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Agriculture is an essential component of human sustenance in this world. These days, with a growing 
population, we must significantly increase agricultural productivity to meet demand. Agriculture 
moved toward technologies as a result of the demand for higher yields with less resources. Increasing 
awareness of the significance and influence of agricultural practices in global climate change has made 
the use of energy-efficient innovations a vital aspect of the agriculture sector. The use of greenhouses 
to provide controlled environments that encourage effective plant growth is one of the current 
associated approaches. If not properly maintained, the energy used to run the greenhouses’ chillers, 
heaters, humidifiers, carbon dioxide (CO₂) generators, and carbon emissions becomes expensive. The 
goal of this research is to create a sustainable greenhouse model while achieving the best plant growth 
requirements with minimal use of energy. In order to achieve the lowest possible amount of energy 
consumption, the optimization model considered temperature, humidity, CO₂ levels, and sunlight 
as essential parameters in the environment. The Artificial Bee Colony (ABC) optimization technique 
was utilized for setting the environmental parameters for plant growth, considered for the suggested 
system. The system’s inputs were plant-preferred factors, and plant comfort was achieved by applying 
ABC to boost the parameters’ efficiency. A fuzzy controller was utilized to regulate different devices, 
including humidifiers, heaters, chillers, and CO₂ generators, by entering the introduced values. The 
overall efficacy of the fuzzy controllers that switch On/Off the actuators was obtained by minimizing 
the error between the best estimates of environmental factors and the ABC optimized values. 
Additionally, the suggested method was contrasted with other effective algorithms, such as Genetic 
Algorithm (GA), Firefly Algorithm (FA), and Ant Colony Optimization (ACO). Based on the results of 
the comparison analysis between the ABC algorithm and current practices, present procedures do not 
minimize the fluctuations in the inaccuracy between the target and actual environmental parameters, 
which is a necessary step towards increasing energy efficiency. The suggested method used 162.19 
kWh for temperature control, 84.65405 kWh for Humidity, 131.2013 kWh for Sunlight, and 603.55208 
kWh for CO₂ management, indicating the maximum energy efficiency. ACO needed 172.2621 kWh, 
88.269 kWh, 175.7127 kWh, and 713.2125 kWh, in contrast to FA 169.7983 kWh, 86.04496 kWh, 
155.8442 kWh, and 743.7986 kWh. Temperature, Humidity, Sunlight, and CO₂ were measured by GA 
at 164.1609 kWh, 86.19566 kWh, 174.6429 kWh, and 734.9514 kWh, respectively. In terms of Plant 
comfort, the suggested approach also outperformed 0.986770848 ACO (0.944043), FA (0.949832), 
and GA (0.946076). It is important to note that the research being done has the potential to minimize 
operating costs and maximize the amount of energy needed for plant growth, thereby creating a 
model for sustainable greenhouse agriculture.
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Agriculture plays a key factor in ensuring food security, stability, and strengthening the economy of countries. 
It has to fulfill a growing number of environmental and quality regulations. Integrating new technologies in 
the agro-alimentary sector may help meet these challenges1. Worldwide, access to sustainable food and energy 
sources is a major challenge2. As a method of intensive and sustainable food production, greenhouse farming 
has the potential to feed the globe3. Promoting the extensive use of greenhouses in farming could be one way to 
overcome the obstacles in the way of the transition to sustainable and precision farming practices. A sustainable 
smart approach could help minimize the effects of climate change, conserve energy and water resources, 
improve quality of life, mitigate environmental problems, and produce local socioeconomic and environmental 
benefits4. A greenhouse’s primary goal is to create the ideal atmosphere for growing crops5. The roof and walls 
of a greenhouse are often constructed from transparent materials like glass or plastic. Plants are cultivated in a 
controlled environment in greenhouses, where moisture levels, soil nutrients, light levels, temperature, etc. are 
all regulated. Thus, by creating optimal environmental conditions, greenhouse technology enables humans to 
grow plants at any time6.

The greenhouse sector has recently gained a lot of attention and has grown rapidly all around the world. Fresh 
vegetable production may be done all year long in greenhouses, which have a production rate that is about 50% 
higher than open-air farming. However, greenhouse production costs are primarily driven by labor and energy 
costs, which together account for more than 50% of total costs. So even a small performance boost can result 
in substantial cost savings. Numerous production systems have been developed for the production of food that 
is entirely natural for humans and leaves the fewest traces of microorganisms and diseases7. To maintain the 
environment while handling the resources in a greenhouse, skilled farmers are required. Because professional 
cultivators are exceedingly hard to locate and command high pay, hiring them takes time and money. Therefore, 
an IoT-based system must be created that can facilitate the first and enable continuous greenhouse environment 
monitoring. By keeping track of several essential indicators, such as temperature, humidity, CO2 level, etc., the 
system may obtain results from producing crops and cultivating a productive greenhouse environment for plant 
growth8. Utilizing resources as efficiently as possible lowers costs, therefore agriculture machinery should only be 
utilized when truly necessary. The system can assist in gathering data related to farms for a long-term assessment 
and accurate decision-making to maximize profit and use resources efficiently. Furthermore, it improves the 
efficiency of the farmer’s labor by keeping him informed through prompt messages, reminders, and alarms9. The 
approach significantly lowers the expense of hiring professional farmers by empowering the average farmer to 
properly run and maintain the farm with little to no training10.

In the paper, we explain the optimization approach through ABC regarding the means to automate the key 
greenhouse environmental operations automatically. The proposed approach is set with the aim of providing 
optimal interior climate conditions to maximize plant productivity and resource efficiency. Therefore, our 
optimization framework is pursued in detail through mathematical modeling while tested with rigorous 
experimentation. The proposed method dynamically balances the key greenhouse parameters, especially 
temperature, CO₂ concentration, sunlight, and humidity while minimizing energy usage for efficient and 
sustainable greenhouse management. The main goals of this work are to minimize energy costs with comfortable 
conditions for plant growth, to identify and integrate the parameters necessary for control of greenhouse 
environmental conditions, and to design an intuitive yet efficient optimization algorithm that achieves efficacy 
in energy efficiency and comfort for the plants. The contributions go in three aspects: the development of a 
complete energy-efficient optimization model, validation of the case by comparisons with other metaheuristics, 
such as ACO, FA, and GA, and laying down a basis for potential applications in real-world scenarios regarding 
sustainable greenhouse operations.

To the best of our knowledge, no optimization algorithms have been used to optimize energy use in smart 
greenhouse systems, despite a thorough investigation of these algorithms in various fields. The algorithms ABC, 
ACO, FA, and GA are introduced to such a situation in this study. Among the algorithms tested above, ABC 
outperformed ACO, FA, and GA in terms of efficiency and had the greatest results in terms of plant comfort 
and energy savings. In addition to having a high plant comfort index, the ABC used the least amount of energy 
of any significant greenhouse parameter when temperature, humidity, sunshine, and CO2 were managed 
optimally. Therefore, this work has set a standard for the future by highlighting the ABC algorithm’s potential as 
an innovative and effective technique for maximizing energy utilization in smart greenhouses.

The remaining papers are structured as follows. A thorough overview of the literature review and associated 
work is provided in Sect. 2, the suggested work is presented in Sect. 3, the implementation and experimental 
findings are shown in Sect. 4, and a thorough discussion is provided in Sect. 4. Section 5 concludes the paper. 
The abbreviations and descriptions used in this study are listed in Table 1

Related work
Different authors have applied IoT in various domains considering parameters according to their specific 
problems and factors that influence the System’s operation. In this section, several remarkable applications of IoT 
in different contexts are shown. To forecast a smart building’s interior temperature, the authors in11 suggested 
integrating IoT and machine learning algorithms. Also, IoT architecture is employed to deliver standardized, 
interoperable, portable, and safe solutions for forecasting energy usage in smart buildings. The prediction of 
interior temperature, where variables handle values in several quantities, is the primary focus of this article. It 
uses meteorological factors such as sun radiation, ambient temperature, and wind speed that have developed 
over time. Using a time series solution with the help of various well-known machine learning techniques, such 
as Support Vector Machine (SVM), Random Forest, and Neural Networks, allows us to predict the temperature 

Scientific Reports |         (2025) 15:1752 2| https://doi.org/10.1038/s41598-024-84141-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


of the conditioned space. In another study, the authors in12 addressed interior environment management using 
IoT-based smart building technology which seeks to supply the following key features: checking concerning the 
environmental conditions in the area, identification of the room’s occupants, a cloud-based system where virtual 
mega entities use machine learning techniques to do data analysis jobs, and digital entities gather the information 
produced by the sensors. The Raspberry was equipped with a light neural network, which allowed it to determine 
how many people were in the room based on measurements taken by the sensors and photos taken by the 
camera. Based on environmental criteria, a bagging tree is used for population estimation and classification. 
Gaussian process regression provides a Pearson correlation coefficient of 0.939 since it forecasts the total volatile 
organic compounds (TVOCs) with the number of occupants based on environmental conditions. The article’s 
primary goal is to forecast energy use and enhance energy management in commercial smart buildings, aiming 
for improved efficiency. For prediction, k-NN (k-nearest neighbor) is employed. The technique will forecast the 
peak load based on the amount of electricity used, expressed in kilowatts. Current and voltage comprise the 
highest demand feature used in the k-NN algorithm13. The control of smart building ventilation subsystems is 
the goal of the paper’s discussion and demonstration of a black-box modeling application realized using data 
mining techniques. Two steps form the foundation of the data processing and learning framework: Raw data 
streams are compressed using the symbolic aggregate approximation approach, and the resulting section is 
inserted into the support vector machine algorithm14.

