
44

Multiple Imputation Ensembles for Time Series (MIE-TS)

ALIYA ALERYANI, AARON BOSTROM, WENJIA WANG, and BEATRIZ IGLESIA,

University of East Anglia

Time series classification has become an interesting field of research, thanks to the extensive studies con-

ducted in the past two decades. Time series may have missing data, which may affect both the representation

and also modeling of time series. Thus, recovering missing data using appropriate time series-based imputa-

tion methods is an essential step. Multiple imputation is a data recovery method where it produced multiple

imputed data. The method proves its usefulness in terms of reflecting the uncertainty inherit in missing data;

however, it is under-researched in time series problems. In this article, we propose two multiple imputation

approaches for time series. The first is a multiple imputation method based on interpolation. The second is

a multiple imputation and ensemble method. First, we simulate missing consecutive sub-sequences under a

Missing Completely at Random mechanism; then, we use single/multiple imputation methods. The imputed

data are used to build bagging and stacking ensembles. We build ensembles using standard classification al-

gorithms as well as time series classifiers. The standard classifiers involve Random Forest, Support Vector

Machines, K-Nearest Neighbour, C4.5, and PART while TSCHIEF, Proximity Forest, Time Series Forest, RISE,

and BOSS are chosen as time series classifiers. Our findings show that the combination of multiple imputa-

tion and ensemble improves the performance of the majority of classifiers tested in this study, often above

the performance obtained from the complete data, even under increasing missing data scenarios. This may

be because the diversity injected by multiple imputation has a very favourable and stabilising effect on the

classifier performance, which is a very important finding.
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1 INTRODUCTION

Time series (TS) data are like any other real-world data that may have missing values. This may

occur during recording data, which may be caused by technical or human faults. For example, data

collected from wearable devices such as smart watches or phones may contain missing values due
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to battery constraints. Similarly, recordings of a sensor may be lost due to power outages. Besides

the fact that the quality of the data plays a big role in the performance of the learning algorithms,

the presence of missing data is crucial because some representations of TS as well as classification

algorithms need the data to be complete. Hence, recovering such data is an important process so

that TS can be analysed safely and correctly. One common approach to handle this issue for many

real-world datasets is to exclude (cases/records/instances) with missing values. The approach is

also known as complete case analysis, where the analysis is carried out on complete data. How-

ever, it may introduce biases if the percentage of missing data is increased, which may lead to

inefficient statistical results. Similarly, for a TS dataset, which is a collection of independent TS,

the approach can also be applicable in the same manner as standard data. That is, any individual

TS with missing values is excluded, and only the complete data are considered for analysis. How-

ever, the the size of data may be affected. Similarly, this approach is not recommended for TS [29].

Another approach is to recover missing values using imputation methods prior to modeling, and

this is strongly recommended in the literature [19, 30, 35, 47]. For example, a number of imputa-

tion methods that take into the account the temporal nature of TS have been proposed. However,

the commonly used time-based imputation techniques [23, 50, 51] do not reflect the uncertainty,

particularly those designated for univariate series, as they produce single imputed data. On the

other hand, multiple imputation is a powerful technique that produces variability and considers

the uncertainty inherent in the missing data. That is, it produces multiple complete imputed data

then each of these can be analysed independently. Rubin [35] proposed rules for combining the

resulted analysis of the multiple imputed data. The rules estimate parameters of interest associated

with variances from each of the imputed data. Then, these estimates are combined (averaged) into

a single one also with one variance. Although a number of multiple imputation methods proposed

for multivariate TS, there is a lack for such methods for univariate TS.

On the other hand, for TS classification, the ensemble technique empirically outperforms many

individual time-based classifiers. However, multiple imputation for TS was seldom studied in the

context of ensemble learning. For instance, a study was conducted for a forecasting task combining

single time-based imputation with an ensemble [7]. Another approach [38] proposed an ensemble

to combine multiple imputations generated by Gaussian mixture models, which could be applied

on classification or clustering tasks. More studies are required to study the variability that mul-

tiple imputation injects and how that may create increase diversity for classification ensembles.

Experiments with several ensemble algorithms will help establish best practice.

Therefore, the goal of this article is to assess imputation in univariate TS and then investigate

how different imputation methods affect the classification performance. To achieve our aim, we de-

velop a time-based data recovery method then utilise that to improve TS classification with incom-

plete data. We first propose a novel time-based imputation method that incorporates uncertainty,

i.e., produces multiple imputed data. We then extend the approach we proposed for standard data

MIE [5]. That is, we combine multiple imputation with ensembles to fill missing values for TS. We

also propose to incorporate two approaches: multiple imputation and data ensemble techniques for

recovering missing data. First, we simulate missing sub-sequences under Missing Completely at

Random (MCAR) mechanism, though in this case the missing data are contiguous values of the

TS. Then, we use a number of single/multiple imputation methods. The imputed TS are used then

to build our ensembles. We build ensembles using a number of standard classification algorithms

implemented in Weka, such as Random Forest (RF) [17], Support Vector Machines (SMO) [31],

K-Nearest four (IBk) [2], C4.5 [42], and PART [25]. On the other hand, we employed TS classifiers

such as TSCHIEF [52], proximity forest (PF) [36], Time Series Forest (TSF) [21], RISE [24], and

BOSS [48] built in the tsml package [1, 10] in Java. The different approaches are compared using

appropriate statistical tests.
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The contributions of this work are summarised as follows:

(1) A simulation of missing consecutive sub-sequences under MCAR was carried out; then, we

use a number of single/multiple imputation methods. We make these experimental scenarios

available at [3].

(2) A novel multiple imputation for univariate TS data, a variation of interpolation, is developed

and integrated with ensembles.

(3) The imputed data are used to build homogeneous bagging and stacking ensembles employ-

ing standard and TS classifiers.

(4) Different approaches are compared and tested using a number of statistical tests. Our find-

ings show that the combination of multiple imputation and ensemble improves the perfor-

mance of the majority of classifiers tested in this study, often above the performance obtained

for the complete data, even under increasing missing data scenarios.

The rest of this article is organised as follows: Section 2 summarises related work; our proposed

work is explained in Section 3 followed by our experimental set-up in Section 4; Section 5 details

the results of this study; this is followed by a discussion, and conclusions in Section 6.

2 RELATED WORK

Here, we first review a number of data recovery methods for TS that have been proposed in the

literature. We then provide the definition and representation of TS and the algorithms employed

to classify such data.

2.1 Methods for Handling Missing TS

Here, we present the common imputation methods utilised for TS in general, then we review

some articles that proposed TS imputation techniques then used imputed data to build classifiers/

ensembles as follows. First, the presence of missing data is an issue in TS analysis [6, 12] since the

performance of some classification algorithms is believed to become poor when the rates of missing

values are high [22]. Other algorithms may not be applicable when data have missing values [8].

Thus, handling missing values is an essential pre-processing phase. In practice, researchers may

apply complete case analysis though it is not recommended for TS problems [29]. Others may use

imputation methods that recover missing values with approximated values from the observed data

so that all samples (cases) are preserved. These methods can be categorised into single or multiple

imputation.

Single imputation methods produce a single estimation of the missing value, so the uncertainty

is not taken into account. Common imputation such as Mean Imputation, KNN imputation, or

other forms of machine learning imputation can be used for TS. However, these do not preserve

the temporal structure of the data, which may lead to inappropriate analysis. On the other hand, a

number of simple time-based imputation methods such as Last Observation Carried Forward

(LOCF) [51, 57], Next Observation Carried Backward (NOCB) [23] may be used. Nevertheless,

both methods have a drawback as they do not introduce variability because of the assumption that

change is nonexistent between two time points. Another popular method, which is more common

particularly in Time Series Classification (TSC), is interpolation. In this approach, the missing

value is replaced by the average between one value or more before that missing value and one

value or more after it, depending on the type of interpolation, which can be linear, spline, or cubic

interpolation [50].

On the other hand, Multiple Imputation (MI) produces multiple plausible values for the miss-

ing value, and in doing so, it incorporates uncertainty. Moreover, MI has proven its usefulness

in many fields. For classification, particularly, our previous work shows that MI with ensemble
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techniques outperforms other approaches that used single imputation [5]. Furthermore, MI can

be applicable to TS data although there is a lack of such methods that are designated for TS. For

instance, common MI methods are Multivariate Imputation by Chained Equations (MICE)

and Expectation Maximisation with Bootstrapping (EMB) [30]. MICE [19] is based on Fully

Conditional Specification where each variable with missing data is imputed by a separate model

then iterates the imputation over that model. The imputation can be also applied for data that has

no multivariate distribution. The method currently has no adaptation for TS data. On the other

hand, EMB [30] combines expectation-maximisation with a bootstrap algorithm to replace miss-

ing values from a dataset and produces multiple datasets. It has an adaptation to deal with missing

data in TS. Both methods (MICE and EMB) cannot be directly applied for univariate TS, as their

implementations require more than one predictor (attribute). One may add an arbitrary attribute,

say the time stamp, to each TS so the imputation can be applied.

Second, we present some work on the application of imputation with classification for TS. For

instance, Nancy et al. [39] developed a method for imputing incomplete unevenly spaced TS. The

method first chooses the nearest values to the unknown data points to form a significant set. It

then determines an influence factor value for updating the weights of the known data presented in

the significant set. Finally, the derived significant set along with its influence factor are employed

in the inverse distance weight interpolation (IDW) computations to impute missing values.

Two clinical TS datasets were used in the experimentation. Additionally, they simulated a dataset

with missing data completely at random (MCAR), missing at random (MAR), and missing

not at random (MNAR). Furthermore, they applied a number of classifiers such as SVM, neural

networks (NN), and decision trees (DT). The proposed method was compared with the other

imputation techniques such as KNN, Expectation-Maximisation (EM), and IDW. The method

shows a reduction in the error rate compared with the other imputation methods used in the study

and improves the classification accuracy.

Bertsimas et al. [14] developed a new imputation method based on KNN, med.knn, for imput-

ing missing clinical covariates in multivariate TS. med.knn can be applied for datasets with both

continuous and categorical variables. The method extends their previous algorithm, opt.knn [15],

by adding new parameters specific to each covariate. Furthermore, they proposed a new tuning

procedure that allows for learning the values of these parameters. Experimentation was carried

out on two longitudinal datasets and one electronic health record (EHR) dataset. med.knn com-

pared with other imputation methods such as mean, moving average, Bayesian principal com-

ponent analysis (bpca) [40], MICE [19], Amelia [30], and opt.knn [15]. Moreover, they evaluated

the performance of different imputations on classification/regression tasks. The proposed method

outperforms the other methods used for both the imputation and prediction performance.

Bashir and Wei [12] used a vector auto-regressive model-imputation (VAR-IM) algorithm

to recover incomplete multivariate TS data. The algorithm combines EM algorithm with the pre-

diction error minimization (PEM) method. They carried out experiments on electrocardio-

gram (ECG) data. The method was compared with complete case analysis, linear regression

substitution, Multivariate Auto-Regressive State-Space (MARSS), and EM. The algorithm ob-

tains significantly better results only when the rate of missing values are above 10%.

Che et al. [20] proposed a deep learning method (GRU-D), which was based on Gated Recurrent

Unit (GRU) models. The method can capture missing values in TS by incorporating masking and

time intervals inside the GRU; then, it trains all models using back-propagation. The method was

compared with machine learning models and RNN models. The former, missing values are imputed

first using mean, kNN, interpolation, and multiple imputation methods then models are trained

with SVM and Logistic Regression (LR). The later uses RNN with mean imputation. Experiments
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were conducted on synthetic and healthcare TS data. The proposed work provides significantly

better results compared with the two competing methods.

