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Technological advances are enabling ecologists to conduct large-scale and structured 
community surveys. However, it is unclear how best to extract information from these 
novel community data. We metabarcoded 48 vertebrate species from their eDNA in 
320 ponds across England and applied the ‘internal structure’ approach, which uses 
joint species distribution models (JSDMs) to explain compositions as the result of four 
metacommunity processes: environmental filtering, dispersal, species interactions, and 
stochasticity. We confirm that environmental filtering plays an important role in com-
munity assembly, and find that species’ estimated environmental preferences are con-
sistent with known ecologies. We also detect negative biotic covariances between fish 
and amphibians after controlling for divergent environmental preferences, consistent 
with predator–prey interactions (likely mediated by predator avoidance behaviour), 
and we detect high spatial autocorrelation for the palmate newt, consistent with its 
hypothesised relict distribution. Promisingly, ecologically and spatially distinctive sites 
are better explained by their environmental covariates and geographic locations, respec-
tively, revealing sites where environmental filtering and dispersal limitation act more 
strongly. These results are consistent with the recent proposal that applying JSDMs to 
species distribution patterns can help reveal the relative importance of environmental 
filtering, dispersal limitation, and biotic interaction processes for individual sites and 
species. Our results also highlight the value of the modern interpretation of metacom-
munity ecology, which embraces the fact that assembly processes differ among species 
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and sites. We discuss how novel community data allow for several study design improvements that will strengthen the infer-
ence of metacommunity assembly processes from observational data.

Keywords: Aquatic eDNA, biodiversity, joint species distribution model (JSDM), macroecology, metabarcoding, Triturus 
cristatus

Introduction

Metacommunity theory, which explicitly models feedback 
between local communities and regional species pools, has 
been proposed as a unifying theory of spatial community 
ecology (Leibold et  al. 2004, Leibold and Chase 2018). In 
the framework of this theory, we consider a set of communi-
ties whose local population dynamics are governed by envi-
ronmental filtering, species interactions, and ecological drift 
and that are additionally linked by dispersal. The goal of the 
theory is to understand how these four basic assembly pro-
cesses determine species compositions in the metacommu-
nity (Vellend 2016). Traditionally, this has been done with 
classical community data gathered by human observers, but 
the fact that modern sensors such as eDNA deliver commu-
nity observations that are ideally suited for metacommunity 
analysis has created excitement in the field and also makes 
metacommunity analysis interesting for molecular ecologists 
(Hartig et al. 2024).

Empirical approaches to studying metacommunities 
mainly aim at inferring the relative contributions of the four 
assembly processes (dispersal, environmental filtering, spe-
cies interactions, and drift) from empirical data. Examples 
of these are analyses based on community summary statis-
tics, such as ordinations that describe different metacom-
munities using centroids and distances, and alpha and beta 
diversities (Fig. 1). Another common approach to analyse 
metacommunity data is variation partitioning, where, classi-
cally, community composition is explained by metacommu-
nity-level contributions of environmental and spatial factors 
(Cottenie 2005). However, those approaches exhibit limited 
power to reveal assembly processes (Ovaskainen et al. 2019, 
Guzman et al. 2022), in part because summary metrics can-
not reveal how the four processes differentially affect indi-
vidual species and sites. Leibold  et  al. (2022) refer to such 
metacommunity-level metrics as studying the ‘external struc-
ture’ of metacommunities, because they assume that there is 
‘one average mix’ of assembly processes that is the same across 
sites and species.

To avoid averaging assembly processes across sites and 
species, Leibold et al. (2022) propose studying the ‘internal 
structures’ of metacommunities, which dissect the impor-
tance of different assembly processes by each species and site. 
Technically, this can be done by using a joint species distri-
bution model (JSDM) to partition the varying contribu-
tions of three model components (environmental covariates, 
species covariances, and spatial autocorrelation) to explain 
species presence/absence, for each individual species and 
site (Fig. 1). Among other things, this approach allows one 

to relate environmental differences between sites, and trait 
differences between species, to differences in the variation 
explained by each component, thereby generating testable 
hypotheses that link distribution patterns to metacommunity 
assembly processes.

Simulation studies have shown that internal-structure 
analysis can indeed differentiate synthetic metacommuni-
ties that differ in site environmental distinctiveness and in 
species niche breadth, dispersal ability, niche centrality, and 
the presence or absence of competitive interactions (Fig. 1, 
Leibold  et  al. 2022, Terry  et  al. 2023). While these simu-
lation results are encouraging, real metacommunity datasets 
have more complicated properties, including detection fail-
ures, measurement errors, and model uncertainty; not all 
species, environmental covariates, and sites can be included; 
species interact in multiple ways; and real metacommunities 
might be non-stationary, not least because of climate change 
(Abrego et al. 2021, Terry et al. 2023, Kadoya et al. 2024). 
Thus, it is important to gain more experience about the appli-
cability of the internal structure idea to real data.

