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Early diagnosis of neurodegenerative diseases, such as Alzheimer’s disease, improves treatment and care
outcomes for patients. Early signs of cognitive decline can be detected using functional scales, which are
written records completed by a clinician or carer, detailing a patient’s capability to perform routine activities
of daily living. For example, tasks requiring planning, such as meal preparation, are some of the earliest
affected by early mild cognitive impairment. In this article, we describe work towards the development of a
system to automatically discriminate and objectively quantify activities of daily living. We train a selection of
neural networks to discriminate a novel list of 14 activities, specially selected to overlap with those measured
by existing functional scales. Our dataset consists of eight hours of development data captured from four
individuals wearing the Continuous Ambulatory Vestibular Assessment (CAVA) device, which was originally
developed to aid the diagnosis of vertigo. Using frequency domain recognition features derived from eye-
movement and accelerometer data, we compare several classification approaches, including three bespoke
neural networks, and two established network architectures commonly applied to time-series classification
problems. In 10-fold cross-validation experiments, a peak mean accuracy of 64.1% is obtained. The highest
accuracy across all folds is 75.3%, produced by networks comprising Gated Recurrent Units. The addition of
eye-movement data is shown to improve discrimination compared to using accelerometer data alone, by close
to 9%. Classification accuracy is shown to degrade if the system is trained such that test subjects are excluded
from the training data, with the small size of the dataset given as a likely explanation. Our findings demonstrate
that the addition of eye-movement data can significantly improve the discrimination of daily activities, and
that neural networks are well suited to this task.

Body-worn sensors
Digital biomarker

1. Introduction preparation, organising finances or making travel arrangements [8].
They may also have difficulty in more routine tasks such as continence,
personal hygiene and ambulating. Currently, the assessment of an indi-

vidual’s ability to perform activities of daily living (ADLs) is performed

The United Kingdom has an ageing population, with the propor-
tion of retirement age individuals expected to rise over the coming
decades [1]. This demographic shift is expected to impact health and
care services worldwide, as older individuals are increasingly living
with multimorbidities, often impacting their ability to live indepen-
dently [2,3]. For example, there is a concerning rise in the prevalence

by a caregiver, clinician or even by the patient themselves [9,10]. The
focus of the work in this article is to work towards the development of
a system for automatically quantifying ADLs, with a view to providing

of degenerative brain diseases, such as Alzheimer’s and Parkinson’s
disease [4]. These debilitating diseases force individuals to become
entirely dependent on the care of others [5]. As with many diseases,
early diagnosis is a key factor in their mitigation, by slowing disease
progression through early access to treatment [6].

One of the earliest signs that an individual may be experiencing
cognitive decline is a reduced capability to undertake routine daily
tasks in their own home [7]. For example, individuals may show in-
creased difficulty in undertaking tasks involving planning, such as meal
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a proxy for monitoring cognitive decline. The current, manual process
typically requires the completion of a form designed to measure the
degree of function with respect to routine daily activities, commonly
referred to as functional scales [11]. There are broadly two scales
used for this purpose: The Katz Index [12], which covers a range of
basic activities, and the Lawton scale of Instrumental Activities of Daily
Living (IADL) [13], which includes more complex tasks, such as those
requiring planning.
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Fig. 1. The CAVA device. Electrodes adhered to the face capture the corneo-retinal potential generated by the eyes, with data recorded on the logging unit behind the left ear.
The device also records acceleration of the head using an accelerometer in the logging unit, an LED provides an indication of device status, and a button on the device can be

used to mark times of interest in the data recorded.

Although widely used, manual records of ADLs and IADLs are
subjective and inaccurate, as they are typically completed retrospec-
tively and based on the judgement of one individual [14]. There is
no universally agreed scale on which to assess ADLs, and the variety
of scales that do exist mean that patients are not assessed in a con-
sistent manner [15]. We work towards a solution to these challenges
by exploring the feasibility of using body-worn sensors and machine
learning to obtain automatic and objective records of ADLs, potentially
enabling more accurate and informative assessments of an individual’s
cognitive decline and ability to live independently. Effectively, the data
generated by this process could be used as a digital biomarker, enabling
the objective measurement of the effectiveness of interventions for
neurodegenerative diseases, such as drug therapies, physiotherapy and
social support. In a similar vein, it could also be used to assess clinical
trial outcomes for new treatments. Although our intended application is
primarily the measurement of cognitive decline, this work also has po-
tential application to the detection of abnormal events occurring within
an individual’s daily routine, such as tonic-clonic epileptic seizures [16]
or syncope [17], or for assessing ADLs in stroke-affected patients [18].