Rawassizadeh et al. [43] developed an algorithm (Ghost) that recovers off-period segment of

incomplete TS data. The algorithm aims at finding data segments that have a prior and posterior

segment match to those of the missing data. They also proposed a caching approach that min-

imises the search space and improves the computational complexity. Their imputation method

was compared with missForest [53], Multiple Imputation with Diagnostics (mi) [54], MICE [19],

and Amelia [30] on five real-world datasets and shown significant better results.

Mikalsen et al. [38] proposed a time series cluster kernel (TCK) for multivariate time se-

ries (MTS). The method uses Gaussian mixture models (GMM) to handle missing data then an

ensemble approach is built to combine multiple GMM to construct a final kernal. The experiment

was conducted on one synthetic datasets and real-world datasets from the University of California,

Irvine repository (UCI) and the University of East Anglia and University of California, Riverside

(UEA & UCR) Time Series Classification repository [1]. Increasing scenarios of missing values were

introduced under MCAR, MAR, and MNAR assumptions for the synthetic dataset, while MCAR

was adapted for two TS datasets. The method was tested for complete and incomplete time series.

1-nearest neighbour (1-NN) classifier was chosen with different dissimilarity configurations

such as learned pattern similarity LPS, dependent dynamic time warping DTW (DTW-d), in-

dependent DTW (DTW-i), fast global alignment kernel (GAK), and the proposed TCK. The

method was tested for complete and incomplete TS and showed a competitive performance for the

former, while it performed better than the other similarity measures in case of missing data.

Andiojaya and Demirhan [7] proposed a bagging ensemble to improve current TS imputations.

The method combines block bootstrap methods and missingness pattern preserving schemes for

TS forecasting. The TS imputations chosen are linear and Stineman interpolation, Kalman filtering,

and weighted moving average. The mechanism for missing data generation considered are MCAR

and MAR. The dataset selected for the study is M3-Competition used for a forecasting competi-

tion. The proposed work with Kalman filters with auto-arima obtained a smaller error than other

imputation methods used in the study.

2.2 Time Series Classification (TSC)

TS differs from a standard classification problem as the features have an ordered sequence. That

is a time series, TS , consists of m ordered real values denoted as TSi =< ti1, ti2, . . . , tim > where

m is the length of the series (number of observations). A TS dataset, TSD, is a set of TS and is

denoted as TSD = {TS1,TS2, . . . ,TSN } where each individual TS is independent from each other

and represented as a case (row) associated with a class labelyi . Classifying TS data can be achieved

by applying two different classification schemes: standard classification algorithms and TSC algo-

rithms as follows:

(1) Standard classification algorithms: Standard classification algorithms can be also used in

TSC. In this study, we applied RF [17], SMO [31], K-nearest neighbour (IBk) [2], decision

trees C4.5 [42], and PART [25]. An investigation of how these algorithms work and deal

with missing data can be found in [4, 5].

(2) Time series-based algorithms: This approach considers the temporal nature of TS. There

have been extensive studies on TSC by many researchers in the past two decades [8, 10,

11, 32, 34, 41, 44, 56]. TSC algorithms can be categorised based on the techniques used to

find the discriminating features as follows: distance based; intervals based; dictionary based;

shapelets based; hybrid and deep learning.

Distance based: Distance-based algorithms are those that compute similarity metrics

between series, then integrate the distances with a distance-based classifier. A good example
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for this type, considered the benchmark for TSC, is Dynamic Time Warping combined

with 1-nearest neighbour (DTW_1NN) [11]. PF [36] is the state-of-the-art under this

category.

Dictionary based: The TS is transformed to a dictionary (sequence of words) by using

a sliding window mechanism. That is, the real values of each sub-series (window) is repre-

sented as a symbol, which will then form a word. The frequency of these sub-series then de-

termines the class. Bag of Symbolic-Fourier Approximation Symbols (BOSS) [48] and Word

Extraction for Time Series classification (WEASEL) [49] are examples of dictionary-based

classifiers.

Interval based: The algorithms extract features from intervals of each series, then classi-

fication is performed on these transformed features. Determining the length of the interval

and summary statistics to be calculated are the core factors of this approach. TSF [21] and

Random Interval Spectral Ensemble (RISE) are examples of interval based classifier [24].

Shapelet based: A shapelet is a sub-series of contiguous values, which is representative

of a class. First step is to create a number of candidates, then only the best shapelets are

chosen to transform the TS by calculating the distances from a series to each shapelet. The

Shapelet Transform Classifier (STC) [16, 28] is one of the most accurate algorithms under

this category [11, 45].

Hybrid based: It is also called model based. It is an ensemble of different models where

each model can be produced from different TS classifier. Hierarchical Vote Collective of

Transformation-based Ensembles (HiveCote) [9] and Time Series Combination of Het-

erogeneous and Integrated Embeddings Forest (TSCHIEF) [52] are the most accurate

classifiers as reported in the UEA & UCR TS classification repository [1].

3 PROPOSED METHOD FOR MULTIPLE IMPUTATION IN TS (MIE-TS)

In this work, we propose two approaches. The first is a multiple imputation method that used the

simple interpolation with randomness (MINT), and the second is multiple imputation ensembles

for dealing with incomplete univariate TS (MIE-TS) as described below. In order to implement our

method, we collect complete TS datasets with the minimum requirements as follows. First, we

collect complete TS datasets, i.e., have no missing values in their origin. The TS data we used are

explained later in Section 4.1. Second, our experimental set up involves generating a number of

missing subsequences (consecutive datapoints). These subsequences vary in length and must not

overlap. Therefore, we choose TS with an adequate length. In our experiment, the minimum length

of TS is 144. Finally, TS must have a range of values so that the imputation can be applicable to

recover the simulated missing data.

3.1 Multiple Interpolation (MINT)

Interpolation is a popular method used to replace missing values, and it is commonly utilised in

TS due its simplicity. On the other hand, MI is an advanced imputation technique due to its ability

to capture the uncertainty. To attain the advantages from both, we expect that incorporating the

two techniques could yield a simple but an efficient imputation model. Therefore, our proposed

scheme of the multiple interpolation is achieved by three main stages: missing data generation,

data recovery, and adding random noise.

(1) Missing Data Generation: For each of the collected TS, we create artificial training set as

follows: For each case (sample) in the training set, we generate five sequences of missing

values (consecutive observations) of different lengths under MCAR assumption. The re-

sulted incomplete TS,TSincomp , is used then as an input to our imputation algorithm, MINT,
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as shown in Equation (1). The creation of missing data is a step we use to create a good

evaluation test bed for imputation methods. The detail of how the missing values are gener-

ated on each of the training datasets is given next in Section 4.2.

(2) Data Recovery: Second stage is the missing data recovery. Incomplete values are imputed

using simple linear interpolation. This method computes an average between the values

before the missing data and the value after. Therefore, for each missing value in an index i,

xi , the linear interpolation can be computed as

x ′i =
(xA − xB )

a − b (i − b) + xB , (1)

where x ′i denotes the imputed value, xA the first known datapoint after the missing value

and xB the last known datapoint before the missing value. a and b are the indices of xA and

xB . The interpolation step is presented in lines 1–3 in Algorithm 1.

(3) Random Noise: Finally, each of the interpolated values is modified by randomly adding or

subtracting a random value, y, drawn from the truncated normal distribution [18] as illus-

trated in lines 4–10 in Algorithm 1. The truncated normal distribution can be defined as

below.

y = ψ (μ,σ , l ,u;x ′i ), (2)

where μ, σ are the mean and variance of the normal probability density function (PDF).

l and u determine the lower and upper bound of the interval. y is limited to a relatively

small value within a given interval or threshold. We specify l to −(10% ∗ x ′i ), while u is

limited to +(10% ∗ x ′i ). Finally, the draw is repeated multiple times (5 times), so in this case

multiple datasets are generated. These datasets have slightly different values for the imputed

datapoints as a result of the randomness injected.

Hence, we propose this method to impute the data multiple times but injecting some randomness

in each imputation. The proposed imputation is explained later in Section 4.4. The time complexity

of MINT is O (nmk ), where n is the number of instances in TSD, m is the number of attributes

(datapoints), and k is the number of iteration imputation.

ALGORITHM 1: MINT

Input : Time series with missing values TSincomp ; number of imputation iterations (T );

Output : Multiple imputed time series MITS
1 foreach missing value, xi , in TSincomp do

2 Impute xi based on Equation (1);

3 end

4 repeat

5 foreach imputed value, x ′i do

6 Draw a random value, y, from truncated distribution based on Equation (2);

7 Update x ′i based on y;

8 end

9 until T ;

10 return MITS

3.2 Multiple Imputation Ensembles for Univariate TS (MIE-TS)

MI for TS was not widely investigated in the context of ensemble learning. On the other hand, for

TS classification, the ensemble technique proves its usefulness, as it empirically outperforms many

individual time-based classifiers. As MI produces plausible values, which reflects the uncertainty
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Fig. 1. Bagging framework [5] takes imputed datasets as inputs to train classifiersC1, . . . ,Cn in layer 1. The

predictions obtained by individual classifiers, P1, . . . , Pn , are combined by the majority vote method.

inherit in missing data, the variability of MI may lead to increase diversity for TS ensembles. There-

fore, we propose to combine MI with ensembles to fill missing values for TS. In this section, we

propose two different methods to incorporate MI with ensemble techniques: bagging and stacking.

We use our imputation method, MINT, along with two different well established MI techniques:

MICE [19] and EMB [30] as described previously in Section 2.1. We next train classifiers and build

our Bagging and Stacking ensembles.

Our ensemble for MIE-TS works as follows. For our Bagging ensemble, we train homogeneous

classifiers (classifiers of the same) on the imputed series. The predictions of the models obtained

from a separate test data are then combined using a majority vote method. This method aggre-

gates the predictions from the separate models and selects the class that has been predicted most

frequently as the final prediction, as illustrated in Figure 1. Therefore, the Bagging ensemble is

evaluated using a hold-out test set. The time complexity for Bagging ensemble is O (N ∗ f ), where

N is number of training sets, and f is run time of individual classifier.

On the other hand, Figure 2 represents the construction of our Stacking ensemble showing two

layers. The first one involves the multiple imputed series trained by a number of heterogeneous

learners (different classifiers) to generate different models. A separate test set is used to test these
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Fig. 2. Stacking framework [5] takes imputed datasets as inputs to train classifiers C1, . . . ,Cn . The predic-

tions obtained by individual classifiers, P1, . . . , Pn , are employed to form a set of predictions data to be used

to train a meta classifier in the second layer.

models and then make a new dataset of predictions. This new dataset is aggregated with the actual

class of the test set to construct the (level-1) dataset, which is used as an input for the second layer.

In this layer, we train a meta classifier and then we evaluate the performance of the ensemble

using 10-fold cross-validation. The time complexity for Stacking ensemble is O ( f1+ f2, . . . , fk ),k =
1, 2, . . . ,K where fk is time complexity of each base classifier.

4 EXPERIMENTAL SET-UP

In this section, we provide a brief description of the datasets used in this work and our mecha-

nism for generating missing data. Then, we detail out the imputation methods used to recover the

missing sub-sequences followed by our proposed MIE-TS and finally the evaluation methods.

4.1 Datasets

(1) The PowerCons: The data can be found in UEA & UCR TS Classification repository [1]. It is

the electric power consumption from an individual household for a period of one year. It is

binary classification problem. Data recorded from April to September is classified as warm
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season, while those from October to March are cold season. The sampling rate is 10 minutes

(6 readings for each one hour) so the series length is 144.

