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Abstract. We extend a recent result that for the (additive) semigroup of positive
integers N, there are continuum many subdirect products of N×N up to isomorphism.
We prove that for U, V each one of Z (the group of integers), N0 (the monoid of
non-negative integers), or N, the direct product U × V contains continuum many
(semigroup) subdirect products up to isomorphism.

1. Introduction

In [5] it is proved that the direct product N × N of two copies of the free monogenic
semigroup N contains uncountably many pairwise non-isomorphic subdirect products.
This is perhaps somewhat surprising, given that the direct product Z×Z of two copies of
the free cyclic group contains only two subdirect products up to isomorphism, namely
Z and Z × Z itself, and that the subsemigroup structure of N is not fundamentally
different from the subgroup structure of Z, in that both essentially depend on arithmetic
progressions; see [9] for an explicit description.

The purpose of this paper is to extend the scope of the above-mentioned result from [5]
and prove the following:

Main Theorem. Let each of U and V be any of the following three additive semigroups:
Z, the group of integers; N0, the monoid of non-negative integers; N, the semigroup of
natural numbers. Then U × V contains continuum many non-isomorphic semigroup
subdirect products of U and V .

By a subdirect product of two semigroups U and V we mean any subsemigroup P of
U × V which projects onto each of U and V , i.e. {u : (u, v) ∈ P for some v} = U and
{v : (u, v) ∈ P for some u} = V . Subdirect products are an important decomposition
tool in algebra in general, due to Birkhoff’s decomposition theorem [7, Theorem 4.44].
They also have many intriguing combinatorial properties. For some examples from group
theory see [2, 3, 4], and for a discussion from the viewpoint of general algebra see [6].

The rest of the paper constitutes the proof of the Main Theorem, using the follow-
ing outline. For reasons of symmetry, and keeping in mind that the case where U =
V = N has been dealt with in [5], it is sufficient to prove the theorem for (U, V ) in
P = {(N0,N), (N0,N0), (Z,N), (Z,N0), (Z,Z)}. In Section 2 we construct a family of
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subsemigroups Sσ of Z × Z, where σ is a sequence of natural numbers with certain
additional requirements. These requirements are sufficiently mild that the number of
sequences satisfying them is uncountable. We begin Section 3 by proving that the inter-
section Sσ∩(U×V ) is a subdirect product in U×V for each (U, V ) ∈ P (Lemma 3.1). In
the remainder of Section 3 we consider each possibility for (U, V ) in turn, starting with
(U, V ) = (N0,N), and show that for σ ̸= τ we have Sσ ∩ (U × V ) ≇ Sτ ∩ (U × V ). Thus
the subsemigroups Sσ ∩ (U × V ) constitute uncountably many pairwise non-isomorphic
subdirect products in U × V , and the Main Theorem is proved.

Of the several assertions encompassed by the Main Theorem, perhaps the one concerning
Z×Z is worth highlighting as somewhat surprising. As mentioned earlier, Z×Z contains
countably many group subdirect products. However, our result shows that it contains
uncountably many semigroup subdirect products.

2. The semigroups Sσ

We begin our work towards proving the Main Theorem by exhibiting a family Sσ of
subdirect products of Z × Z indexed by certain infinite sequences of natural numbers.
We first define the sets Sσ ⊆ Z×Z, then prove they are subsemigroups, and finally that
they are subdirect products.

Construction 2.1. Given a sequence, σ = (ci)i≥2 of natural numbers satisfying

c2 = 1 and ci+1 ≥ 2ci for all i ≥ 2, (1)

define

Sσ := {(x, y) : x ≤ 0, y ≥ x} ∪
∞⋃
k=2

{(x, x+ k) : x = 1, . . . , ck}.

The following comments and Figure 1 may be of help in understanding Sσ and how it
will be treated subsequently.

• It is useful to consider Sσ as a union of ‘vertical lines’. Specifically, Sσ =
⋃

i∈Z Li,
where Li := Sσ ∩ ({i} × Z).

• The lines Li with i ≤ 0 are the same for all Sσ, namely Li = {(i, x) : x ≥ i}.
• The remaining lines Li, i > 0, depend on σ. Each such line Li has a unique ‘lowest
point’, denoted (i, li). The construction assures that li > i. The line contains all
points above this lowest point, meaning that (i, x) ∈ Li for all integers x ≥ li.

• The number ck = i indicates the rightmost line Li for which the lowest point is
(i, i+ k).