This work is undertaken using data captured with the Continuous
Ambulatory Vestibular Assessment (CAVA) device. The CAVA device
was originally developed to aid the diagnosis of a specific type of
dizziness called vertigo [19,20]. The device is worn on the face and
records horizontal and vertical eye-movements, as well as three-axis
acceleration of the head (Fig. 1). Patients suspected of suffering from
vertigo would wear the device nearly continuously for up to a month.
After the monitoring period, the data from the device would be anal-
ysed by computer algorithms for evidence of signals indicating vertigo.
Using this device, in this work we examine whether the physiological
parameters it records could aid the automatic and objective detection
of ADLs. The ability to classify and quantify a timeline of daily activities
would effectively provide a digital biomarker, which could be used to
monitor changes in an individual’s behaviour in response to treatment.
CAVA is particularly suited to this given that it can be worn throughout
an individual’s normal daily life: nearly continuously, throughout the
day and night, and for up to a month. Also, unlike other devices
which provide accelerometer data alone, the CAVA device records eye-
movements, which may aid in the detection of more complex activities
that do not require physical movement of the body. While this is not
the first work to explore the classification of ADLs using both eye- and
head-movement features [21], as far as the authors are aware, it is the
first to apply contemporary neural network approaches to this type of
the data for this specific task.

Classification of human activities from sensor data is a mature
field of research. For detailed reviews of studies in this area, please
refer to [22,23]. Approaches using body-worn sensors to discriminate

activities either make use of modern smartphone technology, which
typically includes auditory and accelerometer-based sensors, or uses
separate wearable sensors, recording parameters such as heart rate,
blood oxygen saturation and gyroscopic or accelerative movement. The
majority of previous work has involved the use of accelerometer data
alone. An objective of our work is to determine if the inclusion of
eye-movement data improves the capabilities of an automatic system,
motivating the use of the CAVA device for this application.

A variety of traditional machine learning approaches have been
applied to activity classification, including support vector machines
(SVMs), K-nearest neighbour (KNN), decision trees and neural net-
works. In [24], six basic activities such as walking, sitting, and ascend-
ing stairs were considered, with data captured from nine individuals.
They explored a selection of classifiers such as SVMs and KNN, obtain-
ing classification accuracies in the range 53.1% to 99.4%. A similar
study by [25], achieved a peak mean accuracy of 93.38% using SVMs.
In a three activity classification task involving sitting, walking and
standing, [26] achieved accuracies in the range of 76.2% to 97.9%
using random forest, naive Bayes and KNN classifiers. In [27], seven
different activities, including lying, sitting, walking, Nordic walking,
running, rowing, and cycling were considered. They collected 31 h of
labelled data, measuring 18 different parameters, such as heart rate,
acceleration of the wrist, and location through GPS. Eye-movement was
not recorded. Decision trees and neural networks were evaluated and a
maximum mean accuracy of 86% was obtained. There is debate in the
community regarding the appropriateness of subject-independent clas-
sifiers, for which the test subjects are not included in the training data.
Because of the variability of physiological signals, it has been suggested
that person-specific models are required for optimal results [28].

These previous studies demonstrate the feasibility of using body-
worn sensors to classify activities and show that a high degree of
accuracy can often be obtained for distinctive, simple activities. They
also highlight the variability between data captured from different
individuals, leading to poor subject-independent classification perfor-
mance. The number of activities considered in previous studies is
often small, and those that are selected are very distinctive, providing
little challenge for contemporary machine learning methods. Hence,
classification accuracies reported are often in excess of 95%. To avoid
this pitfall, we intend to extend the work of these previous studies
by performing a classification task involving a larger selection of 14
activities, designed to overlap with the more complex and nuanced
activities defined by the ADL and IADL definitions. We will evaluate
the capability of our algorithms to detect this novel list of activities, in
the hope that others in the field may also explore its suitability for this
problem. Our own previous work involving eye-movement data, and
specifically data from the CAVA device, has shown that neural networks
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are well suited to this type of problem, in that they are able to learn the
complex, temporal relationships that exist within physiological signals
that more traditional methods may fail to. We will therefore present
the results of applying neural networks to the challenge of activity
classification.