An ideal empirical metacommunity dataset for inferring 
internal structure would 1) consist of many local-commu-
nity inventories with standardised species presence–absence 
or abundance information, 2) be within an area that is con-
nected (and large) enough for dispersal (and dispersal limita-
tion) to operate, 3) have the taxonomic breadth to include 
interacting guilds such as predators and prey, and 4) have 
measures of local environmental conditions relevant to the 
niche requirements of all these species. An exemplary study is 
provided by Kadoya et al. (2024) who applied internal-struc-
ture analysis to gillnet survey data covering three countries, 
93 fish species, and 1853 lakes, and found that environmen-
tal covariates explained the most variation in species distribu-
tions and lake compositions, highlighting the importance of 
environmental filtering. Kadoya et al. (2024) then projected 
the effect of future climate heating on lake species composi-
tions by running the fitted model with higher values of the 
degree-days environmental covariate while using the biotic 
covariances to simulate the effect of species interactions.

A promising alternative to traditional community observa-
tions is eDNA metabarcoding, which can generate repeated, 
large-scale, structured, and standardised community surveys 
(Hartig et al. 2024), but eDNA has so far rarely been used 
in metacommunity ecology (Vass et al. 2022, Macher et al. 
2024).

Our survey data come from ponds in the south Midlands 
of England that were originally sampled to detect the great 
crested newt Triturus cristatus, a UK-protected amphib-
ian species that breeds in ponds (Biggs  et  al. 2015).  
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Figure 1. External- versus internal-structure analysis of metacommunities.
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We metabarcoded the residual eDNA to detect vertebrates, 
generating a community matrix of 320 ponds × 48 vertebrate 
species. Each pond was associated with eight environmental 
covariates and a geographic location, allowing us to fit three 
data matrices in a JSDM (Fig. 1). Here, we test how well the 
internal structure of a candidate pond metacommunity sur-
veyed with eDNA matches expectations derived from exter-
nal knowledge of species ecologies.

We expect to observe negative biotic covariances at the 
pond scale between newts and fishes. First, fish can reduce 
newt populations in two ways, via predation of eggs, lar-
vae, and possibly adults; and via competition with newts for 
invertebrate prey (Beebee and Griffiths 2005, Hartel  et  al. 
2007, Winandy  et  al. 2017). Second, Hartel  et  al. (2007) 
visually surveyed ponds and found negative correlations at 
the pond scale between predatory fish and two newt species, 
great crested T. cristatus and smooth Lissotriton vulgaris, but 
no correlation with common toad Bufo bufo, which is pro-
tected by bufotoxin (see also Hartel et al. 2007). Third, while 
this negative correlation could in theory be driven entirely by 
divergent environmental preferences along unmeasured niche 
axes, a behavioural mesocosm experiment with the alpine 
newt Ichthyosaura alpestris (Winandy et al. 2017) found that 
adult newts actively disperse away from aquaria with fish, 
but stay longer in otherwise equivalent aquaria without fish. 
Since newts are amphibious and can thus switch ponds more 
easily than fish can, this behaviour can rapidly generate nega-
tive residual covariances between newts and fish, except when 
ponds are isolated.

We also expect to see environmental covariate effects on 
newt distributions, with visual survey studies (Denoël and 
Lehmann 2006, Hartel et al. 2007, 2010, Denoël et al. 2013) 
finding greater newt occupancy in larger, deeper, more vege-
tated ponds near other ponds, especially when also inhabited 
by newts. Finally, we expected to obtain spatial covariance 
effects that are consistent with dispersal limitation, consis-
tent with other freshwater community studies that have par-
titioned variation among biotic, environmental, and spatial 
components (Padial et al. 2014, Montaña et al. 2022).

Material and methods

Environmental covariates

To quantify land cover around each pond, we used 
Rowland et al.’s (2017) 21 UK land classes. For each pond, 
we calculated the proportions of land class within a 500 m 
radius of its point location and used principal component 
analysis in {FactoMineR} ver. 2.4 (Lê et al. 2008) to extract 
the top three principal components (accounting for 40% of 
total variation, Supporting information), which correlate 
with the degree of agriculture versus urban cover, grassland 
cover, and woodland cover. Each pond was also scored during 
sampling for ten standard pond variables used by surveyors 
to calculate the pond’s habitat suitability index (HSI) for the 
great crested newt (ARG-UK 2010), of which we used five 
(Supporting information).

