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The U-shaped curve has long been recognized as a fundamental concept in psychological science, particularly
in theories about motivational accounts and cognitive control. In this study (N = 330), we empirically tested
the prediction of a nonmonotonic, curvilinear relationship between task difficulty and control adaptation.
Drawing from motivational intensity theory and the expected value of control framework, we hypothesized
that control intensity would increase with task difficulty until a maximum tolerable level, after which it would
decrease. To examine this hypothesis, we conducted two experiments utilizing Stroop-like conflict tasks,
systematically manipulating the number of distractors to vary task difficulty. We assessed control adaptation
and measured subjective task difficulty. Our results revealed a curvilinear pattern between perceived task
difficulty and adaptation of control. The findings provide empirical support for the theoretical accounts of
motivational intensity theory and expected value of control, highlighting the nonlinear nature of the
relationship between task difficulty and cognitive control.

Public Significance Statement
Humans can improve their performance in certain situations when they are motivated or under some
level of stress. However, there is a limit to how much we can handle, and pushing beyond that limit
actually hinders our performance. In the study, we found that as we made the experimental task more
challenging, people initially adapted better to conflicting signals. But there came a point where the tasks
became too difficult, and their ability to adapt started to decline. Interestingly, this pattern of adaptation
was influenced by how difficult people perceived the tasks to be.
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U-shaped curves are ubiquitous in many theories of psychological
science. Initially proposed by Yerkes and Dodson (1908) to describe
the relationship between stimulus strength and speed of learning, it
gained popularity when Hebb introduced the concept of U-shaped
relationship between arousal and performance (Hebb, 1955). To
this day, curvilinear functions remain a cornerstone in many
psychological theories that aim to describe the relationship between
motivational concepts such as arousal, conflict, and difficulty on
the one hand and performance, effort, and cognitive control on the
other hand. However, despite its popularity, the empirical evidence
for these curvilinear relationships is often weak or simply not yet
available (Teigen, 1994).
Influential theories on goal-directed behavior have proposed that

themotivation to performwell on a task and the correspondingmental
effort it involves responds to task difficulty in a nonlinear fashion.
For example, in the classic motivational intensity theory (MIT), Brehm
and Self (1989) have proposed that the level of motivation is a joint
function of the perceived difficulty of the task and the maximum level
of motivation possible or justified in a given context. Accordingly,
motivation is assumed to increase with task difficulty, up to a certain
level after whichmotivation drops. Indeed, numerous studies that have
used cardiovascular measures of effort as an index of motivational
intensity have consistently observed the U-shaped pattern in between-
subject designs where participants perform a task with a given level
of difficulty that can range from very easy to impossible (Richter
et al., 2008).
At the same time, studies in the field of cognitive control have also

observed adaptations in cognitive control that depend on the level of
task difficulty, for example, using sequential trial-to-trial analyses
(Gratton et al., 1992). The classic conflict monitoring account of
cognitive control has proposed that these adaptations are driven by a
neural conflict monitor that signals the need for additional control,
assuming a monotonic relationship between conflict and subsequent
control (Botvinick et al., 2001). However, given that task difficulty
without conflict also triggers behavioral adaptation, it has been
reasoned that these adaptations might reflect a response to a more
generic signal that is also a response to disfluency or task difficulty
(Dreisbach& Fischer, 2011), possibly triggering a transient negative
affective state that facilitates the upregulation of control processes
(Dignath et al., 2020; Dreisbach & Fischer, 2012; Saunders et al.,
2017; van Steenbergen et al., 2009). This facilitation of cognitive
control by emotional factors suggests a link between control processes
and motivational states. Indeed, the expected value of control (EVC)
framework (Shenhav et al., 2013) that has expanded the original
conflict monitoring account does take into account these more general
signals, as well as motivational factors. As such, the EVC framework
has predicted a curvilinear relationship between task difficulty and
cognitive effort intensity. According to EVC, when task difficulty
increases, using the same level of control will reduce task success;
therefore, to optimize the expected value of control, the level of control
needs to increase, until a point where task difficulty is so high that the
benefits of increasing control allocation no longer outweigh the costs
associated with it. In line with EVC, neuropsychologically inspired
models also have predicted U-shaped responses to task difficulty,
which may be reflected by neurochemical boosting signals in the
brain (Sarter et al., 2006; Silvetti et al., 2018).
There are several points where EVC is similar to the MIT

