
 Efficient Convolutional Neural Networks for
Automated Cognitive Diagnosis

1st Connor Pearson
Computing Science Department

University of East Anglia
Norwich, England

connorpearson.cs@gmail.com

2rd Beatriz De La Iglesia
School of Computing Sciences

University of East Anglia
Norwich, England
B.Iglesia@uea.ac.uk

3rd Saber Sami
Norwich Medical School
University of East Anglia

Norwich, England
S.Sami@uea.ac.uk

Abstract—Digitization has transformed diagnostic methods in
several healthcare sectors. The standard cognitive assessment
tests, evaluate cognitive impairment including early stages that
can potentially progress to Alzheimer’s Disease. However, it poses
challenges due to manual administration.

Here we propose using a novel convolutional neural network
described here as CogniNet and compare its performance with
leading doodle recognition transfer learning models to automate
the visuospatial aspect of cognitive tests. Based on our CogniNet
model we developed a web-application on the Laravel framework
with enhanced accessibility and security features.

Our convolutional neural network achieved 91.5% accuracy,
while the EfficientNet And MobileNet transfer learning models
reached 87.5% and 85.5% respectively.

I. INTRODUCTION

Dementia presents an increasingly significant challenge for
healthcare systems globally. A 2015 study estimated that
650,000 individuals were diagnosed with dementia in the UK
alone, a number expected to rise to 1,351,000 by 2040 [1].
With the annual cost of dementia care already impacting the
NHS at £24.2 billion [2], it is important to explore strategies
to mitigate these expenses as demand escalates.

Digitization of diagnostic tests, such as the Addenbrooke’s
Cognitive Examination (ACE-III), offers a promising avenue
for cost reduction. The ACE-III is recognized for its high
accuracy, ranging from 82% to 97% in detecting dementia
and 75% to 77% for Mild Cognitive Impairment (MCI) alone
[3] . It is especially noted for its sensitivity in early dementia
detection. This paper focuses on transforming the visuospatial
component for diagnostic tests into a digital format.

Our methodology involves developing a bespoke CNN
alongside exploring efficient transfer learning models, includ-
ing EfficientNet and MobileNet, which are noted for their
favorable performance to parameter count ratio [4]. This
makes these models ideal for web-applications intended for
widespread use where computing resources are limited.

This study primarily utilizes CNN-based models due to their
proven effectiveness in Optical Character Recognition (OCR)
tasks enabling concurrent learning of feature extraction and
classification layers [5]. This allows these models to produce
highly accurate outputs based on extracted image features.

We have integrated these models with a web interface,
enabling patients to undergo testing remotely in a setting that

best fits their needs. This approach can facilitate easier access
to regular testing as well as enhanced diagnostic accuracy and
reduced costs associated with traditional methods.

II. AIMS

This project aims to create an online solution that allows
patients to take a test similar to that of the visuospatial portion
of pen and paper diagnostic tests intending to provide insights
into a person’s cognitive health.

This is carried out using CNNs, both bespoke and pre-
trained transfer learning based models. Our focus on the Effi-
cientNet and MobileNet models is based on their demonstrated
strong parameter count to performance ratio, as shown in a
recent comparative analysis by Yuan Yang et al. [4]

With these aims in consideration a more granular set of
objectives can be derived.

A. Objectives

1) Allow us to batch test a series of models with varying
hyper-parameters.

a) Scalable approach covering hyper-parameter testing of
large range of model architectures: i) epochs ii) struc-
tures iii) kernel-sizes iv) dropout

b) Capable of compensating for varying data structure
requirements (seen in table I) without compromising
image integrity.

c) Allow for standard Command-Line Interface (CLI)
approach to development with common features such
as a standard ’help’ print screen for new users, as well
as also being platform agnostic.

2) Create a series of high-performance models capable of
classifying doodles into 25 separate select categories from
the Google Quick, Draw! dataset.

a) Training to utilise a grid search style approach to
trying varying model hyper-parameters ran in series
over a span of a year, the aim being to find the most
performant of each model sub-group (Bespoke CNN,
EfficientNet and MobileNet).

b) Training to make use of standard training set / testing
set split with a hold-out set of roughly 30%.



c) Final evaluations of the model will be ran on a series
of real-world production data taken from test sessions
on the live site.

3) Produce a web-application to serve as a platform for our
digital test using the Laravel 11 framework.

a) Site uses Tailwind/CSS as well as Vue in combination
to provide a reactive and modern foundation to serve
tests upon.

b) Site features two distinct user types for patient and
doctor, with scoped access to specific pages for each
role.

c) Site is platform agnostic, with support for common
browser / device variations such a desktop and mobile.

d) site uses the highest accuracy model with the least
computational overhead (in terms of parameter count)
to process tests in jobs within Laravel Horizon.