Pond water sampling and metabarcoding assays

The pond water samples were the result of a single-sea-
son, great crested newt survey of 544 ponds in the south 
Midlands of England, UK, in 2017. Samples were collected 
and processed following Biggs et al. (2015) and were stored 
at ambient temperature until shipped to a commercial lab 
(NatureMetrics, Egham, UK), and DNA was extracted using 
a precipitation protocol (Tréguier  et  al. 2014), after which 
each sample’s DNA was cleaned and subjected to 12 separate 
qPCR tests. After the qPCR assays, the residual eDNA was 
stored at −80°C.

In 2019, the residual eDNA samples were retrieved and 
subjected to metabarcoding at NatureMetrics (PCR) and 
at Kunming Institute of Zoology (library preparation). The 
PCR and library preparation were conducted using a twin-
tagging protocol (Yang  et  al. 2021). The resulting prod-
ucts were then sequenced on an Illumina HiSeq platform 
(PE150) at Novogene Tianjin, China. We processed the 
raw sequence data with the modified DAMe bioinformatics 
pipeline of Cai  et  al. (2021). After sequence clustering, we 
generated a table of 540 ponds by 74 operational taxonomic 
units (OTUs). We assigned taxonomies to the OTUs using 
PROTAX (Somervuo et al. 2017, Axtner et al. 2019), setting 
prior probabilities to 0.90 for a list of expected UK verte-
brate species (Harper et al. 2018). Further details regarding 
the metabarcoding process can be found in the Supporting 
information.

Joint species distribution modelling

To fit JSDMs to the observed community data, we converted 
OTU read counts to presence–absence data. We retained 
only OTUs present in ≥ five ponds and only sites with ≥ 
one targeted OTU (= vertebrate species present in the UK), 
which reduced the number of OTUs from 74 to 48 and the 
number of ponds from 540 to 320. We assigned species-level 
taxonomies to OTUs that received ≥ 98% PROTAX prob-
ability of species assignment, and we classified the OTUs into 
six trait groups: fish, amphibians, perching birds, waterfowl, 
mammals, and domestic species. Domestic species are whose 
distributions we deemed as determined largely by humans 
(Supporting information).

We fit our data with two distinct JSDM structures. One 
model was fit to all the species in our dataset, terrestrial and 
aquatic (320 ponds × 48 species), and the other model fit 
to only the aquatic species (amphibians and fish, 279 ponds 
× 15 species; fewer ponds because we excluded those with-
out aquatic species). A priori, aquatic species should be more 
likely to be filtered by pond characteristics, which make up 
five of our eight environmental covariates. Thus, we expect 
the aquatic species, especially the fish, to act more like nar-
row-niche species, and the terrestrial species to act more like 
broad-niche species (Fig. 1C).

All models were fitted using {sjSDM} ver. 1.0.6 (Pichler 
and Hartig 2021) running under R ver. 4.2.2 (www.r-proj-
ect.org). We used a binomial likelihood and a multivariate 
probit link, linear main effects for the eight environmental 
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covariates, and a DNN (deep neural net) spatial model. 
To avoid overfitting, a light elastic net regularisation (Zou 
and Hastie 2005) was applied to all regression slopes and 
weights of the DNN (model fitting details in the Supporting 
information).

Internal structure of the metacommunity

After fitting the two models (aquatic, terrestrial + aquatic), we 
used the ANOVA functions implemented in sjSDM (based 
on Leibold et al. 2022) to partition the variation of each spe-
cies’ distribution and each site’s composition across environ-
mental covariates (E), spatial autocorrelation (S), and biotic 
covariances (C) components. The relative partial McFadden 
R2 are visualised using ternary plots, where the positions of 
the species and sites reveal the relative contributions of E, S, 
and C: the metacommunity’s internal structure (Fig. 1B2).

Leibold  et  al. (2022) found that environmentally more 
distinctive sites (at the ends of their one niche axis) received 
higher E values (implying a greater contribution of environ-
mental filtering). To test for this result in a natural metacom-
munity, we regressed the individual pond partial E, S and C 
R2 values against pond environmental distinctiveness using 
quantile regression (50% quantile) (Fasiolo et al. 2021). We 
also tested the parallel hypothesis that geographically distinc-
tive sites would have higher partial S R2 values (implying a 
greater contribution of dispersal limitation). In both cases, 
we defined distinctiveness as the leading eigenvector of the 
corresponding environmental or geographical euclidean dis-
tance matrix. We note that if predictor variables are collinear, 
bivariate correlations can be spurious and partial correlations 
calculated using multiple regressions should be preferred. 
However, environmental and geographic distinctiveness 
show practically no collinearity (Supporting information).

