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Abstract. The Clock Drawing Test (CDT) is an important tool in the
diagnosis of Cognitive Decline (CD). Using Deep Learning (DL), this
test can be automated with a high degree of accuracy, more so where
the medium of recording allows the use of temporal information on how
the clock was drawn which may not be accessible to clinicians in tradi-
tional screening. The high-risk nature of this field makes understanding
the reasoning for automated results imperative. A model’s reasoning can
often be described using saliency maps, however, there are a number
of different methods for generating such maps. Therefore, we propose a
methodology to train a DL classifier for use in the CDT which incorpo-
rates temporal information and use saliency maps to explain classifica-
tion predictions. We find that our classifier achieves scores above 98%
with F1 for clocks and over 96% F1 on average across a test set of 18
different classes. Our methodology also shows that Integrated Gradients
using SmoothGrad produce the best saliency map results visually and
statistically.

Keywords: Cognitive Decline · Deep Learning · eXplainable Artificial
Intelligence

1 Introduction

Cognitive decline (CD) is a serious risk associated with aging that can lead to 
dementia [4]; therefore early diagnoses are imperative for interventions. There is 
a lifetime risk of cognitive impairment of 37% for women and 24% for men [10]. 
Therefore, development of CD testing is crucial.

One method of assessing CD is through the use of sketched drawings. The 
Clock Drawing Test (CDT) [14], is a popular test in which patients are asked 
to draw a clock to assess their state of CD. Within this, patients are typically 
asked to draw a circle and then instructed to set the hands at 11.10, the test is 
scored from 0–5 based on how well the clock is drawn [21]. The test is quick to 
administer and has been shown to differentiate at baseline between cognitively 
intact older adults who will develop dementia up to 2 years post baseline and 
also those that have mild cognitive impairments and will progress to dementia 
up to 6 years post baseline [7]. Evaluations of the test are typically performed by
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qualified clinicians. The use of Deep Learning (DL) in diagnosis can be highly
beneficial as it can reduce human error and increase speed of diagnosis [6]. This
includes the application of DL to evaluate the results of the CDT which can be
fully automated for patients [2].

Explainable AI (XAI) is a particularly important field within medical appli-
cations of DL. Using XAI allows for human-interpretable explanations of model
predictions. XAI can increase trust in these systems, allowing for clearer expla-
nations of why failure happens, and illustrate functionality to regulators [12].

Saliency maps, developed under XAI, can visualise classification decisions as
a heatmap. Saliency heatmaps are generated using DL model parameters and
an input image to then assign importance values to pixels [25]. This allows for
further understanding with a human-interpretable visual representation. Ade-
bayo et al. [1] present a method for evaluating how informative saliency maps
are; this method is created and tested on several datasets of photographs. Here
we extend the concept to evaluation on sketches recorded over a computer as is
needed to automate the CDT and similar tests.

Our key contribution is to create a DL model to automate the CDT, incorpo-
rating all information introduced by the medium of recording - such as temporal
information - then evaluating the series of saliency map methods in [1] to deter-
mine which are most informative within this use case.

The remainder of this paper is structured as follows. Section 2 introduces
related work on automating the CDT, and saliency map methodologies includ-
ing evaluation of saliency maps. Section 3 provides details of the methodology
proposed to automate the CDT with dataset, DL models, evaluation metrics
for classification and Saliency maps. The results of our findings are reported in
Sect. 4. Finally, conclusions are drawn and future work is presented in Sect. 5.

2 Related Work

Our related work is split into works relating to the use of DL for sketch clas-
sification including the automation of the CDT, and the use and evaluation of
saliency maps, particularly within a medical context.

2.1 Automation of CDT

Some attempts have been made to automate the completion of the CDT, for
example Amini et al. [2] used a dataset of analog clock drawings of 3,263 cogni-
tively intact and 160 cognitively impaired individuals to build a Convolutional
Neural Network (CNN) which could predict whether an individual is undergoing
CD. They further extended this model into an ensemble which takes in demo-
graphic information such as the age and education level of a patient to produce
a model which classifies whether a patient shows signs of CD.