III. IMPLEMENTATION

A. Datasets & Pre-processing

Before beginning training, we first identify an large dataset
that enables comprehensive training. With these considera-
tions, the Google Quick, Draw! dataset became our main
contender.

With strong relevance amongst many other datasets such as
the MNIST dataset, Google Quick, Draw! proves its relevancy
once more after its use previously in our earlier work in
which we used a standard novel neural network to achieve
an implementation accuracy of 70% [6].

1) Requirements: Table I shows the constraints that are
present for each of the models used. With this, an informed
decision can be made in the methods of which we intend to
pre-process our data to fit. The notation of X, Y and Z are
used to denote values that do not have constraints.

Model Minimum Input Size Minimum Channels
Bespoke CNN X px × Y px Z × Channels
MobileNet 32 px × 32 px 3 × Channels
EfficientNet X px × Y px 3 × Channels

TABLE I: Input size specifications for CNN models

With the Google Quick, Draw! dataset we are provided with
a series of ’.npy’ files, a format used by the common Python
library NumPy. The files are split by doodle category i.e.
’ambulance.npy’, ’basket.npy’, ’apple.npy’ and are provided
in a pickled format by default.

Each file then contains a 3D array containing a list of 2D
images for the associated category. These image arrays are
structured as 28 px × 28 px doodles with a single Grayscale
colour channel.

Google also provides this data in other formats such as raw
’.ndjson’ files as well as binary files, NumPy files were chosen
for this project as they work natively with Python. [7]

B. Preparing Google Quick, Draw!

The transformation of the Google Quick, Draw!
dataset for model training was managed by the script

src/process_datasets.py, integrated into the main
interface script run.py. Here is a streamlined overview of
the processing steps:

1) Data Path Specification and Loading: The script uses the
dataset_path parameter to locate and sequentially
load .npy files, each named according to its content
category.

2) Data Splitting and Labeling: Data within these files
is divided into training and testing sets based on the
split parameter. Each image is then labeled according
to predefined categories, creating labeled datasets.

3) Image Format Adjustment:
• Greyscale to RGB Conversion: Single-channel

grayscale images are batched using NumPy to simulate
RGB channels for models requiring 3-channel input.

• Resizing Images: Images are resized to 32 px × 32
px as and when required using the Python Imaging
Library (PIL) to meet the input dimensions required
by some models.

This streamlined process ensures that the dataset is compati-
ble with TensorFlow and various neural network architectures,
facilitating effective training without compromising image data
integrity or model performance.

C. Machine Learning Model

Our approach to identifying high-performance models in-
volved using an automated script for batch training, which
systematically trains AI models in related sets. This iterative
process explored various model structures, epochs, learning
rates, dropout rates, and kernel sizes within each training
session. The resulting models were then evaluated and an-
alyzed for key metrics including accuracy, parameter count,
processing speed, and generalization.

The optimized models were subsequently saved in .keras
files, each named according to its specific structure, as depicted
in Figure 1.

Fig. 1: Explanation of the model structure as shown in the
filename of the stored model.

We conducted a grid search to explore all possible combi-
nations of hyperparameters within a practical range tailored to
our use case. Although hyperparameter optimization demands
numerous evaluations of the convolutional neural network
(CNN) and is thus computationally intensive, [8] the automa-
tion provided by our script significantly reduced the workload
of this exhaustive search’.



D. Web-application

The development of the web-application took partly from
the works of our previous paper and converted the previous
framework from NodeJS to Laravel 11.

Additionally converting web pages previously using the
PUG markup language alongside standard CSS to Vue files
with Tailwind/CSS as the new CSS framework. Many site
graphics were designed in Inkscape and exported as either
PNG or SVG depending on the use case.

Fig. 2: Capture of re-designed home page for brainscape.uk.

Using Laravel Breeze as a foundation a standard Vue
Laravel app with an Intertia front end implementation was gen-
erated. The web-application then had its web routes defined to
allow for testing of the newly converted and added web pages.
API routes where then defined for basic test functionality such
as uploading doodles and managing user specific tests.

In addition a database was designed and implemented on
the server-side to store user accounts as well as exam data
and doodles alongside other metrics such as time-to-draw in
milliseconds which is intended to be a metric that can be
utilised later in the sites development to potentially better
classify drawings.