A Personalized comfort technique is presented in15 to forecast occupants’ thermal comfort in terms of 
temperature. Four stages make up the suggested method: gathering data, preparing it, extracting features, 
choosing features, balancing the data, and predicting thermal sensing using machine learning and deep learning 
in uncomfortably warm, impartial, and cold climate zones using a combination of logistic regression (LG), 
random forest (RF), Hoeffding Decision Tree (HDT), and deep artificial neural network (DANN). The authors 
in16 suggest the use of intelligent irrigation systems to forecast a crop’s water needs. This system includes sensors 
for temperature, humidity, and moisture that are placed in a field of crops and transmit data via a microprocessor 
to create an Internet of Things (IoT) device with the cloud. Data in real-time collected from the surroundings is 
used to anticipate outcomes effectively results are predicted by the decision tree algorithm and sent to the farmer. 
To identify pests, the authors in17, combine environmental sensors, artificial intelligence (AI), the Internet of 
Things (IoT), and picture recognition technology. Using the YOLOv3 (You Only Look Once) series, a neural 
network approach was utilized to locate insects using image identification and to predict their appearance using 
Long Short-Term Memory (LSTM) analysis of environmental data from weather stations. The article gives 

Abbreviation Description

TNP Total Number of Parameters

UpBdi Upper Bound of Parameters i

LowBdi Lower Bound of Parameters i

Rng Range

CS Size of Colony

Max C Maximum Cycles

CI Comfort Index

Tu Plant Preferred Temperature

Cu Plant Preferred Carbon Dioxide

Hu Plant Preferred Humidity

Su Plant Preferred Sunlight

err1 Error Difference between Environmental Temperature and Plant-Preferred Temperature

err2 Error Difference between Environmental Carbon Dioxide and Plant Preferred Carbon Dioxide

err3 Error Difference between Environmental Sunlight and Plant Preferred Sunlight

err4 Error Difference between Environmental Humidity and Preferred Humidity

Prr1 Preference Parameter for Temperature

Prr2 Preference Parameter for Carbon Dioxide

Prr3 Preference Parameter for Sunlight

Prr4 Preference Parameter for Humidity

TRp Total Required Power

RP1 Power Required for Temperature

RP2 Power Required for Sunlight

RP3 Power Required for Carbon Dioxide

RP4 Power Required for Humidity

ABC Artificial Bee Colony

ACO Ant Colony Optimization

FA Firefly Algorithm

GA Genetic Algorithm

Table 1.  Abbreviation and their description.
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farmers the information they need to precisely apply pesticides at the right time and place, reducing the number 
of agricultural workers needed for effective pest management and attaining the objective of smart agriculture. 
Utilizing predictive computational intelligence approaches, wheat crop nitrogen status is assessed. Analysis of 
crop photographs that were taken in the field under various lighting conditions will be used to determine the 
evaluation. The wheat crop is first exposed to the HSI color normalization procedure, which is followed by crop 
precision status categorization utilizing genetic algorithms (GA) and artificial neural networks (ANN) based 
prediction. By categorizing the crop yield age into groups, an ANN-based optimized technique can effectively 
distinguish wheat crops from other undesirable plants and weeds18. The emerging Internet of Things (IoT) 
environment generates large volumes of unstructured multimedia data. To remove important data derived 
through the continuously created data, deep learning (DL) techniques are being applied. Because of their low 
processing power, DL approaches are difficult to integrate with Internet of Things devices. Even so, this problem 
is addressed with cloud computing, it also contains some drawbacks like service delays and congestion on the 
network. This paper suggests a way for distributing a part of the DL layers for the fog nodes in an intelligent 
agriculture system on fog computing. With consideration for each fog node’s available processing power and 
bandwidth, the best layers of the DL model are selected for each fog node using the suggested deep learning 
entrusted to fog nodes (DLEFN) approach. A DL framework with modularity and swift speed named Caffe 
(convolutional architecture for fast feature embedding) is initially employed for the project19. The authors in20 
anticipate the recommendation of an IoT-based intelligent irrigation architecture that uses machine learning 
to estimate soil moisture, leading to a clearer outcome. This research suggests a special EDGE-Fog-IoT-Cloud 
platform for an IoT-based sustainable agricultural design. This framework aims to provide an example of how 
AI methods can help in making informed irrigation decisions for agriculture that improve water efficiency. 
Because the Internet of Things (IoT) devices in a smart city network are linked to sensors that are connected 
to large cloud servers, they are susceptible to threats and malicious assaults. It is crucial to devise methods to 
thwart these assaults and keep IoT devices from malfunctioning. In this paper, the authors evaluate an attack and 
anomaly detection method using machine learning algorithms (LR, SVM, DT, RF, ANN, and KNN) to reduce 
IoT cybersecurity risks in a smart city. Unlike previous works that focused on single classifiers, the research 
also explores ensemble methods, such as bagging, boosting, and stacking, to increase the detection system’s 
performance. Moreover, consider including multiclass classification, cross-validation, and feature selection for 
the topic at hand21.

IoT-based smart brain bleeding detection system is debated and uses machine learning methods. It is extremely 
difficult to detect brain bleeding automatically, which typically results in death or permanent abnormalities. 
To reduce the likelihood of injuries or lifelong disabilities and to provide high-quality medication right to the 
patient’s door, this research has created an intelligent Internet of Things application that can accurately identify 
brain hemorrhage. This Internet of Things application uses a feedforward neural network and support vector 
machine to identify the various kinds of brain hemorrhages22. A Machine Learning Approach to Modelling 
an Intelligent Ecosystem (IEML) is created in23 to evaluate ecosystem performance intelligently and effectively 
using machine learning techniques. This study describes a smart city that uses ANN techniques to predict the 
ecosystem instantly. Using the cloud and the Internet of Things, the structure is created to make it easier to store, 
index, and visualize the data that a smart city’s input parameters create. To create a predictive and intelligent 
ecosystem model, using a suggested ANN-based method, the Scaled Conjugate Gradient (SCG), Levenberg–
Marquardt (LM), and Bayesian Regularization (BR) algorithms are employed. To diagnose COVID-19 patients 
in smart hospitals, an approach that utilizes machine learning (ML) and the Internet of Things (IoT) is presented 
in24. In this sense, it was highlighted to show how useful IoT technology and machine learning models work in 
smart healthcare settings. It is possible to improve the diagnostic (classification) accuracy based on laboratory 
data by utilizing basic machine learning models. Three machine learning (ML) models—Naive Bayes (NB), 
Random Forest (RF), and Support Vector Machine (SVM)—were developed and evaluated using lab datasets. 
Diagnostic decisions can be supported by the suggested method, which is based on ML and IoT. Additionally, 
the results may decrease the workload for medical professionals, address the issue of patient congestion, and 
lower the COVID-19 pandemic fatality rate. An anomaly detection system, or "ADS," is suggested in25 for 
smart hospital infrastructures. It has two modules: IDC for identifying network anomalies and threats (the 
SVM method is used to classify the received data), and EDC for identifying e-health-related events (SVM is 
used to find the events of interest, just like IDC). IDC and EDC interact well in a single, integrated system, 
making administration simple and reducing the cost of system management. The events that EDC detects 
are carefully analyzed and are no longer trusted after IDC indicates an intrusion. For hospital infrastructures 
to avoid providing inaccurate signals or making poor decisions about patients’ healthcare, such reliability is 
necessary. Crop production in greenhouses is now a well-established method, and automation in many areas of 
this system is now possible due to advancements in technology. Thus, installing an automated smart greenhouse 
powered by the Internet of Things (IoT) and an Adaptive Neuro-Fuzzy Inference System (ANFIS) might be the 
best option to increase food output on the land. Real-time sensors are used to gather four types of weather data: 
temperature, humidity, direct sunlight, and soil moisture. The fuzzy control system then receives these gathered 
data as input variables. The data are subsequently modified by the optimal values for the climate parameters 
are then determined by ANFIS and the fuzzy control system. When the optimal winter temperature is 24 °C 
and the relative humidity is 76.00%, crops grown during the winter are considered in the final simulation. 
The technique has a 93.62% detection accuracy at the perception layer, with precision at 0.83, recall at 0.78, 
and FI score at 0.8126. The learning-to-prediction approach was proposed by the authors as a way to improve 
the predictive algorithms’ accuracy in dynamic circumstances. To evaluate the sustainability of the proposed 
approach, an artificial neural network (ANN) learning module is built to increase the accuracy of the Kalman 
filter method. In experiments, the Kalman filter technique is used to accurately predict the parameters of the 
indoor climate (temperature, CO2, and humidity) from noisy sensor measurements in an inside setting that 
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resembles a greenhouse27. The implementation of deep learning techniques on an IOT-based greenhouse tried 
to give it the capacity to identify and categorize various types of diseases seen inside the room, track the growth 
and development of fruit, and perform the general management required to keep the system fully operational 
without the involvement of humans. The entire learning and prediction task is executed utilizing MASK-RCNN 
and Convolutional Neural Network (CNN). Weighted class and average accuracy are calculated to be 0.93 and 
0.91, respectively28. To better manage the greenhouse’s energy needs and resources, the authors in29 focuses on 
forecasting the electrical amount of energy used by the air conditioner and the electrical output of photovoltaic 
modules. These predictions may also assist in reducing some of the costs associated with measurement and 
monitoring equipment. Different supervised machine learning algorithms, including Boosting, Support.