If prediction models are possible, a system to collect and classify sketch
information more generally will aid with automating the assessment task. The
model can later be deployed to collect data on a clinical setting. Pearson et al.
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[13] trained a model to classify 24 different categories of sketch and produced a
measure of certainty that a given sketch is of the instructed class - e.g. a clock.
The expectation was that the certainty that the sketch belongs to a specific
category may be correlated with some measurement of CD, although this was
not tested.

A limitation of both approaches, in terms of how sketches are classified, is
that they contain no temporal information and instead only assess the final
completed sketch. However, information on how a patient goes about drawing a
sketch over time can be recorded for a sketch drawing assessment tool. This has
been found to be a useful features in recognising CD [5].

Several methods for sketch classification utilising temporal information are
compared by Seddati et al. [17]. These methods rely on rasterising vector rep-
resentations of the sketches at five stages of completion, i.e. 20% of time used,
40% used, etc. Five CNNs are then trained on the sketches, one for each stage
of completion, these are fused using either a fully connected layer, hard-coded
weights, or a Long-Short Term Memory network (LSTM). The LSTM is a recur-
rent network which modifies an internal state after seeing the outputs of each
model where the other methods are fused based on all outputs simultaneously.
Additionally, another model was created which stacks the five frames into a single
input thus only requiring a single CNN. Using the TU-Berlin sketch benchmark
[8], Seddati et al. found hard-coded values and a fully connected layer produced
the best accuracies of 77.69%, and 77.53% whilst the LSTM and combined mod-
els produced lower results of 76.42%, and 74.07%, respectively. As a baseline
comparison, the CNN trained on the fully completed dataset produced an accu-
racy of 75.61% when used in isolation.

Based on this, we will implement versions of the four models utilising tempo-
ral features using a generalised approach to clock classification which can later
be deployed to collect clinical data as suggested in Pearson et al. [13].

2.2 Saliency Maps

Saliency maps are used in several medical contexts to better understand the
reasons for classification from DL models. For example, in the work by Rajpurkar
et al. [16] a CNN is created to identify pneumonia from chest X-rays and Class
Activation Maps (CAMs) are used to identify areas that are important for a
particular pathology classification. CAMs highlight large areas whereas Saliency
maps use exact pixels, producing a higher granularity in the highlighted areas
which could help with explaining CD as manifested in sketch drawing.

Saliency methods are known to sometimes produce misleading or unclear
results [9]. Arun et al. [3] applied eight saliency map techniques based on basic
gradients, integrated gradients, guided backpropagation, and GradCAM to two
pneumonia datasets. This found that, when applied to these datasets, all tech-
niques failed at least one of their criteria for utility and robustness. This will
diminish the ability of clinicians to verify that the model is identifying relevant
features within the sketches and reasons for false positives and false negatives.
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Due to the high-risk nature of the medical diagnosis, the accuracy and usefulness
of these methods needs to be ensured.

Adebayo et al. [1] compares the performance of saliency maps across three
datasets. One of these consists of photographed objects across many categories,
one of greyscale photographs of items of clothing, and one of photographed
and pre-processed hand-drawn digits. Their evaluation of performance works by
randomising the parameters of trained models and calculating the correlation
between the saliency maps produced before and after randomisation, this should
assess how much of a given map is based on the form of the image instead of on
the model’s calculations. When applied to models trained on these datasets the
qualities of the saliency map methods vary by dataset whilst maintaining some
similarities, such as the ineffectiveness of Guided GradCAM.

As different saliency map methods vary in how informative they are across
differing domains, an evaluation of saliency map methods specifically within the
domain of the CDT will be undertaken in this paper, using the same randomi-
sation methodology and including all available methods for completeness.

3 Methods

Our methodology is broken down into several steps to ensure clarity and effec-
tiveness within the classification and XAI evaluation for the CDT.