The remainder of this article is organised as follows: In Section 2 we
introduce the dataset used in our experiments. Sections 3 and 4 present
details of the system developed, in particular, the feature extraction
method and neural network architectures used in this work. In Section 5
we describe the experimental framework used to evaluate the system
developed, including details of the neural network architecture used.
Results are provided in Section 6, with Discussion and Conclusions
presented in Sections 7 and 8.

2. Dataset

A small quantity of development data was collected for use in this
work. This data was captured using the CAVA device, which was worn
by four study members directly involved with this project, who each
wore the device for less than a day in total. The study members were all
male and aged between 20 and 40. As described, the CAVA device was
originally developed as a diagnostic tool for detecting abnormal eye-
movements in patients suspected of suffering from vertigo. It samples
horizontal and vertical eye-movements at ~42 Hz as well as three-axis
accelerometer data at 8 Hz. A button on the device can be used by
patients and clinicians to mark the time of events of interest, or simply
to provide a useful reference point (e.g. The time at which the device
was donned). An extended button press can be used to check for the
correct functioning of the device, together with a status indicator LED.

As we work towards developing a complete system for automatically
classifying ADLs, we opted to focus on activities that align closely
to those defined by the existing functional scales. These ADLs fall
broadly into two categories: basic ADLs [12] and instrumental ADLs
(IADLs) [13]. A list of the activities included in these definitions is
shown in Table 1, but to summarise, basic ADLs include activities
such as ambulating, feeding, and personal hygiene, while IADLs in-
clude more complex activities, often requiring more planning by the
individual. The capability to perform IADLs is more often impacted by
cognitive impairment [29]. Using these definitions, we defined our own
set of 14 activities, which we term CAVA ADLs (CADLs) (See Table 2).
These were selected to be challenging to discriminate using body-worn
sensors. In cases where identification of a specific activity was likely
to be impossible using the available sensor data, such as for managing
finances, we opted to use a simpler but related activity, or to exclude
the activity from our definition. Table 1 shows how the CADLs relate
to conventional ADLs and IADLs.

During the data capture process, project members recorded the data
without assistance and in their own home. They were given only simple
written and verbal instructions on how to undertake each activity, in
order that the activities might reflect some real-world variability in how
they were performed. Table 3 shows the quantity of data recorded by
each individual for each activity. Fig. 2 shows examples of the eye-
movement and accelerometer data corresponding to reading, eating and
ambulating.

Training neural networks to detect the target activities required the
data to be labelled at a sample level. To aid this process, each partic-
ipant was instructed to keep a record of the activities they undertook.
They used the CAVA device’s event marker to signify the start and of
each activity, and they kept a written record of the corresponding times
and type of activity. The data labelling was performed manually by one
individual. This process involved plotting the data for each participant,
manually identifying the event markers corresponding to the written
records, and storing the sample-level indices for each activity’s start
and end point. A simple MATLAB script was created to iterate through
the stored indices and to generate a corresponding label vector. The
final vector was of equal length to the sampled eye-movement data,
with each element containing either the name of the activity present
or a ‘0’, indicating no activity at that sample.
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Table 1
Showing the relationship between Activities of Daily Living (ADL), Instrumental ADL
(IADL) and CAVA ADL (CADL) definitions.

Activity ADL IADL CADL CADL activity
Ambulating a a Ambulating
Dressing @ a Dressing

Personal hygiene a a Washing hands

Brushing teeth

Feeding a 2 Eating
Toileting/Continence a
Meal preparation a a Chopping

a Frying
Housecleaning a a Washing dishes
Finances a a Mobile admin
Communication a @ Reading

a Writing

Typing
Transportation a
Medication a

a TV

a Short-form videos

2 Indicates that an activity is present in the definition.

Table 2

Definition of activities included in the CAVA ADL (CADL) dataset.
Activity Definition
Ambulating Walking around the home
Dressing Putting clothes on and taking them off

Washing hands Using soap and water to wash hands

Brushing teeth Using a manual toothbrush

Eating Eating a meal
Chopping Chopping food in preparation for eating
Frying Cooking food in a frying pan

Washing dishes
Mobile admin

Washing dishes in a sink using soap and water
General administration on a mobile phone, such as emails

Reading Reading text from a book or paper
Writing Handwriting

Typing Typing text on a keyboard

TV Watching videos on a screen or television

Short-form videos Watching TikTok/Instagram videos on a mobile phone

Table 3
Quantity of data (in minutes) recorded by each individual for each of the CADL
activities.