The site was deployed via a DigitalOcean instance which
could be managed via the Laravel Forge app. This allowed for
the management of server deployments as well as additional
server configuration such as nginx configuration and database
connection management.

The server was provisioned with a simple dual core vCPU
with 4GB of RAM. With such resources it is estimated to
be capable of processing a steady flow of exam results using
CogniNet in conjunction with Laravel Horizon which allows
for the deployment of asynchronous jobs to a queue. In the
event that site traffic increased or jobs prove to be too slow, the
DigitalOcean service allows for easy and affordable vertical
scaling of server resources.

E. Model Results

1) Model accuracies: A data split of 70/30 was used,
meaning that 70% of the data would be used in training and
the remaining 30% would be used in the evaluation of the
models accuracy.

This provided the model with 2,415,230 doodles to train
on and 1,035,097 doodles to test on. These sets of-course
contain a mix of all 25 categories with shuffling of data
added in to prevent any potential for order bias as well as
improving generalisation. Transfer learning models were also
pre-initialised with the imagenet weights to provide a stronger
accuracy, CogniNet however used default weights.

In calculating the implementation accuracy of a model, a
series of sessions were created via the web-application in
which the doodles were converted into NumPy arrays which
were then fed through the model. Testing on a total of 8
sessions from the web-application, calculating the percentage
accuracy, summing the accuracy’s of each session and then
dividing the sum by the total number of session results.

In mathematical notation it would be a simple summation
and division to calculate A like so :

A =
1

n

n∑

i=1

si

where si represents the score from the i-th session, and n is
the total number of sessions (in this case, 8).

Upon application of the scoring algorithm the script pro-
vided a selection of top performing models as shown in figure
3 where the implementation accuracy is shown.

2 4 6 8
50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

Epoch Count

R
ea

l-
W

or
ld

A
cc

ur
ac

y

Model Performance

EfficientNetV2B0 EfficientNetV2B1 EfficientNetV2B2

MobileNetV3Large MobileNetV3Small MobileNetV2

CogniNet

Fig. 3: Graph showing various real-world model accuracy’s.

A more granular look at the final model scores can be
seen in Table II where the two greatest scores are present



in bold. It is shown that the CogniNet model (the bespoke
CNN) is the strongest model in the list, using the structure of
’CNN 32 16 D 128’ with a 0.2 dropout layer. This model
can be seen in both Figure 1 and also in 6.

Model Epoch 2 Epoch 4 Epoch 6 Epoch 8

EfficientNetV2B0 87.5% 78.0% 83.5% 83.5%
EfficientNetV2B1 69.5% 69.5% 74.0% 68.5%
EfficientNetV2B2 80.0% 78.0% 75.0% 87.0%

MobileNetV3Large 85.5% 75.5% 77.0% 72.0%
MobileNetV3Small 73.0% 55.5% 57.0% 66.0%

MobileNetV2 68.0% 65.0% 72.5% 55.0%
CogniNet 87.5% 91.5% 89.0% 84.5%

TABLE II: Model performance at various epochs using our
simple average scoring algorithm

Additionally, a 3D graph is provided below in figure 4 to
aid in visualising the performance of models as we vary in
model complexity and epoch count.

Fig. 4: Average scores using our custom scoring algorithm
plotted as a 3d graph.

Finally, in addition to the use of the custom scoring algo-
rithm a standard F1 score was taken for each of the 8 test
sessions and an average F1 score was calculated for each
model. These results are shown below in table III. The two
accuracy’s in bold represent the two highest F1 scores again
showing CogniNet as the most performent.

2) Model Complexities: A separate metric by which to
quantify our models is that of the models complexity. Often
refereed to in context of the models parameter count and in
this case, additionally its size.

Figure 5 shows first-hand the difference in complexity in
models especially as we compare the CogniNet model against
other pre-trained models.

The CogniNet model contains 327,485 parameters, while
our most complex (and therefore computationally expensive)

Model Name Epoch 2 Epoch 4 Epoch 6 Epoch 8

EfficientNetV2B0 84.167% 73.050% 79.433% 78.417%
EfficientNetV2B1 63.011% 62.200% 67.700% 62.910%
EfficientNetV2B2 75.833% 72.783% 68.650% 84.200%

MobileNetV3Large 81.533% 70.092% 70.783% 66.117%
MobileNetV3Small 66.200% 47.099% 49.254% 59.577%

MobileNetV2 62.018% 58.902% 66.183% 50.415%
CogniNet 83.749% 89.000% 85.916% 80.583%