3.1 Dataset

The Google ‘Quick, Draw!’ dataset [11] was used to develop the concepts in this
paper. This is a dataset of 50 million sketch style drawings across 345 drawing
categories. The sketches in this dataset were captured as timestamped vectors
and publicly released alongside a simplified 28× 28 rasterised version.

To ensure temporal information can be factored into analysis, one of the con-
tributions of our work, the timestamped vectors were used and a modified version
of Quick Draw’s simplification methodology [11] was used to allow sketches to
be reconstructed at any stage of drawing. This was completed as follows:

1. Remove curve points with timestamps beyond the current maximum time.
2. Rescale vectors to fit within a 28 × 28 grid, preserving aspect ratio.
3. Rasterise, antialiasing using Xiaolin Wu’s line algorithm [26].

The reconstruction at different time points is demonstrated in Fig. 1. It may be
for example, that a pause while trying to work out where the clock hands should
be drawn is associated with CD.

To simplify the computational complexity of training and deployment, a sub-
set of 18 classes were used for training. These were selected for their simplicity
of drawing, so as to minimise the confusion between CD and poor drawing skills,
and are shown in Fig. 2.
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Fig. 1. Example of a clock sketch rendered at five points in time. Note that the drawer
paused after drawing the circle so images 2 and 3 are identical

Fig. 2. The 18 chosen target classes. In order from left to right, top to bottom, these
are: Bucket, Butterfly, Candle, Clock, Cloud, Envelope, Eye, Fence, House, Ice Cream,
Ladder, Mushroom, Paper Clip, Pizza, Rainbow, Snowflake, Star, and Wine Bottle

3.2 Model Selection

The four model architectures created by Seddati et al. [17] as described in Sect. 2
were implemented. Sketches were rendered at five equidistant stages of comple-
tion and used to train five CNNs alongside a fully connected layer and a LSTM
layer to fuse them. They were also fused using the hardcoded values 1, ..., 5.
Finally a model which stacks the five frames into a single input, thus, only
requiring a single CNN was implemented.

All CNNs were created with the same structure of a batch normalisation
layer followed by four Convolutional layers and four fully connected layers. To
reduce overfitting, three dropout layers are used. Layers were connected using
the Rectified Linear Unit activation function (ReLU).

Additional features calculated from the vectors were passed to the dense layer
consisting of the number of lines in the sketch and the mean, variance, range,
and quartiles of the lines’ lengths, distances (from start and end of line), and
duration spent drawing. The full models are visualised in Fig. 3.

1000 instances from each class were reserved as test data with all remaining
instances being used as training data. Due to the massive size of training data,
sets of 12, 600 new training instances (700 for each instance) were each trained
upon for 5 epochs after which a new set of instances would be loaded. This was
completed 40 times, using a total of 28, 000 instances of each class.

3.3 Model Evaluation

Performance on a single class is calculated using the F1-score, we will look at
clocks in particular as they are used in the CDT. Overall performance is calcu-
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Fig. 3. Diagrams of the four models, from left to right, top to bottom, fusion using a
fully connected layer, hard-coded values, LSTM, and single input

lated using overall accuracy and average F1-score across all classes. These are
implemented as in Rainio et al. [15]. The F1-scores for clocks and metrics across
all classification are presented and discussed in Sect. 4.1.

3.4 Saliency Map Methods and Evaluation

Saliency maps when visualised show a heatmap of importance values where red
indicates positive importance (this area pushes towards the class that was clas-
sified) and blue indicates negative importance. The methods used in this paper
are summarised as follows.

– Basic Gradient Method (Gradient): Calculates the saliency of a pixel x
as Gradient(x) = ∂S

∂x . This indicates the rate at which a change in x changes
the prediction S(x).

– SmoothGrad (SG): Smooths the noisy results of basic gradients by aver-
aging gradients calculated with added Gaussian noise N (0, σ2). This is com-
puted as SG(x) = 1

n

∑n
1 Gradient(x + N (0, σ2)) [22].