(2) HouseTwenty: The dataset is for house number 20 collected from Personalised Retrofit Deci-

sion Support Tools for UK Homes using Smart Home Technology (REFIT). This also can be

found in UEA & UCR TS Classification repository [1]. This is a binary classification problem

where the household aggregate usage of electricity is classified as class 1, while the aggre-

gate electricity load of tumble dryer and washing machine is classified as class 2. Data are

collected at approximately 6–8-second interval. The length of series is 2,000.

(3) RefrigerationDevices: This dataset is part of government sponsored study called Powering the

Nation and can be found in [1]. The data aims at reducing the UK carbon footprint resulting

from electricity use. The data contain readings from 251 households, sampled in 2-minute

intervals over a month. The series length is 720, readings of 24 hours taken every 2 minutes.

Classes are fridge/freezer, refrigerator, and upright freezer; hence, it is a multiclass problem.

(4) Earthquakes: The dataset is taken from Northern California Earthquake Data Centre and

also available in [1]. This classification problem involves predicting whether a major event

is about to occur. A positive case is the one where a major event (reading over 5) is not

preceded by another major event for at least 512 hours. A case with a reading below 4 is a

negative case. The length of the series is 512.

Note that all datasets have come with a separate single test set. We resample the data so that

the majority of the samples are taken as a training set, while the rest are held as a test set. As we

mentioned previously in Section 2.2 that each TS is represented as a case (row) associated with a

class label and each individual TS in TS dataset is independent from each other, resampling data

then does not affect the temporal order of the data. That is the randomisation of the data only

affects the order of (records/cases/instances), but the temporal order of the attributes (datapoints)

is preserved. We do this as follows: for each dataset, we combine the training and testing sets into

one dataset. Data are then randomised and 70% of samples are selected as a training set, while

the remaining are selected for the test set. We repeat the partition with different random seed for

5 times. As a result, we produce five training and testing sets from each dataset.

4.2 Missing Data Generation

We remove sequences of consecutive values on the training set to create artificial datasets with

missing data. We generate five scenarios of increasing missing value removal for each of the train-

ing datasets, assuming data are not recorded for a period of time. For each scenario and in each

case in the training set, we simulate five sequences of missing values (consecutive observations)

of different lengths with no overlap, assuming missing data occurs completely at random (MCAR).

Since the original datasets are sampled at different rates, we perform different simulations of in-

creasing missing data for each individual dataset as follows.

For PowerCons dataset, since the data are recorded every 10 minutes (series length 144), we

generate five sequences of missing values in all of the five scenarios as follows. First scenario begins

with simulating 30 minutes of missing data as the smallest sequence of missing observations, which

is equivalent to three missing observations. So we remove five sequences, which can be between

3 and 6 in length. The length of the missing sequence is increased for each scenario as shown in

Table 1. For example, in the second scenario, the five sequences removed are between 3 and 12 in

length, while in highest scenario (scenario 5) the length of missing consecutive observations are

between 3 and 30. The percentage of missing values in the TS ranges between 15% in scenario 1%

to 45% in scenario 5.

For HouseTwenty dataset, data are recorded every 6–8 seconds, which equates roughly to seven

datapoints collected in 1 minute (series length 2,000). Starting by simulating 10 minutes of missing
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Table 1. Experimental Scenarios for Generating Missing Consecutive

Observations for Each Dataset where Sce Denotes the Scenario of

Missing Data, MS Denotes the Missing Sequences, and %MD Denotes

the Percentage of Missing Data

Dataset Sce Period MS max. length %MD

PowerCons

1 30 min–1 hour 1*6 = 6 15

2 30 min–2 hour 2*6 = 12 24

3 30 min–3 hour 3*6 = 18 32

4 30 min–4 hour 4*6 = 24 39

5 30 min–5 hour 5*6 = 30 45

HouseTwenty

1 10 min–20 min 20*7 = 140 10

2 10 min–30 min 30*7 = 210 18

3 10 min–40 min 40*7 = 280 25

4 10 min–50 min 50*7 = 350 32

5 10 min–60 min 60*7 = 420 40

RefrigerationDevices

1 10 min–1 hour 1*30 = 30 12

2 10 min–2 hour 2*30 = 60 21

3 10 min–3 hour 3*30 = 90 28

4 10 min–4 hour 4*30 = 120 35

5 10 min–6 hour 6*30 = 180 43

Earthquakes

1 5 hour–20 hour 20 12

2 5 hour–50 hour 50 25

3 5 hour–80 hour 80 34

4 5 hour–110 hour 110 40

5 5 hour–140 hour 140 45

data as the smallest sequence of missing observations, equal to seven missing observations. Five

sequences are removed, which can be between 7 and 140 in length in scenario 1. Again, the length

of the five missing sequences is increased in each scenario, which ranges between 7 and 420 in the

high scenario. The percentage of missing values in the TS ranges between 10% in scenario 1% to

40% in scenario 5.

For RefrigerationDevices dataset, data are recorded every 2 minutes for 24 hours (720 observa-

tions). We begin with simulating 10 minutes of missing data as the smallest sequence of missing

observations, equal to five missing observations. So for the first scenario, five sequences are re-

moved, which can be between 5 and 30 in length. Again, the length of the five missing sequences

is increased in each scenario, which ranges between 5 and 180 in the high scenario. The percentage

of missing values in the TS ranges between 12% in scenario 1% to 43% in scenario 5.

For Earthquakes dataset, data are recorded every one hour (series length 512). Starting from

simulating 5 hours of missing data as the smallest sequence of missing observations, which is

equal to five missing observations. So for the first scenario, five sequences are removed, which can

be between 5 and 20 in length. Again, the length of the five missing sequences is increased in each

scenario, which ranges between 5 and 140 in the high scenario. The percentage of missing values

in the TS ranges between 12% in scenario 1% to 45% in scenario 5.

4.3 Comparative Imputation Methods

We use four imputation methods to recover missing values. All these methods except MICE are

designated to deal with the temporal nature of TS. These are Last Observation Carried Forward

(LOCF) [51], linear interpolation (INTERP), MICE [19], and EMB [30].
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(1) LOCF: This method simply replaces a missing datapoint with the last observed value in the

series.

(2) Interpolation: This common imputation is used for TS where missing data points are es-

timated from the observed data. A linear, cube or quadratic functions can be adopted to

approximate missing values. We use a linear interpolation where the mean before and after

the missing observations are computed to replace the missing value.

(3) MICE: We use the package, MICE [19], which is an implementation of Multivariate Imputa-

tion with Chained Equation to generate five imputed datasets. We set the random forest as

the imputation method, the number of iterations to perform the imputation to 20 and the

number of the imputed datasets to 5. MICE does not take account of values before and after

the current value to perform the imputation, so it may not be best for TS.

(4) EMB: Similarly, we apply another multiple imputation method, which is based on the Expec-

tation Maximisation with Bootstrap algorithm, Amelia [30], to produce five imputed datasets.

The algorithm has parameters associated with TS data such as lag and lead, which indicate

columns in the data that should have their lag/lead included in the imputation model.

4.4 Multiple Interpolation (MINT) Set-up

Each sample (case) in the training datasets is first imputed using simple linear imputation. Next,

to consider the fact that the imputed value is not the actual value, we add a random component

to the imputation model to reflect the uncertainty. To do that, each of the imputed values is then

updated by randomly adding or subtracting from a random value generated from a truncated nor-

mal distribution. To generate random values, we use the truncnorm [37] package built in R with

parameter settings as follows. We set the parameter associated with the random value generated

to 1 and the lower bound to −(10% of interpolated value), while the upper to +(10% of interpo-

lated value). We inject this value to add some randomness to the imputation, so in this case the

uncertainty of the estimated (imputed) value is taken into consideration. We set the threshold to

restrict the generated random value between ± [10% of interpolated value], so the random effect is

within a small range. The process of updating the imputed data is repeated to produce five imputed

datasets. These multiple imputed datasets are used then to build our bagging/stacking ensembles.

4.5 Proposed MIE-TS

We build bagging/stacking ensembles using standard classification algorithms as well as TS based

classifiers. We employ the standard classifiers implemented in Weka and the tsml package for

the TS [1, 10] both in java. Furthermore, our bagging and stacking ensembles are implemented

in java. Our experiments were carried on high performance computing cluster supported by the

research and specialist computing support service at the University of East Anglia. We refer to

these ensemble according to the imputation methods used as MICE-hom, MICE-SE, EMB-hom,

EMB-SE, MINT-Hom, and MINT-SE.

(1) Standard classifiers: The datasets collected for this study are represented as structured data

so we can apply the standard classification algorithms. We train RF [17], SMO [31], K-nearest

neighbour (IBk) [2], decision trees C4.5 [42], and PART [25]. Then, we use these models to

build bagging and stacking ensembles. For the bagging ensemble, multiple imputed data

are used to build homogeneous ensemble. To classify a new instance, the final prediction is

based on the majority vote. The test was performed on a separate hold-out set. However, for

the stacking approach, heterogeneous classifiers are employed to classify the imputed data.

After that, a new set of predictions is constructed to train a meta classifier. The ensemble is

evaluated using 10-fold cross validation.
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(2) TS-based classifiers: We choose a state of the art TS classifier, TSCHIEF to build our bagging

ensemble. For the bagging ensemble, imputed datasets are used to train TSCHIEF then mod-

els are tested against separate test sets. The final class is assigned based on a majority vote.

For the stacking ensemble, TSCHIEF is adopted with a collection of other TS classifier such

as RISE, TSF, BOSS, and PF to train imputed datasets in the first level of the stack. Next, the

predictions are used to form a new dataset in the second layer. As this set is not in the form

of a TS, we use RF to train on this layer. Again here, we evaluate the ensemble using 10-fold

cross validation.

TSF is an interval based ensemble of trees. At each node, a TS tree samples random intervals

from each series. Then, summary statistics such as mean, standard deviation, and slope are com-

puted for each interval. These new features are employed to build the decision trees. To determine

the best split, the entropy gain and a distance metric are computed. That is, the best split is the

one with the highest entropy. To classify a new instance, a majority vote method is used to assign

the class [21].

RISE is an alternative to TSF, which is also an interval based ensemble. The difference between

RISE and TSF is the number of intervals per tree and the type of futures extracted. RISE uses one

interval for each tree. For each interval, it employs transformers such as autoregressive coefficients,

autocorrelation coefficients, and power spectrum coefficient for feature extraction. These features

are combined to form a new dataset, which is used to build a decision tree. Majority vote is used

here to classify a new case [24].

BOSS is a dictionary-based ensemble of multiple BOSS models. That is, each BOSS classifier is

performed in three stages. First, a sliding window approach is used to divide a series to intervals

of predefined length. Next, each interval is normalised to have a standard deviation of 1. Then, the

Symbolic Fourier Approximation (SFA) transformer is applied to convert each interval value

to symbols [48].

PF is a distance-based TS ensemble of proximity trees. It adapts the idea of a decision tree

but performs a different test procedure. Furthermore, a reference and similarity measures are at-

tached to each branch of the internal node of a proximity tree. Starting from the root, each node is

recursively created till it reaches to the leaf. The algorithm then randomly selects a distance mea-

sure from a collection of 11 measures used such as Euclidean distance, Move-Split-Merge, Longest

common subsequence, Edit distance with real penalty, and different variations of Dynamic time

warping (DTW) [36].

TSCHIEF is a heterogeneous ensemble classifier that builds forest of trees. The algorithms

follows the same mechanism for constructing a tree, which starts from the root then down to the

leaf. Next, at each node, the algorithm incorporates different types of splitting functions employed

for TS such as TS similarity measures, dictionary-based, and interval-based representations [52].

4.6 Evaluating Classification

We use the classification accuracy as the metric for our comparisons of performance. We compare

between all the approaches looking for differences in the algorithms’ performance on each scenario

separately. We applied our proposed method for the imputation on the training set. We then use

these imputed training set to build the classifier/ensemble. We next evaluate the performance on

the separate test set.