Vector Machine (SVM), Gaussian Process Regression (GPR), and Artificial Neural Networks (ANN), are 
used to make the prediction. Three statistical measures were used to evaluate and contrast the performance of 
the models: the normalized mean absolute error (nMAE), the normalized root mean square error (nRMSE), 
and the coefficient of correlation (R). To simulate predictions regarding soil temperature and water content, 
the authors of30 propose combining physical models, and machine learning techniques with dynamic topology, 
and meteorological forecast data in a greenhouse. This study employed HYDRUS-1D, the random forest model, 
the ICON (inferring connections of networks) model, and Newton’s law of cooling to reproduce and confirm 
the measured soil temperature. The ICON, random forest, and HYDRUS-1D models were used to simulate and 
confirm the measured volumetric water content. Additionally, the simulation results of several models were 
compared using RMSE (root mean square error). The authors in31 evaluate the possibility of improving food 
security for mountain communities as climate change and lack of resources have been exacerbated through 
an innovative tool called a Smart Greenhouse (SGH). The SGH has equipped an 8 m2 area with a solar water 
heating system, integrated weather stations, and sensors within the greenhouse that monitor light, humidity, 
and temperature. This enhanced microclimate facilitated experiments during the otherwise barren winter 
months. Equipped with sensors and communication technologies, the SGH automates heating, ventilation, 
and air conditioning regulation. Located in Genekha, Thimphu, it utilizes renewable energy for winter heating, 
eliminating reliance on external sources in summer. Performance assessments were conducted using TRNSYS 
and OpenStudio software, focusing on temperature, humidity control, soil pH, nutrient content, and crop 
growth timelines. Three cooling packages for smart greenhouses were proposed in32, as well as the development 
of an energy model with the integration of plant transpiration using Energy Plus. 1,296 simulation datasets 
were generated based on installation area, scale, crops, and covering materials. These datasets have been used 
to develop a performance evaluation tool using temperature, humidity control, and energy cost indices so that 
efficient cooling solutions can be selected for sustainable crop production. An actor-critic algorithm with a 
shared attention mechanism is used in33 to present a multi-agent deep reinforcement learning (MADRL) control 
framework for energy management in networked greenhouses. To handle the variations brought on by the 
production of renewable energy and fluctuating electricity costs, a network of interconnected greenhouses with 
renewable energy is built to communicate with the power grid when needed. A network of five greenhouses 
with different capacities is used to assess the performance of this multi-agent strategy to prove its feasibility 
and scalability. Comparing the suggested MADRL-based control strategy to well-known algorithms, it shows 
efficiency in preserving the interior climate in every greenhouse while guaranteeing a 28% decrease in net 
load demand. To improve energy efficiency and thermal comfort in buildings under four distinct Iranian city 
climates, the authors of34 considered integrating PCMs with thermal insulation. Except for Tehran, they used the 
Response Surface Method (RSM) to optimize the thermostat settings for heating (20 °C) and cooling (25–28 °C); 
the choice of materials (BioPCMDSCM27Q21 and polyurethane insulation); and the thicknesses of PCMs 
(~ 5 cm) and insulation (between 6.9 and 9.8 cm). In addition to 25% to 60% improvements in thermal comfort, 
energy savings of 43% to 99% for heating and 38% to 52% for cooling were noted. Optimizing thermal comfort 
(Tc) while minimizing heating load (HL) and cooling load (CL) was the goal of a residential building energy-
saving approach in35. EnergyPlus and Jeplus software were used to simulate the building model for cities with 
varying climates, taking into account multi-objective optimization using the NSGA-II method. To improve the 
energy efficiency of the insulating strategy, the findings show an average maximum improvement of 17–39% in 
CL, a maximum improvement of 38–62% in Tc, and a significant value of 61–100% improvement in HL. As the 
authors in36 optimized the components that contribute to indoor air quality, or IAQ, they adequately addressed 
this study topic in terms of the following: clean air transfer, insulation levels, air speed, activity levels, and air 
conditioner temperature settings. As a result, they were successful in their attempt to reduce the concentration 
of CCO2 and PCO2 while maintaining elevated levels of Tc. They employed JEPLUS software and the NSGA-
II method, which is supported by EnergyPlus, to do a sensitivity analysis and multi-objective optimization. 
The findings show improvements of 17–30% in CCO2, 15–37% in PCO2, and 52–80% in Tc. They also show 
that additional pollutants such CH4, N2O, NOx, and SO2 have been reduced. The authors created a model for 
predicting and optimizing CO2 emissions in apartment buildings in six US cities with varying climates in37. They 
predicted the monthly and annual CO2 levels from 2020 to 2025 using an artificial neural network of the GMDH 
type, and discovered that they would rise by 1–3 percent per month and 1.25–1.8% annually. Problems resolved 
Thermostat set points, garment insulation levels, and clean air transfer by air conditioning systems are some 
of the five design elements that were taken into consideration in order to handle this problem. Reducing CO2 
emissions and yearly electricity expenses while improving thermal comfort are among the goals to be minimized 
or improved. Using JEPLUS + EA software with the NSGA-II algorithm for optimization and EnergyPlus for 
energy performance analysis, this study was able to find ideal configurations that offer flexible solutions for 
improved indoor air quality and energy efficiency. The focus of38 was on optimizing smart shading systems to 
lower energy usage and improve thermal and visual comfort in buildings. Applying JEPLUS and EnergyPlus 
software to Tehran, a total of 21 design variables were examined. According to the NSGA-II algorithm, external 
blinds outperformed inside ones, and narrower slat angles increased visual comfort but at the expense of higher 
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illumination energy consumption. Visual and thermal comfort increased by 70–100% and 10–40%, respectively, 
while the annual energy usage was decreased by 40–50%.

Methodology
In the suggested architecture as shown in Fig. 1, the plant’s preferred temperature, humidity, CO2, and sunlight 
are entered into the ABC optimizer along with Greenhouse environmental temperature, humidity, Co2, and 
sunlight. Based on plant preferences, the ABC optimizer maximizes environmental factors to enhance plant 
comfort. The input for the fuzzy controllers (temperature fuzzy controller, CO2 fuzzy controller, humidity fuzzy 
controller, and sunlight fuzzy controller) is the difference between the optimized values and the environmental 
parameters. The power needed to regulate the operation of the actuators (chiller, heater, humidifier, dehumidifier, 
CO2 generator, and Solar heat lamp) is the result of the fuzzy controllers. After receiving the required power as 
input, the coordinator checks to see if power is available from the power sources and then provides power 
to each actuator based on the status data that the fuzzy controllers have provided. In addition to the ABC-
optimized values, the fuzzy controllers further get inputs from the environment’s temperature, CO2, humidity, 
and sunlight. The fuzzy controllers’ output values are determined by the variations between the measured values 
of CO2, sunlight, humidity, and temperature in the environment and by the values of these four parameters that 
were optimized by ABC. An ABC optimization’s primary goal is to reduce these error differences. The significant 
error differences that result from not using the ABC optimization procedure ultimately lead to greater output 
levels and increased consumption of energy. As optimization is implemented, the error differences decrease, 
leading to optimal energy utilization.

Artificial bee colony optimization
Artificial Bee Colony (ABC) is a nature-inspired optimization technique modeled after the foraging behavior of 
bees. There have been a lot of algorithms created over the past few decades that simulate the behaviors of natural 
systems. Among these are evolutionary algorithms (EA)39,40, harmony search (HS)41, ant colony optimization 
(ACO)42, and particle swarm optimization (PSO)43. They are referred to as versatile algorithms since they can be 
used to solve several issues. In 2005, Karaboga first presented Artificial Bee Colony as a technical report to solve 
numerical optimization problems. The operation of the ABC algorithm, similar to other optimization methods, 
is illustrated in Fig. 2. According to44 the following benefits listed by several authors, artificial bee colonies are 
preferable to alternative optimization methods.

	 i.	� According to45, and46, ABC is a simple, reliable, and scalable system.
	ii.	� ABC only makes use of a limited set of control Parameters47 in contrast to alternative optimization methods.
	iii.	� It is easy to include ABC in hybrid optimization methods46.
	iv.	� ABC is capable of handling stochastic objective functions48.