framework, especially when considering the consensus that cognitive

conflict resolution is effortful (Bouzidi & Gendolla, 2023). Recent
work has indeed shown that MIT and EVC, although stemming from
separate research traditions, can be integrated (Silvestrini et al., 2023)
and share the prediction that the relationship between task difficulty
and effort intensity is nonmonotonic. It is important to note, however,
that there are several points where the definitions of motivation and
effort are different in MIT and EVC. MIT predicts effects on mental
effort, while EVC focuses only on cognitive control performance, and
it does not consider effort intensity as a construct that is separate
from control intensity. Critically, improvements in cognitive control
performance may not always be directly proportional to increases in
effort (Bouzidi & Gendolla, 2024; Silvestrini & Gendolla, 2019). For
instance, due to the variability in individual cognitive control abilities,
the same amount of control performance might reflect different levels
of effort, as lower ability individuals might exert more effort to
reach the same amount of cognitive control, as a compensatory
mechanism (Hockey, 1997). There also might be a discrepancy
between effort and cognitive performance in highly skilled
individuals or those employing a cheating strategy, with low
levels of effort still resulting in good performance (Silvestrini &
Gendolla, 2019). MIT and EVC also posit different predictions on the
relationship between effort intensity and motivation. In cases when the
difficulty of the task is clear and fixed,MIT predicts effort intensity and
potential motivation to be in a shark-fin-shaped relationship, as after the
point of the maximal tolerable difficulty, effort allocation sharply
drops to zero, rather than gradually decreasing as in an inverted U
function. EVC on the other hand distinguishes between situations
where an alternative worthwhile task is available or not. When it is
available, EVC predicts a sharp decline in control allocation
when the maximal tolerable difficulty is reached, similar to MIT.
However, when no alternative task is available, EVC allows for a
gradual decline in control allocation (Musslick et al., 2015).
Critically, the prediction of a nonmonotonic relationship between
task difficulty and effort is still shared by the two frameworks. To the
best of our knowledge, this prediction has not been empirically tested
on behavioral measures yet. In our model, we used cognitive control
performance as a proxy to measure this effect on effort exertion.

To do so, we parametrically manipulated task difficulty in a given
trial while measuring the effect on control adaptations in the next
trial. We capitalized on the robust observation in cognitive control
paradigms, such as the Stroop task, that conflict in a previous trial
triggers increases in cognitive control in the next trial. This so-called
conflict-adaptation effect can be observed in Stroop-like tasks where
incongruent (conflict) and congruent (no-conflict) trials are randomly
presented. The difference in response performance on incongruent
and congruent trials is referred to as the congruency effect. This congru-
ency effect is typically reduced if the preceding trial is incongruent,
compared to when it is congruent, a phenomenon commonly referred
to as the conflict-adaptation effect, or the congruency sequence effect
(Egner, 2007; Gratton et al., 1992). There is a general, albeit not
unanimous, consensus that this conflict-adaptation effect can be
considered as a form of adaptive control that is triggered by the
experienced difficulty level of the previous trial, provided that
common confounds such as stimulus and responses repetitions are
eliminated (Braem et al., 2019). However, to the best of our knowledge,
only a few attempts have been made to systematically vary the level
of trial difficulty to measure its impact on subsequent control. In one
study, Forster et al. (2011) produced three levels of conflict by
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manipulating the number of distractors in the stimuli of an Eriksen
flanker test. They observed that after conflict trials in comparison to
no-conflict trials, control monotonically increased with the conflict
level of the previous trial. More recently, Zhang et al. (2021, 2023)
observed a similar pattern of findings in a confound-minimized design.
However, these studies did not sample extreme levels of difficulty.
Thus, the absence of a clear curvilinear pattern may be attributed to the
limited range of difficulty levels sampled, which may reflect just one
side of the alleged U shape.
In order to test the prediction that control intensity increases

until a maximum tolerable task difficulty is reached and drops when
the task becomes more difficult, we conducted two experiments
with Stroop-like conflict tasks in which we systematically varied
the levels number of distractors in inducer trials, using a wide
range of difficulty levels, and tested the effect on control intensity
in the subsequent diagnostic trials. In both experiments wemeasured
perceived task difficulty using subjective ratings presented after
the task. We hypothesized that increasing the number of
distractors during incongruent inducer trials would result in a
corresponding increase in subjective task difficulty and that control
adaptation would exhibit a nonmonotonic, curvilinear pattern in
response.

Method

Figure 1 illustrates the key experimental design we employed.We
used a Stroop-like prime-probe task, using congruent (con) and
incongruent (inc) prime-probe pairs. In our design, we distinguished
between inducer and diagnostic trials (Braem et al., 2019). To test
the effect of trial difficulty on subsequent control, we parametrically
manipulated the number of distractors during inducer trials and
measured the impact on control in the subsequent diagnostic trial.
These trials alternated throughout the experiment. Diagnostic
trial difficulty was kept constant at a low level. We first conducted
several small sample online pilot studies to determine an experimental
manipulation that led to a monotonic increase in difficulty at the self-
report level. In the two subsequent high-powered online experiments
reported here, we tested two variants of our design using a different
number of distractors.

