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Abstract
Background  Epidermal growth factor receptor (EGFR) T790M mutation often occurs during long durational erlotinib 
treatment of non-small cell lung cancer (NSCLC) patients, leading to drug resistance and disease progression. 
Identification of new selective EGFR-T790M inhibitors has proven challenging through traditional screening platforms. 
With great advances in computer algorithms, machine learning improved the screening rates of molecules at full 
chemical spaces, and these molecules will present higher biological activity and targeting efficiency.

Methods  An integrated machine learning approach, integrated by Bayesian inference, was employed to screen 
a commercial dataset of 70,413 molecules, identifying candidates that selectively and efficiently bind with EGFR 
harboring T790M mutation. In vitro cellular assays and molecular dynamic simulations was used for validation. EGFR 
knockout cell line was generated for cross-validation. In vivo xenograft moues model was constructed to investigate 
the antitumor efficacy of CDDO-Me.

Results  Our virtual screening and subsequent in vitro testing successfully identified CDDO-Me, an oleanolic acid 
derivative with anti-inflammatory activity, as a potent inhibitor of NSCLC cancer cells harboring the EGFR-T790M 
mutation. Cellular thermal shift assay and molecular dynamic simulation validated the selective binding of CDDO-Me 
to T790M-mutant EGFR. Further experimental results revealed that CDDO-Me induced cellular apoptosis and caused 
cell cycle arrest through inhibiting the PI3K-Akt-mTOR axis by directly targeting EGFR protein, cross-validated by 
sgEGFR silencing in H1975 cells. Additionally, CDDO-Me could dose-depended suppress the tumor growth in a H1975 
xenograft mouse model.
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Background
Drug resistance in non-small-cell lung cancer (NSCLC) 
significantly contributes to serious disease progression 
and patient mortality [1]. As a vital second-line therapy, 
Erlotinib, an epidermal growth factor receptor (EGFR) 
tyrosine kinase inhibitor (TKI), is extensively used to 
manage disease progression in NSCLC patients who 
have received first-line chemotherapy, thereby improving 
therapeutic outcomes [2, 3]. The drug interacts with the 
EGFR catalytic, or ATP-binding, pocket in both its active 
and inactive states [4]. The ATP-binding pocket of EGFR 
is a critical site for inhibitor binding, making it a pri-
mary target in drug design efforts for NSCLC [5]. Inhibi-
tion at this site disrupts EGFR signaling, which is pivotal 
in the proliferation and survival of cancer cells [6]. This 
approach forms the basis for using Erlotinib and other 
TKIs as effective treatments against NSCLC, addressing 

both active and inactive states of EGFR to prevent escape 
mechanisms that lead to drug resistance EGFR muta-
tion mediates resistance to EGFR tyrosine kinase inhibi-
tors in NSCLC: From molecular mechanisms to clinical 
research [7, 8]. However, prolonged use of Erlotinib can 
lead to reduced binding affinity due to the emergence of 
the EGFR T790M mutation, resulting in approximately 
60% of NSCLC patients developing resistance to both 
first- and second-line EGFR TKIs [9]. Consequently, the 
development of new generation EGFR TKIs to counter-
act T790M mutation-driven resistance has become a 
critical focus in NSCLC treatment.

To date, discovering novel chemical entities against 
EGFR TKIs resistance has proven to be greatly challeng-
ing through traditional drug screening strategies, includ-
ing scaffold hopping derived from previous TKIs, and 
ab initio molecule synthesis [10, 11]. Most EGFR TKIs 

Conclusion  CDDO-Me induced apoptosis and caused cell cycle arrest by inhibiting the PI3K-Akt-mTOR pathway, 
directly targeting the EGFR protein. In vivo studies in a H1975 xenograft mouse model demonstrated dose-dependent 
suppression of tumor growth. Our work highlights the application of machine learning-aided drug screening and 
provides a promising lead compound to conquer the drug resistance of NSCLC.
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used in clinical practice are prepared from existing scaf-
folds [12], and drug development based on these existing 
scaffolds may meet clinical needs in a short time. Most 
of these emerging TKIs with long-time drug administra-
tion often faced similar drug-resistant mechanisms [13]. 
Therefore, new inhibitors of EGFR with T790M mutation 
should be developed based on new chemical scaffolds, 
and potential clinical applications rarely limited by the 
pre-existing drug resistance.

Machine learning has been one of the most promis-
ing method that we could utilize biological activity mol-
ecule datasets to predict the activities of given molecules, 
which accelerated the process of identifying potential 
small molecular inhibitors. In the past few decades, 
various machine learning algorithms have been widely 
applied in drug design and screening and presented 
great potential for conquering drug resistance in pre-
cise oncology medicine [14]. For example, Gary Liu et al. 
[15]. employed a message-passing deep neural network 
to identify new antibiotics against A. baumannii with 
pan-drug resistance. Authors claimed that the Abaucin 
can suppress lipoprotein trafficking in A. baumannii to 
alleviate bacterial infection in a wound model. Brent M. 
Kuenzi et al. [16]. employed an interpretable deep learn-
ing model (DrugCell) to predict the drug response of 
1235 tumor cell lines to 684 drugs. Henry Gerdes et al. 
[17]. employed a machine learning algorithm incorporat-
ing omics data to predict the anti-proliferative efficacy 
of more than 400 drugs in cancer cells. However, despite 
the introduction of numerous emerging strategies aimed 
at developing more feasible and powerful algorithms for 
drug discovery, bias screened without biological activity 
can still be observed in any algorithm [18]. Therefore, it is 
imperative to address bias in drug screening and enhance 
the accuracy of identifying target molecules from given 
datasets.

Beyond screening new chemical scaffolds by explor-
ing the full chemical spaces, molecular scaffolds derived 
from existing bioactive molecules, for example, ocean-
sourced natural products and food-originated bio-active 
molecules, provide the great potential to accelerate the 
translational processes, due to the long-term application 
in food or medicinal applications. Such new scaffolds of 
kinase inhibitors can benefit from food-resourced che-
motypes for the following reasons: (a) Long-time molec-
ular evaluation indicating the higher biological safety 
compared with ab initio artificial synthesized chemi-
cal entities [19]; (b) diversity of natural products from 
an aforementioned source providing a broader range of 
options for identifying new scaffolds and mitigating cur-
rent drug resistance.

An opportunity exists to conduct machine learning-
aided in silico screening to discover structurally and 
functionally emerging inhibitors that selectively target 

EGFR with L858R and T790M mutation and provide a 
potential approach to overcome first- or second-gener-
ation TKIs resistance. The EGFR L858R mutation, a key 
driver in NSCLC, confers sensitivity to first-generation 
EGFR-TKIs but is often followed by the emergence of the 
T790M resistance mutation, highlighting the need for 
next-generation inhibitors capable of overcoming both 
mutations [20]. In this study, we proposed an advanced 
and integrated platform based on structure-based drug 
screening to rapidly identify selective inhibitors of 
EGFRL858R/T790M and explored the selective cytotoxicity 
among various NSCLC cell lines (H1975, PC9-ER, and 
A549). Through this method, we successfully identified 
CDDO-Me, an anti-inflammatory compound against 
NF-κB. Cellular thermal shift assay (CETSA) and molec-
ular dynamics simulation were employed to determine 
whether CDDO-Me can specifically and selectively bind 
with T790M mutant EGFR protein. Further flow cytom-
etry and immunoblot assays were conducted to explore 
the impacts of CDDO-Me on apoptosis, cell cycle, cas-
pase protein-depended cell apoptosis, and PI3K/Akt/
mTOR pathway, a canonical EGFR downstream signaling 
pathway. EGFR knockout in the H1975 cell line was per-
formed to determine whether CDDO-Me activated the 
apoptosis pathway without directly targeting the T790M 
mutant EGFR. Finally, CDDO-Me was employed to 
examine the dose-manner anti-cancer effect in the H1975 
xenograft animal model and elicit critical biomarkers in 
vivo. Our findings highlight the application of machine 
learning-aided in silico screening in drug discovery and 
describe a promising lead compound with specific activ-
ity against Erlotinib resistance in NSCLC.

Methods
Datasets and chemical descriptors preparation
The first dataset was retrieved from ChEMBL ​(​​​h​t​t​p​s​:​/​/​w​
w​w​.​e​b​i​.​a​c​.​u​k​/​c​h​e​m​b​l​/​​​​​)​, DrugBank ​(​​​h​t​t​p​s​:​/​/​g​o​.​d​r​u​g​b​a​n​k​.​
c​o​m​/​​​​​)​, and PubChem BioAssay ​(​​​h​t​​t​p​s​​:​/​/​p​​u​b​​c​h​e​m​.​n​c​b​i​.​n​
l​m​.​n​i​h​.​g​o​v​/​​​​​) databases. Composed of 11 FDA-approved 
drugs classified as “active”, and 411 compounds demon-
strated specific IC50 activity targeting EGFRL858R/T790M 
classified as “active” or “inactive” based on the descrip-
tion of activities in specific scientific literature. The sec-
ond dataset was obtained from the DUD-E database 
with 407 decoy compounds, classified as “inactive” [21]. 
Then, we minimized molecular energy in MM2 force-
field (1,000 iterations with an RMS gradient of 0.01 kcal/
mol/Å) for subsequent batch docking screening through 
Chem3D 14.0.0.17 software. After pretreatments, all 829 
compounds were randomly divided into training set and 
test set with a ratio of 7:3.

A total of 70,413 and 452 compounds were collected 
from the FooDB and CSNpharm ​(​​​h​t​t​p​s​:​/​/​w​w​w​.​c​s​n​p​h​
a​r​m​.​c​n​/​​​​​, 2023.6) databases respectively. Among them, 

https://www.ebi.ac.uk/chembl/
https://www.ebi.ac.uk/chembl/
https://go.drugbank.com/
https://go.drugbank.com/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://www.csnpharm.cn/
https://www.csnpharm.cn/
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452 compounds are pharmaceutical-nutraceutical com-
pounds with both medicinal and dietary functions. Before 
applying machine learning prediction, we performed pre-
processing on the compound library by established pro-
tocols. The preprocessing steps included the following: 
(1) Removal of structurally redundant compounds. (2) 
Elimination of long-chain alkenes, chloroform, potas-
sium carbonate, potassium hydroxide, potassium nitrate, 
sodium bicarbonate, potassium permanganate, potas-
sium bicarbonate, and sodium carbonate. (3) Exclusion of 
lactates, long-chain fatty acids, and vitamins. Finally, the 
library was utilized for virtual screening to predict their 
potential binding efficiency with EGFRL858R/T790M.