The primary steps of artificial bee colony optimization which are adapted to overcome the challenges of 
optimization are provided in the following section48. The pseudocode for ABC is as follows.

Step 1: Set the initial values for the parameters special to the ABC algorithm and the demands of the task for 
the Artificial Bee Colony.

Step 2: Create a population of initial food sources.
Repeat Steps 3 through 6 until the goal or termination condition is satisfied.
Step 3: Worker bees investigate the available food sources within the colony.
Step 4: Onlooker bees choose food supplies based on how good they are.
Step 5: Scout bees explore new food sources outside the existing community.
Step 6: Retain knowledge of the best food source discovered so far.

Fig. 1.  Proposed Methodology.
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Carry on with the iteration until the objective has been reached or the termination condition has been met.
Step1: Initializing Parameters

	 i.	�  Important Parameters: There will be a maximum number of parameters. The amount of parameters that 
require optimization is indicated by the total number of parameters (TNP). Temperature (Temp), Humid-
ity (Humd), Carbon dioxide (CO2), and Sunlight (S) are the four variables we are optimizing.

	 ii.	�  Upper Bound (UpBdi): The upper bound of the parameters i is represented by UpBdi, Where 
i = 1,2,3,…,TNP, with TNP representing the total number of parameters requiring optimization. The maxi-
mum values for Humidity (Humd) is 80%, Temperature (Temp) is 24°C, Sunlight intensity (S) is 400 µmdi/
m2/sec and Carbon dioxide (CO2) is 1000 ppm.

	 iii.	�  Lower Bound (LowBdi): The lower bound of the parameters i is represented by LowBdi, Where 
i = 1,2,3,…,TNP, with TNP representing the total number of parameters requiring optimization. The mini-
mum values for Humidity (Humd) is 40%, Temperature (Temp) is 18 °C, Sunlight intensity (S) is 300 µmdi/
m2/sec and Carbon dioxide (CO2) is 400 ppm.

	 iv.	� Range (Rng): “Range” refers to the difference of the parameters’ upper and lower boundaries as given by 
UpBdi—LowBdi. There are four different ranges: 40, 600, 100, and 6 for humidity, carbon dioxide, sunlight, 
and temperature respectively.

Fig. 2.  Proposed ABC Algorithm.
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	 v.	�  Size of Colony (CS): It serves as an indicator of the population’s overall amount of food sources or solu-
tions. This statistic represents the total number of bees employed or onlooker. In order to identify the ideal 
colony size for the algorithm to work at its best, it has been tested for various numbers of colony sizes.

	 vi.	�  Foods (NoF): Food is a representation of the entire population of the food supply. To achieve the optimum 
outcomes from optimization, the population as a whole has been varied.

	vii.	�  Maximum Cycles (MaxC): In an algorithm run, they stand for the majority of generations. Different 
cycles of testing have been conducted on the algorithm.

	viii.	�  Limit (LN): The limit denotes the highest number of generations during which employed bees will keep 
using a food supply before moving on if it remains unchanged. Various values for the limit have been es-
tablished to achieve the best performance.

	 ix.	� Objective Function: It is necessary to make improvements to this process. The comfort index value, as 
stated in (4), is the goal when developing the algorithm.

	 x.	�  Objective Value: The value of each food source’s related objective function is represented by objective 
value.

Step 2: Create an Initial Food Source Population
We require the TNP, UpBd, LowBd, Rng, and CS parameters mentioned above to initialize the food supply. 

A matrix of dimension CS * TNP called “food source” has an entry for each possible food source. By employing 
(1), each vector is created47. Consider

	 Zj (i) = LowBdi + (UpBdi − LowBdi) × ŕ� (1)

∀j ɛ (1, 2, 3, ….., CS), ∀ i ɛ (1,2,….., TNP), where ŕ ~ (0,1) generates a uniform random number within the range 
of 0 and 1. Initializing the food source is done by (2)47 taking the previously mentioned variables into account. 
only one

	 F ood = Random(NoF, T NP ) ∗ Rng + ln� (2)

Step 3: Employed Bees Investigate the Food Sources Among the Population
At this point, a new solution is generated by the neighbor using47, where (3) is used to assign working bees 

to a food source.

	 Z′(i) = Zj(i) + ŕ(Zj(i) − Zk(i), ŕ ∼ (0, 1).� (3)

where ŕ ~ (0,1) and κ ≠ j for every κ ϵ (1, 2,…….CS), The pseudocode is given in Pseudocode 1. The total 
probability of all employed bees is represented by s_prob in Pseudocode 1.

Pseudocode 1.  Employed Bee Phase47.

Step 4: Food sources are selected by Onlooker bees based on their quality.

Both bees in employed and that onlooker have an equal number of food sources. The selection probability of 
each food source generated by the employed bees is initially determined by the onlooker bee. Next, the optimal 
food source is selected using the Roulette selection procedure. Pseudocode 2 depicts the entire observer bee 
phase in its entirety.
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Pseudocode 2.  Onlooker Bee Phase47.

Step 5: Scout bees search for alternative food sources outside of the current population.

After conducting a random search, the scout bees use (2) to replenish abandoned food sources. An abandoned 
food source is a food source that cannot be upgraded after a specified number of cycles. In Pseudocode 3, the 
scout bee algorithm is described.

Pseudocode 3.  Scout Bee Phase47.

Scientific Reports |         (2025) 15:1752 9| https://doi.org/10.1038/s41598-024-84141-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Step 6: Memorize the Best Food Source Discovered So Far
This stage has the highest objective value since it requires learning the locations of the food sources by 

memory.
Stopping State. The maximum number of cycles is reached by repeatedly doing Steps 3 through 6.

Justification for choosing standard ABC
We chose the classical ABC algorithm because it is already well proven to be in an adequate balance between 
simplicity, adaptability, and efficiency of multi-objective optimization problems. Although the last variants of 
the ABC, including GABC (Global ABC) and IABC (Improved ABC), might better be considered for potentially 
higher performance, they most likely also increase computational complexity and demand a great tuning of 
parameters, which in itself may complicate an implementation within resource-limited environments such 
as smart greenhouses. Although the alternative metaheuristic algorithms such as FA, ACO, and GA proved 
their strength in many applications, they may not match ABC’s balance of convergence speed accuracy and 
computational complexity within this context.

This was made clear by the comparison of the proposed ABC algorithm with FA, ACO, and GA in the key 
performance metrics such as energy efficiency, convergence speed, and maintaining optimal conditions for plant 
growth. Table 2 makes this comparison crystal clear, stating the benefits of ABC algorithms in maintaining good 
energy use while holding computational simplicity.

Plants comfort
Comfort value is a metric used in optimization algorithms to measure how comfortable the Plant is with the 
algorithm’s results. It is a measure of Plant’s satisfaction with the solution presented by the algorithm and is used 
to determine whether the algorithm is providing satisfactory results or not. Comfort value is usually calculated 
by analyzing the Plant Preferred Environment, such as preferences, and comparing it to the algorithm’s output. 
If the output matches the Plant Preferred Environment, then the comfort value is high. If the output does not 
match the Plant Preferred Environment, then the comfort value is low. To calculate the Comfort Index, we used 
the following formula49,

	
CI = prr1

[
1 −

(
err1
T u

)2
]

+ prr2
[

1 −
(

err2
Cu

)2
]

+ prr3
[

1 −
(

err3
Su

)2
]

+ prr4
[

1 −
(

err4
Hu

)2
]

� (4)

CI denotes the Plant comfort level index. The parameters set by the Plant Preferred Environment, namely err1, 
err2, err3, and err4, correspond to the four respective parameters, and the Environmental parameters are given 
by err1, err2, err3, and err4. CI can have a maximum value of 1. Cu is the Plant Preferred concentration of carbon 
dioxide, Su is the Plant Preferred amount of sunlight, Hu is the Plant Preferred humidity, and Tu is the Plant 
Preferred temperature.

Fuzzy controller
A fuzzy controller is a kind of computational algorithm that determines the optimal result for a given input 
by applying fuzzy logic, which is a sort of many-valued logic. Applications for fuzzy controllers are numerous, 
ranging from industrial control systems to home appliances. Fuzzy controllers are particularly useful when an 
exact solution is difficult to obtain or not possible due to the presence of multiple variables. In such cases, fuzzy 
logic provides a more accurate and reliable solution than traditional algorithmic methods.

In our designed structure, we used four Mamdani fuzzy controllers to control the significant environmental 
parameters in the smart greenhouse system: temperature, sunlight, humidity, and carbon concentration. Each 
controller is made up of four major components: a fuzzifier, rule base, inference engine, and defuzzifier. The 
fuzzifier converts the crisp values of the inputs into membership values with the use of triangular membership 
functions defined for each variable input, in which nine membership functions are established for every input 
variable. The set of rules defining the output membership values is contained in the rule base. Using an inference 
engine, this rule base determines the defuzzifier to translate fuzzy outputs into crisp values that determine the 
required power for cooling/heating (temperature controller), lighting (sunlight controller), humidification/
dehumidification (humidity controller), and carbon dioxide concentration regulation (CO₂ controller). The 
Mamdani model was adopted because its interpretability suits multi-variable systems and, therefore, complex 
greenhouse conditions can be controlled in an effective manner with simplicity in rule formulation.