Model generality

Our results are the outputs of a complex model that includes 
a linear environmental structure with eight environmental 
covariates and a DNN spatial structure with 30 × 2 layers. 
Complex models run a risk of overfitting, so to estimate the 
risk of overfitting after elastic-net regularisation and to val-
idate the predictive performance, we carried out a 20-fold 
cross-validation test with stratified multi-label sampling 
(Gunopulos et al. 2011, Szymański and Kajdanowicz 2017). 
The final explanatory and predictive area under the curves 
(AUCs) per species are the means over 20 folds. Species with 
higher predictive AUCs are those whose fitted models are 
more general (details in the Supporting information).

Results

Internal structure of the pond metacommunity

When analysing aquatic species only, we find that the fish are 
bimodally arrayed along the E–C axis, with four species rela-
tively better explained by environmental covariates (higher 

E values), and six species relatively better explained by biotic 
covariances (higher C values), which reflect the effects of 
unknown environmental covariates plus possible species 
interactions (Fig. 2A).

In contrast, none of the five amphibian species shows a 
high contribution of either environmental covariates or 
biotic covariances, but relative to fishes, amphibians show 
greater contributions of spatial effect (higher S values), espe-
cially the palmate newt Lissotriton helveticus, whose distribu-
tion is mostly explained by spatial effect. This species was 
detected in 16 ponds, in three separate sections of the survey 
area (Supporting information).

Including terrestrial species in the analysis (Fig. 2C) 
increases the relative contribution of biotic covariance for 
both fish and amphibians, which could reflect either the con-
tributions of species interactions with terrestrial species or 
more unmeasured environmental covariates that have been 
revealed by adding the terrestrial species. The terrestrial spe-
cies themselves also largely range along the E–C axis, with no 
clear clustering by trait group. Like the aquatic species, only 
one terrestrial species, Mandarin duck Aix galericulata, has a 
high S value (Supporting information) and is found in only 
five ponds. For the two site ternary plots (Fig. 2B, D), the 
general effect of adding terrestrial species is an increase in the 
variance accounted for by biotic covariances (site points shift 
upwards toward C).

We now examine species and site variation to try to infer 
some of the assembly processes that have resulted in these 
observed internal structures.

Estimated environmental preferences

In the aquatic-only model (Fig. 3A), the pond effects for the 
fish species are in the direction of greater prevalence in larger 
ponds with lower risk of drying and less macrophyte cover. 
Several of the fish species are known to eat macrophytes, 
reduce macrophyte cover through other behaviours, and/or 
require higher oxygen with less macrophyte cover (Lopes et al. 
2015, Maceda-Veiga et al. 2017, Stefanoudis et al. 2017). In 
contrast, for the amphibians, pond effects are in the direc-
tion of greater prevalence in smaller ponds with higher mac-
rophyte cover. Pond drying risk, water quality, and shade 
showed essentially no effects on amphibian prevalence. Most 
of the effects of land cover on fish species are in the direc-
tion of lower prevalence in areas surrounded by agriculture 
or grassland. For amphibians, the effect is towards the preva-
lence of ponds bordered by woodland. This effect is observed 
for all five amphibian species but is only significant for the 
palmate newt and the common frog.

In the aquatic + terrestrial model (Fig. 3B), the effects of 
the environmental covariates on fish and amphibians remain 
largely the same as in the aquatic-only model. For the ter-
restrial species, most of the significant environmental-covari-
ate effects are shade (% of pond perimeter shaded by trees), 
macrophyte cover, and land cover. Shade, which affects many 
perching birds and the grey squirrel, is most parsimoniously 
interpreted as increasing species detectabilities. Land-cover 

 16000587, 2025, 6, D
ow

nloaded from
 https://nsojournals.onlinelibrary.w

iley.com
/doi/10.1111/ecog.07461 by U

niversity O
f E

ast A
nglia, W

iley O
nline L

ibrary on [05/06/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Page 6 of 15

effects are variable across species, but we note that cows 
and sheep have higher prevalences in ponds bordered by 
(‘improved’) grassland.

Biotic covariances

We visualise the residual biotic covariances in pairwise correla-
tion plots (Fig. 4), where large absolute correlation-coefficient 
values correlate with high C-values in the internal-structure 

ternary plots (Fig. 2 left column; linear model, aquatic species 
only, R2 = 0.726, p < 0.001; aquatic + terrestrial, R2 = 0.201, 
p < 0.001).