TABLE III: Averaged F1 scores of various models at different
batch sizes

Cog
niN

et

M
ob

ile
NetV

3S
mall

M
ob

ile
NetV

2

M
ob

ile
NetV

3L
arg

e

Effi
cie

ntN
etV

2B
0

Effi
cie

ntN
etV

2B
1

Effi
cie

ntN
etV

2B
2

0

5

10

15

20

25

30

35

1.25 MB

17.71 MB

40.89 MB
45.66 MB

82.58 MB

94.08 MB

116.53 MB

Model

Pa
ra

m
et

er
C

ou
nt

(m
ill

io
ns

)

Fig. 5: Parameter count and size on disk in megabytes for
various models

model, EfficientNetV2B2, comprises 30,548,871 parameters.
To measure this complexity a simple formula was created :

Complexity Ratio =
EfficientNetV2B2 Parameters

CogniNet Parameters
=

30, 548, 871

327, 485
≈ 93.28

The complexity ratio calculation reveals that Efficient-
NetV2B2 is approximately 93.28 times more complex than
CogniNet. Despite its higher complexity, EfficientNetV2B2 is
outperformed by the simpler CogniNet model by 5.2%.

This additional model complexity also meant that while
CogniNet would take on average 12ms to process an image,
EfficientNetV2B2 would take an average of 20ms, making it
66.66% slower.

3) Model Architecture: In Figure 6 we see a graphical
representation of our most performent CogniNet model. The
graphic shows an image entering the network, then passing
through the convolutional layers where feature extraction
occurs. From there the image is flattened and passed into the
dense layers where the model learns from these features.



Fig. 6: Graphical representation of CogniNet models structure.

F. Visualised Learning

There are common methods of visualising the feature selec-
tion that occurs within CNNs. Using our script we deployed
a couple of common methods to aid in understanding how
these models process their inputs and ultimately determine a
classification.

1) CogniNet Saliency: In the Figure 8 we see a sample
of a saliency map from our CogniNet model. In this case a
doodle of a tree. This image was passed through CogniNet
using the tools made available by Google PAIR which allowed
us to produce an Integrated Gradient map. This highlights in
brighter colours which parts of the input contributed to its
correct classification, showing what features the model uses
from the doodle to classify it.

Integrated Gradient

(a) Scaled (b) Saliency

Fig. 7: Figure showing tree doodle input and computed inte-
grated gradient map from CogniNet.

2) EfficientNetV2 GradCAM: With the architecture of the
EfficientNetV2 we had access to some more advanced tools
in the TensorFlow library which allowed for the creation of
a GradCAM (Gradient-weighted Class Activation Mapping)
output from the model.

The intention of the GradCAM output is to produce a
heatmap of what parts of the input image influence activation’s
that ultimately determine the classification of the input. An
example can be seen in Figure 8

3) Accuracy plotting: As mentioned previously, the script
was provisioned to have a method of plotting accuracy’s upon
completion. This allowed us to determine which combination
of hyper-parameters were working best.

An example of such as graph can be seen below in Figure
9. This example is from a small training session but outlines

GradCAM Outputs

(a) Input Image (b) Input & GradCAM overlayed

Fig. 8: Plot showing tree doodle input with GradCAM on
EfficientNet model.

the degree in which these plots prove themselves informative
in regards to the accuracy of a series of models.

Fig. 9: Output graph showing theoretical accuracies of a
training session.

For instance, in the case of this specific session the figure
heavily implies that our most performent models will be in
the ’CNN 64 32 D 256’ subset particularly in the range of
8 to 10 epochs. With this data an informed decision on what
models to train next and at what epoch range can be derived.

IV. EVALUATION

A. Future Prospects

The prospects of the project can be defined in two parts,
improved accuracy and increased breadth. Using stronger,
more complex models a higher degree of accuracy could
likely be achieved, but additionally combining these improved
models with more relative data to the diagnosis of dementia
could greatly increase our goal of detecting dementia.

1) Moving towards Long-Short Term Memory (LSTM) Mod-
els and Kolmogorov-Arnold Networks KANs: A natural next
step for the project would be to move away from standard
CNNs and towards the use of LSTM CNNs or alternatively



Convolutional Long Short-Term Memory Deep Neural Net-
works (CLDNN) models. These models are capable of learning
from the temporal aspect of our drawing tasks. Allowing us to
use the Google Quick, Draw! provided real-time drawing data
to better predict doodle classes on a stroke-by-stroke basis.

These models have been shown to provide up to a ’2-3%
relative improvement in accuracy over the results of CNN
and LSTM individual models.’ [9] While this may seem as
a minor difference however when your working with models
reaching an average of 91% accuracy on real-world test data
an additional 2 to 3% can make a significant contribution to
a models viability.