• In other words, for any i > 0 and k ≥ 2, we have Li = {(i, x) : x ≥ i + k} if and
only if ck−1 < i ≤ ck for all i, k > 0.

• The conditions c2 = 1 and ci+1 ≥ 2ci are technical, and are needed to facilitate the
proofs of closure below and non-isomorphism later on.

• Due to the fixed requirement c2 = 1, we have that L1 = {(1, x) : x ≥ 3} is still the
same for all Sσ.

The above terminology and notation will be used throughout the paper. In Figure 1 we
visualise a typical example of Sσ.
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Figure 1. The semigroup Sσ, with σ = (1, 2, 5, 10, . . . ).

Lemma 2.2. Each Sσ is a subsemigroup of Z× Z.

Proof. We show that Sσ is closed under pairwise addition. To this end, let µ, ν ∈ Sσ,
with µ = (p, q), ν = (r, s). Without loss of generality we may suppose that p ≤ r. We
split the proof that µ+ ν = (p+ r, q+ s) ∈ Sσ into cases, depending on the sign of p+ r.

Case 1: p+ r ≤ 0. In this instance, to show (p+ r, q + s) ∈ Sσ, it suffices to show that
q+ s ≥ p+ r. This follows, as (p, q), (r, s) ∈ Sσ implies q ≥ p and s ≥ r by construction,
whence q + s ≥ p+ r.

Case 2: p+ r > 0. From p ≤ r we have r > 0. Let k, l ≥ 2 be the unique numbers such
that

ck−1 < r ≤ ck, (2)

cl−1 < p+ r ≤ cl. (3)

To show that (p+ r, q + s) ∈ Sσ it suffices to show that q + s ≥ p+ r + l.
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If p ≤ 0 then p+ r ≤ r, cl ≤ ck and l ≤ k follow in order, and then

q + s ≥ p+ r + k ≥ p+ r + l.

Suppose now that p > 0. Let j ≥ 2 be the unique number such that

cj−1 < p ≤ cj ,

whereby q ≥ p+ j. We have that

q + s ≥ p+ r + j + k,

from which it follows that

cl−1 ≤ p+ r ≤ 2r ≤ 2ck ≤ ck+1 ≤ cj+k−1,

using (1)-(3) and j − 1 ≥ 1. This implies l ≤ j + k, and so

q + s ≥ p+ r + l

as required, completing the proof that Sσ ≤ Z× Z. □

Lemma 2.3. Each Sσ is a subdirect product of Z× Z.

Proof. Any integer can be obtained as the first coordinate of a pair using the elements
(1, 3) and (−1,−1), which are in Sσ for every σ. The same can be done in the second
coordinate using (0, 1), (−1,−1) ∈ Sσ. □

3. Intersection of Sσ with some subsemigroups of Z× Z

In this section, let (U, V ) ∈ {(Z,Z), (Z,N0), (Z,N), (N0,N0), (N0,N)}. Recall from the
introduction that we need only consider such (U, V ) to prove our Main Theorem.

Having constructed the semigroups Sσ in the preceding section as subsemigroups of
Z × Z, this gives us the following way of obtaining subdirect products of U × V from
them.

Lemma 3.1. The intersection Sσ ∩ (U × V ) is a subdirect product of U × V .

Proof. First, the intersection is a subsemigroup of U × V , as U × V and Sσ are both
subsemigroups of Z× Z (the latter by Lemma 2.2).

It then just remains to show that the projection maps onto U and V are surjective. For
any i ∈ U the line Li has non-empty intersection with Sσ ∩ (U × V ), and any element
of this line has first coordinate i. This gives surjectivity of the first projection map.

For the second projection map, if j ∈ V is such that j < 0, it must be that U = V = Z,
in which case Sσ ∩ (U × V ) = Sσ, which is a subdirect product by Lemma 2.3.

If j = 0, then V is one of Z or N0, and we have (0, 0) ∈ Sσ ∩ (U × V ).

Finally, if j > 0, then as L0\{(0, 0)} ⊆ Sσ∩(U×V ), it follows that (0, j) ∈ Sσ∩(U×V ).

This completes the proof of surjectivity of the second projection map, and thus of the
lemma. □
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If we can show that different sequences σ and τ give non-isomorphic subdirect products
Sσ ∩ (U × V ) and Sτ ∩ (U × V ), this will be sufficient to prove our Main Theorem.