Participants

We collected data for 330 participants in total in two experiments
running at the same time from the local university participation pool,
where participants received course credits for taking part in the

Figure 1
Experimental Design

Note. Schematic overview of trial setup and key prediction. In both experiments, we presented a prime-probe task with alternating
inducer and diagnostic trials. In each trial, participants could ignore the prime and had to respond to the probe screen by pressing the
corresponding button on the keyboard. In congruent trials, prime and probe directions were the same, whereas in incongruent trials these
differed. Inducer trial difficulty was manipulated by increasing amounts of distractors in the prime stimulus. The number of distractors in
the diagnostic trials’ prime stimulus was fixed to one. Inset: We hypothesized that control intensity measured in the diagnostic trials
would follow an inverted U-shaped response to the perceived difficulty of the diagnostic trials. con = congruent; inc = incongruent;
med = medium.
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experiment. Participants were randomly assigned to one of the two
experiments when they signed up. They had 1 week to reach the
online experiment page and download the task. At the end of the week,
we analyzed all data received. In the beginning of the experiment,
participants were asked about their sex and handedness. Every
participant was a native Hungarian speaker, which was a participation
criterion.
Note that we did not conduct precise sample size estimations

before data collection because we aimed to reach as many available
participants of our participant pool (600 participants) as possible. The
online nature of the study allowed us to reach all potential participants;
however, not everyone could participate given that E-Prime Go only
runs on hardwarewith theWindows operating system. Todetect small-
to-medium within-subject effects with Cohen’s d ≥ .41 (reflecting the
average effect size in psychology; Lakens & Evers, 2014; Richard
et al., 2003) with 80% power requires 52 participants. A sample of 330
participants is more than enough, even when taking into account the
very conservative rule of thumb (Barnhoorn et al., 2015) that online
experiments may require samples that are four times larger than lab
experiments. To test our crucial hypotheses, we used mixed models
rather than repeated measures analyses of variance. Given that
mixed-effect linear regressions are considered to be more effective
in accounting for within-subject variability than analysis of variance
measures (Bagiella et al., 2000), our statistical power estimations are
probably underestimated. Our sample size also surpassed the recomm-
ended 1,600 measurements per conditions in mixed-effect model
analysis of reaction time experiments (Brysbaert & Stevens, 2018).
In Experiment 1, a total of 169 participants took part in the task,

and after exclusion (see Results section), data from 163 participants
were analyzed (Mdnage = 21 years, 70.4% female, 29.6%male, 84%
right-handed). One hundred sixty-one participants took part in
Experiment 2, and after exclusion, data from 155 participants were
analyzed (Mdnage = 21 years, 70.8% female, 29.2% male, 90.7%
right-handed). Data were collected online in October 2021.

Apparatus and Stimuli

To collect data, we used an E-Prime Go experiment that was
downloaded by the participants on their computer. The experiment
was written in E-Prime 3.0 (Psychology Software Tools, Inc, 2020).
After downloading the program, participants were instructed to close
every other program on their computer and to start the experiment.
The experiment tested the computer for performance issues. If no
performance issue was found, the experiment started. Participants
had to perform a prime-probe task during the experiment that was a
modified version of a task developed earlier by Weissman et al.
(2014). In the prime-probe task, two stimuli (a prime and a probe
stimulus) follow each other in a short period of time on each trial.
First a prime stimulus (a direction word, e.g., “left”) is shown for
133 ms, then a short blank screen for 33 ms, and the probe stimulus
(a direction word, e.g., “right”) for 133 ms. The prime-probe trial is
considered congruent if the prime and the probe directions are the
same, and incongruent if they are different. After the probe stimulus,
a fixation cross appeared until the end of the trial. Participants had to
respond to the probe stimulus by pressing one of four response
buttons (“f”—left; “g”—right; “n”—down; “j”—up). Participants
had 1,500 ms in total to respond to the current trial (probe duration
plus the fixation cross duration). Each trial lasted 2,000 ms. Please

note that the actual timings varied slightly due to participants using
displays with different refresh rates.

Procedure

In the prime-probe task, the vertical (up–down) and horizontal
(left–right) dimensions alternated from trial to trial. Prime stimuli
and probe stimuli could only contain directions from the given trial
dimension (vertical or horizontal); there were no incongruent trials that
combined, for example, left and down. Experiment 1 and Experiment
2 both manipulated the number of distractors of the prime stimulus
of the inducer trials, but they differed in the specific levels used. In
Experiment 1, the difficulty levels for low, medium (med), and high
inducer trials were obtained by manipulating the number of vertically
stacked distractor words using three, five, or nine words, whereas in
Experiment 2, we used three words, nine words or a matrix of 9 × 5
words covering the entire display.We used a complete factorial design
where the number of distractors was manipulated orthogonally to
the level of congruency in the inducer trials. However, in the main
analyses, we focused on the incongruent trials and used the low-
difficulty congruent trial (with three distractors in both experiments)
as the reference (easiest) condition. We refer to the other type of
congruent trials (with more distractors) as filler trials. These trials
were not of primary interest, but we included them to avoid associative
learning between the number of distractors and trial congruency.
Indeed, our earlier piloting work revealed that omitting filler trials
made it actually easy to perform well on incongruent inducer trials,
likely because the correct response could be predicted by the number
of distractors presented. Trial difficulty was not manipulated for the
diagnostic trials. Here, every prime stimulus consisted of only one
direction word in the middle of the screen.