– Gradient-Input (Ipt-Grad): Multiplies the basic gradient by the input to
reduce noise, calculated as Ipt-Grad(x) = x∂S

∂x [20].
– Integrated Gradients (IG): Uses a baseline input x′ and sums gradients

over different input scalings, computed as IG(x) = (x−x′)
∫ 1

α=0
∂S(x′+α(x−x′))

∂x
[24].

– Guided Backpropagation (GBP): Modifies backpropagation to set neg-
ative gradients to zero and multiplies gradients with the activation gradient.
This ensures only positive gradients contribute to the saliency map [23].
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– GradCAM: Calculates pixel saliency as the gradients of the classified con-
cept passing into a convolutional layer, usually the final layer [18].

– Guided GradCAM (GBP-GC): Combines GBP and GradCAM, produc-
ing a saliency map that preserves information from both methods [19].

To evaluate the quality of the saliency mapping method, weights of layers are
re-initialised to their untrained (random) values. Layers are randomised sequen-
tially - starting from the first layer - and saliency maps calculated at each stage of
randomisation. When comparing trained layers against randomised there should
be a significant difference; if there is not, the saliency map method is not rep-
resentative of the trained layers. To compare we use Spearman rank correlation
using the magnitude of each pixel where the smallest value is 1 and the largest
n, where n is the number of values. The difference between the flattened maps
d is then calculated and the correlation ρ is calculated as in Eq. 1. In Sect. 4
we report the correlation at each stage of randomisation as the mean of the
correlations across 100 randomly selected test instances.

ρ = 1 − 6
∑

d2
i

n(n2 − 1)
(1)

4 Results and Discussion

4.1 Model Evaluation

The evaluation metrics for the four models are shown in Table 1 alongside the
metrics for the CNN trained on completed sketches, extracted from the larger
models. The highest average F1 score was produced by fusion using hard coded
values (in bold).

The models are all highly accurate, producing results over 95% in all metrics.
Temporal features are clearly useful in classification, improving F1 from 95.89%
to at least 96.69%. This trend is matched in the F1 scores for clocks specifically.

Going forwards the CNNs trained in the fusion using hard coded values model
will be used due to their higher F1 value.

Table 1. Evaluation Metrics for the Trained Models

Model Accuracy (%) Average F1 (%) Clock F1 (%)

Hard Coded Values 96.794 96.797 98.443

Fully Connected Layer 96.778 96.779 98.395

LSTM 96.767 96.767 98.348

Early Fusion 96.689 96.693 98.100

Without Temporal Information 95.889 95.891 97.571
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4.2 Saliency Method Evaluation

Each saliency map method was applied to a random set of 100 instances from the
test data using the five CNNs at differing stages of completion. A comparison of
saliency maps generated using 100% completed sketches is shown in Fig. 4. The
impact randomisation had on the saliency maps across all five CNNs is plotted
in Fig. 5.

Fig. 4. Examples of all saliency map types used (described in Section 3.4). Red shows
positive importance and blue shows negative importance

All saliency map generation methods had a lowered correlation upon ran-
domisation as shown on Fig. 5. This demonstrates that the learned values within
the models were having an impact on the results of the saliency map generation
methods.

The highest correlation was produced by GBP with a mean correlation of
0.562 and a standard deviation of 0.0558. This indicates that the produced
saliency map mostly consists of information irrelevant to the model’s reason
for classifying an image, instead producing values akin to edge detection. The
combination of GBP and GradCam, GBP-GC, produced similar, though slightly
better, results.

All gradient based approaches, Gradient, SG, IG, Ipt-Grad, IG-SG, produced
reasonably high quality results in terms of correlations. Visually some of these
are quite explanatory, for example in Fig. 4 they highlight where the minute hand
shows a gap to the circle which is how a clock might appear. The best method,
with the lowest correlation, was IG-SG with a mean of 0.00956 and a standard
deviation of 0.0599. In its basic form, IG produces a higher correlation than
Gradient, however, smoothing (SG) has a positive effect. This may be because
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Fig. 5. Charts showing the rank correlations for each saliency map method (calculated
as the average rank correlation using 100 test instances) at each step of cascading
randomisation. At Orig all weights are preserved, at Dense5 all have been randomised.
Charts are shown for the five CNNs at differing stages of sketch completion (Color
figure online)

multiplying by the input sketch, as is done with IG, ensures that only the pixels
of the saliency map laying atop the drawn lines show saliency information.

