintain stability and
achieve the desired trajectory. The reduction in left-side torques coupled with the
increase in right-side torques suggests a coordinated control strategy to manage the
vehicle’s directional changes effectively. This dynamic adjustment of torques is crucial
for precise vehicle handling and stability during different phases of motion.

The torque signals are obtained through a simulation program, where there are no
physical constraints. As a result, the control system can increase the torque from zero
to approximately 60 N·m in less than 0.01 seconds. However, in practice, such rapid
torque changes would be constrained by physical limitations, power electronics capa-
bilities, motor design, and battery constraints. Therefore, in real-world applications,
torque changes must be much smoother to account for these limitations and ensure
reliable and safe operation. This fast transient behaviour observed in the simulation is
not a drawback of the proposed algorithm; rather, it is a result of the ideal conditions
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provided by the simulation environment. The algorithm’s performance in real-world
scenarios will be adjusted to accommodate practical constraints while still benefiting
from the robustness and effectiveness demonstrated in the simulation.

Fig. 4: Motion Tracking control outcomes and virtual control signals.
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Fig. 5: Torque signals during the first maneuver of the EV using the proposed method.

Fig. 6 demonstrate the performance of the projection algorithm in estimating three
nonlinear components of the electric vehicle’s dynamics over a 20-second period. The
true and estimated values of the overall Nonlinear part show that the estimated values
generally follow the true values, with some deviations. The true and estimated values
of f1 and f2 exhibit similar patterns, though the estimated values deviate from the
true values at certain points. The error analysis between the true and estimated values
reveals different trends. The error f1 − f̂1 starts high, drops to near zero around 5
seconds, and remains low thereafter, indicating a quick convergence and consistent
accuracy. The error f2 − f̂2 increases to a peak around 10 seconds before decreasing
back towards zero. The error f3 − f̂3 shows a sharp peak around 5 seconds, followed
by a gradual decrease. The projection algorithm effectively estimates the nonlinear
components of the vehicle’s dynamics, with the estimated values closely following the
true values despite some deviations. This analysis confirms the algorithm’s potential
for accurately predicting nonlinear dynamics, essential for improving control in EVs.

The large estimation error during the transient interval for estimating the func-
tion f1 is influenced by the learning rate η of the adaptation laws in equation (32).
Specifically, a larger η results in greater estimation errors. This adjustment involved
appropriately reducing η to minimize the estimation error while maintaining the
desired closed-loop performance.

Fig. 7 illustrates the output power of the L1 adaptive control. Initially, the power
output starts at a high value of around 3800 watts, then rapidly drops in a curved
manner, forming a peak at the beginning, representing a burst of energy release.
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Fig. 6: True and estimated nonlinear parts of the EV dynamics.

Following this, the power output decreases and stabilizes at a lower level, around
1200 watts, indicating a steady-state operational phase. Towards the end, the power
output gradually decreases further, forming a curved tail that approaches a low, steady
value of around 200 to 300 watts, representing a low-power mode. The curve resembles
an exponential decay or a power-up and power-down cycle, common in various EVs.

In the following, we evaluate the robustness of the proposed algorithm under condi-
tions of measurement noise and external disturbances. Figure 8 presents the simulation
results of the closed-loop adaptive control system with measurement noise affecting the
output of the electric vehicle (EV) dynamics. For the simulation, we used white noise
with standard deviations of 0.005 for the first state and 0.001 for the other two states.
With this noise present, the virtual control signals fluctuate during both the transient
and steady-state periods, leading to rapid changes in the torque signals. Despite these
fluctuations, the maximum amplitude of the control signals remains within the nor-
mal range observed under standard conditions. Regarding the projection algorithm,
the estimator can approximate the nonlinear parts of the EV dynamics, although it
shows rapid variations around the true dynamics. Similarly, the output power follows
a pattern similar to that under normal conditions, but it varies over time around the
nominal values, deviating by up to 150 W from the nominal value.

20



Fig. 7: Output power obtained by the proposed L1 adaptive control.

(a) Tracking control outcomes and virtual
controls

(b) Torque signals

(c) True and estimated nonlinear parts (d) Output power

Fig. 8: Simulation results of the proposed control algorithm in the presence of mea-
surement noise.
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Figure 9 shows the simulation results of the proposed algorithm under the influ-
ence of external disturbances. A step disturbance with an amplitude of 0.5 for the first
state and 0.05 for the other two states is applied from 8 seconds to 11 seconds. The
tracking motion shows deviations when the disturbance occurs, but it gradually con-
verges back to the desired trajectory. The torque signals exhibit significant and rapid
variations when the disturbance starts and stops, with amplitudes similar to those
seen in the transient response. The external disturbance also affects the projection
estimator, causing relatively large variations at the onset and end of the disturbance.
Similarly, the output power experiences significant overshoots and undershoots when
the disturbance begins and ends. The results indicate that a relatively large distur-
bance can considerably increase the energy required to counteract its effects. Overall,
the algorithm is capable of maintaining its performance when the disturbance occurs.