After the instructions, participants performed a practice block with
24 trials. In the practice block, an “error” message was shown after
error or timeout trials. If the participant performed worse than 80%
on the practice block, it was repeated until the 80% performance was
reached. After the practice block, participants performed four test
blocks, each including 120 trials. Each block started with a trial from
the horizontal dimension, followed by a trial from the vertical
dimension, in alternating order. In the first and the last block, we used
the horizontal trials as inducer trials, whereas in the second and third
block, we used the vertical trials as inducer trials. Error feedback was
shown after every erroneous trial. Between every block, there was an
information screen which allowed the participants to take a break or
leave the experiment.At the end of the experiment, example trials from
all difficulty types were listed to the participants who had to rate them
by perceived difficulty on a scale from 1 to 9.

Data Preprocessing

We excluded six participants who performed below chance level
(25%). For subjective difficulty diagnostics, we included only difficulty
ratings data on inducer trials (six per participant) that were collected
at the end of the experiments. In control adaptation analyses, only
correct diagnostic trials were included. Overall, 6.8% of trials were
excluded for being incorrect, 5.6% for being post-error trials, and
4.6% of trials were excluded for being outliers (2 SDs from the
conditional means of the participant). In the inducer trial analyses,
only inducer trials were included, with no additional exclusion
criteria.
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Statistics

All analyses and data filtering were performed using R Statistical
Software (R Core Team, 2022), with the help of the “tidyverse”
package (Wickham et al., 2019). In all of our analyses, we usedmixed-
effect regression models, using participants as random intercepts. To
construct the random slope structure, first, we initially included all
predictors as random effects in the model in a stepwise manner in the
order of the term’s contribution to the model and constructed the
largest possible regression model that could still converge. Next, on
the previously constructed largest possible model, we employed a
backward elimination process to refine the model by excluding any
fixed or random factors that were deemed unnecessary. If the second
step eliminated any crucial fixed factors due to nonsignificant results,
we reported the best fitted model output by the first step.We used the
“buildmer” R package to conduct the above-described two-step
process (Voeten, 2022). Both in the first and the second steps, we
used the “bobyqa” optimizer to fit the models. By utilizing mixed-
effect regression models with participants as random intercepts and
employing a backward elimination approach for the random slope
structure, we aimed to account for individual differences while
identifying the most relevant predictors that contribute significantly
to the model’s overall performance. The experiments were entirely
identical, except for inducer stimuli representing difficulty levels
which were different in the two experiments. Relying on initial pilot
data, we designed the stimuli with the focus on ameasurable difference
in perceived task difficulty across the four difficulty levels, while we
kept all other parameters the same in the two experiments. Because the
two experiments were nearly identical, to increase statistical power and
to facilitate readability, wemerged the data sets of the two experiments
and added Experiment as a factorial predictor in all analyses. By this
merge, we were able to create the inducer difficulty score which
allowed us to measure the relative level of difficulty in both
experiments. We created the inducer difficulty score by mapping the
four inducer difficulty levels to numbers from 0 to 3, thus creating a
numeric predictor. To measure the amount of adaptive control, we
used the control intensity score, which was calculated on diagnostic
trials by subtracting incongruent reaction times (RTs) from congruent
RTs. By thismethod, we could calculate diagnostic congruency effects
on different inducer conditions. We did not know a priori whether the
highest level of task difficulty per experiment was sufficient to sample
the right side of the proposed U shape. However, any differences
between the experiments should become evident by the main effects
or interaction effects with the factor Experiment in our statistical
models. Nevertheless, on the request of one of the reviewers, we have
conducted the same analyses on the two experiments separately and

included their results in the Results section. These analyses confirmed
the main findings reported in the main text, although the curvilinear
pattern was not significant for some of the analyses. As we were
hypothesizing curvilinear relationships in some of our analyses, we
included both linear and quadratic terms in suchmodels, so a significant
quadratic term indicates evidence for a curvilinear pattern over and
above potential linear effects. Figures were created using the “sjPlot”
(Lüdecke, 2022) and “ggrain” (Allen et al., 2021) packages.

Transparency and Openness

Neither of the experiments were preregistered. Tasks and
collected raw data are publicly shared on the Open Science
Framework pages of the project. Code for data management and
statistical analyses were written in R and are also available at https://osf
.io/cysx9/. Prior to peer review, a preprint version of this article was
published on PsyArXiv at https://osf.io/preprints/psyarxiv/ywup9/
(Bognar et al., 2024), and a poster presentation about the early
findings of this study was held on the Psychonomic Society 63rd
Annual Meeting.

Results

Our main hypothesis was that by parametrically increasing the level
of inducer trial difficulty, control intensity in the diagnostic trial will
increase, and thus the congruency effect will decrease, up to a certain
inflection point from where the congruency effect may increase
again. To do so, we first measured the perceived subjective difficulty
of the inducer conditions. Then we analyzed the effect of difficulty
conditions on control adaptation and tested whether subjective
difficulty ratings predicted this adaptation of control. Finally, we ran a
supplementary analysis in which we explored the behavioral effects
during the inducer trials themselves.