In the aquatic species model (Fig. 4A, B) and after filter-
ing to the 2.5% most negative and positive values, the three 
surviving negative correlations are between the common frog 
Rana temporaria and two omnivorous fish species Carassius 
carassius and Cyprinus carpio and between great crested newt 
Triturus cristatus and a carnivorous fish Esox lucius. There are 

Figure 2. The internal structure of a pond metacommunity. The explained variation in species distributions or site compositions is decom-
posed, attributed to the three model components, environmental covariates (E), spatial autocorrelation (S), and biotic covariances (also 
known as co-distribution) (C), and visualised in a ternary plot after dividing each component’s explained variance by its sum to allow 
comparison among species. Top row: aquatic species only. Bottom row: aquatic + terrestrial species. Left column: each point is a species, 
point size scales to total R2

McFadden of each species, and the colours code for species trait group. Right column: each point is a site (pond), and 
point size scales to total R2

McFadden of each site.
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Figure 3. Estimated environmental effects. Eight environmental covariates were included in the model. The first five covariates from the left 
are taken from the ten standard pond variables used by surveyors to calculate the habitat suitability index (HSI) of each pond for the great 
crested newt and are therefore measured at all ponds in our dataset (ARG-UK 2010). The last three covariates describe the dominant land 
cover class within 500 m of each pond (more details in the Supporting information). Horizontal bars show the magnitudes, directions, and 
standard errors of the coefficients of each of the eight environmental covariates for each species. All covariates were normalised before fitting. 
Significance values are not corrected for multiple comparisons. Colours indicate species trait groups.
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also three surviving positive correlations between fish species, 
which we conservatively interpret as indicating unmeasured 
environmental covariates.

In the aquatic + terrestrial species model (Fig. 4C, D) and 
after filtering to the 2.5% most negative and positive val-
ues, there are four surviving negative correlations between 
amphibians and fish. The common frog is negatively corre-
lated with two omnivorous fish species Cyprinus carpio and 
Rutilus rutilus, and great crested newt Triturus cristatus is neg-
atively correlated with two carnivorous/omnivorous fish Esox 
lucius and Tinca tinca. Most of the surviving positive correla-
tions occur among the fish species and among the bird spe-
cies, which we again interpret as unmeasured environmental 
covariates. Also notable are negative correlations between sev-
eral fish species with ring-necked pheasant Phasianus colchicus 
and red fox Vulpes vulpes.

Relating distribution patterns to assembly processes

By site, the partial R2 explained by the environment increases 
significantly with the environmental distinctiveness of the 
site (Fig. 5A), and the partial site R2 explained by space 
increases significantly with the geographical distinctiveness 
of the site (Fig. 5B). This result holds up for four of the six 

trait groups tested individually (amphibians, perching birds, 
domestic animals, and mammals) (Supporting information). 
Differing from Fig. 2, where the position of species in the 
internal structure depends on the relative weights of the three 
components (relative R2), the R2 here refers to the total con-
tribution of a single component, regardless of its weight with 
other components. In other words, environmental filtering 
appears to be an increasingly more important assembly pro-
cess for more environmentally distinctive sites, as predicted 
by Leibold  et  al. (2022), and spatial effect appears to be 
increasingly more important for geographically distinctive 
sites. Given this environment effect, we post hoc tested each 
covariate individually and found that the partial R2 explained 
by the environment increases only with pond area (Fig. 5C, 
Supporting information), suggesting that the species compo-
sitions of large ponds is determined more strongly by envi-
ronmental filtering.

By species group, the partial R2 explained by biotic covari-
ances is greatest for fish, amphibians, and waterfowl, and 
about equal with the R2 explained by the environment for 
the other three trait groups (Fig. 5D), which is consistent 
with species distributions being primarily governed by a com-
bination of environmental filtering and (to a lesser extent) 
species interactions. The most pond-dependent species (fish, 

Figure 4. Biotic covariances. (A) Aquatic species only, all pairwise covariances. (B) Covariances filtered to the 2.5% most negative and posi-
tive. (C) Aquatic + terrestrial species, all pairwise biotic covariances. (D) Covariances filtered to the 2.5% most negative and positive.
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amphibians, waterfowl) are the least well explained by our 
environmental covariates, although there are individual 
exceptions (Fig. 2A, C).

Model generality

For the aquatic-only model, explanatory AUCs are always 
somewhat but not much greater than predictive AUCs, and 
explanatory and predictive AUCs are positively correlated 
(linear model, adjusted R2 = 0.546, p = 0.001) (Fig. 6A). For 
the aquatic + terrestrial model, explanatory AUCs are again 
still always greater than predictive AUCs, but the correlation 
weakens considerably (linear model, adjusted R2 = 0.139, 
p = 0.005), and for some terrestrial species, the model makes 
worse-than-random predictions (predictive AUCs < 0.5) 
(Fig. 6B). The risk of overfitting is greater for low-predic-
tive-AUC species, so the risk is greater for terrestrial species. 
We therefore focus on the aquatic species when interpreting 
model outputs.