To obtain molecular descriptors of molecules in the 
selected library for following virtual screening, the Rdkit 
(https:/​/anacon​da.org/​rdki​t/rdkit, 2020.6) and ​D​e​e​p​c​h​e​
m (https://github.com/deepchem, 2020.6) package was 
used to convert smiles of compounds to their structure 
and generated the ECFPs fingerprints as the chemical 
2D descriptors. Specifically, ECFP4 fingerprints with a 
1024-bit length were used, with a radius of 2, which cor-
responds to the maximum bond distance considered 
when generating the fingerprint. This radius determines 
the depth of the atom neighborhood explored around 
each atom in the molecule, impacting the granularity of 
the fingerprint and its ability to differentiate between dif-
ferent molecular structures. The RDKit and DeepChem 
packages were employed with their default settings, 
ensuring consistency and reproducibility in the genera-
tion of the fingerprints.

Ligand-based virtual screening
Quantitative structure-activity relationship (QSAR)-
based machine learning classifiers including support 
vector machine (SVM), Naive Bayes (NB), k-nearest 
neighbor (kNN), XGBoost (XGB), and multilayer per-
ceptron (MLP) were established to screen the potential 
ligands based on the molecular descriptors. Cross-val-
idation is a technique widely used in machine learning 
for evaluating model performance. It involves partition-
ing the data into multiple subsets, training the model on 
different subsets, and evaluating its performance on a 
separate validation set. In this study, a stratified 10-fold 
cross-validation method was used on the training set to 
overcome the model overfitting problem.

SVM
The Scikit-learn python package was employed to imple-
ment the SVM algorithm ​(​​​h​t​​t​p​s​​:​/​/​g​​i​t​​h​u​b​.​c​o​m​/​s​c​i​k​i​t​-​l​e​
a​r​n​/​s​c​i​k​i​t​-​l​e​a​r​n​​​​​, 2023.6), and ECFP4 fingerprints of the 
training set were used as the SVM input and the active 
information was used as labels (0 or 1). The setting for 
the decision_function_shape was ‘one-versus-rest’ and 

the probabilistic estimation was put into use. Other 
parameters were set as default.

MLP
We used the DeepPurpose package to implement the 
multilayer perceptron algorithm ​(​​​h​t​​t​p​s​​:​/​/​g​​i​t​​h​u​b​.​c​o​m​/​k​
e​x​i​n​h​u​a​n​g​1​2​3​4​5​/​D​e​e​p​P​u​r​p​o​s​e​​​​​, To date Jun 2023). The 
CompoundPred module of DeepPurpose encoded com-
pounds SMILES with an embedding layer, then fed into a 
multilayer perceptron decoder to output and predict the 
probability of activity. The filter length was 4, 6, and 8. In 
addition, the model with three hidden layers was used to 
have 1024, 1024, and 512 units, respectively. The other 
hyperparameters used were as follows: learning rate 
(0.01), train epoch (100), and batch size (128).

XGBoost
To implement the XGB algorithm, we used the XGBoost 
package (https:/​/github​.com/dm​lc/x​gboost, 2023.6). The 
ECFP4 fingerprints of the training set were used as the 
XGB input and the active information was used as labels 
(0 or 1). The max_depth of XGB was 4, the learning rate 
was 0.01, and the objective was ‘binary: logistic’. Other 
parameters were set as default.

Naive bayes
The Scikit-learn python package was employed to imple-
ment the Naive Bayes algorithm ​(​​​h​t​​t​p​s​​:​/​/​g​​i​t​​h​u​b​.​c​o​m​/​s​c​i​
k​i​t​-​l​e​a​r​n​/​s​c​i​k​i​t​-​l​e​a​r​n​​​​​, 2023.6). ECFP4 fingerprints of the 
training set were used as input and the active information 
was used as labels (0 or 1). The setting for parameters of 
the BernoulliNB module was the default.

KNN
The Scikit-learn python package was employed to imple-
ment the kNN algorithm ​(​​​h​t​​t​p​s​​:​/​/​g​​i​t​​h​u​b​.​c​o​m​/​s​c​i​k​i​t​-​l​e​a​r​
n​/​s​c​i​k​i​t​-​l​e​a​r​n​​​​​, 2023.6). Molecular descriptors mentioned 
above of the training set were used as input and the active 
information was used as labels (0 or 1). The setting for 
parameters was the default.

Bayesian integration of multiple machine learning models
To enhance the predictive accuracy and robustness of 
our model, we employed a Bayesian integration approach 
to combine the outputs of five distinct machine learning 
algorithms: Support Vector Machine (SVM), Naive Bayes 
(NB), k-Nearest Neighbors (k-NN), Extreme Gradient 
Boosting (XGB), and Multi-layer Perceptron (MLP). This 
ensemble technique leverages the strengths of each indi-
vidual model, providing a more comprehensive analysis 
of the molecular data represented by Simplified Molecu-
lar Input Line Entry System (SMILES) strings.

In this method, each of the five machine learning 
models was independently trained on the same training 

https://anaconda.org/rdkit/rdkit
https://github.com/deepchem
https://github.com/scikit-learn/scikit-learn
https://github.com/scikit-learn/scikit-learn
https://github.com/kexinhuang12345/DeepPurpose
https://github.com/kexinhuang12345/DeepPurpose
https://github.com/dmlc/xgboost
https://github.com/scikit-learn/scikit-learn
https://github.com/scikit-learn/scikit-learn
https://github.com/scikit-learn/scikit-learn
https://github.com/scikit-learn/scikit-learn
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dataset and then used to make predictions on the test 
dataset. The individual predictions from each model were 
then combined using a Bayesian probabilistic framework.

The Bayesian integration process involves the following 
steps:

(1) Prediction Generation: Each model Mi  where i  
ranges from 1 to 5, corresponding to SVM, NB, k-NN, 
XGB, and MLP) produces a probabilistic prediction 
P (A|Mi) for the activity of a molecule. These predic-
tions represent the likelihood of the molecule being 
active given the model Mi .

(2) Prior Probabilities: Assign prior probabilities 
P (Mi)  to each model based on their historical perfor-
mance or expert knowledge. In our case, we assumed 
equal priors for simplicity, P (Mi) = 0.2.

(3) Posterior Probabilities: Calculate the posterior 
probability for each model using Bayes’ theorem:

	
P (Mi|A) =

P (A|Mi)˙P (Mi)∑
5
j=1P (A|Mi)˙P (Mj)

This step updates our belief in the likelihood of each 
model being correct based on its predictions.

(4) Weighted Averaging: Combine the predictions of all 
models to obtain a final integrated prediction. The final 
prediction P (A|D) is a weighted average of the individ-
ual predictions, where the weights are the posterior prob-
abilities P (Mi|A):

	 P (A|D) =
∑

5
i=1P (A|Mi)˙P (Mi|A)

Model evaluation
In this study, five indices were calculated for model eval-
uation, including the precision, recall, F1-score, MCC, 
and ROC curve, which were defined as follows:

	
Precision =

TP

TP + FP

	
Recall =

TP

TP + FN

	
F1− score = 2

Precision×Recall

Precision+Recall

	
MCC =

TP × TN − FP × FN√
(TP + FN)(TN + FP)(TN + FN)(TP + FP )

TP (true positive) means that the number of active com-
pounds were correctly classified; TN (true negative) 
means that the number of inactive compounds were cor-
rectly classified; FN (false negative) means that the num-
ber of active compounds were incorrectly classified; FP 

(false positive) means that the number of inactive com-
pounds were incorrectly classified. The receiver operating 
characteristic (ROC) curve is a performance measure-
ment for classification problems at various threshold 
settings [22]. We calculated the area under the receiver 
operating characteristic curve (AUC) to evaluate how 
capable the model is of distinguishing between classes.

Drug-like filter and ADMET prediction
We used SwissADME (http://www.swissadme.ch/, 
2023.6) web server to generated five independent param-
eters of candidates, including molecular weight (MW), 
MLogP, H-bond acceptors (HBA), H-bond donors 
(HBD), and LogS. Subsequently, we discarded the unsat-
isfying molecules according to Lipinski’s rule of five for 
further screening [23]. Then, the remaining compounds 
were subjected to predict the absorption, distribution, 
metabolism, excretion and toxicity (ADMET) proper-
ties using the ADMETlab2.0 web server tool for further 
selection [24].

Chemicals
Isoalantolactone (CAS 470-17-7, 98.0% purity, Cat# 
12309), and Bardoxolone Methyl (CAS 218600-53-4, 
99.4% purity, Cat# 12828) were purchased from CSN-
pharm (Chicago, USA). Daurisoline (CAS 70553-76-3, 
99.7% purity, Cat# HY-N0221) and protease inhibitor 
cocktail (Cat# HY-K0010) were purchased from Med-
ChemExpress (New Jersey, USA). Erlotinib (Cat# S7786) 
was purchased from Selleck (Selleck Chemicals, Hous-
ton, TX, United States).

Antibodies and reagents
Antibodies against the following proteins were used 
with source and dilution ratios indicated: EGFR (Cat# 
4267, 1:1000); phospho-EGFR (Y1068) (Cat# 2234, 
1:1000); PI3K (p110α) (Cat# 4249, 1:1000); phospho-
PI3K p85 (Tyr458)/p55 (Tyr199) (Cat# 4228, 1:1000); Akt 
(Cat# 9272, 1:1000); phospho-Akt (Ser473) (Cat# 9271, 
1:1000); mTOR (Cat# 2983, 1:1000); phospho-mTOR 
(Ser2448) (Cat# 2971, 1:1000); MAPK (p44/42) (Cat# 
4695T, 1:1000); Phospho-p44/42 MAPK (Thr202/Tyr204) 
(Cat# 4370T, 1:1000); Cyclin D1 (Cat# 2978, 1:1000); 
CDK4 (Cat# 12790, 1:1000); PARP (Cat# 9542, 1:1000); 
cleaved-PARP (cl-PARP) (Cat# 5625, 1:1000); caspase 
3 (Cat# 9662, 1:1000); cleaved-caspase 3 (cl-caspase 3) 
(Cat# 9661, 1:1000); Bcl-2 (Cat# 4223, 1:1000); β-actin 
(Cat# 3700, 1:10000), all antibodies for western blotting 
were purchased from Cell Signaling Technology (Beverly, 
MA, United States). Peroxidase-conjugated goat anti-
rabbit (Cat# 12–348, 1:20000) and mouse (Cat# AP160P, 
1:20000) secondary antibodies were purchased from 
Sigma Aldrich (St. Louis, MO, United States).

http://www.swissadme.ch/
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Dulbecco’s Modified Eagle Medium (DMEM) (Cat# 
12491015), Roswell Park Memorial Institute (RPMI)-
1640 medium (Cat# 12633012), phosphate-buffered 
saline (PBS) washing buffer (Cat# 10010023), Fetal bovine 
serum (FBS) (Cat# A5669701), Trypsin-EDTA solution 
(Cat# 25200072), and Penicillin-Streptomycin solution 
(PS) (100×) (Cat# 15140122) were all purchased from 
Gibco (Carlsbad, CA, United States). Cell Counting Kit-8 
(CCK-8) (Cat# C0038), RIPA lysis buffer (Cat# P0013B), 
Crystal violet (Cat# C0121), and Cell cycle assay kit (Cat# 
C1052) were purchased from Beyotime Biotechnology 
(Shanghai, China). Annexin V-Fluorescein isothiocya-
nate (FITC) apoptosis detection kit (Cat# 556547) was 
obtained from BD Biosciences (San Jose, CA, United 
States). Bicinchoninic acid (BCA) Protein assay kit (Cat# 
PA115) was acquired from TIANGEN Biotech (Beijing, 
China). Polyvinylidene fluoride (PVDF) membranes (Mil-
lipore, IPVH00010) were purchased from Millipore (Bil-
lerica, MA, United States).