In addition, recent research into Kolmogorov-Arnold Net-
works (KANs) have proven to provide roughly the equivalent
performance to traditional CNNs which maintaining a sig-
nificant reduction in model complexity as shown in a paper
by Universidad de San Andrés, which states ’KANs seem to
maintain accuracy with lower parameter count’ which in this
study showed a reduction in model complexity from ’157k to
95k’ parameters [10].

B. Complete coverage of the ACE-III

In addition to more advanced models, encapsulating the ad-
ditional components of the ACE-III into the web applications
digital examination will likely yield stronger accuracy’s. The
project covers the previously mentioned visuospatial compo-
nent of the ACE-III, specifically a component of the test in
which the patient is asked to copy a provided drawing as
well as draw a clock without reference. Expanding upon the
scope of our test to encapsulate further exam questions such
as word recall would provide additional data points to train
and interpret from.

V. CONCLUSIONS

This study underscores the potential of automating diagnos-
tic testing through Artificial Intelligence (AI). It highlights the
necessity of comprehensive model analysis when developing
use-case-specific models, demonstrating that transfer learning
models may not always be the most efficient or performant.

Quantifying the accuracy, and usability of a model in a real-
world production environment requires more than just theoret-
ical accuracy. Furthermore, this study successfully developed
on our previous paper, achieving a 21.5% improvement on
our previous model implementation accuracy of 70% using a
novel neural network.

With further development and efficacy testing, CogniNet can
be deployed in clinical trials to ensure it aligns with standard
medical tests. Once strong efficacy is demonstrated, integration
with existing healthcare systems can commence, starting with
systems similar to the NHS Screening system.

REFERENCES

[1] R. Wittenberg, B. Hu, C. Jagger, A. Kingston, M. Knapp, A. Comas-
Herrera, D. King, A. Rehill, and S. Banerjee, “Projections of care
for older people with dementia in England: 2015 to 2040,” Age and
Ageing, vol. 49, no. 2, pp. 264–269, 12 2019. [Online]. Available:
https://doi.org/10.1093/ageing/afz154

[2] R. Wittenberg, M. Knapp, B. Hu, A. Comas-Herrera, D. King,
A. Rehill, C. Shi, S. Banerjee, A. Patel, C. Jagger, and A. Kingston,
“The costs of dementia in england,” International Journal of Geriatric
Psychiatry, vol. 34, no. 7, pp. 1095–1103, 2019. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/gps.5113

[3] L. Beishon, A. Batterham, T. Quinn, C. Nelson, R. Panerai, T. Robinson,
and V. Haunton, “Addenbrooke’s cognitive examination iii (ace-iii) and
mini-ace for the detection of dementia and mild cognitive impairment,”
Cochrane Database of Systematic Reviews, 2019.

[4] Y. Yang, L. Zhang, M. Du, J. Bo, H. Liu, L. Ren, X. Li, and M. J.
Deene, “A comparative analysis of eleven neural networks architectures
for small datasets of lung images of covid-19 patients toward improved
clinical decisions.” Comput Biol Med, 2021.

[5] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-
Shamma, J. Santamarı́a, M. A. Fadhel, M. Al-Amidie, and L. Farhan,
“Review of deep learning: concepts, cnn architectures, challenges,
applications, future directions,” Journal of big Data, vol. 8, pp. 1–74,
2021.

[6] C. Pearson, B. De La Iglesia, and S. Sami, “Detecting cognitive decline
using a novel doodle-based neural network,” pp. 99–103, Oct 2022.

[7] Google Creative Lab, “Quick, draw! dataset,” https://github.com/
googlecreativelab/quickdraw-dataset, Access year, accessed: insert ac-
cess date here.

[8] M. Wojciuk, Z. Swiderska-Chadaj, K. Siwek, and A. Gertych, “The role
of hyperparameter optimization in fine-tuning of cnn models,” Available
at SSRN 4087642, 2022.

[9] A. Emam, M. Shalaby, M. A. Aboelazm, H. E. A. Bakr, and H. A. Man-
sour, “A comparative study between cnn, lstm, and cldnn models in the
context of radio modulation classification,” in 2020 12th International
Conference on Electrical Engineering (ICEENG), 2020, pp. 190–195.

[10] A. D. Bodner, A. S. Tepsich, J. N. Spolski, and S. Pourteau, “Convolu-
tional kolmogorov-arnold networks,” arXiv preprint arXiv:2406.13155,
2024.