Discussion

The goal of our study was to reveal the internal structure of a 
real metacommunity, in order to infer the importances of dif-
ferent assembly processes per species and site. We estimated 

the relative contributions of environmental covariates, biotic 
covariances, and space for explaining spatial variation in 
pond compositions. Pondscapes are convenient study systems 
because 1) each pond is unambiguously identified as a local 
community (De Meester et al. 2005), 2) there is an a priori 
division between pond niche aquatic versus terrestrial niche 
(Hill et al. 2021), 3) aquatic eDNA metabarcoding can effi-
ciently generate hundreds of local-community inventories, 
and 4) the detected species encompass multiple trophic lev-
els, increasing the possibility of detecting species interactions 
(Hering et al. 2018).

Importance of taxonomic breath

We estimated two internal structures, one for aquatic species 
only and one for aquatic + terrestrial species (Fig. 2), which 
both showed that the distribution of each species and the spe-
cies composition of each site were shaped by different mixes 
of ecological processes. This gives us our first conclusion, 
which is that the ‘one average mix’ approach to metacom-
munities indeed loses useful information contained in the 
variation among species and sites (Leibold  et  al. 2022). In 
this pond metacommunity, even if one makes the extreme 
assumption that all the variation partitioned to biotic cova-
riance is also environmental filtering (but unmeasured), the 
species and sites still vary in their inferred degrees of dispersal 

Figure 5. Correlation of the importance of assembly processes per site and species to environmental predictors and traits. (A)–(C) Quantile 
regression, correlating the importance of the three assembly mechanisms (measured by the share of absolute partial R2 values, each in a dif-
ferent colour) per site against (A) environmental distinctiveness (p < 0.001 for the environmental line), (B) geographical distinctiveness (p 
< 0.001 for the spatial line), and (C) pond area (p = 0.006 for the environmental component line). (D) Association of R2 shares per species 
with traits, in this case, species groups. Note that the shared fractions were removed from the partial R2, so the three components will not 
necessarily sum up to the total R2 value, which is displayed in Fig. 2.
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effect, and thus no single metacommunity paradigm (i.e. spe-
cies-sorting, mass-effect, patch-dynamic, and neutral com-
munities; Holyoak  et  al. 2005, Shoemaker and Melbourne 
2016, Thompson  et  al. 2020, Suzuki and Economo 2021) 
can serve as an adequate description.

Influence of environmental filtering

Looking at how metacommunity assembly processes vary 
across sites and species, both of the internal structures (Fig. 2A, 
C) suggest that environmental filtering is an important struc-
turing force for many of the species in this pondscape. These 
findings are supported by the fact that environmental-covari-
ate coefficient values are consistent with known biology. For 
instance, smooth and great crested newts are more prevalent 
in smaller ponds with greater macrophyte coverage (Fig. 3). 
In Romania, a visual survey found that macrophyte cover was 
also the strongest positive predictor of the great crested newt 
(Hartel et al. 2010), and in England, an eDNA pond survey 
also found that great crested newt is more prevalent in smaller 
ponds (Harper et al. 2020). Conversely, higher water quality 
is not associated with a higher prevalence of any amphibian 
species, despite its use as a component of the great crested 
newt’s habitat suitability index (ARG-UK 2010). Indeed, 
Beebee and Griffiths (2005) and Sewell and Griffiths (2009) 
have argued that amphibians are not necessarily sensitive bio-
logical indicators of environmental quality.

Environmental filtering has also been implicated as the 
main determinant of macroinvertebrate species compositions 

in pondscapes in the UK Midlands (Hill et al. 2017) and the 
US south (Montaña et al. 2022). Heino et al. (2017) found 
that insects, macrophytes, and fish were better predicted by 
environmental filtering than by spatial effects in Finnish 
streams.

That said, observed niche preferences (environmental 
covariate values in fitted JSDMs) represent realised niches, 
not necessarily fundamental niches (Poggiato  et  al. 2021), 
and in the case of amphibians, parts of their realised niches 
are probably shaped by the predator-avoidance behaviour 
that we hypothesised in the Introduction drives the negative 
biotic covariances between newts, common frog, and fish 
(Fig. 4). As a result, the observed amphibian preferences for 
smaller ponds might disappear if fish were to disappear, since 
great crested and smooth newts have been observed to prefer-
entially breed in larger ponds in continental Europe (Denoël 
and Lehmann 2006, Rannap and Briggs 2006, Skei  et  al. 
2006, Denoël et al. 2013).