Algorithm Energy Efficiency (kWh)

Convergence
Speed
(Iterations) Accuracy (% within Target Range) Computational Complexity

Standard ABC 981.59 200 98.6% Low

FA 1155.48606 200 97.92% Moderate

ACO 1149.45637 200 97.97% Moderate

GA 1159.95095 200 97.9693% Moderate

Table 2.  Comparison of Standard ABC with FA, ACO, and GA.
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Fuzzy controller for temperature

In the proposed design, the temperature fuzzy controller receives as input the error between the optimized 
temperature values by the optimizer and the temperature in the surroundings. The temperature fuzzy control-
ler’s output is the amount of power required for the heating or cooling system. The necessary power for the 
actuator status is the temperature fuzzy controller’s output, and an artificial bee colony is used to measure the 
error variations between the optimized parameters and the actual environmental parameters, thereby modify-
ing the status of the cooling and/or heating actuators. The Figure A shows a temperature fuzzy controller:

A.  Temperature Fuzzy Controller.

In these rules, the error difference between the actual and ABC-optimized temperatures is represented by 
e1, which serves as the temperature fuzzy controller’s input. Based on this error differential, the temperature 
fuzzy controller supplies the energy to the cooling/heating actuators as its output, with RP1 (required power 
1) indicating the energy needed. Following EC are VC, CD, CL, MD, WM, HT, and EH. EC stands for the 
minimum error between the environmental temperature and the ABC-optimized temperature. Thus, the error 
difference grows as we move from EC to EH and vice versa. Therefore, for error difference EC, the amount 
of required power (RP1) is minimal (RP1 = R1EC), while for error difference EH, the required power (RP1) 
is maximal (RP1 = R1EH). Therefore, the lowest error between the surrounding temperature and the ABC-
optimized temperature is denoted by the letter EC, whereas the maximum differences between the two are 
denoted by the letter EH. As a result, R1EC indicates the smallest amount of power required to control the 
cooling/heating system, and R1EH for the maximum power required.

Fuzzy controller for sunlight

The sunlight fuzzy controller receives as its input the difference in errors between the sunlight optimized by the 
ABC optimizer and the surrounding sunlight. The necessary power for the actuator status is the sunlight fuzzy 
controller’s output, and the lighting actuators’ status is adjusted based on the variations in errors between the 
optimized parameters for the artificial bee colony and the real environmental conditions. The following rules 
for the Sunlight fuzzy controller are shown in Figure B: These rules define e2 as the error difference between 
the actual and ABC-optimized sunlight, which serves as an input to the sunlight fuzzy controller. Based on 
this error difference, the sunlight fuzzy controller provides the energy output, labeled as RP2 (needed power 
2), for the lighting system. The sequence after MiSL includes LSL, MSL, BSL, ISL, SSL, VSSL, ESL, and MXSL. 
MiSL signifies the minimum difference between the environmental sunlight and the ABC-optimized sunlight. 
Thus, the error difference grows as we move from MiSL to MxSL and vice versa. Therefore, for error difference 
MiSL, the amount of required power (RP2) is minimal (RP2 = R2 MiSL), while for error difference MxSL, the 
required power (RP2) is maximal (RP2 = R2 MxSL). MiSL thus denotes the minimum error between the sun-
light from the environment and that optimized by ABC, whereas MxSL indicates the maximum error between 
the environmental and ABC-optimized sunlight. As a result, R2 MiSL indicates the smallest amount of power 
required to control the lighting system, and R2 MxSL for the maximum power required.
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B.  Sunlight Fuzzy Controller.

Fuzzy controller for carbon dioxide

The carbon dioxide fuzzy controller receives as input the error difference between the environmental and 
optimized carbon dioxide from the ABC optimizer. The output of the carbon dioxide concentration supplies 
the energy required for the carbon dioxide generators. The needed power for the actuator status is the carbon 
dioxide fuzzy controller’s output, and the real environmental parameters and the optimized parameters for the 
artificial bee colony fluctuate in error, affecting the actuator status of the carbon dioxide generator. Figure C 
describe the fuzzy rules for the fuzzy controller for carbon dioxide:

C.  Carbon dioxide Fuzzy Controller.

In these rules, e3 represents the error difference between the environmental and ABC optimized carbon 
dioxide, and this error difference is the input for the carbon dioxide fuzzy controller. The carbon dioxide 
generator receives the energy produced by the carbon dioxide fuzzy controller, which is represented by RP3 
(needed power 3), as its output based on this error difference. ABC-optimized carbon dioxide concentration 
is represented by VL, which is followed by L, ML, M, MH, H, VH, EH, and HZ. VL reflects the minimum 
error difference between these two carbon dioxide measurements. Therefore, the error difference grows when 
we move from VL to HZ, and vice versa. Therefore, the needed power (RP3) for the carbon dioxide generator 
is HZ = R3HZ for error difference HZ and RP3 = R3VL for error difference VL. In this case, VL stands for the 
minimum amount of error between the environmental carbon dioxide concentration and the ABC-optimized 
carbon dioxide concentration, and HZ for the maximum amount of error between the two. As a result, R3VL 
represents the least amount of power needed to control the carbon dioxide generator, and R3HZ represents the 
most amount of power needed.

Fuzzy controller for humidity

The input for the Humidity fuzzy controller is the difference in errors between the environment’s humidity 
and the humidity optimized by the ABC optimizer. The Humidity Fuzzy Controller generates the power that 
is required for the Humidification/dehumidification process. The required power for the actuator status is the 
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output of the humidity fuzzy controller, and the actuator status is adjusted based on the differences in errors 
between the optimized parameters for the artificial bee colony and the actual environmental conditions. 
The fuzzy rules or Humidity fuzzy controller is described in Figure D. In these rules, e4 represents the error 
difference between the actual and ABC-optimized humidity, which serves as the input for the humidity fuzzy 
controller. Based on this error differential, the humidity fuzzy controller supplies the energy to the humidifier/
dehumidifier as its output, as shown by RP4 (required power 4). VLHD, LHD, MHD, MHHD, HHD, VHHD, 
EHHD, and MXHD come after HD. HD is the abbreviation for the least amount of difference between the 
environmental and ABC-optimized humidity. Thus, the error difference grows as we move from HD to MxHD 
and vice versa. Therefore, for error difference HD, the amount of required power (RP4) is minimal (RP4 = R4 
HD), while for error difference MxHD, the required power (RP4) is maximal (RP4 = R4 MxHD). Hence, HD 
denotes the least amount of error between the surrounding humidity and the humidity optimized by ABC, 
whereas MxHD denotes the maximum amount of error between the environmental humidity and the hu-
midity optimized by ABC. As a result, R4 HD indicates the smallest amount of power required to control the 
Humidity, and R4 MxHD for the maximum power required.

D.  Humidity Fuzzy Controller.

Coordinator
The coordinator supplies all of the power required to control the lighting, CO2 concentration, and cooling/
heating systems by utilizing the power sources that are currently accessible. The following formula is used to 
calculate the overall required power:

	 T RP = RP 1 + RP 2 + RP 3 + RP 4� (5)

Total Required power (TRp) is the amount of power required; Rp1 is required for the heating and cooling system; 
Rp2 is required for sunlight; Rp3 is required for CO2 concentration; and Rp4 is required for humidification and 
dehumidification.

Actuators
Actuators are all the machinery and gadgets within the greenhouse that need power to function. The most 
common types of actuators are solar heat lamps, which supply focused heat to greenhouses together with light 
for photosynthesis, and heaters, humidifiers, dehumidifiers, CO2 producers, and chillers.

S.NO Parameter Unit

Greenhouse
Environment
Lower Bound Greenhouse Environment Upper Bound Central Point

Plant-Preferred Parameter
Lower Bound

Plant Preferred
Parameter
Upper Bound

1 Temperature °C 9 30 21 18 24

2 Sunlight µmd i/m2

/sec 90 698 350 300 400

3 Humidity % 16 98 60 40 80

4 Carbon dioxide Ppm 250 1300 700 400 1000

Table 3.  Parameters and their Ranges.
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Results and discussion
This section provides a detailed explanation of the hardware and software resources we used for our research. 
An Intel® Core™ M-5Y10c CPU with a processor speed of 1.8 GHz, Random access memory of 4 GB, and a 64-bit 
operating system was used for the experiments for this study. MATLAB R2021a was used to code the developed 
model, as well as the recommended and comparative models, for fast implementation. The suggested algorithm 
does not change its behavior if the parameter’s values fall inside the specified range. The ABC algorithm optimized 
the values when they were above the predetermined boundaries. The value of the parameter must fall within the 
acceptable range. Reducing power consumption is another objective of artificial bee colony optimization. The 
error difference succeeds in achieving this.