Activity Subject 1 Subject 2 Subject 3 Subject 4 Total
Ambulating 25 6 1 0 32
Dressing 2 4 6 0 12
Washing hands 1 4 4 0 9
Brushing teeth 2 5 6 2 15
Eating 5 6 9 0 20
Chopping 9 5 6 0 20
Frying 13 6 6 0 25
Washing dishes 10 11 12 0 33
Mobile admin 9 5 12 21 47
Reading 31 10 9 20 70
Writing 5 11 4 0 20
Typing 6 15 7 43 71
TV 40 16 23 11 90
Short-form videos 9 11 3 0 23
Total 167 101 108 97 473

3. Feature extraction

The data from the CAVA device includes both two-channel eye-
movement and three-channel accelerometer data. As the accelerometer
data was sampled at a lower rate than the eye-movement data, the ac-
celerometer data consisted of fewer samples. To enable the vectors for
each data channel to be stacked into a feature matrix, we interpolated
the accelerometer data using spline fitting, after which the number
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Fig. 2. Example horizontal and vertical eye-movement and accelerometer (x, y, z) data for reading, eating and ambulating activities. Reading is distinctive by the saw-tooth-like
horizontal eye-movement signal, eating by a high frequency vertical eye-movement component, and ambulating by periodic accelerometer signals, particularly in the z channel.

of samples in each channel was equal. No further pre-processing was
performed.

The data from all subjects were divided into non-overlapping seg-
ments of a fixed duration. We chose to use non-overlapping segments
as this reduces the dependency between adjacent segments, since the
same data cannot appear in two segments simultaneously. The majority
of our experiments used a segment duration of three seconds (125 sam-
ples), which was determined through experimentation to be the optimal
value (See Section 5). The class label attributed to each segment was
determined by the mode class label of the samples within it.

In this work, we chose to use frequency domain recognition fea-
tures, by separately applying the Fast Fourier Transform (FFT) to each
vector within each feature matrix. Such features have been widely
used in a variety of signal processing applications including speech
recognition [30] and image processing [31], and have previously been
applied to activity classification tasks [32]. Using this approach has
two main advantages. Firstly, movement activities consist of compli-
cated, repetitive motions, which should be distinctive in the frequency
domain. Secondly, by using the magnitude spectrum, we will reduce
the dimensionality of our data, which may be advantageous given the
relatively small size of our dataset.

The magnitude spectrum was calculated for each sample, for each
data channel, from the complex spectrum resulting from applying
the FFT. We discarded the second half of the frequency bins in the
magnitude spectrum, as they are a reflection of the first half and thus
redundant. The frequencies retained were in the range of 0 Hz to
~21 Hz. In our experiments using three second segments, this equates
to a frequency resolution of 0.33 Hz per bin. After application to
each segment, the resulting feature matrix consisted of five rows (one
for each data channel) and 62 columns (each bin of the magnitude
spectrum). Each row was normalised to a unit vector by dividing each
element by the magnitude of the vector.

4. Neural networks

In this work, we evaluate three custom neural network architec-
tures and also two established networks: Fully Convolutional Networks
(FCNs) [33] and ResNet [34]. Our own networks were developed using
Google’s TensorFlow [35] and Python. For implementations of the FCN
and ResNet architectures, we used the Python code provided by the
authors of [36]. Full details of the neural network architectures we de-
veloped for this work are presented in Fig. 3, including default network
hyperparameters and details of ranges explored during hyperparameter
tuning.