Effect of Parametric Difficulty Manipulation on
Perceived Difficulty

As shown in Table 1 and Figure 2, there was a monotonic increase
in perceived difficulty as a function of inducer trial type, p < .001;
F(3, 960) = 36.78, η2 = .10. To see if the steps in the monotonic
increase are equidistant, we analyzed the first derivate of difficulty
level, and this revealed that the difference in mean ratings between
subsequent difficulty levels are significant in Experiment 1, p <
.001, F(2, 326) = 11.94, η2 = .068, but not in Experiment 2, p = .88,
F(2, 315) = 0.12, η2 = .001. This suggests that we cannot simply
assume that we manipulated perceived difficulty in equidistant
steps, at least not in Experiment 1. Interestingly, we did not observe
a significant difference in overall ratings t(325) = −1.42, p = .15,

Table 1
Summary for the ANOVA Analysis on the Mixed-Effect Polynomial Model for Inducer Trial Type on Perceived Difficulty

Term Sum of squares Mean of squares
Numerator degree

of freedom
Denominator degree

of freedom F p

Inducer trial type 264.6 88.2 3 960.0 36.8 <.001
Experiment 0.0 0.0 1 320.0 0.0 .93
Experiment × Inducer trial type 16.1 5.4 3 960.0 2.2 .08

Note. ANOVA = analysis of variance.
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d = −.16 between Experiment 1 (M = 4.35, SD = 1.98) and
Experiment 2 (M = 4.55, SD = 2.01), suggesting that the overall
higher amount of distractors used in Experiment 2 did not increase
overall subjective difficulty at the task level. Tables 2 and 3 show
perceived difficulty across four difficulty levels of inducer trials.

Effect of Parametric DifficultyManipulation on Adaptive
Control

We then proceeded by verifying that the parametric difficulty
manipulation affected adaptive control. To do so, we created the
inducer difficulty score variable as a linear predictor of the RT in the
diagnostic trials. A significant main effect of congruency was found
in both Experiment 1, t(162) = 37.1, p < .001, and Experiment 2,
t(152) = 33.463, p < .001. In Experiment 1 a significant curvilinear
interaction was also found between Inducer Difficulty Score and
Diagnostic Trial Congruency, t(22,048)= 2.776, p= .005; however,
this interaction was not significant in Experiment 2, t(20,508)= 1.776,
p = .076. Supplemental Tables S4 and S5 describe all fixed and
random terms used in the models for the separate analyses.

In the merged analysis, we used Experiment as a control predictor.
Table 4 describes all the fixed and random terms that were used in the
model for the merged analysis. The factor Experiment did not interact
with the curvilinear interaction described above; Table 4 does not
list this effect because it was eliminated from the initial model that
included all main effects and interactions given that it did not
explain substantial variance. As shown in Table 4, the main effect
of Experiment was not significant in reaction time between the two
experiments t(319) = −.658, p = .511. Figure 3A shows the
corresponding estimated marginal means, showing both the typical
main effect of congruency t(309)= 33.245, p< .001, and the curvilinear
interaction between Inducer Difficulty Score and Diagnostic Trial
Congruency, t(42,583)= 3.188, p= .001. All other significant effects
are reported in Table 4. Figure 3B plots this effect using the control
intensity score (inverse congruency effect). Consistent with our
predictions, inducer trial difficulty on low levels first numerically
increased control and then decreased. Descriptive statistics on reaction
times can be found in Supplemental Table S11.

Effect of Perceived Difficulty on Adaptive Control

The initial analysis on perceived difficulty indicated that
the variations in difficulty levels across conditions were not evenly
spaced, at least not in Experiment 1. This observation might raise
concerns about the validity of the analyses above that assumed
a difficulty score with an interval level. We therefore created a new
model that used the subjective difficulty reported as a predictor
instead. This model used the average perceived difficulty calculated
for each difficulty level and experiment separately as a predictor.
When analyzing the experiments separately, the hypothesized
curvilinear interaction between Subjective Difficulty and Diagnostic
Trial Congruency did not yield significant results. Experiment 1:
t(22,047) = 1.906, p = .0566. Experiment 2: t(20,534) = 1.661,

Figure 2
The Effect of Inducer Trial Type on Perceived Difficulty

Note. The effect of inducer trial type on perceived difficulty provided using a 9-point Likert scale after the task as a function of inducer trial type.
Panel A: Predicted means and the 95% confidence intervals. Panel B: Individual rating data in gray and data distribution in color. con = congruent;
inc = incongruent; med = medium. See the online article for the color version of this figure.

Table 2
The Effect of Inducer Trial Type on Perceived Difficulty in
Experiment 1

Inducer difficulty level Mean rating Rating SD

Con-low 3.53 0.73
Inc-low 4.63 1.89
Inc-med 4.90 1.71
Inc-high 5.20 2.11

Note. con = congruent; inc = incongruent; med = medium.
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p = .097. Supplemental Tables S6 and S7 describing the fixed and
random factors used in the separate analysis models can be found
in the Supplemental Materials.
In the merged analysis, we again used the averaged perceived

difficulty calculated for each difficulty level and each experiment,
yielding a predictor with eight unique values. Table 5 shows all fixed
and random factors that were used in the merged analysis model as
well as their significance levels. Critically, this model confirmed our
main hypothesis of an inverted-U relationship, as reflected by a
significant quadratic effect, t(42,270) = 2.379, p = .017, of perceived
difficulty on the congruency effect. The corresponding effect on the
control intensity score is visualized in Figure 4.
We also tested a similar model that included the individual ratings

(i.e., without averaging), but this model did not reveal the hypothesized
U shape (t= 0.72, p= .47). This could be due to the fact that the rating
data was too noisy (one question per condition per participant) to
predict behavior (∼40 trials per condition per subject), or because the
absolute value per participant cannot be directly used to predict effects
at a population level.