Parameter optimization
The ranges of the variables taken into consideration, such as sunlight, temperature, carbon dioxide, and humidity 
are listed in Table 3. Keeping these parameters inside the designated ranges is the job of the optimization 
algorithms. The optimization algorithms will move environmental parameters within these ranges if they are 
outside of them to have the least amount of variance with the environmental values. Sunlight and temperature 
have upper and lower bounds of 400 mdi/m2/sec, 24 °C and 300 mdi/m2/sec, 18 °C, respectively. The lower and 
upper limits for carbon dioxide are 400 ppm and 1000 ppm, respectively, while the humidity bounds are 40% 
and 80%. These are the range of parameters based on Plant Preferred Parameters. The temperature ranges are 
9 to 30 °C, the sunlight ranges are 90 to 698 mdi/m2/sec, the carbon dioxide ranges are 250 to 1300 ppm, and 
the Humidity ranges are 16 to 98%, based on the Greenhouse Environment. All of the values are now inside the 
necessary ranges according to the suggested approach.

Fig. 4.  Temperature power consumption according to the methods taken into consideration.

 

Fig. 3.  Temperature Error Difference.
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Temperature control system
The temperature control system’s primary parts include computed power consumption, error difference 
computation, and input/output for the fuzzy controller. The plant-preferred center point’s error difference from 
the surrounding temperature is minimized using the optimization process. The power consumption at each 
temperature is calculated using the previously indicated error difference. The error difference over time between 
the set temperature and actual temperatures in a smart greenhouse is shown in Fig. 3. To minimize the error 
difference between the target and actual temperature, the figure compares the performance of four alternative 
optimization algorithms: Artificial Bee Colony (ABC), Ant Colony Optimization (ACO), Firefly Algorithm 
(FA), and Genetic Algorithm (GA). The data shows that the ABC algorithm consistently yields the smallest error 
difference among the four algorithms across various time intervals.

The Artificial Bee Colony (ABC), Ant Colony Optimization (ACO), Firefly Algorithm (FA), and Genetic 
Algorithm (GA) are the four Optimization methods used to compare the power Consumption in a smart 
greenhouse over time in Fig. 4. The Fig. 4 shows that the power consumption varies over time, influenced by 
changes in temperature within the greenhouse. Additionally, illustrates how the power consumption differs 
depending on the optimization algorithm employed. Particularly, the ABC algorithm consistently results in the 
lowest power consumption compared to the other algorithms (ACO, FA, and GA) across various time intervals.

This implies that the ABC algorithm works especially well for maximizing energy use in the smart greenhouse, 
leading to reduced power consumption compared to alternative optimization algorithms. By leveraging the ABC 
algorithm, greenhouse operators can achieve significant energy savings while maintaining optimal growing 
conditions for plants.

The temperature fuzzy controller calculates the output power consumption by inputting the error difference 
according to the temperature error difference using a considered approach. Figures 5 and Fig. 6 display the input 
membership and output membership functions for the error variance of the optimized temperature and the 
surrounding temperature, respectively.

Figure 7 presents an example of fuzzy rules for temperature regulation within a smart greenhouse using a 
fuzzy logic system. The figure likely illustrates a set of linguistic variables representing temperature levels and the 
corresponding fuzzy rules that define how input temperature values are mapped to output actions.

Fig. 6.  Fuzzy Controller outputs for Temperature.

 

Fig. 5.  Temperature fuzzy controller inputs.
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According to the Temperature Control System’s performance Table 4, ABC performs better in accuracy 
control and energy efficiency throughout the 90-min data collection period than the other algorithms for ACO, 
FA, and GA. In particular, it took 162.19 kWh and 15 min to reach stability with the lowest energy, with an 
accuracy of ± 0.5 °C. While FA and GA performed in the middle, the ACO algorithm recorded a greater energy 
usage (172.26 kWh) and less accurate control by roughly ± 0.7 °C. These measures collectively show that this 
ABC algorithm is a very effective option for temperature management in an automated greenhouse scenario 
since it can truly accomplish a well-balanced performance towards reduced energy consumption with quick and 
precise control.

Fig. 8.  Total Temperature Comfort.

 

Metric ABC Algorithm ACO Algorithm FA Algorithm GA Algorithm

Energy Consumption (kWh) 162.19 172.26 169.80 164.16

Temperature Stability Time (mins) 15 18 17 16

Accuracy (Average Deviation from Target Temp)  ± 0.5 °C  ± 0.7 °C  ± 0.6 °C  ± 0.6 °C

Total Energy Used in 90 Minutes (kWh) 162.19 172.26 169.80 164.16

Table 4.  Temperature Control System Performance Table.

 

Fig. 7.  Applied rule based on temperature fuzzy controller for a single value.
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In Fig. 8, the comfort values for plant temperature within a smart greenhouse are shown against time using the 
y-axis to represent comfort value and the x-axis to represent time in minutes. Four distinct optimization methods 
are used in this evaluation: ABC, ACO, FA, and GA. Based on the reported comfort levels, the effectiveness of 
each algorithm in maximizing plant temperature for comfort is evaluated. Compared to ACO, FA, and GA, the 
Artificial Bee Colony (ABC) algorithm performs better and gives higher comfort values. This suggests that the 
ABC algorithm works very well in the smart greenhouse to achieve optimal plant temperature conditions. All 
things considered, the graph highlights how important algorithm selection is to optimizing energy use while 
maintaining the well-being and comfort of plants in greenhouse environments.

Sunlight control system
Similar to the Temperature Control System, the Sunlight Control System has identical components that serve 
the same purpose. Sunlight power consumption, the computation of error differences between optimized and 
environmental Sunlight values, and the fuzzy controller inputs and outputs system are the components of the 
Sunlight parameter control system. The error differences between the suggested approach and the various 
optimization Algorithms are shown in Fig. 9.

With a Particular emphasis on Sunlight Conditions, Fig. 10 shows the power consumption (measured in 
KW/H) about time in minutes within a Smart Greenhouse Environment. The graph most likely represents how 
Power usage varies over time in response to variations in the greenhouse’s solar intensity.

Artificial Bee Colony (ABC), Ant Colony Optimization (ACO), Firefly Algorithm (FA), and Genetic 
Algorithm (GA) are a few of the algorithms that may have been employed to optimize power usage dependent on 
solar conditions. The lower power usage seen during times of sunshine exposure suggests that, particularly, the 
outcomes of the ABC algorithm appear to be better than those of the other algorithms. Figure 10 can be analyzed 

Fig. 10.  Sunlight Power Consumption Based on the Considered Approaches.

 

Fig. 9.  Sunlight Error Difference.
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to learn more about how well various optimization algorithms control the power consumption in the smart 
greenhouse in response to changing solar conditions. Gaining an understanding of these dynamics is essential to 
maximizing energy utilization and guaranteeing the greenhouse environment operates effectively, which in turn 
supports environmentally friendly and economically efficient greenhouse management techniques.

The Sunlight fuzzy controllers’ input and output rules, which are utilized to translate error differences into 
power consumption, are displayed in Figs. 11 and 12.

Figure 13 is an example of fuzzy rules regulating the amount of sunlight in a smart greenhouse. It probably 
depicts a set of linguistic variables that indicate different levels of sunlight intensity, along with the fuzzy rules 
that specify how input sunlight values are translated into output actions or linguistic phrases.

As indicated by the Sunlight Control System Performance Table 5, the most energy-efficient algorithm was 
the ABC algorithm as it consumed 131.20 kWh in the 90-min period. This highly exceeds the required energy 
from ACO, FA, and GA algorithms at 175.71 kWh, 155.84 kWh, and 174.64 kWh, respectively. The stability 
of sun-control time in ABC was also faster at 10 min compared to its peers. Besides, the variation of ± 1.5% 
was presented by ABC within the target level of sunlight, which accurately controls light exposure, but in case 
of ACO, variation was more pronounced with a variation of ± 2.5%, whereas FA and GA algorithms possess 
variation with ± 2%. . The respective results indicated that ABC delivers better performance for managing the 
sun with effective energy efficiency and control accuracy in parallel.

In a smart greenhouse, the “Sunlight Comfort” Fig. 14 shows comfort levels about sunlight exposure over 
time. The comfort value is displayed on the y-axis, and time is indicated in minutes on the x-axis. To improve 
sunlight conditions for the growth of plants and comfort, Fig. 14 evaluates the effectiveness of four optimization 

Fig. 12.  Sunlight fuzzy controller outputs.

 

Fig. 11.  Sunlight fuzzy controller Inputs.
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Fig. 14.  Total Sunlight Comfort.

 

Metric
ABC
Algorithm

ACO
Algorithm

FA
Algorithm

GA
Algorithm

Energy Consumption (kWh) 131.20 175.71 155.84 174.64

Sunlight Stability Time (mins) 10 13 12 11

Accuracy (Average Deviation from Target Light Level)  ± 1.5%  ± 2.5%  ± 2%  ± 2%

Total Energy Used in 90 Minutes (kWh) 131.20 175.71 155.84 174.64

Table 5.  Sunlight Control System Performance Table.