Cell lines and cell culture
Human non-small cell lung cancer cell lines A549 and 
H1975 were purchased from the American Type Culture 
Collection (ATCC, CCL-185, CRL-5908), PC9 cell line 
was purchased from European Collection of Authen-
ticated Cell Cultures (ECACC, 90071810), HEK 293T 
cell line was purchased from the American Type Cul-
ture Collection (ATCC, CRL-3216). All cell lines were 
routinely tested to confirm that they were free of Myco-
plasma. H1975 and PC9 cells were cultured at 37  °C 
with 5% CO2 in RPMI 1640 and A549 cell lines were cul-
tured in DMEM. All culture media were supplemented 
with 10% heat-inactivated FBS with 100 U/ml penicillin 
and 100  µg/ml streptomycin. To establish an erlotinib-
resistant PC9 subline, the cells were treated with 0.01 
µM of erlotinib and the concentration was increased in 
a stepwise manner. After two months the cells were able 
to grow in 1 µM of erlotinib, then continuously sub-
cultured with 1 to 2 µM of erlotinib for an additional 6 
months and did a single-cell cloning to establish the erlo-
tinib-resistant cell line.

Cell viability assay
A549, H1975, PC9, PC9-ER and HEK-293T cells were 
cultured in 96-well plates (5 × 103 cells per well). Follow-
ing the treatments with compounds, cell viability was 
assessed with CCK-8 Kit at indicated time points. After 
2  h of incubation at 37  °C, absorbance was determined 
with a Microplate Reader (BIO-TEK, Inc., Winooski, VT, 
United States) at 450 nm. The IC50 value was calculated 
by GraphPad Prism 8.0 (San Diego, CA, United States) 
software.

Colony formation assay
Colony formation assay was used to examine the long-
term effects of CDDO-Me on NSCLC cell growth. A549, 
H1975, and PC9-ER cells were cultured into 6-well plates 
(1 × 103 cells per well). Following 24 h of treatment with 
CDDO-Me (0, 0.2, 0.4, and 0.6 µM), the culture medium 
was replaced with a fresh medium, and the growth con-
tinued for 10–14 days. After culture completion, the 
colonies were washed with cold PBS, then fixed with 4% 
paraformaldehyde and stained with 0.5% crystal violet 
for 15  min at room temperature, Macroscopic colonies 
of each well were counted by EVOS XL Core Imaging 
System (Thermo Fisher Scientific Inc., Waltham, MA, 
United States).

Western blot analysis
Western blot analysis was performed as in our previous 
reports [25]. For the analysis by sodium salt-polyacryl-
amide gel electrophoresis (SDS-PAGE), total proteins 
were obtained from the cells or tumor tissue homog-
enates with RIPA buffer containing a complete protease 
inhibitor cocktail. The protein supernatant was collected 
after centrifugation at 4 °C and measured with the BCA 
assay kit. Equal amounts of total proteins were resus-
pended in loading buffer, boiled at 100 °C for 5 min, and 
separated by 10–15% SDS-PAGE. Proteins were trans-
ferred onto PVDF membranes. After blocking the PVDF 
membrane with 5% non-fat dry milk, incubation with 
primary antibodies overnight at 4  °C. The membranes 
were washed three times in TBST followed by 1 h incu-
bation with secondary antibodies, conjugated with horse-
radish peroxidase (HRP), at room temperature. Next, 
the membranes were washed before enhanced chemi-
luminescence and visualized with the Bio-Rad Chemi-
Doc XRS system (Bio-Rad, CA, USA) and quantified by 
ImageJ 1.54 software.

Apoptosis and cell cycle assay
To examine the effect of the compound on apoptosis and 
cell cycle, NSCLC cells were seeded in 6-well plates at 
a density of 2 × 105 cells per well and were treated with 
different doses of CDDO-Me (0, 0.2, 0.3, 0.4, and 0.6 
µM) for 48 h. Cell apoptosis cell cycle were detected by 
FACSCelesta flow cytometer (BD Biosciences, Franklin 
Lakes, NJ, United States) using Annexin V-FITC Apop-
tosis Detection and PI Cell Cycle and Apoptosis Analysis 
Kit respectively. Apoptosis data were analyzed by FlowJo 
v10.8.1 software, and cell cycle data were analyzed with 
Modfit LT 4.1 software.

Cellular thermal shift assay (CETSA)
To validate CDDO-Me and target interaction, we expand 
H1975 cells in 6-well plates with cell culture medium 
to a cell density of 2 × 105 cells per well, incubated with 
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DMSO and CDDO-Me (2µΜ) for 1  h and then extract 
total protein with RIPA buffer. The protein suspension 
was separated into six PCR tubes and heated individu-
ally at designated temperatures (42–57  °C) for 10  min. 
Finally analyzed by western blotting. The CETSA curve 
was visualized using GraphPad Prism 8.0.

Protein expression and purification
The coding sequences for the intracellular kinase domains 
of human EGFRWT and EGFRL858R/T790M (residues 695–
1022) were cloned into pBAD/His A vectors with N-ter-
minal 6xHis tags, synthesized by Tsingke Biotech Co., 
Ltd (Beijing). Recombinant plasmids were transformed 
into E. coli BL21 (DE3) pLysS cells, and initial cultures 
were grown in LB medium with 50 µg/ml kanamycin at 
37 °C, 180 rpm, overnight. Each culture (4 ml) was scaled 
up to 400 ml in LB with 50 µg/ml kanamycin and grown 
to OD600 ≈ 0.6 at 37 °C, then induced with 0.1 mM IPTG 
for 3 h at 37  °C, 180  rpm. Cells were harvested by cen-
trifugation (4000 rpm, 4 °C, 5 min), resuspended in lysis 
buffer (50 mM Tris-HCl, pH 8.0, 50 mM NaCl, 1 mM 
PMSF, 1 mM EDTA, 0.5% Triton X-100, 5% glycerol), and 
sonicated on ice (50% power, 10 min). Recombinant pro-
teins were confirmed by 12% SDS-PAGE. Lysates were 
clarified by centrifugation (23,000  rpm, 4  °C, 20  min), 
and supernatants were filtered (0.22 μm) for purification. 
Purification was conducted on a HisTrap HP column 
(Cytiva, Cat# 17524701), equilibrated with buffer A (50 
mM Tris-HCl, pH 8.0, 50 mM NaCl, 10 mM imidazole, 
10% glycerol) and eluted with buffer B (50 mM Tris-HCl, 
pH 8.0, 50 mM NaCl, 300 mM imidazole, 10% glycerol) 
using a gradient (10–30% buffer B). Proteins were loaded 
at 0.5  ml/min following equilibration with 5 column 
volumes of buffer A. Concentrations were measured by 
absorbance at 280 nm.

ADP-Glo biochemical assay
The IC50 values of CDDO-Me for EGFRL858R/T790M ​and 
EGFRWT were determined using the ADP-Glo™ kinase 
assay in a 10-dose, serial CDDO-Me dilution format, with 
concentrations ranging from 0.001 nM to 10,000 nM. The 
kinase reaction was initiated by incubating proteins with 
increasing concentrations of CDDO-Me in 1x kinase 
reaction buffer on ice for 5  min. ATP (final concentra-
tion 10 µM) were then added to the reaction mixture and 
incubated at room temperature for 60  min. Afterward, 
5 µl of ADP-Glo™ reagent was added to the reaction mix-
ture, followed by a 40-min incubation at room tempera-
ture. Subsequently, 10 µl of kinase detection reagent was 
added and incubated in the dark at room temperature for 
30  min. Luminescence was measured to quantify ADP 
production. A control reaction was performed with 8% 
DMSO in the absence or presence of kinase enzymes to 
serve as negative and positive controls, respectively.

Microscale thermophoresis (MST) analysis
MST analysis was performed using the NanoTemper 
Monolith NT.115 instrument (NanoTemper Technolo-
gies). Monolith Protein Labeling Kit Red-NHS 2nd Gen-
eration (Cat# MO-L011) dye was used to label EGFR-WT 
and EGFR-L858R/T790M. Briefly, 90  µl of protein (10 
µM) was mixed with 10 µl of 300 µM Red dye and incu-
bated for 30 min at room temperature. CDDO-Me were 
diluted in PBS-T buffer to make 16 1:1 serial dilutions 
from 50 µM. Measuring the affinity of EGFR with drug: 
100 nM of labeled EGFR was mixed with drug prepared 
in 16 different serial concentrations at RT in PBS-T. The 
mixtures were then loaded into standard glass capillaries 
(Monolith Capillaries, Cat# MO-K022). After blowing 
evenly, the machine was tested and the Initial Fluores-
cence Analysis program (LED 20%, MST power 40%) was 
used for Analysis through the MO. The Kd values were 
derived from the concentration-dependent changes in 
normalized fluorescence (Fnorm). Data were analyzed 
using MO.Control v2.6.3 software.