In the following subsections, we will use the notion of indecomposability. In fact, we
will use this term in two different senses. Suppose W is a subsemigroup of Z × Z. An
element (a, b) ∈ W is semigroup indecomposable if it cannot be written as the sum of
any two elements from W . In case where W is a monoid, i.e. where W contains the
element (0, 0), we say that (a, b) ∈ W is monoid indecomposable if it cannot be written
as the sum of any two elements of W \ {(0, 0)}. Typically, we will omit the adjective
‘semigroup’ or ‘monoid’ when talking about indecomposability, but it will always be
clear from context which one is meant.

3.1. Intersection with N0 × N. We will start with the case where U × V = N0 × N.
The semigroup Sσ ∩ (N0 × N) is just the union of the lines {Li : i ≥ 0} from Sσ, but
without the identity (0, 0). Recall that the lowest point of a line Li is denoted (i, li).

We describe the indecomposables of Sσ ∩ (N0 × N) in the following lemma, which will
be useful in ruling out possible isomorphisms between these semigroups.

Lemma 3.2. The set of indecomposable elements of Sσ ∩ (N0 × N) is exactly the set

{(0, 1)} ∪ {(i, li) : i ≥ 1}.

Proof. As

(i, j) = (i, li) + (j − li)(0, 1)

for all (i, j) ∈ Sσ ∩ (N0 × N), then any element which is not the lowest point of its line
is decomposable. Hence it remains to show that (0, 1) and the lowest points of each line
are indecomposable in Sσ ∩ (N0 × N).

Firstly, (0, 1) is indecomposable as 1 is indecomposable in N.

Now suppose that some element (i, li) for i ∈ N is decomposable, say

(i, li) = (j, q) + (k, r) (4)

for some (j, q), (k, r) ∈ Sσ ∩ (N0 × N).

Note that we cannot have j = 0 or k = 0 as that would contradict (i, li) being the lowest
point of the line Li; thus j, k ≥ 1. Now let x, y, z ≥ 2 be the smallest possible satisfying

(i) i ≤ cx, so that li = i+ x;

(ii) j ≤ cy, so that lj = j + y ≤ q;

(iii) k ≤ cz, so that lk = k + z ≤ r.

From, (4), (i), (ii) and (iii), we have:

j + k + x = i+ x = li = q + r ≥ lj + lk = j + k + y + z,

and hence x ≥ y + z. Recalling that cn+1 ≥ 2cn for all n ≥ 2, we have that cy+z−1 ≥
2z−1cy and cy+z−1 ≥ 2y−1cz. Using this, together with y, z ≥ 2 and (ii) and (iii), we
have:

i = j + k ≤ cy + cz ≤
( 1

2z−1
+

1

2y−1

)
cy+z−1 ≤ cy+z−1 ≤ cx−1
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a contradiction with minimality of x with respect to (i). Hence, the elements of the
form (i, li) are all indecomposable. □

We can now prove the main result of this section – that there are continuum many
subdirect products of N0 × N up to isomorphism.

Proposition 3.3. For any two sequences σ and τ satisfying the conditions of Construc-
tion 2.1, we have that

σ ̸= τ ⇒ Sσ ∩ (N0 × N) ̸∼= Sτ ∩ (N0 × N).
Consequently, there are continuum many subdirect products of N0×N up to isomorphism.

Proof. We will prove the contrapositive. So suppose two subdirect products Sσ∩(N0×N)
and Sτ ∩ (N0 × N) are isomorphic, and let φ be an isomorphism between them.

This isomorphism must map the indecomposable elements of Sσ ∩ (N0 × N) bijectively
onto indecomposable elements of Sτ ∩ (N0 × N).

Any indecomposable (i, li) in either semigroup has the property that (i, li) + (i, li) has
more than one decomposition into a sum of indecomposable elements, as

(i, li) + (i, li) = (2i, l2i) + (2li − l2i)(0, 1).

By way of contrast, (0, 1) + (0, 1) has only that one decomposition into a sum of inde-
composables. Hence it must be that φ(0, 1) = (0, 1).

Now consider the image of the indecomposable (1, 3), say φ(1, 3) = (j, lj) for some j ∈ N.
Then for any n ∈ N, it must be that

(nj, nlj) = φ(n, 3n) = φ
(
(n, ln) + (3n− ln)(0, 1)

)
= φ(n, ln) + (0, 3n− ln).