These results are relatively consistent across all five models trained at dif-
fering stages of completion with some minor differences. Models using less com-
pleted sketches tended to find GradCAM less useful. As shown in Fig. 5 (shown
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in pink), the rank correlation increases from 0.220 after randomisation using
100% of sketches to 0.344 when using 20%, making it worse than GBP which
decreased from 0.562 to 0.364. This may simply be a result of these images hav-
ing less detail, therefore, any CNN trained may not be able to learn enough
from the data. This could also be from GradCAM generating a heatmap that is
not representative of the CNN predictions more often. It should be noted that
the gradient based methods do produce slightly lower correlations using the less
completed sketches for example, Gradient decreases from 0.021 to 0.004. Since,
by nature of taking gradients from a convolutional layer, GradCAM does not
detect these edges it may not be enhanced by having less sketch data. Regard-
less, IG-SG still produces the smallest correlation (−0.0031) with SG producing
the second smallest (−0.000051).

5 Conclusion

The CDT plays an important part in identifying CD; it can be automated with a
high degree of accuracy [2]. However, due to the high-risk nature of this domain
deployed models need to be human-interpretable.

We created a model to automate the CDT utilising all information available
within the medium of computer recorded sketches, including temporal informa-
tion, then evaluated a series of eight saliency map methods for how informative
they are.

Among various methods for fusing CNNs trained on sketches at five stages of
completion, the best combination used a set of hard-coded weights. This seems
unusual as theoretically using a fully connected layer should learn whatever
values are most optimal; however this result is consistent with existing litera-
ture. The results produced an accuracy and average F1 score over 96% with
the clock class specifically having an F1 score over 98%. The temporal informa-
tion increased performance with all models incorporating temporal information
producing a higher accuracy, average F1, and clock F1 than the model without.

Our saliency map results find GBP to be heavily influenced by the shape
of the image, not providing useful information. This result matches those found
in the literature. Gradient based approaches using SG, most notably IG-SG,
produce the most informative results.

Future work can focus on the ability for saliency maps to highlight known
features within drawings that may be helpful to clinicians, including for example
temporal aspects of sketch drawing.
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the U.S.: Lifetime risk, age at onset, and years impaired. SSM Popul Health 11,
100577 (2020)

11. Jongejan, J., Rowley, H., Kawashima, T., Kim, J., Fox-Gieg, N.: The quick, draw!
(2016). https://quickdraw.withgoogle.com/

12. Longo, L., Goebel, R., Lecue, F., Kieseberg, P., Holzinger, A.: Explainable artificial
intelligence: concepts, applications, research challenges and visions. In: Holzinger,
A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-MAKE 2020. LNCS, vol. 12279,
pp. 1–16. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57321-8 1

13. Pearson, C., De La Iglesia, B., Sami, S.: Detecting cognitive decline using a novel
doodle-based neural network. In: 2022 IEEE International Conference on Metrol-
ogy for Extended Reality, Artificial Intelligence and Neural Engineering (MetroX-
RAINE), pp. 99–103 (2022). https://doi.org/10.1109/MetroXRAINE54828.2022.
9967549

14. Pinto, E., Peters, R.: Literature review of the clock drawing test as a tool for cog-
nitive screening. Dement. Geriatr. Cogn. Disord. 27(3), 201–213 (2009). https://
doi.org/10.1159/000203344