Molecular docking and molecular dynamics simulation
Molecular docking was performed by AutoDock v.1.2.4 
and AutoDock vina v.1.2.0 [26, 27]. The crystal structure 
of human EGFRL858R/T790M (PDB ID: 3W2R) and EGFRWT 
(PDB ID: 7B85) was retrieved from RCSB Protein Data 
Bank (http://www.pdb.org). The 3D structures of the 
selected candidates were generated by using Chem3D 
v.19.0 and utilized MM2 force field for energy minimi-
zation. All missing terminal residues of protein struc-
tures were repaired by Swiss-PdbViewer v.4.10 software 
[28], then prepared by removing crystallographic waters, 
adding polar hydrogen and Kollman charges for dock-
ing study. The grid box center was set as coordinates of 
x, y, z = 1.52, 12.084, 51.751, and the grid size was 80 Å 
x 98 Å x 76 Å. The other parameters were set as default. 
The binding interaction of the protein-ligands complex 
has been observed by using UCSF Chimera v.1.16 and 
BIOVIA Discovery Studio Visualizer v.21.1.0.20298. 
After the batch docking-based screening, we selected 
three commercially available compounds among the top 
20% of docking scores for further experimental valida-
tion in vitro and molecular dynamics simulation (MD) 
analysis. The lowest energy conformation was selected 
for MD simulation analysis. All MD simulations were 
performed using the GROMACS (2020.6). The topol-
ogy for the protein-ligand complex was prepared using 
Amber99 and GAFF force fields respectively [29, 30]. All 
molecules were solvated in a water environment using 
the TIP3P water model, with a total of 20,000 water 
molecules added to the simulation box. To neutralize 
the system’s net charge, 5 Na⁺ ions were added, ensur-
ing an electrically neutral environment for the molecu-
lar dynamics simulation. The periodic box of simulation 

http://www.pdb.org
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was 50 × 50 × 50 Å3 Equilibration was conducted in an 
NVT ensemble for 100 ps at 300 K, and subsequently in 
the NPT ensemble for 100 ps at 1.0 bar using the Nose-
Hoover thermostat and Parrinello-Rahman barostat. The 
protein-ligand complex performed the energy minimi-
zation to ensure no steric clashes in the system. Before 
the 200 ns MD simulation, we performed NVT and NPT 
equilibration. The MD simulation of the protein-ligand 
complex was performed at 200 ns with a time step of 2 fs. 
Finally, we analyzed the MD simulation results.

RMSD and RMSF analyses were conducted to evalu-
ate the stability and flexibility of the protein-ligand com-
plex throughout the MD simulation. The RMSD of the 
Cα atoms of the protein and the ligand was calculated 
using the GROMACS tool ‘gmx rms’, which compares 
the atomic positions at each time step to the initial struc-
ture to monitor the overall conformational changes. 
The RMSF was calculated using ‘gmx rmsf ’ to assess the 
residue-level flexibility of the protein, focusing on the 
fluctuations of individual residues around their average 
positions throughout the simulation.

Hydrogen bonds between the protein and ligand 
were analyzed using the GROMACS tool ‘gmx hbond’. 
We calculated the number and occupancy of hydro-
gen bonds formed during the simulation, considering a 
donor-acceptor distance of 3.5 Å and a hydrogen-donor-
acceptor angle of 30° as the criteria for hydrogen bond 
formation.

Binding free energies was performed using the GRO-
MACS tool gmx_MMPBSA, which integrates molecular 
mechanics energies with solvation terms to estimate the 
binding affinity. The binding free energy (ΔG_bind) was 
decomposed into van der Waals (ΔG_vdW), electrostatic 
(ΔG_ele), polar solvation (ΔG_pol), and non-polar solva-
tion (ΔG_nonpol) contributions. The MM/PBSA calcula-
tion was performed on 1000 snapshots extracted evenly 
from the 200 ns trajectory to ensure an accurate and rep-
resentative evaluation of the binding affinity. The dielec-
tric constants used for the solute and solvent were set to 
2 and 80, respectively. Then, we extracted the conforma-
tions of small molecules bound to EGFRL858R/T790M and 
EGFRWT at 130 ns. The typical time to calculate a 2D and 
3D free energy landscape using MM/PBSA model for 200 
ns for protein.

Generation of CRISPR-Cas9 KO cell lines
To knockout the EGFR gene in H1975 cell line, we 
designed two independent guide RNAs (gRNAs) using 
the CRISPick ​(​​​h​t​​t​p​s​​:​/​/​p​​o​r​​t​a​l​s​.​b​r​o​a​d​i​n​s​t​i​t​u​t​e​.​o​r​g​/​g​p​p​x​/​c​r​i​
s​p​i​c​k​/​p​u​b​l​i​c​​​​​)​. The gRNA sequences were cloned into len-
tiCRISPR v2-Blast plasmid (Addgene #83480). Sequences 
of the guide RNAs are listed in Table S2.

To produce lentivirus, HEK 293T cells were plated 
in 100  mm dish one day before transfection at 70% 

confluency. Two hours before transfection, DMEM 
media was replaced with 10  ml serum-free OptiMEM 
media. For each dish, 11  µg of lentiviral transfer vec-
tor, 8.25  µg psPAX2 (Addgene Cat# 12260) and 5.5  µg 
pMD2.G (Addgene Cat# 12259) diluted in 1  ml Opti-
MEM were combined with 15  µl Lipofectamine 3000 
diluted in 1 ml Opti-MEM. The transfection mixture was 
left for 20 min and then added dropwise to the cells. 6 h 
after transfection, the media was replaced by 10 ml fresh 
complete DMEM media for each dish. Virus-containing 
media was collected 72  h post-transfection followed by 
Filtration was then performed with a 0.45 μm (Millipore, 
#SLGPR33RB). Viral supernatants were concentrated by 
centrifugation at 4,000 rpm and 4 °C for 35 min. Concen-
trated viral supernatants were stored in aliquots at -80 °C.

For sgRNA lentivirus infection, target cells were 
seeded in a 6-well plate 24  h before infection and were 
grown to 60–80% confluency upon transduction. Cul-
ture medium was removed, and cells were incubated with 
virus supernatant along with 8 mg/ml polybrene (Sigma 
Cat# TR-1003) overnight. Virus-containing medium 
was replaced with fresh medium. 10 mg/ml Blasticidin S 
(Beyotime Cat# ST018) was applied to kill non-infected 
cells. After 7 days, cells were collected for immunoblot-
ting or other experiments.

Xenograft tumour assay
BALB/c nude mice (male, 5–6 weeks old, 10–14 g), were 
purchased from Shanghai Model Organisms Center, Inc 
(Shanghai, China). All mice (n = 18) were seeded to adopt 
the environment under specific pathogen-free (SPF) con-
ditions with 25 °C and 65% relative humidity for 2 weeks, 
and environment was kept with a 12 h light/dark cycle.

H1975 cells (5 × 106 cells) suspended in 200  µl PBS 
were subcutaneously implanted into the right flank of 
per nude mice when 6–7 weeks old. Tumor volume (V) 
was measured with digital calipers and calculated using 
the following formula: Width2 × Length × 0.5. Mice were 
randomized into three dependent groups (n = 6 mice per 
group): vehicle (2% DMSO in PBS), CDDO-Me (3  mg/
kg/d, i.p.), and CDDO-Me (6  mg/kg/d, i.p.). Mice were 
treated for 20 days and the tumor volume and body 
weight were measured after every 2 days. After 20 days, 
the mice were euthanized, and the xenograft tumors were 
resected to take bright field images and further histo-
logical examinations. The protocols for animal care and 
euthanasia were approved by the Institutional Animal 
Care and Use Committee of Shanghai Ocean University 
(Shanghai, China).

Immunohistochemistry
Immunohistochemical staining was performed by Shang-
hai RecordBio Co.Ltd. (Shanghai, China). Tumor sections 
were immuno-stained with specific anti-phospho EGF 

https://portals.broadinstitute.org/gppx/crispick/public
https://portals.broadinstitute.org/gppx/crispick/public
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Receptor, and anti-Ki-67 antibodies. The images were 
captured using a Wisleap WS-10 scanner and analyzed 
by using NDP.view 2.3.

Statistical analyses
All the experimental data were analyzed by GraphPad 
Prism 8.0 (GraphPad Software Inc., San Diego, CA, 
United States). Results were presented as mean ± stan-
dard deviation (S.D.), and all the biological assays were 
conducted with n = 3 independent replicates unless speci-
fied mentioned in the legends. Statistics analysis was 
conducted using one-way ANOVA with Tukey’s multi-
ple-comparisons test was applied: NS no significance, * 
p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

Results
Machine learning-guided discovery of EGFR mutation 
inhibitors
Recently, advances in machine learning-aided drug dis-
covery have highlighted the advantages in the discovery 
of selective disease-associated kinase inhibitors [31]. 
Here, we applied an integrated machine learning-aided 
virtual screening approach (Supplementary Fig. S1) to 
identify new natural products selectively against T790M-
mutant EGFR-kinase activities. The applied screen-
ing protocol can be divided into different sections: (1) 

integrated machine learning to identify potential mol-
ecules selectively binding to EGFR-T790M; (2) drug-
gability analysis using ADMET and Lipinski’s rule; (3) 
molecular docking to determine interaction between 
target and small molecules; (4) selected molecules pur-
chased for further biological activity screening.

To obtain the un-bias predictive performance using 
machine learning, molecules in the testing dataset should 
be broadly collected from different databases to ensure 
the chemical diversity. Here, we initially screened a 
diverse collection of 829 compounds curated from Drug-
Bank, PubChem BioAssay, and ChEMBL databases for 
classifier training and testing (As given in Fig. 1). Among 
these, 11 FDA-approved drugs and 235 compounds dem-
onstrated specific IC50 activity against T790M-mutant 
EGFR cells classified as “active”. Additionally, 176 com-
pounds exhibited specific activities from public literature 
and 407 decoy compounds from the DUD-E database 
were classified as “inactive”. All the molecular informa-
tion was transformed into Extended-Connectivity Finger-
prints (ECFPs) format, which were widely acknowledged 
as highly effective approaches for characterizing features 
of small molecules in the field of chemical analysis [32].

Next, these datasets were employed to train a binary 
classifier and predict whether new molecules presented 
the selective suppression of EGFRT790M kinase activity. 

Fig. 1  The workflow of in silico drug screening
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The individual algorithm often faces bias in predicting 
outcome results, which were determined by many fac-
tors, including selection of inner probability mass func-
tion et al. [33]. In order to exclude the bias originating 

from selection of individual algorithms, five machine 
learning algorithms, including Support vector Machine 
(SVM) [34], Naive Bayes (NB) [35], k-Nearest Neigh-
bors (k-NN) [36], Extreme gradient boosting (XGB) [37], 

Fig. 2  Integrated machine learning approach demonstrates robust performance. (a) Virtual screening workflow. (b) The prediction accuracy of ensemble 
and individual models. (c) Receiver Operating Characteristic (ROC) curves for ensemble and individual models. (d) AUC values based on ensemble and 
individual models. (e) Venn diagram illustrating the virtual screening results obtained from five integrated machine learning models
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and Multi-layer perceptron (MLP) [38] were employed 
to construct models (as given in Fig.  2a and Supple-
mentary Fig. S1), which were integrated to an emerging 
and comprehensive algorithm using Bayesian inference 
and excluded the potential bias. After training unsuper-
vised learning algorithm, this integrated model exhibited 
superior accuracy compared to the individual models 
(Table  1; Fig.  2b). Concurrently, the integrated machine 
learning method attained higher values for the area 
under the ROC curve (AUC) compared to individual 
models (Fig. 2c, d).