It follows that φ(n, ln) belongs to the line Lnj . Furthermore, since it must be indecom-
posable, we have

φ(n, ln) = (nj, lnj). (5)

For φ to be surjective on the set of indecomposables, it must be that j = 1. It follows
that φ is the identity mapping, since Sσ ∩ (N0 × N) is generated by its indecomposable
elements. Therefore Sσ ∩ (N0 × N) = Sτ ∩ (N0 × N), and hence σ = τ , proving the
result. □

3.2. Intersection with N0 × N0. We now consider the case where U × V = N0 × N0.
The semigroup Sσ ∩ (N0 × N0) is the union of lines {Li : i ≥ 0} from Sσ. In fact, these
semigroups are simply the semigroups Sσ ∩ (N0 × N) with the identity element (0, 0)
adjoined. Therefore, as an immediate consequence of Proposition 3.3 we have

Proposition 3.4. N0 ×N0 has continuum many subdirect products up to isomorphism.

3.3. Intersection with Z × N. Considering the case where U × V = Z× N, we have

Sσ ∩ (Z× N) = {(i, j) : i ≤ 0, j ≥ 1} ∪
⋃
i≥1

Li.

We describe the indecomposable elements of Sσ ∩ (Z×N) in the following lemma, which
is again used to rule out non-identity isomorphisms between these semigroups.
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Lemma 3.5. The set of indecomposable elements of Sσ ∩ (Z× N) is exactly the set

{(i, li) : i ≥ 1} ∪ {(i, 1) : i ≤ 0}.

Proof. Notice that

(i, j) =

{
(i, li) + (j − li)(0, 1) when i ≥ 1, j > li

(i, 1) + (j − 1)(0, 1) when i ≤ 0, j > 1.

Thus all of these elements are decomposable.

The elements (i, 1) for i ≤ 0 are indecomposable in Z × N , as 1 is indecomposable
in N. It remains to consider (i, li) where i ≥ 1. Suppose that (i, li) is decomposable,
say (i, li) = (a, x) + (b, y). We cannot have a, b ≥ 0 by Lemma 3.2. Without loss of
generality, suppose a < 0. Then b = i− a > i, and hence

y + x > y ≥ lb = b+ cb > i+ ci = li,

a contradiction. □

We can now move on to proving that there are continuum many subdirect products of
Z× N up to isomorphism.

Proposition 3.6. For any two sequences σ and τ satisfying the conditions of Construc-
tion 2.1, we have that

σ ̸= τ ⇒ Sσ ∩ (Z× N) ̸∼= Sτ ∩ (Z× N).

Consequently, there are continuum many subdirect products of Z×N up to isomorphism.

Proof. Suppose that φ : Sσ ∩ (Z × N) → Sτ ∩ (Z × N) is an isomorphism. We proceed
via a sequence of claims, aiming to show that φ(Sσ ∩ (N0 × N)) = Sτ ∩ (N0 × N) and
then use Proposition 3.3 to obtain σ = τ .

Claim 1. φ(0, 1) = (0, 1).

Proof. We claim that (0, 1) is the only indecomposable element (x, y) such that (x, y)+
(x, y) cannot be expressed as a sum of indecomposables in any other way, and the
assertion then follows from this. That (0, 1) has this property follows from Lemma 3.5.
For any other indecomposable we have

(i, li) + (i, li) = (2i, l2i) + (2li − l2i)(0, 1),

an alternative decomposition as a sum of indecomposables. □

Claim 2. φ(i, li) ∈ Lp for each i ≥ 1, where p is i times the first coordinate of φ(1, 3).

Proof. As φ(i, 3i) = φ((i, li) + (3i− li)(0, 1)), then

iφ(1, 3) = φ(i, li) + (3i− li)(0, 1)

by Claim 1, and hence φ(i, li) and iφ(1, 3) must have the same first coordinate. □

Claim 3. φ(−i, 1) ∈ Lq for each i ≥ 0, where q is i times the first coordinate of φ(−1, 1).
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Proof. As φ(−i, i) = φ((−i, 1) + (i− 1)(0, 1)), then

iφ(−1, 1) = φ(−i, 1) + (i− 1)(0, 1)

by Claim 1, and hence φ(−i, 1) and iφ(−1, 1) must have the same first coordinate. □

Claim 4. φ(1, 3), φ(−1, 1) ∈ L−1 ∪ L1, and hence either

φ(1, 3) = (1, 3) and φ(−1, 1) = (−1, 1); or

φ(1, 3) = (−1, 1) and φ(−1, 1) = (1, 3).