Control Adaptation Effects Could Not Be Reliably
Attributed to Conflict Strength in the Inducer Trials

We performed a supplementary set of analyses that investigated
the effect of difficulty level on performance during the inducer trials

themselves. These were post hoc exploratory analyses aimed to reveal
the processes that underlie the effect of increased perceived task
difficulty and the associated adaptation effects reported above. In
this analysis, we also included the filler trials (i.e., the con-med and
con-high inducer trials; see Method section), thus employing a full
factorial design. As Figure 5 shows, we run the same analyses on
self-reported difficulty, reaction time, and error rates (see tables in
Supplemental Materials). Reaction time, t(77,143)= 51.407, p< .001,
error rate (z = 19.081, p < .001), and subjective difficulty rating,
t(1,612) = 12.745, p < .001, all revealed a main effect of congruency,
suggesting that conflict trials relative to no-conflict trials are associated
with performance impairment and perceptions of increased task
difficulty. However, this congruency effect did not increase with the
number of distractors present. So this pattern of results suggests that
increased task difficulty in our task was not due to an increase in
conflict strength between primes and the probe. If anything, difficulty
levels reduced the congruency effect in RT, F(2, 77143) = 38.090,
p < .001, η2 = .0009, for trials with high number of distractors (see
Figure 5A). However, as it is visible in the figure, this effect was
driven by a reaction time increase in the congruent trials. At the same
time, participantsmade fewer errors (see Figure 5C) when the number
of distractors increased (medium compared to low: z = −3.313,
p< .001; high compared to low: z=−5.458, p< .001), an effect that
was independent of congruency. This suggests that presenting a high
number of distractors caused a shift in speed–accuracy trade-off,
making participants more cautious, at least during the filler (con-med
and con-high) trials. Perceived difficulty of congruent inducer trials
as well as of incongruent trials increased with distractor numbers,
F(2, 1612) = 23.474, p < .001, η2 = .03, suggesting that an increase
in the number of congruent distractors was also not associated with
a perception of ease (see Figure 5E). It is interesting to note that the
ratings of the con-med and con-high trials also showed great variability
and suggest a bimodal distribution, suggesting that the one subset of
participants perceived these trials as relatively easy whereas the others
perceived them as relatively hard.

Table 3
The Effect of Inducer Trial Type on Perceived Difficulty in
Experiment 2

Inducer difficulty level Mean rating Rating SD

Con-low 3.90 2.06
Inc-low 4.44 1.94
Inc-med 4.81 1.72
Inc-high 5.24 2.07

Note. con = congruent; inc = incongruent; med = medium.

Table 4
Summary for the Mixed-Effect Polynomial Model for RT on Diagnostic Congruency × Difficulty

Predictor

Reaction time

Estimate 95% CI p

Intercept 498.02 [488.83, 507.20] <.001
Diagnostic trial congruency 93.60 [88.09, 99.12] <.001
Inducer trial difficulty level (linear) 743.39 [461.22, 1025.57] <.001
Inducer trial difficulty level (curvilinear) −431.44 [−713.38, −149.50] .003
Experiment −4.40 [−17.52, 8.71] .510
Diagnostic trial congruency × Trial difficulty level (linear) −665.27 [−1070.57, −259.97] .001
Diagnostic trial congruency × Trial difficulty level (curvilinear) 658.99 [253.81, 1064.18] .001
Diagnostic trial congruency × Experiment 12.70 [4.80, 20.60] .002
Random effects
σ2 10589.90
τ00participant 3447.50
τ11participant. Diagnostic trial congruency 984.42
ρ01participant −0.16
Intraclass correlation coefficient 0.26
Nparticipant 322

Observations 43,199
Marginal R2/conditional R2 0.150/0.367

Note. p values for statistically significant predictors are indicated in bold. RT = reaction time; CI = confidence interval.
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Discussion

This study tested a critical prediction that can be inferred from
both classic motivational intensity theory (Brehm & Self, 1989) and
more recent neurocomputational and neurophysiological accounts
(Sarter et al., 2006; Silvetti et al., 2018), as proposed in a recent unified
framework (Silvestrini et al., 2023). Specifically, it examined whether
perceived task difficulty is related to cognitive control recruitment in
a curvilinear manner. In two experiments, we found evidence for

this curvilinear relationship in control adaptation using sequential
behavioral analyses. We observed that the parametric increase in
distractors in conflict-inducer trials monotonically increased subjective
difficulty but that the adaptation of cognitive control in the subsequent
diagnostic trial increased with subjective task difficulty only to a
certain point after which it plateaued or declined.