Post the model training, this model was employed to 
identify selective inhibitors from the molecular dataset, 
including 70,865 molecules. These chemical libraries 
were obtained from the FooDB database and CSN pharm 
database and assured the diversities of pharmacoph-
ores and chemical structures. Compared with screening 
results conducted by individual algorithms, a total of 800 
small molecules were concurrently identified as active 
by five distinct machine-learning models, and the Venn 
diagram visually illustrated the overlapping and distinct 
sets of predicted compounds among five models (Fig. 2e). 
Therefore, our results suggested that these 800 small 
molecules presented the potential as selective EGFRT790M 
inhibitors.

Drug-like properties and ADMET filter
The crucial impact of poor pharmacokinetics and toxic-
ity displayed the critical roles in late-stage of drug devel-
opment, and it should necessitate prior prediction of 
absorption, distribution, metabolism, excretion, and tox-
icity (ADMET) properties for meticulously selected drug 
candidates [39]. Owing to the algorithm, the ADMET 
features of candidates were not considered during the 
machine learning-aided screening process. To avoid 
such issues, an initial screening of selected 800 com-
pounds was conducted to exclude the compounds against 
Lipinski’s rule of five [40]. The ADMET features of left 
349 compounds were subsequently explored using the 

ADMETlab 2.0 web server [24]. Using the crucial crite-
ria based on AMES toxicity, intestinal absorption, water 
solubility, and BBB penetration, only 81 compounds were 
successfully obtained for further screening.

Structure-based drug virtual screening using molecular 
docking
To evaluate the interactions between the candidate 
and EGFR, 81 compounds were employed to conduct 
molecular docking using Autodock and predict the 
binding model between the EGFRL858R/T790M catalytic 
domain, which contained the phosphate-binding loop 
(P-loop) and DFG tripeptide motif, and candidate com-
pound. As shown in Table 2, we selected the top-ranked 
26 compounds, in which the binding energy was less 
than − 7  kcal/mol. Additionally, considering the off-tar-
geted effects caused by low molecular weight and water 
solubility [41, 42], (Table  2), 3 commercially available 
compounds, CDDO-Me (Fig.  3a), Daurisoline, and Iso-
alantolactone, were purchased for subsequent biological 
evaluation. In the previous reports, these compounds 
displayed excellent anti-proliferation activities [43–45] 
in different cancers, however, few literature reported the 
association between biological activity and EGFR status.

CDDO-Me treatment selectively suppressed the 
proliferation and migration of EGFR-mutant NSCLC cells
To examine whether these candidates could selec-
tively suppress activities of the EGFR mutant type com-
pared with wild types, A549 (EGFRWT), and H1975 
(EGFRL858R/T790M) were employed to preliminarily assess 
the dosage-dependent anti-proliferation of these com-
pounds between A549 and H1975. As given in Fig.  3b 
and Supplementary Fig. S2a-b, CCK-8 results corrobo-
rated that CDDO-Me can selectively suppress the anti-
proliferation of H1975 cells (0.40 ± 0.03 µM) compared 
with A549 (2.81 ± 0.30 µM), while Daurisoline, and Iso-
alantolactone did (Supplementary Fig. S2a-b) not display 
the selectivity between H1975 and A549. Subsequently, 

Table 1  Performance of validation results on test set for esemble and individual models
Model Precision Recall F1-score MSE MCC Support
SVM Inactive 0.63 0.73 0.67 0.20 0.44 180

Active 0.71 0.43 0.54 69
Naive Bayes Inactive 0.78 0.64 0.64 0.22 0.49 180

Active 0.58 0.61 0.64 69
KNN Inactive 0.72 0.62 0.72 0.22 0.51 180

Active 0.79 0.68 0.79 69
XGBoost Inactive 0.73 0.69 0.71 0.22 0.50 180

Active 0.75 0.73 0.79 69
MLP Inactive 0.75 0.87 0.74 0.20 0.55 180

Active 0.81 0.62 0.71 69
Combination Inactive 0.90 0.97 0.94 0.10 0.75 180

Active 0.91 0.82 0.81 69
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Fig. 3  The cytotoxicity of CDDO-Me on different NSCLC cells. (a) Schematic representation of CDDO-Me identification. (b) H1975, PC9-ER, A549 and HEK 
293T cells were treated with CDDO-Me (0.05, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 5, 10, 15 and 20 µM) for 48 h, respectively. Cell viability was examined by CCK-8 assay 
and shown as relative viability compared to the untreated control. Each test was performed in triplicate. (c) The IC50 values of CDDO-Me in H1975, PC9-
ER, A549 and HEK 293T cells were presented as the mean ± SD. (d) Colony formation of H1975, PC9-ER, and A549 cells were measured after CDDO-Me (0, 
0.2, 0.4, and 0.6 µM) treatment for 14 days, and photographs of crystal violet-stained colonies were depicted. (e) The statistical result of colony number 
after CDDO-Me treatment. Data are shown as mean ± S.D., n = 3. One-way ANOVA with Tukey’s multiple-comparisons test, NS no significance, * p < 0.05, 
** p < 0.01, *** p < 0.001, **** p < 0.0001
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we further conducted a 200 ns molecular dynamics sim-
ulation of Daurisoline-EGFRL858R/T790M/EGFRWT and 
Isoalantolactone-EGFRL858R/T790M/EGFRWT complex, 
and MD results were analyzed by a root-mean-square 
deviation (RMSD) of the backbone atoms of EGFR and 
the heavy atoms of Daurisoline and Isoalantolactone. As 
shown in Fig. S2c-d, the EGFR-ligand complex reached 
equilibrium at about 130 ns. Analysis of the protein-
ligand RMSD profiles from 130 to 200 ns reveals that 
Isoalantolactone-EGFRWT (Fig. S2c) exhibits greater sta-
bility, with a ΔGbind of -10.22, compared to the mutant 
complex, which has a ΔGbind of -6.13 (Table S1). In con-
trast, no significant difference in RMSD or ΔGbind was 
observed for the Daurisoline-protein complexes: ΔGbind 
values are − 15.12 for EGFRL858R/T790M and − 14.65 for 
EGFRWT (Fig. S2d). Additionally, we also analyzed the 
hydrogen bond formation after 130 ns simulation, and 
extracted protein-ligand structure (Supplementary Fig. 
S2e) did not display the hydrogen bond between small 
molecules and EGFRL858R/T790M, implying the weak inter-
action of these small molecules with EGFRL858R/T790M. 
Overall, these results suggested that the activity differ-
ence of CDDO-Me between H1975 and A549 may be 
associated with EGFR-T790M mutant status.

In order to validate the selective interactions between 
CDDO-Me and EGFR-T790M mutant, it is necessary 
to establish an emerging T790M-mutant cells for fur-
ther examination. As the literature reports, clinical tri-
als clearly showed that T790M mutation of EGFR in lung 
cancer often caused the failure of Erlotinib treatment 
and disease progression [46]. Erlotinib was employed 
to treat PC9 cells at low concentrations and established 
the Erlotinib-resistant PC9 cell lines (PC9-ER, Fig. S3a), 
and tested the proliferation of CDDO-Me on PC9-
ER cells. Compared with A549 (EGFRWT) and H1975 
(EGFRL858R/T790M), IC50 value of CDDO-Me on PC9-ER is 
0.28 ± 0.01 µM, which was about 1/1.4 and 1/10 folds on 
H1975 (IC50 = 0.40 ± 0.03 µM) and A549 (IC50 = 2.81 ± 0.30 
µM), respectively. Additionally, we also examined the 
toxicity of CDDO-Me on the human normal cell 293T 
(Fig. 3b-c), and IC50 value (26.83 ± 3.61 µM) is far higher 
than the lung cancer cell lines, implying the higher bio-
compatibility and lower cytotoxicity.

To further assess the anti-proliferative activity of 
CDDO-Me, concentration-dependent colony formation 
assays were conducted to examine the difference among 
A549, H1975, and PC9-ER cells. After exposure to vari-
ous concentrations of CDDO-Me, the number of colony 
formations (Fig. 3c-d) in H1975 and PC9-ER was signifi-
cantly suppressed compared with A549 cells. Addition-
ally, after CDDO-Me treatment, the number of stained 
migratory H1975 and PC9-ER cells was much greater 
than A549 (Supplementary Fig. S3b-c). We also detected 
the phosphorylation level of EGFR in PC9-ER and PC9 

cells after incubation with 5µM Erlotinib for 48 h, results 
indicated that phosphorylation level of EGFR in con-
structed PC9-ER cells did not altere by erlotinib treat-
ment (Fig. S3d). Collectively, these results suggested that 
CDDO-Me could significantly suppress the proliferation 
and the directional migration of EGFR mutant NSCLC 
cells (H1975 and PC9-ER).

CDDO-Me is a selective inhibitor of EGFRL858R/T790M

The above-mentioned assays implied that CDDO-Me 
molecule displayed the selectivity between EGFR wild 
type and mutant in NSCLC cells, but it cannot provide 
enough information about whether CDDO-Me can 
directly bind with EGFRT790M  in vitro. To further vali-
date whether CDDO-Me can specifically bind to EGFR 
harboring T790M mutation, cellular thermal shift assay 
(CETSA) and molecular dynamic simulation were con-
ducted to determine whether CDDO-Me directly binds 
with EGFRT790M and affects its degradation in vitro.

CETSA can precisely examine the thermal stability of 
target proteins, which were docked with small molecules 
[47]. We used CETSA to test the cell-level interaction 
between CDDO-Me and EGFRL858R/T790M, temperature-
dependent immunoblot analysis of EGFR (Fig. 4a) clearly 
revealed that the thermal stability of EGFR protein 
treated with CDDO-Me was higher than control.

Further elucidating the selective binding of CDDO-Me 
to EGFRL858R/T790M ​is crucial, and microscale thermo-
phoresis (MST) offers a robust approach to validate this 
direct interaction. Therefore, we purified the intracellular 
domains of both EGFRL858R/T790M ​and EGFRWT followed 
by the ADP-Glo™ biochemical assay with purified EGFR, 
following purification via HisTrap HP chromatography, 
EGFRL858R/T790M ​and EGFRWT exhibited purities exceed-
ing 90%, as determined by SDS-PAGE analysis (Fig. 
S3e). As given in Fig .4b, CDDO-Me exhibited an IC50 
of 17.22 ± 5.26 nM for EGFRL858R/T790M which was about 
1/10  than EGFRWT (175.70 ± 17.40 nM). These results 
demonstrated a significantly higher potency of CDDO-
Me against EGFRL858R/T790M compared to the EGFRWT, 
suggesting a potential therapeutic implication for target-
ing mutant EGFR. Furthermore, we conducted the MST 
assay with CDDO-Me and EGFR. MST results indicated 
that the binding affinity of EGFRL858R/T790M ​to CDDO-
Me (1.10 µM) was notably stronger than that of EGFRWT 
(79.01 µM) (Fig.  4c-d), demonstrating that CDDO-Me 
binds directly to EGFR and exhibits significantly higher 
affinity for the T790M mutant than for the wild type.