Proof. Suppose φ(1, 3) ∈ Lm and φ(−1, 1) ∈ Ln for some m,n ∈ Z. Then by Claim 2
and Claim 3, it would follow that φ(i, li) ∈ Lmi and φ(−i, 1) ∈ Lin for all i ≥ 0.

As the set of indecomposables of Sσ ∩ (Z× N) must map bijectively to the set of inde-
composables of Sτ ∩ (Z×N), then by Lemma 3.5, it must be that {m,n} = {−1, 1} for
φ to be surjective.

The last part of the claim follows as either φ(1, 3) ∈ L1, φ(−1, 1) ∈ L−1 or φ(1, 3) ∈
L−1, φ(−1, 1) ∈ L1, and noting that each of (1, 3), (−1, 1) must map to the unique
indecomposable of the given line. □

Claim 5. φ(1, 3) = (1, 3), φ(−1, 1) = (−1, 1).

Proof. Suppose otherwise, which by Claim 4 would force φ(1, 3) = (−1, 1), φ(−1, 1) =
(1, 3). On one hand, for n ∈ N, we have

φ(−n, n) = φ(n(−1, 1)) = (n, 3n) = (n, ln) + j(0, 1) (6)

for j = 3n− ln ∈ N. On the other hand,

φ(−n, n) = φ((−n, 1) + (n− 1)(0, 1)) = φ(−n, 1) + (n− 1)(0, 1).

Hence

(n, ln) + j(0, 1) = φ(−n, 1) + (n− 1)(0, 1).

It must therefore be that φ(−n, 1) and (n, ln) share the same first coordinate, and hence
that φ(−n, 1) = (n, ln) and j = n− 1. Now as

3n = ln + j

from considering second coordinates in (6), it follows that ln = 2n + 1 for any n ∈ N.
As 2n + 1 = n + (n + 1), it must follow that k = n + 1 is the unique index such that
ck−1 < n ≤ ck. In particular, cn < n for all n ∈ N, which is a contradiction, as the
sequence (ck) grows at least exponentially by assumption (1) from Construction 2.1. □

Claim 6. φ((−N)× N) = (−N)× N.

Proof. Notice that every (a, b) ∈ (−N)× N can be decomposed as (a, 1) + (b− 1)(0, 1).
Hence

φ(a, b) = φ(a, 1) + (b− 1)φ(0, 1) = φ(a, 1) + (b− 1)(0, 1) (7)

by Claim 1. By Claims 3 and 5, it follows that φ(a, 1) = (a, 1), and hence (7) is equal
to (a, b). □
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Returning to the main proof of the theorem, it must be that φ(Sσ ∩ (N0 × N)) =
Sτ ∩ (N0 × N) by the last claim above. We now apply Proposition 3.3 and the result
follows. □

3.4. Intersection with Z × N0. We now consider the case U × V = Z × N0. Each
semigroup Sσ ∩ (Z× N0) is the union of lines {Li : i ≥ 1} ∪ {(x, y) : x ≤ 0, y ≥ 0}.
In what follows we will repeatedly use the following observation, which follows immedi-
ately from Construction 2.1:

Lemma 3.7. If (a, x) ∈ Sσ ∩ (Z× N0) and x ∈ {0, 1, 2} then a ≤ 0. □

We proceed to describe the indecomposable elements of Sσ ∩ (Z×N0) in order to prove
that there are uncountably many subdirect products of Z× N0. Since Sσ ∩ (Z× N0) is
a monoid, indecomposability will be understood to be in the monoid sense.

Lemma 3.8. The set of indecomposable elements of Sσ ∩ (Z× N0) is exactly the set

{(i, li) : i ≥ 1} ∪ {(0, 0), (0, 1), (−1, 0)}.

Proof. As (i, j) = (i, li) + (j − li)(0, 1) when i ≥ 1 and (i, j) = (−i)(−1, 0) + j(0, 1)
for i ≤ 0, we only need to prove that the elements of the set {(i, li) : i ≥ 1} ∪
{(0, 0), (0, 1), (−1, 0)} are all indecomposable. For (0, 0), (0, 1), (−1, 0) this follows from
Lemma 3.7 and indecomposability of 0 and 1 in N0.

Now, consider an element (i, li) for some i > 0 and suppose it has decomposition

(i, li) = (a, x) + (b, y).

By Lemma 3.2, we cannot have a, b ≥ 0. Suppose without loss of generality that a < 0,
thus b > i. Hence,

li = x+ y ≥ y ≥ lb > li,

a contradiction. Therefore the elements {(i, li) : i ≥ 1} are indecomposable. □

Now we can prove that Z × N0 has continuum many subdirect products up to isomor-
phism.