(a) Tracking control outcomes and virtual
controls

(b) Torque signals

(c) True and estimated nonlinear parts (d) Output power

Fig. 9: Simulation results of the proposed control algorithm in the presence of external
step disturbance.
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Another reference trajectory for the motion tracking of the vehicle is described
below:

vxr =

{
8.4− 0.52(t− 15), if t > 15

8.4, else

vyr =

{
0.22 sin

(
2π(t−5)

5

)
, if 5 < t ≤ 10

0.01, else

rr =

{
0.23 sin

(
2π(t−5)

5

)
, if 5 < t ≤ 10

0.01, else

(50)

According to Fig. 10, the longitudinal velocity and the desired longitudinal velocity
show a smooth trajectory as the velocity increases from a lower value towards the
desired velocity. The lateral velocity and desired lateral velocity exhibit a sinusoidal-
like oscillation, indicating a steering manoeuvre. The yaw rate and desired yaw rate
also show a sinusoidal pattern, synchronized with the lateral velocity, indicating a
coordinated turning motion.

Fig. 10: Tracking control outcomes and virtual control signals (second maneuver).

The virtual control signals vary in correlation with the changes in the kinematic
quantities, indicating the control actions being applied to achieve the desired motion.
The results represent the behaviour of the proposed closed-loop vehicle executing a
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maneuver involving longitudinal acceleration, lateral oscillations, and coordinated yaw
rate adjustments, with the control signals modulated to track the desired kinematic
trajectories while maintaining stability and control.

Fig. 11 shows the variation of torque signals generated by the proposed control
algorithm to achieve vehicle planar motion tracking control over time. The four distinct
torque signals display periodic, oscillating patterns, indicating active adjustments by
the control system. Each signal exhibits unique frequency, phase, and magnitude char-
acteristics, reflecting the different responses necessary for maintaining precise vehicle
motion. The smooth, wave-like shapes of some signals indicate gradual adjustments,
while others show more pronounced oscillations.

Fig. 11: Torque signals during the second maneuver of the EV using the proposed
method.

Based on Fig. 12, a comparison of the true and estimated nonlinear parts of the EV
dynamics shows a close match, indicating a robust estimation performance. Although,
the estimation errors over time reveals periodic peaks, the magnitude of the errors is
very small.

The singularity in estimating the functions f2 and f3 is due to the fact that the
desired references for lateral velocity and yaw rate have zero crossing points, which
cause relatively large variations at these points. Regarding the singularities, the pro-
posed method cannot completely avoid large variations when the desired signals have
zero-crossing stages. However, by fine-tuning the learning rate in the adaptation law,
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Fig. 12: True and estimated nonlinear parts of the EV dynamics.

lower variations can be achieved. Despite these variations, the projection algorithm
effectively dampened them quickly.

Similar to the first manoeuvre, Fig. 13 depicts the power output profile of the
closed-loop L1 adaptive control system. Initially, there is a sharp rise in power output,
reaching a peak of approximately 4500 watts within the first few seconds, indicating a
surge in power demand during system startup. Following this peak, the power output
remains relatively high, fluctuating between 1000 and 1500 watts for an extended
period, showing a consistent energy demand. Around 8 to 10 seconds, there is a notable
decrease in power output, dropping to levels of around 200 to 400 watts, indicative
of a transition to a lower power mode. Towards the end of the timeframe, between 16
and 18 seconds, there is a slight increase in power output, signifying a transient event
before returning to a lower steady-state level.

In the simulation, we demonstrated that the projection-based adaptation laws
effectively estimate the nonlinear components of EV dynamics. We illustrated this by
showing the estimated nonlinearities for two different driving maneuvers. By accu-
rately identifying these nonlinearities, the adaptive control strategy counteracts their
effects on the closed-loop responses. Additionally, state feedback control maintains
internal stability, while the feedforward term reduces steady-state error. This com-
bined approach effectively addresses model uncertainty and external disturbances in
EV dynamics.
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Fig. 13: Output power obtained by the proposed L1 adaptive control.

To analytically validate the robustness of the proposed method, we first represent
the EV dynamics using a state-space model that separates the linear and nonlinear
components. We define an unknown parametric matrix f = BθTx and derive two
distinct adaptation laws for estimating f . The first law is based on Lyapunov theory,
and the second utilizes L1 theory in conjunction with a projection operator.