To the extent that environmental filtering is an impor-
tant assembly process in this metacommunity, Leibold et al. 
(2022) predict that more environmentally distinctive sites 
should be more strongly determined by environmental fil-
tering. This is what we indeed observe (Fig. 5A). Moreover, 
it appears that pond size is a major driver of uniqueness, 
since the compositions of large ponds are determined more 
strongly by environmental filtering (Fig. 5C). Tornero et al. 
(2024) censused macroinvertebrates in ponds and also found 
that environmentally more distinctive ponds, including larger 
ponds, are more compositionally distinctive.
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Figure 6. Predictive versus explanatory performance in two joint species distribution models (JSDMs). (A) Aquatic-species-only model. (B) 
Aquatic + terrestrial species model. Model performance was assessed using the AUC metric, and the dotted lines indicate mean AUC values 
(vertical for predictive and horizontal for explanatory). In both models, predictive performance is generally higher for fish than for amphib-
ians, and explanatory performance is generally somewhat greater than the predictive performance, indicating moderate overfitting.
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Influence on space on the community assembly

Looking at the contribution of space, one interpretation of 
which is a proxy for dispersal limitation in metacommunities 
(Leibold et al. 2022), the dataset does not show that different 
trait groups – as we defined them – differ consistently in the 
degree of spatial autocorrelation (Fig. 2C and 5D), contrary 
to our initial hypothesis.

Instead, we find that spatial effects are dominant for only 
two species, palmate newt and mandarin duck (Fig. 2). The 
spatial distribution of the 16 palmate newt detections is vis-
ibly patchy (Supporting information), which may reflect the 
persistence of relictual populations with a historic distribu-
tion associated with woodland (Beebee and Griffiths 2000). 
Whether the palmate newt is truly dispersal limited depends 
on whether nearby woodland is truly environmentally equiv-
alent to historical woodland as the palmate newt perceives it. 
If not equivalent, then the patchy distribution is better inter-
preted as environmental filtering (here, habitat loss) leading 
to population decline and fragmentation. Alternatively, if 
the palmate newt requires continuous woodland to disperse 
through, which is not available in our study area, then dis-
persal limitation remains a viable hypothesis. Only individual 
tracking and experimental translocations and monitoring of 
population trajectories can answer this question definitively.

There are only five detections for mandarin duck 
(Supporting information), so we cannot conclude much 
about this species, but clearly a flighted bird should not be 
physically dispersal limited. Our working hypothesis is that 
this introduced species appears dispersal limited because it 
has successfully established in a range of pond environments, 
but the populations have not grown enough to start expand-
ing. In short, a group of founder populations should appear 
dispersal limited.

Parallel to the environmental distinctiveness test (Fig. 5A), 
we found that geographically distinctive sites show stronger 
signals of dispersal limitation (Fig. 5B), or in other words, 
isolated ponds are better explained by their location than by 
their environmental conditions. Tornero  et  al. (2024) used 
network metrics to show that both active and passive dis-
persal macroinvertebrate communities in ponds are more 
compositionally unique the more isolated they are, which 
is suggestive of the same effect. More generally, pond stud-
ies report significant spatial effects (e.g. proximity to other 
ponds) on species compositions of both macroinvertebrates 
(Hill et al. 2017, Tornero et al. 2024) and vertebrates (Denoël 
and Lehmann 2006).

Influence of co-distribution on community assembly

It is not a general rule that predators and prey should exhibit 
only negative biotic covariances, since predators search 
for prey, and they must overlap at some times and places, 
including over and above any shared environmental prefer-
ences. Theoretically, the covariances could go both directions, 
favouring a positive relationship when the prevalence of both 
species is equal, and possibly favouring a negative relationship 

when the prevalence of one species is higher (Zurell  et  al. 
2018). In fact, two remarkable studies that applied JSDMs 
to trawl data and to observational data from marine fisheries 
have reported both positive and negative biotic covariances 
between predators and prey (Astarloa et al. 2019, Zhang et al. 
2022). However, Astarloa et al. (2019) found that most of the 
biotic covariances in their marine study system were negative, 
and they attribute this to predator-avoidance behaviour.

Keeping in mind the caveat that biotic (i.e. residual pair-
wise) covariances should not be taken as direct evidence 
for species interactions (Dormann et al. 2018, Zurell  et al. 
2018, Blanchet et al. 2020, Poggiato et al. 2021, Hartig et al. 
2024), smooth newt, great crested newt, and common frog 
exhibited negative biotic covariances with nearly all the fish 
species (Fig. 4AC), and three (or four) of the covariances 
were among the 5% most extreme (Fig. 4BD). As suggested 
by Astarloa  et  al. (2019), these covariances are plausibly 
generated by the newt species actively avoiding predators 
(Winandy et al. 2017). The common frog is also known to 
avoid ovipositing in ponds that contain fish (or even ponds 
that were experimentally emptied of fish but still containing 
fish odour), even when alternative oviposition sites are pools at 
risk of drying (Kloskowski 2020, Kloskowski and Nieoczym 
2022). In contrast, the bufotoxin-protected common toad 
showed both weak positive and negative covariances with 
fish (Fig. 4AC), and this species does not avoid ovipositing 
in fish-containing ponds (Kloskowski and Nieoczym 2022).