Proposition 3.9. For any two sequences σ and τ satisfying the conditions of Construc-
tion 2.1, we have that

σ ̸= τ ⇒ Sσ ∩ (Z× N0) ̸∼= Sτ ∩ (Z× N0).

Consequently, there are continuum many subdirect products of Z×N0 up to isomorphism.

Proof. Suppose that φ : Sσ ∩ (Z × N0) → Sτ ∩ (Z × N0) is an isomorphism. We will
proceed via a series of claims, aiming to show that φ(Sσ ∩ (N0 × N)) = Sτ ∩ (N0 × N),
and then use Proposition 3.3.

Claim 1. φ(0, 0) = (0, 0).

Proof. This follows from the fact that (0, 0) is the unique identity element. □

Claim 2. (0, 1) + (0, 1) is the unique decomposition of (0, 2).
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Proof. If (0, 2) = (a, x) + (b, y) with (a, x) + (b, y) ∈ Sσ ∩ (Z ∩ N0) then x, y ∈ {0, 1, 2},
and hence a = b = 0 by Lemma 3.7, from which the claim follows readily. □

Claim 3. (−1, 0) + (−1, 0) is the unique decomposition of (−2, 0).

Proof. Suppose that

(−2, 0) = (a, x) + (b, y).

Since x, y ∈ N0, we must have x = y = 0.

By Lemma 3.7 we have a, b ≤ 0, and the claim follows. □

Claim 4. φ(0, 1) = (0, 1) and φ(−1, 0) = (−1, 0).

Proof. If we consider (i, li) for some i > 0, then

(i, li) + (i, li) = (2i, 2li) = (2i, l2i) + (2li − l2i)(0, 1).

This tells us that (0, 1) and (−1, 0) are the unique indecomposables x with the property
that 2x = x+ x is the only decomposition into a sum of indecomposables, and hence

φ({(0, 1), (−1, 0)}) = {(0, 1), (−1, 0)}.

In particular, we can also deduce that φ({(0, 3), (−3, 0)}) = {(0, 3), (−3, 0)}. The
element (−3, 0) has a unique decomposition into a sum of indecomposables, namely
(3, 0) = 3(−1, 0). By way of contrast, the element (0, 3) has more than one such decom-
position, namely

(0, 3) = 3(0, 1) = (1, 3) + (−1, 0).

This is now sufficient to prove the claim, since it must therefore be that φ(0, 3) = (0, 3)
and φ(−3, 0) = (−3, 0). □

Claim 5. φ((−N)× N) = (−N)× N.

Proof. Using Claim 4, for any (i, j) ∈ (−N)× N we have

φ(i, j) = φ((−i)(−1, 0) + j(0, 1)) = (−i)φ(−1, 0) + jφ(0, 1)

= (−i)(−1, 0) + j(0, 1) = (i, j),

and the claim follows. □

Returning to the proof of the proposition, from Claim 5 it follows that φ(Sσ∩(N0×N)) =
Sτ ∩ (N0 × N), and the result follows by Proposition 3.3. □

3.5. Intersection with Z×Z. We will now consider the final case where U×V = Z×Z.
Notice that Sσ ∩ (Z× Z) is simply just Sσ from Construction 2.1.

We determine the indecomposable elements in Sσ and use this to describe the isomor-
phisms between these semigroups.

Lemma 3.10. The set of indecomposable elements of Sσ is exactly the set

{(ck, ck + k) : k ≥ 2} ∪ {(0, 0), (0, 1), (−1,−1)}.
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Proof. Denote the above set by I. First we consider (i, j) ∈ Sσ \ I and show that it is
decomposable. Notice that

(i, j) = (−i)(−1,−1) + (j − i)(0, 1),

and this is a non-trivial decomposition of (i, j) in the following cases:

• i < −1, because j ≥ i, so that −i ≥ 2;

• i = −1, because j ≥ 0, so that −i = 1 and j − i > 0;

• i = 0, because −i = 0 and j ≥ 2.

Now suppose i > 0. Let k ≥ 2 be the smallest index such that i ≤ ck. Define a := ck−i ≥
0. Since (i, j) ∈ Sσ we have j ≥ i+ k, and we let b := j − (i+ k) = j − (ck − a+ k) ≥ 0.
Moreover, as (i, j) ̸∈ I by assumption, we cannot have both a = 0 and b = 0. Hence

(i, j) = (ck − a, ck − a+ k + b) = (ck, ck + k) + a(−1,−1) + b(0, 1)

is a non-trivial decomposition of (i, j).