4.7 Evaluating Imputation Methods

We propose the use of the DTW measure to evaluate the quality of the different imputation meth-

ods used in this work. The measure [46] was originally applied on speech recognition problems
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Table 2. The Mean Accuracy of the Classifiers and Standard Deviation for the Complete

Datasets Obtained Based on Test Sets

Classifier

No. Dataset RF SMO IBk J48 PART TSCHIEF

1 PowerCons 99.92 ± 0.26 99.84 ± 0.37 93.11 ± 1.24 97.54 ± 1.64 97.70 ± 1.58 99.50 ± 0.75

2 HouseTwenty 87.79 ± 4.97 76.32 ± 7.55 68.55 ± 6.26 70.06 ± 6.73 70.40 ± 9.88 97.36 ± 1.69

3 RefrigerationDevices 58.2 ± 4.16 35.61 ± 2.49 42.51 ± 2.44 46.2 ± 3.13 45.96 ± 4.18 72.96 ± 2.13

4 Earthquakes 79.21 ± 0.92 69.14 ± 3.05 72.71 ± 4.30 67.72 ± 4.84 68.48 ± 2.81 79.87 ± 0

The best accuracy values for each classifier are in bold.

and was then employed for TS mining applications [13, 33, 55]. DTW is a distance measure that

finds the optimal alignment path between two series. The optimal alignment minimises the sum of

distances between aligned series. We can measure the quality of the imputation by comparing each

imputed series with its original counterpart. In that way, we can asses the similarity between two

series (original/imputed). We can say then that two series are similar, if the normalised cumulative

distance is small (close to 0) and different otherwise. Before we apply DTW to measure distance, we

normalise original and imputed series into a comparable range using the normalisation measure,

z−score .

To understand the formula of DTW, assume X ′ = [x ′1,x
′
2 . . . ,x

′
i ] denotes the imputed series and

X = [x1,x2 . . . ,x j ] denotes the original series where i = {1, 2, . . . ,N } and j = {1, 2, . . . ,M } are

the indices of X ′ and X , respectively. First, we use Euclidean distance to compute local cost matrix

between each pairs of x ′i and x j , which will be used then to construct warp curve ϕ (k ). Given ϕ,

the average accumulated distortion between the warped TS X’ and X is calculated as follows:

dϕ (X ′,X ) = ΣT
K=1d (ϕx ′ (k ),ϕx (k ))mϕ (k )/Mϕ , (3)

where ϕ ′x and ϕx remap the time indices of X ’ and X, respectively. mϕ (k ) is a per-step weighting

coefficient and Mϕ is the corresponding normalization constant. We set the default parameters

for the dtw package in R written by Giorgino [27], so in this case it computes a global alignment

with no windowing. The parameter, stepPattern, which specifies the transitions allowed while

searching for the minimum distance path, is set to symmetric2. The parameter associated with the

local distance function between two series, dist.method, is set to the Euclidean distance.

As we generate five missing subsequences for each case. For the single imputation approach, we

compute the normalised distance between each of theses missing chunks with its original coun-

terpart separately, then we average the results. Similarly, we first repeat the same calculation for

each of the multiple imputed series separately then we compute the overall average distance for

all the five imputed series.

5 RESULTS

Table 2 shows the mean accuracy and the standard deviation of the classifiers (RF, SMO, IBk, J48,

PART, and TSCHIEF) obtained on the testing sets by training on the complete data with no missing

values. We use the classification results for the original data as the benchmarks to study how

missing data affects the accuracy and performance of the algorithms when various methods for

dealing with missing data are used. TSCHIEF obtained the best classification accuracy on all the

datasets followed by RF and then SMO as second and third best, respectively. The performance of

J48, PART is relatively similar and IBk is the worst in most cases.

5.1 Classification Results

To understand how different algorithms behave under different imputation regimes, we begin

by investigating each algorithm separately. In particular, we apply our proposed methods that

combine MI with ensemble techniques, MIE-TS, along with our multiple interpolation method
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Table 3. The Mean Accuracy and Standard Deviation for Classifiers on Complete Dataset (First Column)

and other Approaches Obtained Based on Test Sets for the Different Approaches for PowerCons

Classifier Sce LOCF INTERP MICE-Hom MICE-SE EMB-Hom EMB-SE MINT-Hom MINT-SE

RF 1 99.34 ± 0.37 99.44 ± 0.38 99.5 ± 0.75 99.5 ± 0.75 100 ± 0 100 ± 0 100 ± 0 100 ± 0

(99.92 ± 0.26)

2 99.17 ± 0 99.34 ± 0.37 99 ± 1.49 99 ± 1.37 100 ± 0 100 ± 0 100 ± 0 100 ± 0

3 99 ± 0.91 99 ± 0.38 96.33 ± 1.73 98.17 ± 1.99 100 ± 0 99.5 ± 0.75 100 ± 0 99.5 ± 0.75

4 98 ± 1.83 98.83 ± 0.46 95.83 ± 1.32 97.5 ± 0.83 100 ± 0 99.5 ± 0.75 100 ± 0 99.83 ± 0.37

5 96.5 ± 2.79 98.67 ± 0.75 94.33 ± 1.6 96.83 ± 1.49 99.83 ± 0.37 99.17 ± 0.59 99.83 ± 0.37 100 ± 0

SMO 1 99.1 ± 0.48 98.83 ± 0.46 99.17 ± 1.02 99.83 ± 0.37 100 ± 0 100 ± 0 100 ± 0 100 ± 0

(99.84 ± 0.37)

2 99.34 ± 0.37 99.17 ± 0 96.83 ± 2.07 99 ± 1.37 99.67 ± 0.45 100 ± 0 100 ± 0 100 ± 0

3 97.17 ± 1.73 99 ± 0.38 91.5 ± 3.45 97.67 ± 3.08 98.83 ± 0.95 99.5 ± 1.12 99.5 ± 0.45 100 ± 0

4 96.17 ± 1.92 98.84 ± 0.75 90 ± 2.89 97.67 ± 1.24 99.5 ± 0.75 99.83 ± 0.37 99.5 ± 0.75 100 ± 0

5 95.83 ± 1.18 98 ± 1.26 85.84 ± 4.25 96.33 ± 1.51 99.34 ± 0.37 99.5 ± 1.12 98.5 ± 1.49 99.83 ± 0.37

IBk 1 96.5 ± 2.85 96.33 ± 2.01 96.83 ± 2.16 99.67 ± 0.75 96.33 ± 2.01 100 ± 0 96.5 ± 2.16 100 ± 0

(93.11 ± 1.24)

2 97 ± 2.48 97 ± 1.73 95.67 ± 1.09 99.17 ± 0.84 96.17 ± 1.39 99.67 ± 0.75 96.83 ± 1.37 100 ± 0

3 95.17 ± 2.73 95.33 ± 2.68 92.17 ± 1.39 98.17 ± 1.49 92.83 ± 2.61 99.83 ± 0.37 95.67 ± 2.59 99.83 ± 0.37

4 93 ± 1.92 94.67 ± 1.73 90.67 ± 3.6 97.67 ± 1.09 92.5 ± 3.06 99.83 ± 0.37 95.03 ± 2.18 99.83 ± 0.37

5 93.5 ± 2.46 94.5 ± 3.37 89.83 ± 2.16 95.83 ± 1.18 91.67 ± 5.65 99.83 ± 0.37 93.83 ± 3.62 99.67 ± 0.45

J48 1 95.83 ± 1.32 96.33 ±2.18 97.84 ± 1.26 99.17 ± 1.18 99 ± 0.91 100 ± 0 96.33 ± 1.92 100 ± 0

(97.54 ± 1.64)

2 95 ± 2.82 96.67 ± 2.12 97.83 ± 0.74 99 ± 1.49 99.5 ± 1.12 100 ± 0 97.33 ± 1.6 100 ± 0

3 94 ± 2.24 95.33 ± 3.1 95.83 ± 3.59 97.17 ± 2.68 99 ± 1.09 99.33 ± 0.91 96.5 ± 1.61 99.5 ± 0.75

4 93.67 ± 1.92 94.5 ± 4.19 94.83 ± 2.46 97 ± 1.51 99.33 ± 0.7 99.17 ± 1.44 97.17 ± 3.26 99.83 ± 0.37

5 91.17 ± 3.51 95 ± 2.12 91.67 ± 1.67 96 ± 1.8 98.33 ± 2.83 98.83 ± 0.95 96 ± 1.61 100 ± 0

PART 1 97.17 ± 2.25 98.34 ± 1.18 96.33 ± 2.47 99.17 ± 1.18 99.33 ± 0.7 100 ± 0 98.34 ± 1.18 100 ± 0

(97.70 ± 1.58)

2 96.5 ± 1.9 97.5 ± 1.56 97.33 ± 1.9 99 ± 1.49 99.67 ± 0.45 100 ± 0 97.5 ± 1.56 100 ± 0

3 92.83 ± 2.74 97 ± 2.09 95.17 ± 2.39 97.17 ± 2.68 99.67 ± 0.75 99.33 ± 0.91 97.83 ± 1.4 99.5 ± 0.75

4 95 ± 3.12 96 ± 2.46 94.67 ± 2.09 96.67 ± 1.56 99.67 ± 0.75 99.17 ± 1.44 98 ± 1.92 99.83 ± 0.37

5 93.67 ± 1.92 93 ± 3.61 89.67 ± 3.1 96 ± 1.8 99.5 ± 1.12 98.83 ± 0.95 96 ± 3.03 100 ± 0

TSCHIEF 1 99.5 ± 0.75 99.5 ± 0.75 97.5 ± 1.56 99.45 ± 0.48 99.33 ± 0.7 99.17 ± 0 99.5 ± 0.75 98.89 ± 1.27

(99.50 ± 0.75)

2 99 ± 0.7 99.33 ± 0.7 95.84 ± 1.18 98.61 ± 0.48 99 ± 0.7 99.45 ± 0.47 99.33 ± 0.7 99.45 ± 0.48

3 97.83 ± 1.73 98.83 ± 1.26 93.5 ± 1.49 96.67 ± 1.44 97.67 ± 0.91 98.61 ± 0.48 98.67 ± 1.39 99.17 ± 0.84

4 97.17 ± 1.92 98.67 ± 1.39 91.5 ± 2.46 95.83 ± 1.67 97.67 ± 0.69 98.89 ± 1.27 99 ± 1.09 98.89 ± 0.48

5 95.17 ± 1.71 97 ± 0.95 88.67 ± 3.51 93.89 ± 3.47 96.17 ± 1.26 99.72 ± 0.48 98.17 ± 1.09 98.61 ± 1.27

Best accuracy values for each scenario are in bold.

MINT as well as the comparative approaches as described in Section 4.3. We therefore study the

performance of LOCF, interpolation (INTERP) and our proposed MIE-TS methods, which are repre-

sented by the combination between MI methods with bagging (MICE-Hom, EMB-Hom, and MINT-

Hom) and stacking ensembles (MICE-SE, and EMB-SE, MINT-SE).

5.2 Classification Results by Datasets

(1) PowerCons. For PowerCons dataset, for most scenarios of missing data reflected in Table 3,

EMB and MINT combined with the stacking ensemble (i.e., EMB-SE, and MINT-SE), and

any of the algorithms gives excellent results with accuracy better than or comparable to

the accuracy for the complete dataset, even in the highest scenarios for missing data. The

best combination overall appears to be MINT-SE, but there are small differences with others.