 

Fig. 13.  Applied Rule Using the Sunlight Fuzzy Controller for a Single Value.
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algorithms: ABC, ACO, FA, and GA. Of these algorithms, ABC performs better than the others, producing 
greater comfort levels. This demonstrates how well ABC performs in maximizing sunlight for growth of plants 
and comfort in the greenhouse. All things considered, the figure highlights how crucial algorithm selection is to 
optimizing sunlight exposure while maintaining plant comfort and health in greenhouse environment.

Control system for carbon dioxide
Similar to the other two control systems, the carbon dioxide control system’s components operate in the same 
way, as do the components that control the temperature and Sunlight. The computation of error differences 
between the plant-preferred environmental carbon dioxide concentration and the optimized carbon dioxide 
values, the carbon dioxide power consumption, and the system of fuzzy controller inputs and outputs are the 
key components of the carbon dioxide control system. The error differences for the different optimization 
approaches combined with the proposed algorithm are shown in Fig. 15. The ABC model has performed better 
in minimizing the carbon dioxide difference than the other optimization methods that were considered. The 
designed ABC model achieved the lowest error for the carbon dioxide control system, with the GA, FA, and 
ACO following. In every instance, the ABC model’s efficacy was noted.

Figure 16 illustrates the trends in Power usage that are seen as CO2 levels change over time. Based on CO2 levels, 
power consumption was optimized using four algorithms: Firefly Algorithm (FA), Ant Colony Optimization 
(ACO), Artificial Bee Colony (ABC), and Genetic Algorithm (GA). Additionally, the lowest power consumption 
was recorded at times of fluctuating CO2 concentrations, indicating that the ACO algorithm produced the best 
outcomes. This graph’s analysis provides information on how power consumption and CO2 levels are related, as 

Fig. 16.  Carbon dioxide Power Consumption based on the Considered Approaches.

 

Fig. 15.  Carbon Dioxide Error Difference.
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Fig. 19.  Applied Rule Based on the Carbon Dioxide Fuzzy Controller for a Single Value.

 

Fig. 18.  Carbon dioxide fuzzy controller outputs.

 

Fig. 17.  Carbon dioxide fuzzy controller inputs.
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well as how various optimization algorithms control power consumption in response to changing CO2 levels in 
the smart greenhouse environment.

The fuzzy logic system in a smart greenhouse has membership functions for carbon dioxide (CO2) input, and 
output variables, as shown in Figs. 17, and 18.

Figure 19 provides a representation of fuzzy rules controlling the amount of carbon dioxide (CO2) in a smart 
greenhouse. The graph may depict a set of linguistic variables (such as "Very low level," "low level," "Moderate 
level," "Moderate high," "High," "V. High," "Extreme high," and “Hazardous”) that reflect different levels of 
CO2 concentration and the fuzzy rules that specify the mapping of input CO2 values to output actions (such as 
"increase ventilation," “decrease ventilation”) or language phrases.

The CO₂ Control System Performance Table 6 shows that ABC is the best in terms of energy efficiency, as it 
consumed 603.55 kWh in 90 min. Comparing this, ACO, FA, and GA consumed much more energy with 713.2 
kWh, 743.80 kWh, and 734.95 kWh, respectively. As far as accuracy goes, ABC was within the deviation of ± 2% 
and was found to be much more accurate than ACO, where deviation was at ± 3.5%, and was almost the same as 
both the FA and GA algorithms with a deviation of ± 3%. This combination of low energy utilization, stability, 
and precise regulation makes the ABC algorithm especially effective in managing CO2 in smart greenhouse 
environments.

Comfort level and carbon dioxide concentrations inside a smart greenhouse are interconnected, as seen 
in Fig. 20, which graphs time in minutes on the x-axis and comfort value on the y-axis. It assesses how well 
four algorithms (ABC, ACO, FA, and GA) work to control carbon dioxide levels to improve plant comfort 
and growth. The higher comfort values obtained from the ABC algorithm demonstrate its effectiveness in 
maximizing carbon dioxide levels for the well-being of plants in greenhouse environments, as it exceeds the 
other algorithms. The graph highlights how important algorithm selection is for maintaining optimal carbon 
dioxide levels in greenhouse environments while ensuring plant comfort and health.

Humidity control system
Just like the temperature, sunlight, and CO2 control systems in the greenhouse, the humidity management system 
is a cooperative system that combines several components to provide the perfect conditions for growth. a fuzzy 
controller system’s inputs and outputs are used in the humidity control system, along with energy consumption 
related to humidity regulation and monitoring of the difference between the desired optimized humidity values 
and actual environmental humidity levels. In addition to the suggested algorithm, error differences from other 

Fig. 20.  Total Carbon Dioxide Comfort.

 

Metric
ABC
Algorithm

ACO
Algorithm

FA
Algorithm

GA
Algorithm

Energy Consumption (kWh) 603.55 713.21 743.80 734.95

CO₂ Stability Time (mins) 14 17 16 15

Accuracy (Average Deviation from Target CO₂ Level)  ± 2%  ± 3.5%  ± 3%  ± 3%

Total Energy Used in 90 Minutes (kWh) 603.55 713.21 743.80 734.95

Table 6.  CO₂ Control System Performance Table.
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optimization algorithms are examined to improve the humidity control approach. Accurate humidity control 
is essential for maintaining the best possible growing conditions, encouraging plant health, and optimizing 
greenhouse productivity. In comparison to alternative methods of optimization, the ABC (Artificial bee colony) 
model has shown impressive performance in minimizing humidity differences in the evaluation of various 
optimization models for humidity control systems. With the lowest error rates, the ABC model performed 
better in terms of humidity optimization than the genetic algorithm (GA), firefly algorithm (FA), and ant 
colony optimization (ACO) models. The superiority of the ABC model in minimizing humidity inequalities 
within the control system was demonstrated by the consistent observation of its efficiency in all scenarios tested. 
this demonstrates the ABC model’s potential as an extremely effective method for controlling humidity in 
greenhouse settings. To achieve appropriate Humidity levels that are Compatible with the Perfect Conditions 
for Plant growth, Fig. 21 offers a thorough analysis of the error variation associated with each explored method. 
Key performance and efficacy measures for each algorithm are the minimum values of these disparities. A 
comparative analysis of the algorithms’ abilities to maximize greenhouse conditions by measuring the extent 
of variation from the optimal humidity levels for the plant is shown in Fig. 21. It should be noted that even 

Fig. 22.  Humidity Power Consumption based on the Considered Approaches.

 

Fig. 21.  Humidity Error Difference.

 

Scientific Reports |         (2025) 15:1752 23| https://doi.org/10.1038/s41598-024-84141-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


though these error variance values were originally provided in standard forms, they are essential to the comfort 
index and power consumption computations. This emphasizes how crucial Fig. 21 is for decision-making when 
choosing algorithms and keeping the greenhouse.

Figure 22, which focuses on humidity levels, shows the power consumption (in KW/H) over time in minutes 
in a smart greenhouse environment. Data from four distinct optimization techniques are displayed in the graph: 
Artificial Bee Colony (ABC), Genetic Algorithm (GA), Ant Colony Optimization (ACO), and Firefly Algorithm 
(FA). To optimize power consumption in response to different humidity levels, each algorithm was used. The 
findings of the experiment reveal that the ABC algorithm produced the best outcomes in terms of minimizing 
power usage, as seen by the lower power consumption that was observed throughout.

Figure 23 displays the membership functions for the humidity input variables in a fuzzy logic system utilized 
in a smart greenhouse environment. The output variable linked to humidity control in a fuzzy logic system 
operating in a smart greenhouse environment is represented by the membership functions shown in Fig. 24.

An example of fuzzy rules controlling humidity control in a smart greenhouse environment may be seen in 
Fig. 25. It displays a set of linguistic variables that represent different humidity levels, together with the fuzzy 
rules that specify the mapping of input humidity values to output actions.

The energy efficiency of the ABC algorithm, according to the Humidity Control System Performance Table 
7, is only 84.65 kWh in the period that lasted for 90 min; hence, it is lower compared to the ACO, FA, and GA 

Fig. 24.  Humidity fuzzy Controller Outputs.

 

Fig. 23.  Humidity fuzzy controller Inputs.
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Fig. 26.  Total Humidity Comfort.

 

Metric
ABC
Algorithm

ACO
Algorithm

FA
Algorithm

GA
Algorithm

Energy Consumption (kWh) 84.65 88.27 86.04 86.20

Humidity Stability Time (mins) 12 15 14 13

Accuracy (Average Deviation from
Target Humidity)  ± 2%  ± 3%  ± 2.5%  ± 2.5%

Total Energy Used in 90 Minutes (kWh) 84.65 88.27 86.04 86.20

Table 7.  Humidity Control System Performance Table.