What can eDNA bring to metacommunity ecology 
and internal structure analysis?

The large gains from eDNA metabarcoding in efficiency and 
error homogeneity over traditional survey methods make it 
feasible to generate datasets with many samples and many 
species, which can strengthen inference of metacommu-
nity assembly processes. Most obviously, the large number 
of species detectable with eDNA increases the probability 
of detecting sets of species that are truly interacting, such as 
the negative correlations between fish and amphibians in this 
study (Fig. 4). Of particular interest would be adding data 
on pond macroinvertebrates and fungal diseases, which are 
obvious candidates for determining vertebrate distributions 
via species interactions (Beebee and Griffiths 2005).

Including more species could also suggest important but 
unmeasured environmental covariates via their pairwise spe-
cies covariances. For example, while terrestrial and aquatic 
species mostly do not interact, some terrestrial species could 
be proxies for unmeasured land uses that affect aquatic 
species, such as increased agricultural runoff. In our mod-
els, we included agricultural and improved-grassland land 
cover types as environmental covariates, so we saw this effect 
directly (Fig. 3). The negative covariances of foxes and pheas-
ants with multiple fish species (Fig. 4D) might be revealing 
other unmeasured land-use covariates. Specifically, > 35 mil-
lion pheasants are released annually in the UK, mostly in 
England, and appear to boost fox numbers and incentivise 
land-cover management measures (Sage et al. 2020).
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More technically, eDNA sampling makes it more feasible 
to collect multiple sample replicates, which would allow com-
bining a JSDM with a detection model to account for obser-
vation error (Guillera-Arroita et al. 2017, Tobler et al. 2019, 
Doser  et  al. 2023, Diana  et  al. 2024, Hartig  et  al. 2024). 
Also, only two species in our dataset showed strong signals 
of dispersal limitation (Fig. 2), but this low number could 
be because near-neighbour ponds were not sampled in our 
dataset, removing the possibility of detecting fine-scale spa-
tial autocorrelation and thereby possibly reducing the relative 
importance of dispersal that would support source–sink rela-
tions among closely adjacent ponds. Denser sampling might 
have detected more evidence of dispersal limitation. In our 
case, unfortunately, our dataset used the great crested newt 
sampling protocol, which requires only one sample per pond, 
and the ponds were dispersed across the landscape because 
the original use was to fit a species distribution model. 
Finally, eDNA sampling also makes it more feasible to survey 
pondscapes repeatedly over time, thereby creating a dataset 
that could be used to infer causality (Hartig et al. 2024). For 
example, if fish colonisation of ponds is consistently followed 
by loss of amphibians, we would have direct evidence sup-
porting the causal hypothesis that we inferred from the nega-
tive biotic covariances between fish and amphibians.

What can JSDMs and internal structure analysis 
bring to eDNA researchers?

Novel community datasets, including eDNA metabarcoding, 
are multivariate abundance datasets; that is, each species is a 
response variable, and there are many of them. Before com-
puting power was widely available, such datasets were gen-
erally first reduced to tractable dissimilarity matrices before 
visualisation and analysis (e.g. NMDS and constrained 
ordination), but this approach may lose information and 
generate artefacts (Warton  et  al. 2012). However, for over 
a decade, it has been possible to analyse multivariate abun-
dance data directly (Ovaskainen et al. 2017, Warton 2022). 
Here we have shown that JSDMs and variation partitioning 
allow the simultaneous analysis of environmental covari-
ates, biotic covariances, and spatial autocorrelations, and the 
outputs can be visualised and interrogated in powerful ways 
(Ovaskainen et al. 2017, Popovic et al. 2019, Leibold et al. 
2022, van der Veen  et  al. 2022, Warton 2022, Terry  et  al. 
2023, Hartig et al. 2024).

Conclusion

In conclusion, our study demonstrates that the combination 
of eDNA data and the analytical approach of exposing the 
‘internal structure’ of metacommunities using JSDMs is a 
powerful tool for examining community assembly processes 
in structured landscapes. For the pond metacommunity in 
this study, we could reveal interesting patterns of how the 
importance of community assembly processes differs across 
sites and species, and relate those differences to spatial, envi-
ronmental, and trait predictors. These results are consistent 

with other empirical studies (Mehner et al. 2021, Vass et al. 
2022, Kadoya et al. 2024) that support Leibold et al.’s (2022) 
inspiring insight that applying JSDMs to patterns of species 
distributions can help to reveal the relative importance of 
environmental filtering, dispersal limitation, and biotic inter-
action assembly processes on individual sites and individual 
species. Our study thus provides a blueprint for ecologists 
who want to study metacommunity processes and also for 
molecular ecologists who want to extract more information 
from their eDNA data.
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