EMB-Hom shows good performance with the RF algorithm. Best overall classification results

are obtained with RF and SMO, though it is notable that algorithms like IBk (and to some

extent also J48 and PART) improve their performance considerably with the introduction

of the missing data accompanied by the MI approaches to deal with it. Relatively poorer

performance was observed for INTERP and LOCF approaches, while MICE approaches and

particularly MICE-Hom showed deterioration in the highest scenarios of increasing missing

values.

(2) HouseTwenty. A similar picture emerges from the HouseTwenty dataset results shown in

Table 4 in terms of imputation methods with both EMB-SE and MINT-SE producing the best

results overall. For this dataset, TSCHIEF was the best among all classifiers with a perfor-

mance up to 10% higher than RF. EMB-Hom was the best for RF (all scenarios), EMB-SE was

best with SMO, J48 and for some scenarios in PART; MINT-SE showed advantage for IBk,
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Table 4. The Mean Accuracy and Standard Deviation for Classifiers on Complete Dataset (First Column)

and Other Approaches Obtained Based on Test Sets for HouseTwenty

Classifier Sce LOCF INTERP MICE-Hom MICE-SE EMB-Hom EMB-SE MINT-Hom MINT-SE

RF 1 88.68 ± 3.53 90.57 ± 4.62 88.3 ± 2.8 86.79 ± 4 90.94 ± 3.1 89.06 ± 5.4 89.81 ± 3.15 89.06 ± 4.7

(87.79 ± 4.97)

2 88.68 ± 3.27 89.06 ± 2.46 88.68 ± 4.22 82.64 ± 6.18 90.57 ± 4.22 86.79 ± 7.43 90.57 ± 3.78 88.3 ± 2.8

3 88.68 ± 2.31 88.68 ± 2.67 88.3 ± 4.89 84.53 ± 4.09 90.94 ± 3.1 88.68 ± 4.99 89.06 ± 3.37 87.17 ± 3.87

4 87.93 ± 2.15 89.06 ± 2.07 84.91 ± 2.31 81.51 ± 7.94 89.43 ± 5.1 83.4 ± 7.23 89.06 ± 4.7 86.79 ± 5.17

5 85.66 ± 4.92 88.3 ± 5.4 80.38 ± 4.35 80.75 ± 4.88 89.81 ± 5.1 82.64 ± 8.79 89.81 ± 4.34 84.15 ± 9.11

SMO 1 73.58 ± 6.11 74.72 ± 5.1 71.32 ± 8.48 88.3 ± 3.63 77.74 ± 7.11 91.32 ± 3.68 74.72 ± 5.1 90.19 ± 3.37

(76.32 ± 7.55)

2 72.08 ± 8.79 72.45 ± 6.35 69.43 ± 7.23 86.04 ± 4.13 76.6 ± 2.54 89.06 ± 4.88 72.45 ± 6.35 87.93 ± 3.43

3 66.41 ± 4.09 67.92 ± 6.11 67.17 ± 4.74 85.28 ± 5.88 75.09 ± 2.46 90.19 ± 4.88 67.92 ± 6.11 88.68 ± 4.22

4 69.81 ± 4.62 64.9 ± 10.04 69.43 ± 8.27 82.64 ± 5.72 78.11 ± 4.34 86.79 ± 3.53 64.9 ± 10.04 86.79 ± 4.99

5 59.24 ± 5.44 65.28 ± 9.01 63.02 ± 7.73 84.15 ± 2.86 74.72 ± 3.91 86.79 ± 6.11 65.28 ± 9.01 87.92 ± 6.62

IBk 1 70.56 ± 5.76 70.94 ± 5.44 67.17 ± 3.16 85.66 ± 1.03 67.17 ± 2.15 86.8 ± 4.81 71.7 ± 4.62 88.68 ± 1.89

(68.55 ± 6.26)

2 66.41 ± 6.45 65.66 ± 5.06 64.53 ± 5.72 81.89 ± 6.62 63.77 ± 4.3 84.91 ± 5.34 66.04 ± 4.62 88.3 ± 4.7

3 67.92 ± 5.5 70.94 ± 8.29 67.92 ± 5.5 82.64 ± 5.24 70.19 ± 5.87 85.66 ± 4.92 71.32 ± 8.16 86.04 ± 3.91

4 67.92 ± 3.53 67.92 ± 6.4 64.15 ± 3.77 81.13 ± 6.67 66.04 ± 4.99 83.77 ± 7.62 67.17 ± 6.75 86.41 ± 5.06

5 61.51 ± 4.13 68.68 ± 3.15 66.04 ± 5.5 82.27 ± 6.06 69.43 ± 6.98 82.27 ± 8.07 69.43 ± 4.88 86.41 ± 6.17

J48 1 66.79 ± 2.53 74.34 ± 5.1 71.32 ± 4.3 87.17 ± 4.09 73.96 ± 6.17 91.32 ± 3.68 73.58 ± 4.22 89.43 ± 4.13

(70.06 ± 6.73)

2 74.34 ± 8.91 68.3 ± 7.23 65.28 ± 3.91 86.04 ± 3.16 76.23 ± 4.13 89.06 ± 4.88 67.92 ± 7.31 86.79 ± 4.81

3 70.94 ± 6.88 69.81 ± 6.4 76.23 ± 8.5 85.28 ± 5.57 80 ± 2.53 90.19 ± 4.88 69.81 ± 6.4 89.44 ± 2.53

4 72.08 ± 8.79 76.6 ± 7.38 71.32 ± 8.69 80.38 ± 4.54 78.87 ± 6.17 87.55 ± 4.13 76.6 ± 7.38 85.66 ± 7.26

5 68.68 ± 7.62 69.05 ± 5.9 67.93 ± 3.53 84.15 ± 3.43 76.98 ± 4.3 86.79 ± 6.11 70.94 ± 8.61 88.3 ± 5.88

PART 1 67.92 ± 7.06 75.47 ± 7.31 73.96 ± 4.09 85.66 ± 5.43 75.85 ± 5.57 89.43 ± 5.76 73.59 ± 5.5 89.43 ± 4.13

(70.40 ± 9.88)

2 73.58 ± 8.54 75.47 ± 6.11 66.79 ± 6.34 84.15 ± 4.92 77.74 ± 6.98 87.93 ± 6.06 75.47 ± 6.11 87.17 ± 4.5

3 66.04 ± 8.12 68.68 ± 7.62 78.49 ± 5.27 84.9 ± 6.4 81.51 ± 4.5 90.57 ± 4.62 69.06 ± 7.96 88.68 ± 2.67

4 70.94 ± 8.18 76.6 ± 6.88 74.72 ± 7.62 80.76 ± 3.63 81.13 ± 5.82 86.42 ± 5.4 76.6 ± 6.88 85.28 ± 7.36

5 69.05 ± 11.45 70.56 ± 7.62 67.17 ± 6.48 82.64 ± 3.63 78.11 ± 6.88 86.04 ± 6.34 72.45 ± 9.49 88.3 ± 5.88

TSCHIEF 1 97.74 ± 2.06 97.36 ± 1.69 97.74 ± 1.58 96.67 ± 3.06 96.98 ± 1.69 96.78 ± 2.91 97.74 ± 1.58 98.00 ± 2

(97.36 ± 1.69)

2 97.36 ± 1.69 97.36 ± 1.69 97.74 ± 1.58 98.00 ± 2 96.61 ± 2.07 98.00 ± 0 97.36 ± 1.69 98.00 ± 2

3 96.61 ± 2.07 96.98 ± 2.15 97.74 ± 1.58 98.67 ± 1.15 97.36 ± 1.69 97.33 ± 1.15 96.98 ± 2.15 97.33 ± 2.31

4 96.98 ± 2.15 97.74 ± 1.58 97.73 ± 2.07 98.00 ± 2 97.36 ± 1.69 97.33 ± 1.15 96.61 ± 2.07 98.00 ± 2

5 95.09 ± 2.86 97.36 ± 1.6 97.36 ± 2.15 96.78 ± 3.98 97.36 ± 2.15 96.78 ± 3.98 96.23 ± 2.31 98.00 ± 2

Best accuracy values for each scenario are in bold.

and higher missing data scenarios with SMO as well as for TSCHIEF. Again LOCF, INTERP,

and MICE approaches performed worse in general. Also again for this dataset, MI combined

with stacking ensembles produced better classification accuracy than the benchmark data

for all scenarios, showing remarkable improvement for the higher missing data scenarios.

(3) RefrigerationDevices. Table 5 shows the result of the algorithms applied to RefrigerationDe-

vices dataset. This dataset appears harder to classify as the benchmarks results showed for

the standard classifiers. It is a multi-class dataset, which may explain some of the classifica-

tion difficulty. However, TSCHIEF performed considerably well as the performance was 14%

higher than RF for the complete data. Furthermore, performance actually increased from the

baseline for scenarios 1–4, despite the missing data presence, when using some of our meth-

ods for imputation. The performance for the stacking ensembles (MICE-SE, EMB-SE, and

MINT-SE) produced the best results for the majority of algorithms, although there was not

consistency on which was best for each combination of classification algorithm ad scenario.

For the RF algorithm, the stacking ensembles (MICE-SE, EMB-SE, and MINT-SE) performed

substantially worse than their bagging counterparts. For the SMO algorithm, stacking ensem-

bles (MICE-SE, EMB-SE, and MINT-SE) performed better than others in all of the scenarios.

For IBk, performance for the stacking approaches (MICE-SE, EMB-SE, and MINT-SE) was

better. Finally for J48 and PART stacking approaches were better. TSCHIEF was the best for

this problem in terms of classification accuracy achieved.

(4) Earthquakes. Table 6 shows the result of the algorithms applied for Earthquakes dataset. This

dataset shows again strong performance for TSCHIEF as well as all the SE variants for the

standard classifiers. The performance for TSCHIEF was resistant to missing data in this par-

ticular dataset in the sense that the same accuracy was achieved from the complete data and
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Table 5. The Mean Accuracy and Standard Deviation for Classifiers on Complete Dataset (First Column)

and Other Approaches Obtained Based on Test Sets for RefrigerationDevices

Classifier Sce LOCF INTERP MICE-Hom MICE-SE EMB-Hom EMB-SE MINT-Hom MINT-SE

RF 1 55.76 ± 1.19 57.52 ± 0.59 56.88 ± 2.11 48.16 ± 2.44 57.52 ± 1.53 47.6 ± 5.09 57.28 ± 1.48 50.56 ± 3.52

(58.2 ± 4.16)

2 56.32 ± 3.09 55.92 ± 2.79 56.96 ± 2.72 48.8 ± 5.16 56.56 ± 0.61 49.12 ± 6.43 56.4 ± 1.74 47.52 ± 3.56

3 54.88 ± 1.18 55.92 ± 2.22 56.4 ± 2.23 47.44 ± 5.38 56.32 ± 2.36 49.6 ± 2.26 55.92 ± 2.46 47.92 ± 0.95

4 56.48 ± 1.84 56.4 ± 2.61 56.64 ± 2.17 47.68 ± 6.67 56.08 ± 2.32 45.84 ± 5.39 56.72 ± 1.97 50.72 ± 3.17

5 56.08 ± 2.46 57.12 ± 1.04 56.48 ± 3.83 47.92 ± 3.36 56.4 ± 2.3 47.28 ± 3.29 57.84 ± 1.85 49.92 ± 5.57

SMO 1 36 ± 3.93 34.88 ± 2.79 36.24 ± 2.31 54.96 ± 4.96 36.96 ± 1.59 55.2 ± 3.31 34.88 ± 2.64 56.32 ± 1.97

(35.61 ± 2.49)

2 34.48 ± 3.95 35.04 ± 3.86 34.88 ± 2.96 54.56 ± 5.5 34.56 ± 3.52 56.16 ± 3.88 35.2 ± 3.68 52.48 ± 4.25