15. Rainio, O., Teuho, J., Klén, R.: Evaluation metrics and statistical tests for machine
learning. Sci. Rep. 14(1), 6086 (2024). https://doi.org/10.1038/s41598-024-
56706-x

https://doi.org/10.1148/ryai.2021200267
https://doi.org/10.1148/ryai.2021200267
https://doi.org/10.1212/01.wnl.0000249117.23318.e1
https://doi.org/10.1212/01.wnl.0000249117.23318.e1
https://doi.org/10.1109/EMBC44109.2020.9176469
https://doi.org/10.1007/s11886-013-0441-8
https://doi.org/10.1007/s11886-013-0441-8
https://doi.org/10.1055/s-0030-1266578
https://doi.org/10.1055/s-0030-1266578
https://doi.org/10.1145/2185520.2185540
https://doi.org/10.1016/S2589-7500(21)00208-9
https://quickdraw.withgoogle.com/
https://doi.org/10.1007/978-3-030-57321-8_1
https://doi.org/10.1109/MetroXRAINE54828.2022.9967549
https://doi.org/10.1109/MetroXRAINE54828.2022.9967549
https://doi.org/10.1159/000203344
https://doi.org/10.1159/000203344
https://doi.org/10.1038/s41598-024-56706-x
https://doi.org/10.1038/s41598-024-56706-x


Automating the Clock Drawing Test with Deep Learning and Saliency Maps

16. Rajpurkar, P., et al.: CheXNet: Radiologist-level pneumonia detection on chest
x-rays with deep learning (2017)

17. Seddati, O., Dupont, S., Mahmoudi, S.: Deepsketch 3. Multimedia Tools Appl.
76(21), 22333–22359 (2017). https://doi.org/10.1007/s11042-017-4799-2

18. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-
CAM: visual explanations from deep networks via gradient-based localization. In:
2017 IEEE International Conference on Computer Vision (ICCV), pp. 618–626
(2017). https://doi.org/10.1109/ICCV.2017.74

19. Selvaraju, R.R., Das, A., Vedantam, R., Cogswell, M., Parikh, D., Batra, D.: Grad-
cam: Why did you say that? (2017)

20. Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through
propagating activation differences. In: Precup, D., Teh, Y.W. (eds.) Proceedings of
the 34th International Conference on Machine Learning. Proceedings of Machine
Learning Research, vol. 70, pp. 3145–3153. PMLR (2017). https://proceedings.mlr.
press/v70/shrikumar17a.html

21. Shulman, K.I.: Clock-drawing: is it the ideal cognitive screening test? Int. J. Geri-
atr. Psychiatry 15(6), 548–561 (2000)

22. Smilkov, D., Thorat, N., Kim, B., Viégas, F., Wattenberg, M.: SmoothGrad: remov-
ing noise by adding noise (2017)

23. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplic-
ity: The all convolutional net (2015)

24. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks
(2017)

25. Tjoa, E., Guan, C.: A survey on explainable artificial intelligence (XAI): toward
medical XAI. IEEE Trans. Neural Netw. Learn. Syst. 32(11), 4793–4813 (2021).
https://doi.org/10.1109/TNNLS.2020.3027314

26. Wu, X.: An efficient antialiasing technique. SIGGRAPH Comput. Graph. 25(4),
143–152 (1991). https://doi.org/10.1145/127719.122734

https://doi.org/10.1007/s11042-017-4799-2
https://doi.org/10.1109/ICCV.2017.74
https://proceedings.mlr.press/v70/shrikumar17a.html
https://proceedings.mlr.press/v70/shrikumar17a.html
https://doi.org/10.1109/TNNLS.2020.3027314
https://doi.org/10.1145/127719.122734

	Automating the Clock Drawing Test with Deep Learning and Saliency Maps
	1 Introduction
	2 Related Work
	2.1 Automation of CDT
	2.2 Saliency Maps

	3 Methods
	3.1 Dataset
	3.2 Model Selection
	3.3 Model Evaluation
	3.4 Saliency Map Methods and Evaluation

	4 Results and Discussion
	4.1 Model Evaluation
	4.2 Saliency Method Evaluation

	5 Conclusion
	References