As described in Section 5, most experiments were conducted as
10-fold cross-validation experiments. One experiment used hold-one-
subject-out cross-validation, and a further simply divided the data

into training, validation and testing partitions. Using the KerasTuner
Python library [37] and the Hyperband tuning algorithm, extensive
hyperparameter tuning was carried out for each fold in the cross-
validation experiments, using the validation data to determine the
optimal hyperparameters. In Fig. 3, the ranges of hyperparameters
explored during tuning are provided on the left-hand side of the figure.
The specific set of hyperparameters explored depended on the network
being trained. For example, one architecture did not contain convolu-
tional layers, and hence there was no requirement to tune the number
of convolutional kernels. We did not tune the hyperparameters for the
FCN and ResNet architectures, as these networks are already optimised.
Also, for our first experiment exploring segment duration, we used the
default hyperparameter values shown on the right-hand side of Fig. 3.

Our base network consists of three 1D convolutional layers, fol-
lowed by a dropout layer to reduce overfitting. As our data is time-
series data, for the later layers we explored architectures typically
used for time-series classification problems. Namely, we compared
the effectiveness of Long Short-Term Memory layers (LSTM) [38] and
Gated Recurrent Units (GRU) [39]. These architectures are known to
be able to capture the temporal dependencies in data, in a way which
conventional, fully-connected layers cannot. Therefore, experiments
using our own neural network architecture either make use of LSTM or
GRU layers (illustrated by the pink and green shaded boxes in Fig. 3).
When considering the GRU layers, we also examined whether the initial
convolutional layers added to the network’s discriminatory capabilities
by performing experiments both with and without the initial convolu-
tional layers (Indicated by the blue shaded box in Fig. 3). The output
layers of the network consisted of two fully-connected layers.

Each of our own networks was trained to a maximum of 500
epochs. The Adam optimiser was used and the categorical cross-entropy
loss metric. Early stopping criteria was used to halt training if the
validation loss did not decrease for 50 successive epochs. The weights
retained at the end of training were the ones producing the highest
validation accuracy. All neural networks were trained using CPU and
GPU resources on the University of East Anglia’s High Performance
Computing cluster.

As Table 1 shows, our dataset does not include an equal number
of samples for each class of activity. A class imbalance such as this
can impede the capabilities of a classifier to learn to discriminate
the minority classes. The ideal solution is to balance the classes by
recording more data for the minority classes. Instead, for each network
trained, we used Synthetic Minority Oversampling Technique (SMOTE)
to balance the quantity of samples within each class of the training set.
SMOTE works by synthesising new data points for the minority classes
by sampling the feature space between neighbouring data points [40].
Note we do not balance the test data as it would be misleading to report
the accuracy obtained using synthesised data samples.
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Fig. 3. The right-hand side of the figure shows the neural network architecture implemented in TensorFlow and used in our experiments. Default network hyperparameters are
displayed. The thick, dashed lines indicate two types of architecture used in separate experiments: either a pair of GRU layers or a pair of LSTM layers. Experiments using the
GRU layers are conducted both with and without the use of the earlier convolutional layers, which are shown within a blue box. The left-hand side of the figure shows the

hyperparameter ranges explored during hyperparameter tuning.

5. Experiments

We designed a range of experiments to determine the suitability
of the system developed. All experiments, except the first experiment
to determine the optimal segment duration, were conducted as cross-
validation experiments. 10-fold cross-validation was used for all ex-
periments except for the subject-independent experiment, in which
hold-one-subject-out cross-validation was used. Stratified sampling was
used to generate the 10-fold partitions, and to create all validation
data partitions. For each training fold in these experiments, 10% of the
training data was used as validation data.

Experiments were undertaken in either a multi-subject or subject-
independent training mode. In the multi-subject experiments, the data
were randomly sampled from all available samples, and therefore, it
was possible for data from each subject to appear in each of the
training, validation and testing sets. This experiment was intended
to explore the potential capabilities of our classification system, if
trained using a larger, more diverse dataset. In the subject-independent
experiments, test data was exclusively taken from the specific sub-
ject being tested, with training and validation data drawn from the
remaining subjects. As before, 10% of the training data was used as
validation data. This scenario evaluated how our system might perform
if presented with data from new individuals, reflecting the potential
real-world use of this system.