3 35.68 ± 1.48 35.28 ± 2.7 36.08 ± 3.39 54.88 ± 3.86 37.92 ± 3.96 54.72 ± 4.05 35.52 ± 3.14 53.84 ± 5.8

4 33.36 ± 2.48 37.44 ± 3.6 34.08 ± 3.03 55.84 ± 2.05 37.12 ± 2.99 53.04 ± 4.42 37.28 ± 3.83 55.68 ± 4.19

5 34.72 ± 1.86 36.08 ± 2.05 37.04 ± 3.27 53.2 ± 4.34 36.64 ± 1.71 53.68 ± 3.19 35.84 ± 1.19 56.08 ± 2.32

IBk 1 43.44 ± 1.8 43.12 ± 2.7 43.76 ± 1.49 48.48 ± 3.42 43.36 ± 2.38 46.72 ± 3.19 43.52 ± 1.78 52.08 ± 3.43

(42.51 ± 2.44)

2 42 ± 4.6 42.64 ± 3.58 41.04 ± 3.14 49.76 ± 3.72 39.92 ± 3.13 50.32 ± 5.23 42.16 ± 3.28 48 ± 4.13

3 37.52 ± 1.34 40.24 ± 1.64 37.84 ± 2.15 47.68 ± 3.78 37.36 ± 3.14 49.92 ± 2.09 40.64 ± 1.19 47.04 ± 2.33

4 36.4 ± 1.5 38.64 ± 1.8 38.24 ± 1.34 49.6 ± 5.99 36.8 ± 1.41 46.56 ± 3.51 39.12 ± 2.58 49.68 ± 2.55

5 36.32 ± 1.48 37.76 ± 2.65 37.12 ± 1.61 49.2 ± 3.61 34.8 ± 0.69 47.68 ± 2.3 37.84 ± 3.21 49.28 ± 4.86

J48 1 43.6 ± 0.89 46.8 ± 2.14 50.64 ± 1.69 54.56 ± 3.88 51.36 ± 2.41 54.32 ± 3.14 49.44 ± 2.81 54.4 ± 2.53

(46.2 ± 3.13)

2 45.44 ± 3.11 42.96 ± 2.57 50.48 ± 2.73 56.8 ± 5.13 50.16 ± 2.66 55.28 ± 4.73 49.36 ± 2.71 51.36 ± 3.23

3 45.6 ± 1.72 46.4 ± 3.3 49.36 ± 2.27 55.92 ± 3.09 51.12 ± 2.99 55.84 ± 2.24 47.44 ± 2.39 52.96 ± 4.93

4 46.88 ± 2.39 47.04 ± 2.48 50.24 ± 2.27 54.32 ± 2.44 51.44 ± 3.98 54.16 ± 1.64 49.44 ± 2.51 54.8 ± 4.09

5 45.28 ± 2.25 44.48 ± 2.12 49.36 ± 3.38 55.12 ± 4.28 51.44 ± 4.98 54 ± 1.96 49.76 ± 3.98 56.24 ± 4.03

PART 1 46.08 ± 3.27 48.16 ± 2.46 47.84 ± 2.66 51.04 ± 4.1 50.08 ± 2.85 50.56 ± 4.28 51.04 ± 2.38 52.24 ± 3.42

(45.96 ± 4.18)

2 45.2 ± 2.64 45.28 ± 3.95 49.44 ± 1.8 52.24 ± 4.16 49.92 ± 2.64 53.52 ± 4.01 50.48 ± 2.67 50.4 ± 4.84

3 42.88 ± 1.61 43.28 ± 2.46 48.48 ± 1.73 50.88 ± 3.34 50.48 ± 2.47 53.84 ± 2.75 49.36 ± 3.32 48.88 ± 1.31

4 48.64 ± 1.12 45.52 ± 2.39 49.44 ± 3.34 50.8 ± 2.87 52.96 ± 0.92 51.6 ± 2.94 50.32 ± 2.96 51.44 ± 2.36

5 44.48 ± 2.61 45.6 ± 5.57 48.32 ± 2.79 51.52 ± 2.18 52.24 ± 2.03 52 ± 3.45 51.28 ± 3.75 52.88 ± 4.17

TSCHIEF 1 69.28 ± 1.78 68.88 ± 3.34 68.4 ± 3.84 78.13 ± 1.01 68.5 ± 3.3 79.2 ± 1.06 69.6 ± 2.83 79.33 ± 2.2

(72.96 ± 2.13)

2 64.88 ± 2.22 64.56 ± 2.39 64.4 ± 2.77 75.47 ± 3.72 66.2 ± 2.2 77.6 ± 1.83 65.7 ± 3.14 76.93 ± 2.01

3 63.04 ± 4.53 62.48 ± 5.13 61.8 ± 5.09 76.27 ± 1.15 65.9 ± 4.12 75.73 ± 1.97 63.2 ± 4.86 74.67 ± 1.89

4 60.48 ± 2.16 59.68 ± 3.03 60.9 ± 5.25 75.07 ± 0.92 63.8 ± 1.48 72.27 ± 1.89 63.5 ± 1.8 73.47 ± 2.05

5 58.96 ± 4.42 57.92 ± 3.51 58 ± 3.71 70.27 ± 1.22 63.1 ± 4.06 69.33 ± 2.34 57.9 ± 4.78 71.6 ± 2.77

Best accuracy values for each scenario are in bold.

for different scenarios irrespective of the approaches used. For the RF algorithm, with good

performance for this dataset, EMB-Hom seems to perform well for a number of scenarios.

For the SMO algorithm, stacking ensembles (MICE-SE, EMB-SE, and MINT-SE) performed

better than others in all of the scenarios achieving improvements over the bench mark of

complete data. For IBk, a mixture of stacking ensembles performs well for most scenarios.

Finally, for J48 and PART, the stacking approaches also perform better for most scenarios.

This dataset seems to produce consistent results for most scenarios and algorithms when MI

is combined with stacking ensembles, making those comparable to the results obtained by

the best algorithm TSCHIEF.

5.3 Statistical Tests

For each classifier and for each scenario, we perform a number of statistical tests as follows. First,

we applied Friedman rank sum test with Iman Davenport’s correction [26] for multiple compar-

isons (i.e., the classifier with a combination of the imputation methods) over multiple datasets. The

Friedman rank test checks whether the different imputation approaches perform equally or there

is a difference in the performance. To detect the difference, the test computes the rank of the classi-

fiers on each dataset separately then averages them over the multiple datasets. Then, it computes

the test statistic as follows:

With eight algorithms (the combination of a classifier with the imputation methods) and four

datasets, � is distributed according to the � distribution with 8 − 1 = 7 and (8 − 1) ∗ (4 − 1) =
21 degrees of freedom. The critical value of � at a significance level of α = 0.05 is 2.49. The p-

value calculated by using the �(7,21) distribution is shown in Table 7. The table also illustrates

the mean rank for each algorithm. The symbol (∗) next to the p-values denotes that at least one
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Table 6. The Mean Accuracy and Standard Deviation for Classifiers on Complete Dataset (First Column)

and other Approaches Obtained Based on Test Sets for Earthquakes

Classifier Sce LOCF INTERP MICE-Hom MICE-SE EMB-Hom EMB-SE MINT-Hom MINT-SE

RF 1 79.48 ± 0.58 79.48 ± 0.99 79.61 ± 0.58 78.31 ± 1.5 79.87 ± 0.46 79.61 ± 1.5 80 ± 0.29 77.66 ± 2.19

(79.21 ± 0.92)

2 79.61 ± 0.36 79.61 ± 0.74 79.61 ± 0.58 79.22 ± 1.95 80 ± 0.29 78.31 ± 1.93 79.09 ± 1.74 76.23 ± 2.81

3 79.74 ± 0.54 80 ± 0.85 80.74 ± 0.71 78.44 ± 1.62 80.74 ± 0.29 78.18 ± 2.62 79.61 ± 0.58 78.31 ± 1.5

4 79.61 ± 0.74 79.74 ± 0.29 79.74 ± 0.29 78.18 ± 1.69 79.87 ± 0 77.27 ± 2 79.87 ± 0 78.7 ± 2.18

5 80.39 ± 0.85 79.35 ± 0.96 79.48 ± 0.58 78.44 ± 2.18 79.87 ± 0 80.73 ± 2.14 79.74 ± 0.29 78.7 ± 0.71

SMO 1 69.87 ± 2.46 70.65 ± 3.98 72.08 ± 0.8 79.87 ± 0 73.12 ± 1.75 79.87 ± 0 70.65 ± 4.19 79.87 ± 0

(69.14 ± 3.05)

2 70.65 ± 3.09 71.3 ± 1.07 74.68 ± 3.15 79.87 ± 0 76.23 ± 2.5 79.87 ± 0 73.12 ± 3.97 79.87 ± 0

3 70.13 ± 2.91 70.13 ± 2.64 73.51 ± 2.17 79.87 ± 0 74.29 ± 1.26 79.87 ± 0 70.13 ± 2.34 79.48 ± 0.87

4 68.05 ± 4.67 68.31 ± 5.32 71.95 ± 0.71 79.87 ± 0 74.03 ± 3.11 79.87 ± 0 68.57 ± 4.98 79.87 ± 0

5 66.23 ± 2.47 66.49 ± 1.49 72.73 ± 2.15 79.87 ± 0 75.45 ± 2.77 79.87 ± 0 66.75 ± 1.74 80 ± 0.29

IBk 1 77.53 ± 2.81 77.53 ± 3.13 78.57 ± 1.95 79.22 ± 0.8 77.79 ± 1.68 79.22 ± 1.95 76.49 ± 3.93 78.83 ± 1.18

(72.71 ± 4.30)

2 77.79 ± 2.22 75.84 ± 5.04 78.57 ± 1.52 79.74 ± 1.86 79.35 ± 0.85 78.7 ± 1.07 77.27 ± 2.79 77.53 ± 1.92

3 77.66 ± 3.17 77.4 ± 4.14 78.83 ± 0.99 78.57 ± 1.52 79.61 ± 0.36 78.31 ± 2.54 78.18 ± 3.54 78.44 ± 1.25

4 76.36 ± 6.4 75.19 ± 7.65 80 ± 0.29 78.05 ± 1.48 79.87 ± 0 78.57 ± 1.66 75.45 ± 7.73 79.48 ± 1.93

5 79.35 ± 0.54 79.74 ± 0.96 79.22 ± 0.92 78.57 ± 1.9 79.87 ± 0 80 ± 2.36 79.87 ± 1.03 77.92 ± 0.8

J48 1 69.87 ± 3.45 70.13 ± 2.43 75.84 ± 3.96 79.87 ± 0 75.33 ± 2.43 79.74 ± 0.29 74.55 ± 2.12 79.87 ± 0

(67.72 ± 4.84)

2 69.61 ± 2.77 70.39 ± 4.32 75.46 ± 2.4 78.96 ± 1.09 76.75 ± 2.45 79.87 ± 0 76.1 ± 2.12 79.87 ± 0

3 73.64 ± 1.75 71.3 ± 2.81 74.81 ± 4.48 78.7 ± 1.16 76.75 ± 2.22 79.87 ± 0 74.67 ± 1.52 79.87 ± 0

4 71.3 ± 3.88 71.69 ± 2.09 75.84 ± 1.68 79.48 ± 0.58 77.01 ± 2.58 79.87 ± 0 74.03 ± 3.47 79.35 ± 0.85

5 70.39 ± 4.44 70.91 ± 5.06 75.19 ± 2.36 79.87 ± 0 75.97 ± 1.65 79.87 ± 0 72.21 ± 5.72 79.87 ± 0