Overall, these adaptation laws effectively mitigate the negative impact of the non-
linear components on the closed-loop response, demonstrating the method’s robustness
against model uncertainty in nonlinear EV dynamics. By decomposing the EV dynam-
ics into linear and nonlinear parts, the state feedback control and feedforward gain are
employed to handle the linear components, ensuring internal stability and minimizing
steady-state error.

In the following, the performance of the proposed algorithm has been compared
to the conventional MRAC and a new robust control method called Super Twisting
Sliding Mode Control presented in [40]. To show the strength of the proposed method
against two other methods, it is assumed that an unstructured uncertainty indicating
30% variation is occurred after 10 seconds in the nonlinear parts of the EV dynamics
is considered.

Fig. 14 compares the performance the proposed LAC, MRAC, and STSMC. In
terms of longitudinal velocity profiles, the proposed LAC and MRAC exhibit simi-
lar trajectories, while STSMC displays slightly different behavior. Regarding lateral
velocity and yaw rate, Proposed LAC shows a smoother and more stable profile com-
pared to MRAC and STSMC, which two other methods exhibit deviation with respect
to the desired trajectory. All virtual controls vary between zero and one. The first
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Fig. 14: Tracking control outcomes and virtual control signals for the proposed L1
adaptive control, MRAC, and STSMC [40].

virtual control of STSMC has more variations before occurring the uncertainty, while
the third virtual control of MRAC and STSMC have less amplitude compared to the
proposed control method.

Fig. 15 presents the control signal profiles of the proposed LAC, MRAC, and
STSMC. The control signals initially exhibit high values across all methods, with the
proposed LAC reaching the highest peak around 80 N.m. Over time, these signals
gradually decrease and settle to lower steady-state values, with the proposed LAC and
MRAC converging to a similar level, while STSMC settles at a slightly higher value.

This observation indicates that the proposed LAC may require a higher initial
control effort to overcome disturbances, eventually converging to a steady-state input
comparable to MRAC. Conversely, STSMC exhibits a slightly higher sustained con-
trol effort. These differences in control signal profiles reflect the distinct performance
characteristics and behaviors of the three methods in terms of tracking reference trajec-
tories, and rejecting disturbances. The proposed method requires slightly more energy
than the super twisting method, particularly during the initial movement. However,
it offers a smoother response, reduced steady-state error, and improved robustness
compared to the super twisting method.
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Fig. 15: Torque signals during the second maneuver of the EV using the proposed L1
adaptive control, MRAC, and STSMC [40].

Fig. 16 illustrates the output power profiles of the proposed LAC, MRAC, and
STSMC. Initially, all methods experience a rapid surge in output power, with STSMC
peaking at approximately 4500 watts within the first few seconds, representing a
startup phase. Following this peak, MRAC and the proposed LAC demonstrate rel-
atively lower and steadier power outputs compared to STSMC, which continues to
exhibit higher oscillations. Around 6 to 8 seconds, all methods experience a gradual
decrease in power output, with STSMC showing the most pronounced drop, followed
by MRAC and the proposed LAC. Beyond 10 seconds, power outputs of all methods
converge to a low, steady-state level, with the proposed LAC displaying the lowest
power output among the three.

Overall, the power profiles indicate that while STSMC may have higher transient
power demands, it shows less efficiency in maintaining a steady low-power state. Con-
versely, the proposed LAC and MRAC demonstrate better power management, with
lower initial peaks and smoother transitions to sustained low-power output levels.
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Fig. 16: Output power obtained by the proposed L1 adaptive control, MRAC and
STSMC [40].

6 Conclusion

This study presented a robust adaptive control strategy based on L1 theory and
Lyapunov stability for the motion control of a four-wheel electric vehicle. By decom-
posing the vehicle dynamics into linear and nonlinear components, the proposed
control method effectively managed the interaction between these aspects to achieve
precise motion control. The inclusion of a reference model and a projection algo-
rithm for estimating the nonlinear components further enhanced the performance of
the control system. The proposed method ensured internal stability and minimized
steady-state responses. The ability of the proposed method to accurately track vari-
ous maneuvers was demonstrated through simulation results. The main advantage of
the proposed method lies in the projection algorithm, which can estimate the nonlin-
ear parts of the EV dynamics quickly and accurately. It was shown that the method
maintains acceptable performance in the presence of noise and disturbances. Through
rigorous evaluation and comparison with conventional model reference adaptive con-
trol and a recent control approach, the effectiveness and robustness of the proposed
method against uncertainties inherent in the nonlinear aspects of vehicle dynam-
ics were demonstrated. The proposed method provided a smoother and more stable
response profile.
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