The general pattern of our findings was consistent across two
experiments that used a different range of distractors, with a larger
number of distractors being presented in some trials in Experiment 2

Figure 3
Conflict Intensity as a Function of Inducer Difficulty Score

Note. Panel A: Predicted congruent (dotted line) and incongruent (dashed line) diagnostic trial means as a function of the four inducer difficulty
scores with standard error as error bars. Panel B: Predicted diagnostic trial control intensity score as a function of the four inducer difficulty scores.
Error bars represent pooled standard error. Panel C: Individual diagnostic trial control intensity scores in gray and data distribution in color. con =
congruent; inc = incongruent; med = medium. See the online article for the color version of this figure.
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in comparison to Experiment 1. Despite these differences, subjective
ratings were not higher in Experiment 2, nor was the inflection point
of the U-shaped pattern in control intensity shifted. This suggests
that experienced difficulty and the maximum amount of control
justified are coded in a context-relative manner. This is consistent
with the value normalization account (Rangel & Clithero, 2012),
which proposes that signal values are computed using a normalized
code relative to the signal value’s position in the contextual distribution.

It is also worth noting that the subjective ratings varied considerably
between subjects, making it difficult to directly use self-report data
to predict behavioral performance at an individual level. In our results,
we therefore could only demonstrate U-shaped effects when using
aggregated self-report data.

To the best of our knowledge, we are the first to report curvilinear,
nonmonotonic effects of task difficulty, manipulated trial-wise, on
cognitive control. Our findings thus go beyond earlier work that only

Table 5
Summary for the Mixed-Effect Polynomial Model for RT on Diagnostic Congruency × Subjective Difficulty

Predictor

Reaction time

Estimate 95% CI p

Intercept 495.87 [489.31, 502.42] <.001
Diagnostic trial congruency 99.81 [95.79, 103.83] <.001
Subjective difficulty (linear) 848.38 [565.96, 1130.81] <.001
Subjective difficulty (curvilinear) −206.99 [−497.93, 83.95] .163
Diagnostic trial congruency × Subjective difficulty (linear) −850.69 [−1255.99, −445.39] <.001
Diagnostic trial congruency × Subjective difficulty (curvilinear) 505.35 [88.98, 921.71] .017
Random effects
σ2 10588.81
τ00participant 3443.40
τ11participant. Diagnostic trial congruency 1030.20
ρ01participant −0.17
Intraclass correlation coefficient 0.26
Nparticipant 322

Observations 43,199
Marginal R2/conditional R2 0.149/0.367

Note. p values for statistically significant predictors are indicated in bold. RT = reaction time; CI = confidence interval.

Figure 4
The Effect of Inducer Trial Perceived Difficulty on Control Intensity Score

Note. Panel A: Predicted diagnostic trial control intensity score as a function of inducer trial perceived difficulty. Colors represent the two
experiments; error bars represent pooled standard error. Panel B: Individual diagnostic trial control intensity scores in gray, distribution in color.
See the online article for the color version of this figure.
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Figure 5
Inducer Trial Analysis

Note. Predicted reaction time (Panel A), error rate (Panel C), and perceived difficulty (Panel E) on inducer trials as a function of the different
inducer trial types, in congruent (dotted line) and incongruent (dashed line) trials. Error bars represent standard error. (Panels B, D, F) Individual
data of the variable plotted on the left are shown in gray and distribution in black. con = congruent; inc = incongruent; med = medium.
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demonstrated monotonic effects of conflict strength on control
adaptation (Forster et al., 2011; Zhang et al., 2021, 2023).
Nevertheless, the curvilinear effects obtained here are consistent
with early work that uses block-wise manipulations of task difficulty
that reduced control adaptation effects (Fischer et al., 2010; van
Steenbergen et al., 2015). The paradigm we developed here might
also help to bridge literature that mainly used between-subject designs
to show that cardiovascular measures of effort show a nonmonotonic
response to task difficulty (Richter et al., 2008), studies in the
neurochemistry field that have also suggested an inverted U-shaped
relationship between adaptive control and dopamine levels (Bijleveld
et al., 2023; Cools & D’Esposito, 2011; Westbrook et al., 2020), and
recent work that has shown that cardiac effort can also be observed
in conflict tasks (Bouzidi & Gendolla, 2023). While several studies
suggested that the exertion of cognitive control is inherently effortful
akin to physical labor (Kool & Botvinick, 2014; Kool et al., 2010), it
is important to note that this study did not measure the amount of
effort exerted by participants directly. Instead, we focused on the
congruency effect as an inverse proxy for the intensity of cognitive
control allocation. This way we assumed that more cognitive control
allocation—and thus more effort—leads to smaller congruency effects,
that is, to a range where floor and ceiling effects are absent (Norman &
Bobrow, 1975). Note however that computational analyses have shown
(e.g., Musslick et al., 2018) that congruency costs can reflect other
variables, such as task automaticity; thus, we cannot be entirely sure
that this study’s curvilinear results represent pure effects on control
intensity, and by extension, effort.
It is also worth noting that in contrast to the self-reported higher