Molecular dynamics simulation revealing selectivity of 
CDDO-Me
Given the selective anti-proliferation activity between 
wild-type EGFR and EGFRL858R/T790M displayed by 
CDDO-Me, we conducted a molecular dynamics 
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Fig. 4 (See legend on next page.)
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simulation to elucidate the potential mechanism under-
lying the interaction between CDDO-Me and EGFR. To 
this end, we determined the binding stability between 
CDDO-Me and EGFR using long durational molecular 
dynamic simulation (200 ns) of CDDO-Me-EGFRWT and 
CDDO-Me-EGFRL858R/T790M.

Root-mean-square deviation
FigureS3f depicts the RMSD trajectories for the 
EGFRL858R/T790M/EGFRWT-CDDO-Me complex. The tra-
jectory for EGFRL858R/T790M is illustrated in blue, with 
RMSD values shown on the left Y-axis in nanometers 
(nm). In contrast, the trajectory for EGFRWT is depicted 
in red, with RMSD values also presented on the left 
Y-axis in nanometers (nm).

From the original frame, the protein RMSD began to 
fluctuate from around 0.2 nm at 0 ns. The protein RMSD 
gradually increased, reaching equilibrium at approxi-
mately 130 ns, with an average RMSD of around 0.32 nm 
during the 130–200 ns simulation period. In contrast, the 
RMSD trajectory of the EGFRWT-CDDO-Me complex 
continued to ascend without stabilizing, indicating that 
the EGFRL858R/T790M variant achieved greater conforma-
tional stability with the incorporation of the CDDO-Me 
molecule.

Radius of gyration
Radius of gyration (Rg) was employed to assess the com-
pactness effect of protein during molecular dynamic 
simulation. If Rg values among these systems presented 
a significant difference, it implied that ligand may induce 
compactness or repellency. As given in Supplementary 
Fig.S3g, The Rg of the EGFRL858R/T790M system was gen-
erally lower than that of the EGFRWT. Notably, after 130 
ns, the Rg of the EGFRL858R/T790M system was significantly 
reduced compared to EGFRWT. These results indicated 
that the CDDO-Me molecule affect the spatial struc-
ture of EGFRL858R/T790M to stabilize the protein-ligand 
complex.

Root-mean-square fluctuation
To identify the critical residues of protein interact-
ing with ligand, we computed the Root Mean Square 
Fluctuation (RMSF) of EGFRWT-CDDO-Me and 
EGFRL858R/T790M-CDDO-Me. As given in Fig.  4e, there 
were several critical residues identified as having high 
association with protein-ligand interaction, i.e. Leu775-
Thr800, Ile850-Leu875 amino acid regions (labeled by 
black box). Among these residues, the Leu775-Thr800 
region is situated within the ATP binding pocket, with 
the steric hindrance induced by Met790 considered a 
pivotal factor in TKIs resistance [48]. Overall, molecular 
dynamic simulation results clearly showed that CDDO-
Me can stabilize the protein conformation.

Binding free energy analysis
To further elucidate the receptor-ligand interactions, 
we employed the MM/PBSA approach to quantitatively 
assess the binding free energy and energy decomposition 
values (Table. S1). Our analysis unveiled a remarkably 
strong binding affinity of EGFRL858R/T790M and CDDO-
Me, as supported by the calculated values of ΔGbind, 
ΔGvdW, ΔGele, ΔGnonpol, and ΔGpol, which were deter-
mined to be -31.25, -35.91, 0.61, -6.12, and 10.17  kcal/
mol, respectively. Throughout the 200 ns MD simulation, 
it is noteworthy that several residues, such as Ala722, 
Met790, Cys797, and Arg858, made significant contribu-
tions to the binding energy (Fig. 4f ). Notably, Ala722 and 
Met790 exhibited the lowest binding energy, approxi-
mately − 8.16  kcal/mol. Additionally, these residues are 
constituents of the ATP binding pocket, suggesting the 
interaction between CDDO-Me and the active pocket of 
EGFRL858R/T790M.

Structural analysis after equilibration
To further investigate the interactions between the pro-
tein and ligand, we extracted the protein-ligand complex 
structure at the 130 ns mark for detailed analysis. As given 
in Fig.  4g-h, conformation of EGFRL858R/T790M-CDDO-
Me complex revealed that CDDO-Me bound to the 
active site of EGFRL858R/T790M to form hydrogen bonds 
with CYS775, MET793, MET790 and CYS797, which 

(See figure on previous page.)
Fig. 4  CDDO-Me specifically targets the L858R/T790M-mutant EGFR. (a) CDDO-Me thermally stabilized EGFRL858R/T790M in cellular level. H1975 cells were 
treated with CDDO-Me (2 µM) for 1 h. Lysates were divided into eight fractions, followed by heating to indicated temperatures (42, 45, 48, 51, 54, and 
57 °C). (b) ADP-Glo™ assay determination of the IC50 values of CDDO-Me against purified intracellular domain of EGFRWT and EGFRL858R/T790M, data are 
shown as mean ± S.D., n = 3. (c, d) The binding of fluorescently labeled EGFRL858R/T790M and EGFRWT to varying concentrations of CDDO-Me by microscale 
thermophoresis (MST). The Kd value of the EGFR-CDDO-Me interaction as determined by MST assay. (e) Root-mean square fluctuation (RMSF) values of 
EGFRL858R/T790M in complex with CDDO-Me (blue) and EGFRWT in complex with CDDO-Me (red) over 200 ns. (f) Binding free energy decomposition of 
CDDO-Me-EGFRL858R/T790M complex. (g) The 3D binding mode of CDDO-Me (orange) in the catalytic site of EGFRL858R/T790M and diagrammatic illustration 
of the interaction between EGFRL858R/T790M binding site residues and CDDO-Me by BIOVIA Discovery Studio Visualizer software. The protein and ligand 
CDDO-Me are shown by cartoon and stick respectively with key residues labeled and demonstrated as green sticks, and the hydrogen bonds are labeled 
by red dashed lines. Ligand is presented by gray line, green dashed line is conventional hydrogen bonds, light green dashed line is Van der Waals, and light 
pink dashed line is Alkyl. (h) The 3D binding mode of CDDO-Me (orange) in the catalytic site of EGFRWT and diagrammatic illustration of the interaction 
between EGFRWT binding site residues and CDDO-Me by BIOVIA Discovery Studio Visualizer software. The protein and ligand complex display pattern 
are same as (g)
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Fig. 5 (See legend on next page.)
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were all around ATP-binding pocket and contributed 
to the stronger binding capacity of CDDO-Me (Fig. 4g). 
However, CDDO-Me did not form any hydrogen bond 
interactions with EGFRWT (Fig. 4h).

CDDO-Me caused G0/G1 cell-cycle arrest and triggered 
apoptosis in EGFR-mutant NSCLC cells through caspase-
dependent pathway
To dissect whether the anti-proliferation is caused by 
CDDO-Me-involved cell cycle arrest, we employed flow 
cytometry to examine the cell cycle distribution of EGFR 
mutant NSCLC cells and immunoblot analysis was con-
ducted to measure the expression levels of cell cycle 
regulatory proteins after treatment with CDDO-Me. As 
given in Fig. 5a-b, CDDO-Me significantly increased the 
cell percentage of EGFR mutant NSCLC cells (H1975 
and PC9-ER) at G0/G1 phase and caused subsequential 
reduction in G2/M phase compared to the control and 
EGFR-WT NSCLC cell (A549). Subsequentially, west-
ern blot analysis of cell cycle regulatory proteins, includ-
ing CDK4 and Cyclin D1, was conducted. As shown in 
Fig. 5e-f, quantitative measurement of CDK4 and Cyclin 
D1 expression displayed the dose-dependent suppres-
sion in EGFR mutant NSCLC cells (H1975 and PC9-
ER) compared with controls and EGFR-WT NSCLC cell 
(A549). Together, these results corroborated that G0/G1 
cell cycle arrest may play an essential role in the CDDO-
Me-induced antiproliferation against H1975 and PC9-ER 
cells.

Currently, apoptosis is one of major molecular mech-
anism in molecular targeted cell death. To investigate 
whether apoptosis involved into the CDDO-Me-induced 
cellular inhibition, we examined the apoptotic percentage 
of NSCLC cells with various concentration of CDDO-
Me treatment (0.2, 0.4, and 0.6 µM) for 48  h. As show 
in Fig.  5c-d, we can observe a significantly increase in 
late apoptosis in a dose-dependent manner, while the 
percentage of late apoptosis in PC9-ER and H1975 was 
increased from 3.96 ± 0.04%, 3.14 ± 0.12% to 31.30 ± 0.05%, 
36.25 ± 0.26%, respectively. However, no difference was 
observed in EGFR wild type NSCLC cell A549 after 
CDDO-Me treatment.

Furthermore, we examined the expression levels of cas-
pase-related proteins in EGFR downstream to determine 
whether CDDO-Me activated caspase-dependent path-
way. As given in Fig. 5g-h, significantly up-regulation of 
cleaved PARP and caspase3 was observed after CDDO-
Me treatment, while expression levels of PARP, caspase, 
and Bcl-2 presented the dose-dependent down-regula-
tion compared with negative control (A549). Therefore, 
these results suggested that apoptosis induced by CDDO-
Me may rely on caspase-dependent signaling pathways.

CDDO-Me induced cell apoptosis via suppressing EGFR/
PI3K/Akt/mTOR signaling pathway in EGFR-mutant NSCLC 
cells
As above-mentioned, CDDO-Me directly binds to 
T790M-mutant EGFR, inducing G0/G1 cell cycle arrest 
and promoting apoptosis in EGFR-mutant NSCLC cells. 
However, the molecular targets of small molecules often 
are not unique, so-called off-target effect, and complex 
interactions of potential target-CDDO-Me may cause 
similar phenotypes or molecular mechanisms compared 
with specific inhibition of given target. Consequently, 
more comprehensive validations should be conducted 
to elucidate whether inhibition of T790M-mutant EGFR 
plays the major role in CDDO-Me-caused cell apoptosis.