PART 1 71.56 ± 3.77 70.39 ± 3.6 75.32 ± 2.94 79.61 ± 0.36 76.1 ± 2.53 78.31 ± 1.63 74.93 ± 3.69 78.96 ± 0.99

(68.48 ± 2.81)

2 71.04 ± 3.17 69.87 ± 2.5 75.19 ± 3.51 78.44 ± 1.48 75.32 ± 2.97 79.87 ± 0 73.9 ± 4.32 79.22 ± 0.92

3 70 ± 2.66 71.69 ± 1.5 75.97 ± 2.05 78.57 ± 1.38 75.72 ± 2.5 79.48 ± 0.87 73.64 ± 2.18 79.09 ± 1.07

4 73.12 ± 3.2 67.66 ± 4.67 79.09 ± 2.45 78.31 ± 1.5 74.41 ± 6.5 79.35 ± 0.54 73.9 ± 2.45 79.74 ± 1.86

5 68.7 ± 5.65 70.65 ± 1.86 73.9 ± 3.74 79.22 ± 1.45 77.92 ± 2.48 79.61 ± 1.76 74.16 ± 3.35 78.83 ± 0.74

TSCHIEF 1 79.87 ± 0 79.87 ± 0 79.87 ± 0 79.87 ± 0 79.87 ± 0 79 ± 0.4 79.87 ± 0 79.66 ± 0.36

(79.87 ± 0)

2 79.87 ± 0 79.87 ± 0 79.87 ± 0 79.87 ± 0 79.87 ± 0 79.43 ± 0.77 79.87 ± 0 79.87 ± 0

3 79.87 ± 0 79.87 ± 0 79.87 ± 0 79.32 ± 0.69 79.87 ± 0 79.87 ± 0 79.87 ± 0 79.46 ± 2.6

4 79.87 ± 0 79.87 ± 0 79.87 ± 0 79.66 ± 0.36 79.87 ± 0 79.87 ± 0 79.87 ± 0 79.45 ± 0.37

5 79.87 ± 0 79.87 ± 0 79.87 ± 0 80.14 ± 0.97 79.87 ± 0 79.87 ± 0 79.87 ± 0 78.99 ± 0.76

Best accuracy values for each scenario are in bold.

classifier behaves statistically different than the others (p-value < 0.05). A lower rank means that

the algorithm performs better than others.

Consistently with the previous analysis, we see that the lowest ranks for each algorithm often

go to SE approaches except for RF for which the EMB-Hom approach has the lowest rank. For SMO,

IBk, J48, and PART, the test showed statistical difference in most scenarios of missing data as the

p-value is < 0.05 (shown in the first column of Table 7). The mean ranks for MINT-SE followed

by EMB-SE were the best for SMO and J48, while EMB-SE was the best for IBk and PART then

MINT-SE as a second best. LOCF was the worst in most cases for those algorithms.

For RF, the test reveals significant differences in most scenarios of missing data. The mean ranks

for the bagging ensembles (EMB-Hom followed by MINT-Hom) appeared to be the best. Other

approaches behaved relatively equal. MICE-SE was the worst.

On the other hand, the test shows no significant difference in the performance for TSCHIEF.

Although, the mean ranks for the stacking approach for MINT were the best followed by EMB

then MICE as a second and third best, respectively. Other approaches had close ranks, while poor

mean rank were associated with LOCF and MICE-Hom.

As the test shows significant difference, we proceed with post hoc test to check, which algorithm

performs better than a control algorithm. We use LOCF as a control as it is the simplest imputation

for TS. We perform Friedman’s Aligned ranks post hoc test with the control algorithm and Finner’s

correction to correct the p-values for multiple testing [26]. Again, we perform the test for each

scenario of each classifier separately. Table 8 shows the average accuracies for the multiple datasets

over each scenario. The symbol (∗) next to the average shows that test was significant (p-value

< 0.05) the performance of the algorithms is better than the control.
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Table 7. The Average Rank of All Algorithms in Combination with Different Imputation Methods and of

our Proposed Approach on All Datasets for All Scenarios of Missing Data as Resulting from Friedman Test

Classifier Sce P-value LOCF INTERP MICE-Hom MICE-SE EMB-Hom EMB-SE MINT-Hom MINT-SE

RF

1 0.020* 6.13 4.00 5.00 6.88 1.75 4.63 2.38 5.25

2 0.047* 4.38 4.00 4.00 6.88 1.75 5.63 3.25 6.13

3 0.022* 4.38 3.50 4.50 7.25 1.88 5.38 3.00 6.13

4 0.001* 4.50 3.75 4.88 7.25 2.25 6.75 1.63 5.00

5 0.090 4.25 4.00 6.00 7.00 2.75 5.00 2.25 4.75

Avg rank 4.73 3.85 4.88 7.05 2.08 5.48 2.50 5.45

SMO

1 0.000* 7.00 6.88 6.00 3.25 3.63 1.88 5.50 1.88

2 0.000* 7.00 5.88 6.75 3.50 4.75 1.50 4.38 2.25

3 0.000* 7.00 6.13 6.25 2.88 4.25 1.75 5.50 2.25

4 0.000* 7.00 5.88 6.50 3.00 4.38 2.13 5.50 1.63

5 0.000* 7.75 5.88 6.00 3.63 4.00 2.13 5.63 1.00

Avg rank 7.15 6.13 6.30 3.25 4.20 1.88 5.30 1.80

IBk

1 0.000* 6.00 6.75 4.88 2.38 6.75 2.00 5.63 1.63

2 0.005* 4.88 5.63 6.50 2.25 6.25 2.00 5.75 2.75

3 0.014* 6.88 5.75 5.88 2.75 5.50 2.38 4.50 2.38

4 0.024* 6.13 5.63 5.75 3.25 5.75 2.63 5.25 1.63

5 0.031* 6.50 4.75 6.75 3.63 5.50 1.88 4.00 3.00

Avg rank 6.08 5.70 5.95 2.85 5.95 2.18 5.03 2.28

J48

1 0.000* 8.00 6.13 5.25 2.13 4.50 2.13 6.13 1.75

2 0.000* 7.00 7.00 5.75 2.75 4.00 1.50 6.00 2.00

3 0.000* 7.25 7.38 5.25 2.75 3.75 1.63 6.13 1.88

4 0.000* 7.75 6.63 6.00 3.00 3.50 2.00 5.38 1.75

5 0.000* 7.50 6.75 6.50 2.88 3.75 2.25 5.13 1.25

Avg rank 7.50 6.78 5.75 2.70 3.90 1.90 5.75 1.73

PART

1 0.000* 7.50 6.13 6.50 2.63 4.00 2.50 5.25 1.50

2 0.000* 7.50 6.50 6.50 3.00 4.00 1.13 5.00 2.38

3 0.000* 8.00 6.75 5.50 3.25 3.25 1.50 5.00 2.75

4 0.000* 7.25 6.88 6.00 4.25 2.75 2.00 5.13 1.75

5 0.000* 7.25 6.75 7.00 3.38 3.00 2.25 4.88 1.50

Avg rank 7.50 6.60 6.30 3.30 3.40 1.88 5.05 1.98

TSCHIEF

1 0.937 3.88 4.63 5.63 3.88 5.13 5.25 3.63 4.00

2 0.404 5.63 5.25 6.00 3.88 5.00 3.13 4.75 2.38

3 0.845 5.75 5.13 5.38 4.25 4.00 3.00 4.63 3.88

4 0.855 5.88 4.62 5.38 4.13 4.38 3.50 4.88 3.25

5 0.690 5.88 4.63 5.38 3.88 4.13 3.50 5.63 3.00

Avg rank 5.40 4.85 5.55 4.00 4.50 3.68 4.70 3.39

The value in bold indicates that the algorithm performs better than others.

For SMO, J48, and PART, the stacking ensemble (MINT-SE, EMB-SE, and MICE-SE) performed

statistically better than the control in most cases. The performance of bagging ensemble (EMB-

Hom) was significantly better than the control for some high scenarios of missing data in J48 and

PART. The performance of the other approaches seem to be equal to the control.

For RF, although the test did not show significant difference, the performance of RF with EMB-

Hom and MINT-Hom showed improvement in comparison with the control. Similarly for IBK and

TSCHIEF where the performance of MINT-SE followed by EMB-SE and MICE-SE was better than

the control. Again, other approaches behave in a same manner as the control.

5.4 Quality of the Imputation

Here, we present the quality of imputation methods used, i.e., how far is the imputed data from the

real data. We used the cumulative normalized distance obtained from applying DTW as explained

in Section 4.7 to compute the mean dissimilarity between the imputed and the original series.

Figure 3 represents the cumulative normalised distance shown as (mean dissimilarity) between the

real and the imputed series for each datasets separately. For each TS (case) of the imputed dataset,

we compute the normalised distance between the imputed data and its original counterpart. Finally,

we average the distance of all records to obtain the overall average distance. For the multiple
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Table 8. The Average Accuracies of All Algorithms in Combination with Different Imputation Methods on

All Datasets for All Scenarios of Missing Data Resulted from the Post hoc Test, Friedman Aligned Ranks

Test with a Control (LOCF)

Classifier Sce LOCF INTERP MICE-Hom MICE-SE EMB-Hom EMB-SE MINT-Hom MINT-SE

RF

1 80.82 81.75 81.07 78.19 82.08 79.07 81.77 79.32

2 80.95 80.98 81.06 77.42 81.78 78.56 81.52 78.01

3 80.58 80.90 80.19 77.15 81.75 78.99 81.15 78.23

4 80.51 81.01 79.28 76.22 81.35 76.50 81.41 79.01

5 79.66 80.86 77.67 75.99 81.48 77.31 81.81 78.19

SMO

1 69.64 69.77 69.70 80.74 71.96 81.60 70.06 81.60

2 69.14 69.49 68.96 79.87* 71.77 81.27* 70.19 80.07*

3 67.35 68.08 67.07 79.43* 71.53 81.07* 68.27 80.50*

4 66.85 67.37 66.37 79.01* 72.19 79.88* 67.56 80.59*

5 64.01 66.46 64.66 78.39* 71.54 79.96* 66.59 80.96*

IBk

1 72.01 71.98 71.58 78.26 71.16 78.19 72.05 79.90

2 70.80 70.29 69.95 77.64 69.80 78.40 70.58 78.46

3 69.57 70.98 69.19 76.77 70.00 78.43 71.45 77.84

4 68.42 69.11 68.27 76.61 68.80 77.18 69.19 78.85

5 67.67 70.17 68.05 76.47 68.94 77.45 70.24 78.32

J48

1 69.02 71.90 73.91 80.19* 74.91 81.35* 73.48 80.93*

2 71.10 69.58 72.26 80.20* 75.66 81.05* 72.68 79.51*

3 71.05 70.71 74.06 79.27* 76.72 81.31* 72.11 80.44*

4 70.98 72.46 73.06 77.80* 76.66* 80.19* 74.31 79.91*

5 68.88 69.86 71.04 78.79* 75.68 79.87* 72.23 81.10*

PART

1 70.68 73.09 73.36 78.87* 75.34 79.58* 74.48 80.16*

2 71.58 72.03 72.19 78.46* 75.66 80.33* 74.34 79.20*

3 67.94 70.16 74.53 77.88* 76.85* 80.81* 72.47 79.04*

4 71.93 71.45 74.48 76.64 77.04 79.14* 74.71 79.07*

5 68.98 69.95 69.77 77.35* 76.94* 79.12* 73.47 80.00*

TSCHIEF

1 86.52 86.32 85.67 88.53 86.13 88.54 86.59 88.97

2 85.18 85.24 84.32 87.98 85.46 88.62 85.53 88.56

3 84.18 84.41 83.12 87.73 85.08 87.88 84.59 87.65

4 83.36 83.91 82.26 87.14 84.56 87.09 84.64 87.45

5 82.3 82.88 80.47 85.27 83.97 86.42 82.87 86.80

The value in bold indicates that the algorithm performs better than the control. The symbol (*) shows that the

difference is statistically significant.

imputation, MICE, EMB and MINT, again we compute the normalised distance between each of

the individual imputed datasets and the original data. Finally, we average the distances of all TS of

all imputed datasets to obtain the overall mean distance between the original and imputed data.