subjective difficulty of the inducer trials with more distractors during
the conflict trials, we did not observe clear evidence that a higher
number of distractors increased objective task difficulty as would be
observed by slower and more error-prone behavior during conflicting
inducer trials. To specify, althoughwe did observe a congruency effect
on inducer trials, this effect actually decreased (rather than increased)
with the number of distractors presented, both in reaction time and
accuracy. However, this effect was primarily due to slower responses
on congruent trials. Note that we included congruent inducer trials to
set congruency proportions on these trials to 50%. This prevented
the participants from preparing for an incongruent probe after a
difficulty-manipulated prime. In addition, participants also tended
to make fewer errors when the number of distractors increased.
Together, these findings suggest that our distractors display did not
change conflict strength as such but rather shifted the participant’s
strategy to respondmore cautiously. This change could be due to our
decision to include diagnostic trials with very low task difficulty,
which took up half of all trials in the experiment. As a result, more
difficult trials were underrepresented in the overall experimental
context. This decision may have caused higher difficulty trials to be
less expected,making participantsmore cautious and perceiving these
trials as more difficult. All in all, our findings point to the importance
of taking into account subjective experience when investigating
cognitive control. Although the causal role of subjective states in
the adaptations of cognitive control is still a subject of dialogue
(Questienne et al., 2021), some earlier work has suggested that
adaptation effects in control only occur when participants report
they experienced conflict (Desender et al., 2014). This suggests
that adaptation of control can result from themeta-cognitive experience
of difficulty. In addition, the experience of dysfluency often also
involves negative integral (task-related) affect, whichmay play a causal

role in conflict adaptation too (Dignath et al., 2020; Dreisbach &
Fischer, 2015; Saunders et al., 2017; van Steenbergen et al., 2009).

This study also had a number of limitations. First, we assessed
perceived difficulty only once through a questionnaire administered
at the end of the study. Therefore, the usual caveats associated with
self-report measures apply. To further test the role of integral affect
on control adaptation, future work may probe subjective feelings
within trials or combine our task with affective priming trials, similar
to studies in regard to the affective modulation account (Dreisbach &
Fischer, 2012; Fröber et al., 2017). Given the above approach, a
posttest questionnaire would not be necessary. Second, we could not
completely determine the origin of the increases in experienced task
difficulty in high distractor conflict trials, which likely reflects the
contribution of several cognitive processes, such as visual distraction
and unexpectedness. Third, datawas collected online, whichmay have
increased noise and could explain why we failed to observe strong
within-subject effects of perceived difficulty on performance. Fourth,
as MIT and EVC predict slightly different shapes of the relationship
between difficulty and effort, it would have been ideal to knowwhich
pattern would be supported more by the data. Analyses reported in
Supplemental Material provided some evidence that our results at
the individual level better resemble a gradual inverted U rather than a
shark-fin shape, at least when compared to a linear shape. However,
the overall variability did not allow us to conclude that the inverted
U shape fit the data better than the shark-fin shape, so future studies
are needed to investigate this issue in more detail, potentially with
more observations per participant to allow for better estimation of
individual-level effort curves. Fifth, as the results section showed,
when analyzing the experiments separately, not all experimental effects
were significant; however, patterns of effects were in line with the
hypothesized nonmonotonic effect. At the same time, we considered
pooling the two experiments—in order to increase statistical power—to
be reasonable, because the different difficulty levels in the experiments
were chosen arbitrarily and were controlled for in the pooled statistical
models.

To conclude, using a novel design that parametrically manipulated
a range of task difficulty levels, we were able to show that cognitive
control measured in a Stroop-like task scales with perceived difficulty
in a curvilinear fashion. These findings provide compelling evidence
for a key prediction that can be derived from both classical accounts
on motivation and modern accounts on cognitive control. Future
studies may combine this paradigm with physiological and neural
measures to determine the neurobiological mechanisms (Berger et al.,
2020) underlying these quadratic effects.Moreover, given the assumed
U-shaped effect that stress has on cognitive performance and recent
evidence that control adjustments may predict the stress reactivity in
daily life (Grueschow et al., 2021; Lin et al., 2023; van Steenbergen
et al., 2021), our study also opens new avenues for investigating the
complex interplay between subjective states and cognitive control,
both in healthy and clinical samples.

Constraints on Generality

In this work, our goal was to address a fundamental scientific
question regarding the relationship between perceived task difficulty
and control adaptation, without a focus on lifespan or clinical aspects.
As stated in the Method section, the experiments were conducted
on healthy young adults due to the accessibility of this population in
university settings and because it is a standard approach in the broader
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literature on conflict-adaptation research. There are findings indicating
that conflict-adaptation effects might be influenced by age (Larson
et al., 2016) or clinical conditions (e.g., Larson et al., 2011). Therefore,
broad generalization of the reported findings beyond the current target
population (healthy young adults) is not appropriate.
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