Now we show that each (i, j) ∈ I is indecomposable. We consider separately the cases
where (i, j) ∈ {(0, 0), (0, 1)}, (i, j) = (−1,−1), and (i, j) = (ck, ck + k). In each of these
cases we assume that

(i, j) = (a, x) + (b, y) for some (a, x), (b, y) ∈ Sσ \ {(0, 0)}

and proceed to derive a contradiction.

Case 1: (i, j) ∈ {(0, 0), (0, 1)}. We cannot have a = b = 0 because 0, 1 are both
indecomposable in N0, and this would imply that one of (a, x), (b, y) equals (0, 0). Now,
without loss of generality suppose that a < 0, so that x ≥ a. Then b > 0, so that
y ≥ b+ 2. Hence 1 ≥ j = x+ y ≥ a+ b+ 2 = 2, a contradiction.

Case 2: (i, j) = (−1,−1). Suppose a = −1, b = 0, with x ≥ −1, y ≥ 1. Then
−1 = j = x+ y ≥ −1 + 1 > −1. Next, without loss of generality suppose that a < −1,
b > 0. Reasoning as in the previous case, −1 = j = x+y ≥ a+b+2 = 1, a contradiction.

Case 3: (i, j) = (ck, ck + k). By Lemma 3.2, precisely one of a, b must be negative, as
(ck, ck + k) is indecomposable in Sσ ∩ (N0 × N). Assume that a < 0 without loss. We
have b = ck − a and y = ck + k− x. As x ≥ a, then y ≤ ck + k− a, i.e y ≤ b+ k. But as
b = ck−a > ck, we know that lb ≥ b+k+1. This gives a contradiction, as if (b, y) ∈ Sσ,
then

b+ k ≥ y > lb ≥ b+ k + 1. □

Now we can prove that Z×Z has continuum many subdirect products up to isomorphism.

Proposition 3.11. For any two sequences σ and τ satisfying the conditions of Con-
struction 2.1, we have that

σ ̸= τ ⇒ Sσ ̸∼= Sτ .

Consequently, there are continuum many (semigroup) subdirect products of Z× Z up to
isomorphism.

Proof. Suppose that φ : Sσ → Sτ is an isomorphism. We will proceed via a series of
claims, aiming to show that σ = τ .
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Claim 1. (−2,−2) has precisely one decomposition into a sum of non-zero indecompos-
ables, namely (−2,−2) = (−1,−1) + (−1,−1).

Proof. Suppose that

(−2,−2) =
n∑

i=1

(ai, xi)

is a sum of n ≥ 2 non-zero indecomposables. Consider the differences di := xi − ai.
Noting that

0 = −2− (−2) =
n∑

i=1

xi −
n∑

i=1

ai =
n∑

i=1

di,

and that

di =


0 if (ai, xi) = (−1,−1),

1 if (ai, xi) = (0, 1),

k if (ai, xi) = (ck, ck + k),

it follows that (ai, xi) = (−1,−1) for all i, and the claim follows. □

Claim 2. (0, 2) has precisely two decompositions into a sum of non-zero indecomposables,
namely (0, 1) + (0, 1) and (−1,−1) + (1, 3).

Proof. Suppose that

(0, 2) =

n∑
i=1

(ai, xi), (8)

a sum of n ≥ 2 non-zero indecomposables. Let di := xi − ai, as in the previous
claim. This time,

∑n
i=1 di = 2. Hence the only choices for (ai, xi) appearing in (8)

are (−1,−1), (0, 1) and (c2, c2 + 2) = (1, 3). Furthermore, there are either precisely two
occurrences of (0, 1), or precisely one occurrence of (1, 3). In the former case we obtain
the decomposition (0, 2) = (0, 1) + (0, 1), and in the latter (0, 2) = (1, 2) + (−1,−1) as
the only options. □

Claim 3. For k ≥ 2, the element (2ck, 2(ck+k)) has a decomposition into a sum of three
or more non-zero indecomposables.

Proof. Let d := ck+2 − 2ck. Recalling (1) from Construction 2.1 we have

d ≥ 2ck+1 − 2ck ≥ 4ck − 2ck = 2ck ≥ 2.