 

Fig. 25.  Applied rule using the Humidity fuzzy controller for a single value.
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algorithms, whose consumption is 88.27 kWh, 86.04 kWh, and 86.20 kWh, respectively. With a precision of ± 2% 
deviation from the desired levels, it showed a higher precision compared to ACO’s ± 3% deviation and the same 
level as FA and GA, which were at ± 2.5%. The control response time also saw the same algorithm, ABC, as the 
quickest at 8 s, allowing for immediate responses to fluctuations. This efficiency, accuracy, and responsiveness 
combination shows that the ABC algorithm is best suited for maintaining optimal humidity conditions within 
a smart greenhouse.

Figure 26 “Humidity Comfort” The humidity comfort levels within a smart greenhouse are represented by its 
y-axis, which indicates the comfort value, and its x-axis, which represents the duration in minutes. To maintain 
the comfort and health of plants, it evaluates how successfully four algorithms (ABC, ACO, FA, and GA) optimize 
humidity levels. When compared to the other algorithms, the ABC method is the most efficient and produces 
higher comfort values This demonstrates how effectively ABC controls the greenhouse’s humidity levels to give 
plants an optimal growing environment. Overall, the graph emphasizes how important algorithm selection is for 
preserving plant health and comfort while controlling humidity levels in greenhouse environments.

Table 8: statistical analysis of energy consumption and plant comfort for the four optimization algorithms, 
namely ABC, ACO, FA, and GA, on the parameters of greenhouse, which are temperature, humidity, sunlight, 
and CO₂. It is indicated that some performance metrics like minimum, maximum, average, and total power 
consumption for every parameter under various algorithms. For temperature control, it is noticed that the 
overall total power consumption is the lowest of all algorithms for ABC in comparison to ACO, FA, and GA 
with 162.19 kWh, 172.26 kWh, 169.80 kWh, and 164.16 kWh, respectively. Likewise, it is also noticed that 
the best energy-efficient performance of ABC is for humidity management, sunlight management, and CO₂ 
management with total consumption values of 84.65 kWh, 131.20 kWh, and 603.55 kWh, respectively. The total 
power consumption for the ABC algorithm is 981.60 kWh, that is the lowest among compared approaches. 
Considering plant comfort, the ABC algorithm performs better than others: the highest average comfort level 
achieved equals 0.9701, whereas the ACO, FA, and GA report the lower average comfort levels of 0.9440, 0.9498, 
and 0.9461, respectively. This statistical comparison, therefore, reveals the supremacy of the ABC algorithm in 
reducing energy consumption and optimizing comfort in the greenhouse environment.

The Plant Comfort Performance Table 9, reveals that the ABC algorithm outperforms other algorithms in 
maintaining optimal environmental conditions for plant health. ABC achieved a high temperature stability of 
98.7%, indicating it kept temperatures within the ideal range for nearly the entire duration, compared to ACO, 
FA, and GA, which maintained stability at 94.4%, 95.0%, and 94.6%, respectively. Humidity balance also favored 

Metric ABC Algorithm
ACO
Algorithm FA Algorithm GA Algorithm

Temperature Stability (% within Target Range) 98.7% 94.4% 95.0% 94.6%

Humidity Balance (% within Target Range) 97.5% 93.2% 94.3% 94.1%

Sunlight Exposure (% within Target Range) 96.3% 91.8% 93.5% 92.7%

CO₂ Concentration (% within Target Range) 98.1% 92.9% 93.7% 93.2%

Overall Plant Comfort Score 98.7% 94.4% 95.0% 94.6%

Table 9.  Plant Comfort Performance Table.

 

Parameters Features ABC ACO FA GA

Temperature power consumption
Minimum
Maximum
Average
Total

1.47
2.03
1.802111111
162.19

0.0001526
7.6998474
1.914022942
172.2621

0.0357
4.7257
1.777758889
169.7983

0.0091
4.55
1.801642111
164.16099

Humidity
Power
Consumption

Minimum
Maximum
Average
Total

0.563583815
1.315029 0.952665
84.65405

0.007540601
2.17165
0.980767
88.26907

9.76879
2.254432948
0.915969
86.04496

0.057523121
2.06305
0.93235
86.19566

Sunlight Power consumption
Minimum
Maximum
Average
Total

0.292207792
2.191558 1.457792 131.2013

0.04424026
8.452914 1.952363 175.7127

0.097402597
6.525974 1.731602 155.8442

0.243506494
6.574675 1.940476 174.6429

Carbon dioxide
Power
Consumption

Minimum
Maximum
Average
Total

8.079861 12.72917
10.32878
603.55208

0.505539938
20.1409566 6.537713 713.2125

0.180555556
15.66319
9.49321
743.7986

5.597222222
15.16667 10.32326 734.9514

Total Power
Consumption

Minimum
Maximum
Average
Total

11.26857 17.51823
14.55867
981.59743

7.344766 21.74812
14.25914
1149.45637

8.678269 23.31864
15.84283
1155.48606

8.415693
23.73297167
16.07847969
1159.95095

Total Plant comfort
Minimum
Maximum
Average

0.937173
0.986770848
0.970095691

0.829833 0.979713
0.944043

0.89024
0.979216
0.949832

0.875566 0.979693
0.946076

Table 8.  Statistical Analysis of Considered Approaches.
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ABC at 97.5%, with other algorithms showing lower percentages, indicating that ABC managed moisture levels 
more effectively. In terms of sunlight exposure and CO₂ concentration, ABC maintained levels within the desired 
range for 96.3% and 98.1% of the time, respectively, again surpassing the performance of other algorithms. 
These results combine into an overall plant comfort score of 98.7% for ABC, indicating that it provides the most 
favorable environment for plant growth compared to ACO, FA, and GA, which score lower in plant comfort 
parameters.

Conclusion
The multi-objective optimization challenge of minimizing energy usage while providing comfort to plants 
in smart greenhouses was tackled in this work through the utilization of the Artificial Bee Colony (ABC) 
algorithm, an optimization method influenced by honey bee foraging behavior. Using its capacity to effectively 
explore and utilize search spaces to find optimal solutions, the ABC algorithm was employed as the main 
optimization strategy. An energy-efficient smart greenhouse with multiple components was subjected to the 
proposed optimization model that primarily uses the ABC algorithm. The ABC algorithm made use of inputs 
including plant preferred parameter ranges and parameters from the greenhouse environment, including 
humidity, CO2 levels, temperature, and sunlight exposure. By continuously optimizing the objective function, 
the ABC algorithm dynamically modified environmental parameter values to fall within the designated range 
when they departed from the plant-preferred ranges. The plant comfort calculation is influenced by the 
optimized values that the algorithm produces for temperature, humidity, CO2 levels, and solar exposure. The 
optimum climatic conditions for plant growth were then provided by the actuators in the smart greenhouse, 
which were controlled by the optimized parameter values. Utilizing a power coordinator allowed for dynamic 
changes to be made in response to the greenhouse’s changing environmental requirements by controlling the 
Supply of power needed for the actuator function. External environmental factors such as sunlight intensity, 
temperature fluctuations, CO2 concentrations, and humidity levels, significantly impact the energy dynamics 
and environmental control requirements within a smart greenhouse. Variations in external temperature and 
humidity necessitate adjustments in heating, cooling, and humidity control systems to maintain optimal 
plant comfort while minimizing energy consumption. Changes in external sunlight levels influence the need 
for supplemental lighting and shading, affecting both energy usage and plant photosynthesis rates. Moreover, 
monitoring external CO2 levels is crucial for optimizing CO2 supplementation inside the greenhouse to support 
plant growth efficiently. Considering these external factors in conjunction with energy optimization strategies 
allows for the development of sustainable greenhouse operations that maximize both energy efficiency and plant 
productivity.

Despite this efficient energy optimization model for smart greenhouses, several limitations exist as discussed 
ahead. First, regarding the current study, the standard ABC algorithm has been focused on, which does not 
capture the scenario of more complex greenhouse environments, especially if dynamic adjustments or intricate 
environmental factors are taken into account. Moreover, in this study, the preferred parameters of the plant were 
assumed static, that is not how the fluctuating needs of plants work, particularly when at different growth stages 
or different environmental conditions are concerned. Further, the model does not take into consideration many 
important factors like soil pH, moisture levels, pest and disease management, and the nutritional requirements of 
plants: macronutrients like nitrogen and potassium, and micronutrients like iron and zinc. Most of these factors 
have critical effects on plant health and productivity and may further impact energy optimization strategies 
within the greenhouse.

Future studies will consider integrating advanced variants of the ABC algorithm, such as GABC and IABC, 
to further investigate their potential for further optimizing performance. These variants might have enhanced 
convergence rates and energy efficiency, which can solve more challenging optimization problems in dynamic 
greenhouse conditions. Additionally, we’ll take into account more factors like pH and soil moisture, pest and 
disease management, and nutritional levels, which include macronutrients like nitrogen, phosphate, and 
potassium as well as micronutrients like iron, zinc, and manganese. The plant’s preferred environments in this 
work are static. We plan to make the Plant’s Preferred Parameters for the plant dynamic in the future.

Data availability
The datasets are available from the corresponding author on reasonable request.
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