The first experiment aimed to determine the optimal segment du-
ration for use in subsequent experiments. We trained networks using
segment durations of between 1 and 10 s, corresponding to between
42 and 417 individual samples. Changing the segment duration also
varied the total number segments available for training, validation
and testing (See Table 4). The neural network used in this experiment
contained GRU layers, as described in Section 4. This experiment was
undertaken in a multi-subject mode. In this experiment, 10% of the

total available data was held out for validation purposes, and 10% for
testing, with the optimal duration determined from the results obtained
for the validation data. Our intuition was that the optimal duration
would be long enough to contain signals representative of each activity,
but short enough to maximise the number of data samples available for
training our networks.

Next, we performed further multi-subject classification experiments
designed to compare two common approaches to time-series classi-
fication problems: GRU and LSTM neural network architectures. We
also examined the performance of the GRU network without prior
convolutional layers. Additionally, we evaluated two established neural
network approaches to time-series classification: Fully Convolutional
Networks (FCNs) and ResNet.

The final experiment sought to determine if eye-movement data,
which is not typically used for activity classification, provides improved
discrimination of activities compared to accelerometer data alone. This
was achieved by training three separate neural networks; one using eye-
movement data alone, one using accelerometer data alone, and a final
network using a combination of both eye-movement and accelerometer
data. The results obtained by these three networks are compared to
determine the discriminative power of each data channel.

6. Results

First, we present the results of experiments in which the segment
duration was varied. The plot in Fig. 4 shows that as the segment dura-
tion increased from one second to three seconds, the mean classification
accuracy also increased from 70.0% to 76.1%. Beyond this value, with
segment durations of between four and ten seconds, the classification
accuracy fluctuated between 69.7% and 76.6%. Three seconds was
selected as the optimal segment duration, as this value produced a
high classification accuracy whilst also providing a greater number of
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Table 4

Quantity of segments in each data partition for given segment durations.
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Table 5

Classification accuracies (%) for 10-fold cross-validation experiments. The first five columns relate to experiments using the different neural
network architectures described in Section 4. The last two columns relate to experiments using the GRU network architecture with different
feature sets: either accelerometer features or eye-movement features alone.

Fold LSTM GRU w/o Conv. GRU FCN ResNet Accel. Feats. Only Eye Feats. Only
1 38.87 41.24 42.68 43.61 46.70 47.42 31.55
2 60.10 57.63 63.40 62.27 69.69 58.45 44.85
3 66.08 61.34 67.11 56.91 64.02 52.16 48.87
4 70.52 64.64 61.34 60.93 69.59 68.25 46.29
5 58.04 59.07 57.01 49.79 56.70 53.09 47.84
6 67.42 60.10 66.39 56.70 68.04 54.23 49.38
7 74.33 66.91 75.26 65.05 71.96 61.34 57.22
8 68.56 65.36 74.33 58.76 68.56 57.84 64.33
9 64.43 60.93 65.05 51.34 63.40 51.96 52.58
10 63.20 48.66 67.94 48.04 61.96 47.63 53.71
u (%) 63.15 58.59 64.05 55.34 64.06 55.24 49.66
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Fig. 4. Plot showing the mean accuracies obtained using different segment durations.
Error bars indicate standard error of the mean for five repetitions of each experiment.
The only differences between these repeats are the random weights and biases that
each network is initialised with at the start of training.

segments for training, validation and testing purposes (Compare the
number of three second segments with ten second segments in Table 4).

Results for subsequent experiments are shown in Table 5 and Fig. 5.
To determine the statistical significance of each result, we first con-
ducted a Kolmogorov-Smirnov test for normality on each set of ten
results. For every set of experiments, we accepted the null hypothesis
that the results were normally distributed, at a = 0.05. Following this,
for each pair of result sets we compared, we conducted a one-tailed,
paired samples t-test, using a = 0.05.

The mean classification accuracy obtained using the network includ-
ing LSTM layers was 63.15%. The network using GRU layers achieved

a higher accuracy of 64.05%, although this difference was not statisti-
cally significant. This set of experiments yielded the highest individual
accuracy for any fold tested, of 75.26% for fold #7. When the earlier
convolutional layers were removed from the GRU network, the mean
accuracy decreased to 58.59%, and this difference was statistically sig-
nificant. We also evaluated two established network architectures, FCN
and ResNet. FCN was the worst performing network when using both
accelerometer and eye-movement features, achieving a mean accuracy
of 55.34% across all ten folds. ResNet gave a mean accuracy of 64.06%,
which the highest mean accuracy achieved across all experiments, and
which was marginally higher than that obtained using our own network
containing GRU layers (64.06% compared to 64.05%). This difference
was not statistically significant. Thus, the GRU and ResNet networks
were the highest-performing in these experiments. Given the similarity
in classification performance between them and that the GRU network
out-performed ResNet for 6 out of 10 folds, we opted to use the GRU
architecture in all subsequent experiments.