Also let n := k − 2 ≥ 0. Then

(ck+2, ck+2 + k + 2) + d(−1,−1) + n(0, 1)

= (ck+2 − d, ck+2 + k + 2− d+ n)

=
(
ck+2 − (ck+2 − 2ck), ck+2 + k + 2− (ck+2 − 2ck) + k − 2

)
=(2ck, 2ck + 2k),

a decomposition of (2ck, 2ck + 2k) into 1 + d + n ≥ 3 non-zero indecomposables, as
required. □
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Having finished the series of claims, we can now proceed to directly prove that σ = τ .
As every element of Sσ is a sum of the indecomposables described in Lemma 3.10, we
consider the images of these, each of which will be indecomposable in Sτ . To distinguish
between the sequences σ and τ , we will let σ = (ck)k≥2, and τ = (Ck)k≥2.

Clearly φ(0, 0) = (0, 0), being the identity of both monoids. By considering possible
decompositions of φ(2(−1,−1)), φ(2(0, 1)) and φ(2(ck, ck+k)), Claims 1 to 3 assert that
we must have φ(−1,−1) = (−1,−1), φ(0, 1) = (0, 1) and for any k ≥ 2, φ(ck, ck + k) =
(Cj , Cj + j) for some j ≥ 2.

Noting that

(ck, ck + k) + ck(−1,−1) = k(0, 1),

then applying φ to the above shows that

(Cj , Cj + j) + ck(−1,−1) = k(0, 1),

and hence that ck = Cj and k = j. Therefore ck = Ck for all k ≥ 2, and we conclude
σ = τ as required. □

4. Concluding remarks

As stated, our Main Theorem subsumes Theorem A and Theorem C for k = 2 from
[5] dealing with N × N. However, within our proof we appeal to these results, rather
than reprove them. In fact it is unclear whether our present methods could be modified
to cover the N × N case. For starters, the intersection Sσ ∩ (N × N) is not subdirect:
the elements 1 and 2 are missing from the first projection. And secondly, our way of
proving non-isomorphisms for different σ via analysis of indecomposable elements would
not work, as Sσ ∩ (N× N) has a lot of indecomposables, which moreover depend on σ.

It is known that in groups, and more generally congruence permutable varieties, sub-
direct products of two factors coincide with the so called fiber products; this is known
as Goursat’s Lemma for groups (see [1, Theorem 4]) and Fleischer’s Lemma in gen-
eral (see [7, Theorem 4.74]). For two algebraic structures A1, A2 of the same type, a
fiber product of A1 and A2 is a substructure of their direct product A1 × A2 of the
form {(a1, a2) ∈ A1 × A2 : φ(a1) = φ(a2)}, where φi : Ai → Q (i = 1, 2) are onto
homomorphisms to a common quotient Q. It is well-known that Goursat’s/Fleischer’s
Lemma does not extend to semigroups. The Main Theorem offers a glimpse of just how
badly it fails. It is easy to see that each of N, N0, Z has only countably many quotients
(which are, respectively, all monogenic semigroups, all monogenic monoids, and all cyclic
groups). It therefore follows that for any U, V ∈ {N,N0,Z} there are only countably
many fiber products of U and V . Combining with the Main Theorem we conclude that
uncountably many subdirect products of U and V are not fiber products.

The Main Theorem seems to suggest that it is rather hard for the direct product U ×V
of two infinite semigroups to contain only countably many subdirect products up to
isomorphism. But it is not impossible. One trivial example can be obtained by taking
U and V to be two copies of an infinite zero semigroup Z (zu = 0 for all z, u ∈ Z).
Then Z × Z is again a countable zero semigroup, i.e. Z × Z ∼= Z, as is every infinite
subsemigroup of Z×Z. Thus Z is the only subdirect product of Z×Z up to isomorphism.
Another, less trivial, example is obtained by taking U and V to be two copies of a
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Tarski Monster M – an infinite simple group in which every proper subgroup has order
p, where p is a fixed prime [8]. Since M × M is periodic, its subsemigroups are in
fact subgroups. Therefore semigroup subdirect products in M ×M coincide with group
subdirect products. And then it follows from simplicity and Goursat’s Lemma that there
are only two such subdirect products up to isomorphisms, namely M and M ×M .

Motivated by the above discussion, we ask:

Question 4.1. Do there exist infinite non-periodic semigroups U and V such that U×V
contains only countably many pairwise non-isomorphic subdirect products? Do there
exist such U and V which are commutative?

We conjecture that the answer to the first question is affirmative and negative for the
second.
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