Firstly, we primarily determined the main EGFR down-
stream signaling cascade, PI3K/Akt/mTOR, which plays 
pivotal roles in NSCLC cellular processes, including pro-
liferation, differentiation, migration, and apoptosis [49, 
50]. Western blot analysis revealed that CDDO-Me can 
dose-dependently (0.2, 0.4, and 0.6 µM) suppress phos-
phorylation levels of EGFR, PI3K, AKT, and mTOR in 
EGFR mutant cells (H1975 and PC9-ER) compared with 
A549 cells at 48 h (Fig. 6a-b). Concomitantly, the expres-
sion levels of total EGFR, PI3K, AKT and mTOR did not 
alter after CDDO-Me treatment (Fig. 6a-b). Additionally, 
the phosphorylation level of Erk1/2 in H1975 and A549 
cells did not obviously change until the concentration of 
CDDO-Me reached 0.4 µM, indicating that CDDO-Me 
exerts no significant influence on the MAPK signaling 
pathway(Fig. S4a-b). These results indicated that CDDO-
Me exhibits anti-NSCLC activity by selectively inhibiting 

(See figure on previous page.)
Fig. 5  CDDO-Me induces cellular apoptosis and modulates cell cycle progression in erlotinib-resistant NSCLC cells. (a) Flow cytometry revealed the cell 
cycle distribution of H1975, PC9-ER, and A549 cells treated with the indicated concentrations of CDDO-Me (0, 0.3, and 0.6 µM) for 24 h. (b) The statistical 
result of cell cycle distribution. (c) Apoptosis of H1975, PC9-ER, and A549 cells incubated with the indicated concentrations of CDDO-Me (0, 0.2, 0.4, and 
0.6 µM) for 24 h were detected by the Annexin-V FITC/PI double-staining assay. (d) Quantitative measurement of cellular apoptosis abundance after CD-
DO-Me treatment (0, 0.2, 0.4, and 0.6 µM) for 24 h. (e) Immunoblot analysis was conducted to reveal the cell cycle distribution of H1975, PC9-ER, and A549 
cells after incubation with the indicated concentrations of CDDO-Me (0, 0.3, 0.6, and 0.9 µM) for 24 h. CDK4 and CyclinD1 protein levels were measured 
by Western blot analysis, and β-actin was detected as the endogenous loading control, respectively. (f) Quantitative measurement of CDK4 and CyclinD1 
after CDDO-Me treatment (0, 0.3, 0.6, and 0.9 µM) for 24 h. (g) Immunoblot analysis was conducted to reveal the expression levels of PARP-mediated 
apoptosis biomarker expression levels of H1975, PC9-ER, and A549 cells after incubation with the indicated concentrations of CDDO-Me (0, 0.2, 0.4, and 
0.6 µM) for 24 h. PARP, cl-PARP, caspase 3, cl-caspase 3, and Bcl-2, protein levels were measured by Western blot analysis, and β-actin was detected as the 
endogenous loading control, respectively. (h) Quantitative measurement of PARP, cl-PARP, caspase 3, cl-caspase 3, and Bcl-2 after CDDO-Me treatment (0, 
0.2, 0.4, and 0.6 µM) for 24 h. Data are shown as mean ± S.D., n = 3. One-way ANOVA with Tukey’s multiple-comparisons test, NS no significance, * p < 0.05, 
** p < 0.01, *** p < 0.001, **** p < 0.0001
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the activation of the EGFR downstream PI3K/Akt/mTOR 
pathway in EGFR-T790M mutant cells.

To further explore the role of EGFR in the anti-cancer 
activity of CDDO-Me, we generated EGFR KO H1975 
stable cell lines using CRISPR/Cas9-mediated knock-out 
(Fig. 6c). Immunoblot analysis of the sgEGFR group con-
firmed that EGFR was effectively knocked out(Fig. S4c-d). 
Subsequently, cells were treated with CDDO-Me, and the 
number of EGFR knockout H1975 cell colonies (Fig. 6d-
e) was significantly higher than that of the sgNC group, 
indicating that EGFR KO cells displayed lower sensitivity 
to the indicated concentration of CDDO-Me treatment. 
We next sought to investigate whether EGFR knockout 
affected CDDO-Me-induced apoptosis in H1975 cell. 
As presented in Supplementary Fig. S4e-f, knockout 
of EGFR in H1975 cells significantly reduced the apop-
totic rate induced from 21.64 ± 0.02% to 11.09 ± 0.03% by 
CDDO-Me treatment (0.6 µM). Additionally, compared 
to the sgNC group, EGFR knockout partially reversed 
the CDDO-Me-induced expression of cleaved PARP and 
cleaved caspase-3, validating that CDDO-Me induces the 
H1975 cells apoptosis majorly performing inhibition of 
EGFR (Fig. 6f-g).

Additionally, we employed ZSTK474, a well-estab-
lished potent and selective inhibitor of phosphoinositide 
3-kinase (PI3K), to determine whether CDDO-Me causes 
cellular apoptosis through indeed inhibiting the PI3K/
Akt/mTOR signaling pathway. H1975 cells were treated 
either individually or in combination with the specified 
concentration of CDDO-Me (0.8 µM) and ZSTK474 (1 
µM) for a duration of 24 h. The results clarified that co-
treatment with CDDO-Me and ZSTK474 significantly 
suppressed the phosphorylation of EGFR, PI3K, Akt, and 
mTOR compared to either drug alone (Fig. S4g-h). There-
fore, we demonstrated that CDDO-Me induces apopto-
sis and death in H1975 NSCLC cells through the EGFR/
PI3K/Akt/mTOR signaling pathway. In summary, we 
propose that CDDO-Me directly interacts with mutant 
EGFR, downregulating its phosphorylation level and 
thereby suppressing the downstream PI3K/Akt/mTOR 
pathway to exert its anti-cancer effects (Fig. 6h).

CDDO-Me inhibited tumor growth of the H1975 xenograft 
model in vivo
We determined the anti-tumor activity of CDDO-Me 
in a H1975 xenograft model (Fig.  7a). After the tumor 
model was successfully established, mice were intra-
peritoneally injected with vehicle or CDDO-Me (3 and 
6  mg·kg− 1) every day for a total 20 times. As expected, 
CDDO-Me dose-dependent suppressed H1975 tumor 
growth in BALB/c nude mice (Fig.  7b) compared with 
vehicle group. By collecting the major organs and tumor 
tissues, CDDO-Me (6  mg/kg) significantly reduced the 
~ 57% volume of H1975 tumor (Fig. 7c, d) compared to 

vehicle. Additionally, long durational drug administra-
tion also showed the low toxicity without observing any 
significantly difference of body weight between CDDO-
Me therapy and vehicle group (Fig. 7e). As growth inhibi-
tion was recognized as suppression of EGFR-PI3K/AKT/
mTOR axils, we examined the proliferation activity and 
EGFR phosphorylation in tumor tissue. Illustration in 
Fig. 7f-g, we observed that the percentage of Ki-67 pro-
liferative cells and p-EGFR intensity were significantly 
reduced in tumor tissues, suggesting that CDDO-Me 
dose-dependent reduced tumor cell proliferation via 
suppression of EGFR phosphorylation levels. Notably, 
immunoblot analysis was conducted to examine expres-
sion levels of EGFR, PI3K, Akt, and mTOR in tumor 
tissues. Results demonstrated that phosphorylation lev-
els of EGFR, PI3K, Akt, and mTOR were significantly 
decreased compared with vehicle group (Fig. 7h-i). These 
findings demonstrated that CDDO-Me yield a significant 
suppression of tumor in vivo through inhibition of EGFR-
PI3K-Akt-mTOR axis without systematic side effects.

Discussion
In summary, aimed to conquer the drug resistance of 
EGFR mutation-led drug resistance, we have proposed 
a machine learning-aided drug screening and identify an 
emerging EGFR-mutant selective inhibitor CDDO-Me. 
Addressing drug resistance to clinical medications neces-
sitates the identification of novel scaffolds and explora-
tion of chemical space with various diversities, as similar 
scaffold structures often lead to analogous mechanisms 
of drug resistance. In comparison to random molecular 
design across the entire chemical space, marine- or food-
sourced natural product libraries offer enhanced oppor-
tunities for discovering new scaffold structures capable 
of suppressing target activities through novel binding 
modalities. To date, several marine- or food-originated 
drugs (e.g. Ziconotide, Trabectedin, Eribulin) have been 
approved by FDA for disease therapy [51], and more can-
didates with higher bioactivity and safety are under the 
clinical trials. Moreover, long-standing dietary or edible 
applications can provide assurance regarding the safety 
of molecular constituents, mitigating potential adverse 
effects, for example genetic toxicity. Consequently, in our 
investigation, we utilized a commercially available molec-
ular library derived from food sources to identify prom-
ising lead compounds with selectivity against mutated 
EGFR.

Our study displays a significant stride in the field of 
machine learning-aided drug discovery, particularly in 
the development of selective inhibitors. Indeed, over 
the past decade, a growing number of researchers have 
made notable progress in employing machine learning 
for inhibitor discovery. This has involved the applica-
tion of diverse neural network methods to identify novel 
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Fig. 6 (See legend on next page.)
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scaffold molecular moieties across various therapeutic 
domains, including antibiotics [52], antiviral agents [53], 
and anticancer drugs [54]. Despite advances in machine 
learning algorithm technologies implemented in the drug 
discovery, there are still many challenges regarding the 
implementation and integration of these algorithm into 
the drug discovery process specifically in general. To our 
knowledge, the superior points to improve efficacy of 
machine learning are algorithms, which determined the 
rate of convergence and precision. Different algorithms 
focused on different optimizing approaches, and these 
searching difference may cause the bias of outcomes 
[55]. As expected, there exist several avenues for enhanc-
ing prediction models, such as Boosting Generalization 
[56], Error Correlation Reduction [57], and Variance 
Reduction [58]. Compared with Employing individual 
algorithms within prediction models, introduction of 
various types of algorithms can enhance predictive effi-
ciency by integrating more intricate algorithms or novel 
types of neural networks, so-called “hybrid algorithm”. 
Recently, hybrid algorithms have been introduced in 
machine learning-aided drug discovery, yielding superior 
outcomes compared to traditional standalone algorithms 
[59, 60]. Building on these advancements, the hybrid pre-
diction model presented herein strongly supports the 
enrichment of selective inhibitors derived from commer-
cial datasets. Additionally, due to the discernible correla-
tion between compound structures and bioactivities, we 
observed optimal training performance through ensem-
ble learning progression. Our findings further suggest 
that similar machine learning-aided drug discovery pipe-
lines hold promise for future biomedical applications.