The confusion matrix shown in Fig. 6 relates to the experimental
repeat producing the highest accuracy, fold #7 using the GRU archi-
tecture. The matrix shows a high level of classification accuracy is
obtained for many of the activity classes, as indicated by the high
values along the diagonal of the matrix. For example, activities such
as writing, ambulating, and eating are discriminated with high accuracy.
However, some patterns of confusion are observed, such as for reading
and watching of short-form videos, which are confused with mobile
admin. Also typing, which is confused with reading and watching TV,
and washing dishes, which is confused with chopping, washing hands, and
reading. We will discuss these results in Section 7.

In Table 6 and Fig. 7, we present the results of our subject-
independent experiments. The results reveal a significant drop in
classification accuracy when the test subject is not included in the
training set. The best performing classifier was for subject number
three, which achieved a mean accuracy of 30.43%, while the lowest
mean accuracy was 17.71%, obtained for subject number four. The
results for each of the five repeat experiments are shown in Fig. 7,
and these reveal a narrow spread of values, indicating fairly consistent
performance between training runs.
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Fig. 6. Confusion matrix for the classification of test samples for fold #7 of experiments
using GRU layers (See Table 5 and Fig. 5).

Table 6

Classification accuracies (%) for subject independent experiments, in which a separate
network is trained for each of the four test subjects using data from the remaining
three subjects. These experiments were repeated five times, with the only differences
being the random weights and biases that each network were initialised with at the
start of training.

Subject ID 1 2 3 4
Repeat 1 25.45 19.79 28.35 18.08
Repeat 2 26.29 24.56 33.12 16.68
Repeat 3 24.65 22.82 31.54 18.03
Repeat 4 26.26 25.68 30.71 17.77
Repeat 5 22.36 26.49 28.45 17.98
u (%) 25.00 23.87 30.43 17.71
o (%) 1.62 2.66 2.05 0.58
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Fig. 7. A plot showing the classification accuracy for subject-independent experiments,
in which a separate neural network was trained for each test subject using only data
from the other three subjects.

The last two columns in Table 5 relate to experiments involving
neural networks trained using recognition features derived from ac-
celerometer data alone or from eye-movement data alone. The use
of eye-movement data alone produced a mean classification accuracy
of 49.66%, while accelerometer data alone gave a mean accuracy of
55.24%. Notably, both of these results are poorer than that obtained
using a combination of these data sources, at 64.05%.

Lastly, the confusion matrix in Fig. 8 shows the classification differ-
ences between the repeat experiment using accelerometer data alone
compared to the best performing network using a combination of both
data channels (As shown in Fig. 6). The positive values across the
diagonal indicate an increase in correct classifications for a number
of activities, while the negative values in the off diagonals reveal a
decrease in confusions. These results show that the addition of eye-
movement data improved the network’s discrimination of activities
including eating, mobile admin, reading, TV, watching short-form videos
and typing, i.e. mostly activities in which eye-movement is the dominant
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Fig. 8. Confusion matrix showing the difference between the best performing network
trained using combined eye-movement and accelerometer derived recognition features
and the same network architecture trained using accelerometer data alone. Positive
values indicate an increase for a given confusion or, along the diagonal, for the number
of correct classifications. Negative values indicate a decrease in classifications. Values
of zero indicate no change.

movement. The addition of eye-movement did lead to an increase in
confusions between washing dishes and washing hands.