The figure shows that LOCF was the closest to the real data for PowerCons followed by INTERP

and MINT, while EMB and MICE appeared to have larger (similar) distances from the real series.

For HouseTwenty, INTERP and MINT appeared to have smaller distance from the real data

followed by LOCF as a second best, while EMB was further from the real data.

For RefrigerationDevices, LOCF was the most similar to the real data in the lower scenarios

and MICE in the higher scenarios. Similarly, for Earthquakes, MICE was similar in most scenarios

followed by LOCF. INTERP and MINT were close match and again EMB is the worst.

So for all datasets, LOCF produced imputed data closer to the real data as the mean normalised

distance was very close to 0 followed by INTERP, MINT, and MICE. EMB appears to have larger

distances from the real series. For LOCF, INTERP, and MINT, increasing the amount of missing

data seems to have a relatively small effect on the distance between the original and imputed data.

However, for EMB, the distance become higher when increasing missing data and similarly for

some scenarios of MICE.

Figure 4 shows the imputed series and the missing subsequences along with the original one,

for one case of the PowerCons dataset, ordered from the top (low) to bottom (high) scenarios of
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Fig. 3. This figure presents the cumulative normalised distance (mean dissimilarity) between original and

imputed sequences obtained from applying DTW for each dataset separately.

missing data. Imputed series by LOCF and INTERP have a linear pattern, which does not reflect any

of the fluctuation of the original TS. MINT looks a similar to INTERP but has some fluctuation, as

we build that into it. MICE and EMB show similar fluctuation to the original but imputed datapoints

are in a different range. For instance, in most scenarios, LOCF, INTERP, and MINT are close to the

centre of the original series, while some subsequences imputed by MICE and EMB appear to be

far from the original series.

5.5 Elapsed Time Analysis

Here, we report on the elapsed time for running the imputation/classification algorithms to give

some idea of the computational burden of multiple imputation. We first compute the time elapsed

for performing one imputation for one dataset using each imputation method. For simplicity, we

choose the highest scenario of increasing missing data (scenario 5). As MINT, MICE, and EMB
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Fig. 4. This figure presents one case from PowerCons, which indicates the missing sub-sequences in each of

the different scenarios along with the applied imputation methods as well as the original series.

performed five imputation, we compute time per one imputation to make it comparable to SI.

Figure 5 shows the imputation time in seconds for each of the four TS (data are ordered with

respect to increasing training size) and are represented in (x-axis). For all datasets, MICE was

the slowest followed by EMB, while the rest imputations were relatively close to each other and

MINT was the fastest among all methods. For the datasets with large number of training samples,

RefrigerationDevices, the imputation running time for MICE increased up to 37 seconds, while the

longest running time for EMB was 21 seconds and approximately 12 seconds for LOCF and INTERP.

MINT was the fastest compared to the rest. For Earthquakes, MICE was the slowest as it took

15 seconds to produce the imputation followed by EMB, while other methods were a close match.

Same patterns were depicted for PowerCons. For the dataset with less training size, HoweseTwenty,

again MICE was the slowest followed by EMB, while LOCF and INTERP were close to each other

and MINT was the fastest.
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Fig. 5. Elapsed time (in seconds) for running the imputation for each dataset using each method.

We next compute the elapsed time for running classifier/ensemble approaches. We compare

elapsed times for running the different classification approaches for RF and TSCHIEF using al-

ternative imputation methods. Again, we choose the highest scenario of increasing missing data

(scenario 5). Here, we consider the time for running the classifier/ensemble only (imputation time

not included), that is to say, once the multiple imputation is obtained, we measure the time in

producing a classification either by applying a single or multiple imputation approach. Natu-

rally, the multiple imputation approach requires building multiple classifiers and ensembling them.

Figure 6 illustrates the running time (in minutes) and the accuracy for the different approaches for

RF and TSCHIEF (LOCF, INTERP, MICE-Hom, MICE-SE, EMB-Hom, EMB-SE, MINT-Hom, and

MINT-SE). The figure shows that time for running classification for the different approaches for

TSCHIEF for most datasets was slower than RF approaches. For HouseTwenty, all the TSCHIEF

approaches showed a remarkable improvement in the accuracy with increasing the running

time compared with the accuracy of RF approaches. The homogeneous approaches for TSCHIEF

(MICE-Hom, EMB-Hom, and MINT-Hom) took more classification time than the rest approaches,

up to 3,000 minutes (around two days) for EMB-Hom, while the stacking approach for TSCHIEF

(MINT-SE) produced the best accuracy and took around 600 minutes (10 hours) to perform the

classification. RF approach (MINT-SE) obtained the worst classification result. On the other hand,

for PowerCons, the classification time was close for all RF and TSCHIEF approaches where the

stacking approach for RF (MINT-SE) obtained the best accuracy, while the homogeneous ensem-

ble for TSCHIEF (MICE-Hom) was the worst. For Earthquakes, the classification accuracy for all

RF and TSCHIEF approaches was close to each other but the classification time for TSCHIEF ap-

proaches (MICE-Hom, EMB-Hom, and MINT-SE) was slower than the rest approaches. Finally, for

RefrigerationDevices, the stacking ensemble approaches for TSCHIEF (MICE-SE) produced the

best accuracy followed by (EMB-SE and MINT-SE) compared with other approaches with increas-

ing running time up to 1,000 minutes (16 hours). On the other hand, the running time for the

ensemble approaches for TSCHIEF (MICE-Hom, EMB-Hom, and MINT-SE) took a long time than
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Fig. 6. Elapsed time (in minutes) for running the different approaches for RF and TSCHIEF on all the datasets

versus the accuracy.

the rest approaches and reached 5,000 minutes (roughly 3.47 days) in the worst case but showed

some improvements in the performance. The stacking ensembles for RF (MICE-SE and MINT-SE)

were the worst.

6 DISCUSSION AND CONCLUSIONS

We investigated the performance of a number of standard classification algorithms as well as a

TS classifier on univariate TS with missing data. We created an experimental setup for generating

missing data as sequences (consecutive observations) under MCAR assumption. We then imple-

mented our proposed imputation method to generate multiple imputations using simple interpola-

tion. We also proposed bagging and stacking ensembles to combine the multiple imputed data. We

compare our proposed work with a number of imputation used for TS. We tested the performance

of different approaches using statistical tests.

In most scenarios of missing data, we found that the classifiers with the different approaches

to multiple imputation performed better than the baseline accuracy obtained by creating a model

on the complete dataset. This was quite a remarkable finding. Algorithms with different imputation

approaches showed a significant difference in their performance and from a control imputation

method (LOCF). Furthermore, some classifiers performed statically better than a control (simple

imputation by LOCF) when a post hoc test was applied.

The multiple comparison test for the different imputation approaches showed that there was

a significant difference in the performance. For SMO, IBk, J48, and PART, different imputation
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approaches behave differently in all scenarios of missing data. Significant differences were detected

when comparing the different imputation approaches for RF in most cases. Moreover, for SMO,

IBK, J48, and PART, the mean ranks for stacking ensemble (MINT-SE and EMB-SE) were better

than other approaches, while the bagging ensemble (EMB-Hom and MINT-Hom) was the best for

RF. Similarly, TSCHIEF performed better with stacking ensemble (MINT-SE and EMB-SE) than

other approaches though the difference was not significant. From this, stacking ensembles emerge

as a solid option.

The post hoc test for comparing the classifier with a control algorithm (LOCF) also showed sig-

nificant results for most classifiers. Particularly, for SMO, J48 and PART, the stacking ensemble

performed significantly better than the control in almost all cases and the bagging ensemble with

EMB imputation performed better for increasing uncertainty scenarios in J48 and PART. Other

approaches seemed to have equal performance as the control. For RF, our proposed method for

imputation combined with bagging ensemble (MINT-Hom) as well as EMB-Hom showed improve-

ment compared with the control (LOCF) though the difference was not significant. The stacking

ensemble (MINT-SE) was better than the control for TSCHIEF and IBk.

When analysing how well, or how closely, the different imputations reproduced the missing

data in terms of distances we found that LOCF and MICE were best followed by MINT. However,

on visualising the imputations it was clear that LOCF did not reproduce well the variability of the

data. INTERP and MINT were better at capturing some variability while still remaining close to the

original data, whereas MICE and EMB reproduced much variability but sometimes far away from

the original data. This is interesting as reproducing the missing data more closely in terms of dis-

tances does not necessarily lead to the best classification results by itself, as we observed with the

LOCF method. Hence, the variability in the data introduced by the multiple imputation approaches

do seem to help in getting better classification results, as already remarked, often better than the

original data. Our own multiple interpolation approach (MINT) may represent a good compromise

for variability while staying reasonably close to the real data, and that may be the reason why it

emerges as a winner in combination with the stacking ensembles for many algorithms.

Diversity and accuracy of individual classifiers are two conditions that must be satisfied to obtain

a good ensemble. We postulate that the multiple imputed data, injects the diversity that leads to

good results. For example, the stacking approaches of SMO, J48, and PART perform significantly

better than the control and that may be due to the diversity injection of the multiple imputation. In

fact, the stacking ensemble combines the diversity produced from the multiple imputation with the

diversity produced from the heterogeneous classifiers. For the bagging approaches, as the multiple

imputed data are trained by homogeneous classifiers, the ensemble may not be as diverse so the

improvement is not as significant.

Finally, we provide analysis of the elapsed time for running the imputation/classification algo-

rithms. First, for the imputation, the fastest imputation in terms of running time is MINT and other

imputation methods are close to MINT for most datasets. On the other hand, MICE followed by

EMB showed slow running time for all datasets. When analysing the classification time for RF and

TSCHIEF approaches versus the accuracy, for most datasets, TSCHIEF approaches require long

running time compared with RF approaches. On the other hand, for most datasets, the stacking

ensembles for TSCHIEF (MINT-SE and EMB-SE) obtain an excellent improvement in accuracy. Fi-

nally, we can say that increasing training size eventually increases the classification time for all

RF/TSCHIEF ensemble approaches as the running classification time reaches the maximum for

RefrigerationDevices. Thus, for large datasets, where the cost of an ensemble is much higher than

a single classifier, it may be required to use some strategies when building the ensemble to main-

tain the efficiency and scalability. For example, using multiprocessing or threading mechanism

when building the ensemble may be useful to reduce the time complexity.
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As a summary, our methods for ensembles enables us to produce accuracies that are similar

and sometime even better than accuracies obtained for the complete dataset. The combination

of our proposed MINT as the imputation and stacking ensemble enhances the classification re-

sults for most classifiers and most scenarios compared with the benchmark data, even in scenarios

of considerable percentages of missing data. Also, our proposed method for the imputation com-

bined with the bagging ensemble (MINT-Hom) performs better than other comparative methods

for RF, the one algorithm where MINT-SE is not the overall winner. Therefore, our findings have

implications for the safe analysis of TS data in the context of missing sequences of data, even when

multiple sequences are missing. We have proposed a good multiple imputation tool which together

with the stacking approach provides a safe approach to analyse TS data even in scenarios of high

uncertainty.

In future work, we will improve our method for multiple imputation (MINT) for univariate TS

by incorporating different interpolation methods. We may also work on multiple imputation for

multivariate TS data.
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