To date, structure-based molecular design encoun-
ters similar limitations, as molecules with analogous 
structures often elicit comparable drug resistance 
mechanisms. Machine learning-assisted drug discov-
ery offers a promising avenue to identify novel scaffold 
moieties capable of overcoming drug resistance. While 
EGFR inhibitors such as Gefitinib, Afatinib, and Erlo-
tinib have been extensively utilized in NSCLC therapy, 
the emergence of drug resistance to these agents under-
scores the necessity of alternative therapeutic strategies. 

Although drug resistance to EGFR inhibitors may be 
mitigated by suppressing alternative signaling pathways, 
direct targeting of mutant EGFR proteins remains a pri-
mary therapeutic approach for NSCLC. For instance, 
the development of AZD-9291, which covalently binds 
to the EGFR-T790M mutation, exemplifies this strat-
egy. Remarkably, our findings indicate that CDDO-Me 
directly binds with T790M-mutant EGFR and shares a 
similar binding pattern to the catalytic site of EGFR as 
AZD-9291, located adjacent to the P-loop and directly 
interacting with the Cys797 residue, thereby activates 
the EGFR-PI3K-AKT mediated apoptosis and cell cycle 
pathway. Complete suppression of mTOR catalytic activ-
ity demonstrates efficacy in inducing caspase-dependent 
apoptosis. As anticipated, we also observed a reduction 
in caspase-3 and phosphorylated mTOR levels induced 
by CDDO-Me. Additionally, CDDO-Me downregulates 
G0/G1 cell cycle checkpoint proteins Cyclin D1 and 
CDK4 to exert anti-mutant NSCLC activity. Specifically, 
induction of long-term G1 cell cycle arrest in oncogenic-
driven cancer growth imparts cytotoxic effects, thereby 
presenting a potential avenue for reversing drug resis-
tance [61].

Bardoxolone methyl (CDDO-Me), a semi-synthetic 
triterpenoid derived from the natural product oleanolic 
acid, exerts its pharmacological effects by activating the 
Kelch-like ECH-associated protein 1 (Keap1)/nuclear 
factor erythroid 2-related factor 2 (Nrf2) axis, thereby 
modulating immunological responses, such as those 
observed in the treatment of chronic kidney disease [62, 
63]. Furthermore, CDDO-Me has demonstrated effi-
cacy in suppressing SARS-CoV-2 replication, mitigating 
macrophage infiltration to prevent metabolic dysfunc-
tion-associated steatohepatitis, and inhibiting osteoclas-
togenesis to counteract extracellular matrix degradation 
[64–66]. Furthermore, extensive literature indicates that 
CDDO-Me inhibits PPAR-γ activity, thereby obstruct-
ing differentiation and augmenting the differentiation 
effects of all-trans-retinoic acid (ATRA) in acute myeloid 
leukemia (AML) [67, 68]. This compound induces apop-
tosis in cancer cells through several mechanisms, includ-
ing the generation of reactive oxygen species (ROS) [69], 

(See figure on previous page.)
Fig. 6  CDDO-Me-induced inhibition of NSCLC via the EGFR pathway in Erlotinib-resistant NSCLC cells. (a) Immunoblot was conducted to reveal the 
phosphorylation level of EGFR downstream pathways in H1975, PC9-ER, and A549 cells after incubation with the indicated concentrations of CDDO-Me 
(0, 0.2, 0.4, and 0.6 µM) for 24 h. p-EGFR, EGFR, p-PI3K, PI3K, p-Akt, Akt, p-mTOR, and mTOR protein levels were measured by Western blot analysis, and 
β-actin was detected as the endogenous loading control, respectively. (b) Quantitative measurement of p-EGFR, EGFR, p-PI3K, PI3K, p-Akt, Akt, p-mTOR, 
and mTOR band density after CDDO-Me treatment (0, 0.2, 0.4, and 0.6 µM) for 24 h. (c) Schematic illustration of experimental flowchart to construct 
CRISPR knockout H1975 cells. (d) Colony formation of EGFR-KO H1975 cells were measured after CDDO-Me (0 and 0.6 µM) treatment for 14 days, and 
photographs of crystal violet-stained colonies were depicted. (e) The statistical result of colony number after CDDO-Me treatment. (f) Immunoblot 
analysis was conducted to reveal the expression levels of PARP-mediated apoptosis biomarker in EGFR-KO H1975 cells after incubation with the indicated 
concentrations of CDDO-Me (0 and 0.6 µM) for 24 h. PARP, cl-PARP, caspase 3, and cl-caspase 3, protein levels were measured by Western blot analysis, 
and β-actin was detected as the endogenous loading control, respectively. (g) Quantitative measurement of PARP, cl-PARP, caspase 3, and cl-caspase 3 
after CDDO-Me treatment (0 and 0.6 µM) for 24 h. (h) Graphical model for molecular mechanism of CDDO-Me-induced cell apoptosis in T790mutatnt 
NSCLC cell. Data are shown as mean ± S.D., n = 3. One-way ANOVA with Tukey’s multiple-comparisons test, NS no significance, * p < 0.05, ** p < 0.01, *** 
p < 0.001, **** p < 0.0001
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activation of caspase-3/8 [70], and c-Jun NH2-terminal 
kinase (JNK) [71], as well as by inhibiting the PI3K/Akt/
mTOR signaling pathway to promote autophagy [72]. 
Additionally, CDDO-Me attenuates Janus kinase (JAK) 
activity [73, 74], reducing cell proliferation and differ-
entiation, and suppresses telomerase activity, leading 
to apoptosis. It also inhibits the mitochondrial protease 
Lonp1, impacting mitochondrial function, and binds 
to Ubiquitin-Specific-Processing Protease 7 [75], con-
sequently downregulating substrates such as MDM2, 
MDMX, and UHRF1 [76]. Collectively, these findings 
suggest that CDDO-Me interacts with a diverse array of 

molecular targets to exert its anti-cancer effects, demon-
strating its potential as a multi-target therapeutic agent.

The established safety profile of CDDO-Me in these 
clinical applications renders it a promising candidate for 
cancer therapy, with minimal consideration for adverse 
effects. Biochemical assays conducted in vivo, coupled 
with molecular dynamics simulations, have provided 
insights into the selective binding of CDDO-Me to EGFR 
mutations, exhibiting a wide margin of selectivity against 
mutated variants in non-small cell lung cancer (NSCLC). 
Notably, CDDO-Me demonstrates heightened selectiv-
ity against downstream kinases within the EGFR-PI3K 

Fig. 7  CDDO-Me suppresses tumor progression in H1975 xenograft models. H1975 cells (5 × 106) were subcutaneously inoculated into BALB/c male 
nude mice. The mice were allocated to six groups after 7 days of tumor-cell implantation. (a) Schematic graph of the CDDO-Me administration protocol 
in the established H1975 xenograft model. (b) Tumor volume (length × width2 × 0.5 mm3) was measured every 2 days and treated with vehicle (2% DMSO 
in PBS, i.p., n = 6), CDDO-Me (3 mg·kg-1, i.p., n = 6) and CDDO-Me (6 mg·kg-1, i.p., n = 6). (c) The scatter plot summarized the weight of the tumors. (d) The 
representative stripped images of the tumor entity after being treated with vehicle, 3 mg·kg-1 and 6 mg·kg-1 of CDDO-Me for 20 days. (e) The body weight 
was quantified in each group. (f) Representative hematoxylin and eosin (HE) staining of tumor tissues. And immunocytochemical staining for Ki-67 and 
p-EGFR expression in tumor tissues from nude mice (Magnification, 400×. Scale bar, 50 μm). (g) Quantitative measurement of IHC results were analyzed 
by Image-Pro Plus 6.0 (n = 5 fields of view). (h) Immunoblot analysis was conducted to reveal the phosphorylation level of EGFR downstream pathways in 
vivo, mice were treated with vehicle (2% DMSO in PBS, i.p, n = 6), CDDO-Me (3 mg·kg-1, i.p., n = 6) and CDDO-Me (6 mg·kg-1, i.p., n = 6). p-EGFR, EGFR, p-PI3K, 
PI3K, p-Akt, Akt, p-mTOR, and mTOR protein levels were measured by Western blot analysis, and β-actin was detected as the endogenous loading control, 
respectively. (i) Quantitative measurement of p-EGFR, EGFR, p-PI3K, PI3K, p-Akt, Akt, p-mTOR, and mTOR. Data are shown as mean ± S.D., n = 3. One-way 
ANOVA with Tukey’s multiple-comparisons test, NS no significance, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001
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pathway. Moreover, the remarkable dose-dependent 
antitumor activity of CDDO-Me observed in xenograft 
H1799 tumor models further underscores its potential as 
a therapeutic agent targeting T790M mutations, as vali-
dated by immunoblot analysis.

Overall, our studies presented the discovery of a selec-
tive inhibitor, CDDO-Me, targeting EGFR-T790M for 
the treatment of drug-resistant NSCLC tumor prolifera-
tion, achieved through a machine learning-aided drug 
discovery approach. Initially, our investigation demon-
strated that the hybrid algorithm significantly improves 
machine learning prediction efficiency of the selective 
binding ability of T790M-mutant EGFR compared to 
wild type, thereby facilitating the screening of candidate 
compounds for subsequent bioactivity assays. Subse-
quently, we employed various experimental techniques, 
including CETSA, and molecular dynamics simulations, 
to cross-validate that CDDO-Me selectively inhibits the 
degradation rate of EGFR mutants in vivo and forms sta-
ble interactions within the EGFR-ATP binding pocket. 
To determine the molecular mechanisms of CDDO-Me 
against EGFR-mutated NSCLC, the anti-tumor activity 
was ascribed to the induction of cellular apoptosis and 
cell cycle arrest at the G0/G1 phase, achieved through 
modulation of the EGFR/PI3K/Akt/mTOR signaling cas-
cade. Importantly, our findings underscore the feasibility 
of employing machine learning-assisted virtual screening 
methodologies to identify promising EGFR inhibitors. As 
such, we advocate for a strategy aimed at impeding EGFR 
kinase-dependent functions, thereby introducing novel 
and efficacious avenues for the discovery of potential 
inhibitors and the treatment of NSCLC.

Conclusion
Our study successfully identified CDDO-Me, an olea-
nolic acid derivative with anti-inflammatory properties, 
as a selective inhibitor of EGFR-T790M. The efficacy of 
CDDO-Me was validated through in vitro cellular assays 
and molecular dynamic simulations, showing signifi-
cant suppression of NSCLC cell proliferation harboring 
the EGFR-T790M mutation. Furthermore, CDDO-Me 
induced apoptosis and caused cell cycle arrest by inhib-
iting the PI3K-Akt-mTOR pathway, directly targeting 
the EGFR protein. In vivo studies in a H1975 xenograft 
mouse model demonstrated dose-dependent suppression 
of tumor growth, highlighting the therapeutic potential 
of CDDO-Me in overcoming NSCLC drug resistance.
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