7. Discussion

After the optimal segment duration had been confirmed in Section 6,
the first set of results compared the accuracies obtained by two different
but commonly used architectures for time-series classification tasks:
LSTM and GRU layers. The results confirmed that both approaches
could be used to discriminate the 14 activities considered here and
with a good degree of accuracy. Confirming results from other unre-
lated studies, the networks using GRU layers outperformed the more
commonly used LSTM approaches, although the difference was not sta-
tistically significant [41,42]. This result also accords with the authors’
own experiences with other time-series data classification problems,
and is perhaps explained by the reduced complexity of GRU layers
being better suited to the relatively small dataset used in this work.
The inclusion of earlier 1D convolutional layers is shown to contribute
significantly to the discriminative power of these networks. Our own
network configurations are shown to give comparable results to those
obtained using ResNet, and better results than using FCNs.

Some of the confusions observed for the repeat of the GRU experi-
ment giving the highest accuracy (Fig. 6) can be explained by the fact
that the target and confused activities share similar motions of the body
or eyes. For example, the most confused activity for the washing dishes
class, washing hands, is also rhythmic in nature, and would require
a very similar physical stance to undertake. The confusions observed
for typing were activities which might conceivably overlap with the
target class. For example, typing might involve simultaneous reading of
typed text, and there are also similarities to watching TV, with respect
to the saccadic eye-movements required to observe different parts of
a display. Similarly, watching of short-form videos was confused with
mobile admin, reading and typing, evidently all activities involved in the
use of a mobile device.

Our subject-independent classification experiments revealed a sig-
nificant drop in classification accuracy when the test subjects were
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not present in the data used to train the network. This result suggests
that the activity data captured is highly subject-dependent, perhaps
because the activities were performed inconsistently, or perhaps due to
strong physiological differences between subjects. This finding agrees
with previously published results [28]. To overcome this and to achieve
higher levels of accuracy for this task, a larger and more diverse dataset
of activity data may need to be collected. Alternatively, it may be
possible to adapt a network to new subjects by fine-tuning network
weights using a small quantity of labelled data. Interestingly, the data
for subject 4 omitted a number of activities collected by the other
subjects ( Table 3), and this was reflected in this subject producing the
lowest mean classification accuracy in these tests. This result confirms
the data shown in Fig. 6, that some activities are harder than others to
distinguish, suggesting that some of the easier activities were omitted
by that individual.

The results of training neural networks using eye-movement and
accelerometer data independently showed that accelerometer data by
itself gave improved classification accuracy over eye-movement data
alone. However, the combination of both of these data channels im-
proved the mean accuracy by 8.81% in absolute terms. When analysing
the classification differences between the network trained using ac-
celerometer data alone and that using a combination of both sources
(Fig. 8), we were able to determine the activities for which eye-
movements added additional discriminative power. These activities,
such as reading, typing and watching short-form videos and TV predomi-
nantly require the use of the eyes, and therefore it is not surprising that
the inclusion of eye-movements aided their discrimination. This result
confirms that uniquely discriminative information is provided by the
addition of eye-movement data. Capturing both channels of informa-
tion, as made possible by the CAVA device, could enable clinicians to
obtain a more detailed timeline of an individual’s activities, informing
their judgement on the capability for independent living, especially for
activities that do not involve significant movement of the body.

8. Conclusion

The results presented in this article have demonstrated that eye-
movement and accelerometer data, as captured by the CAVA device,
can be used to discriminate a broad range of human movement ac-
tivities. Conventional time-series classification approaches were shown
to work well for this task, and the inclusion of eye-movement data
significantly improved the discrimination of activities over the use of
accelerometer data alone. This result makes intuitive sense, as activities
such as reading and typing not only produce very distinctive excursions
of the eye, but do not necessitate accompanying head movements,
whereas other activities, such as ambulating, are more strongly asso-
ciated with body movements, and eye-movements add little to aid
discrimination. This important result highlights the potential benefits
of using the CAVA system for activity detection compared to more
conventional approaches, which typically rely on movement data alone.

A limitation of this study is the poor subject-independent test re-
sults, which confirms the results of other studies. There are two possible
ways to overcome this limitation. Firstly, by the inclusion of a much
larger dataset of diverse individuals undertaking longer periods of
activities. Although beyond the scope of this pilot study, this is one
intended avenue of our future work. A larger dataset may provide a bet-
ter coverage of the feature space, allowing our networks to generalise
more effectively to unseen individuals. Secondly, adaptation techniques
(either semi-supervised or unsupervised) could be used, in which a
short period of data from a new subject is used to fine-tune a more
general model. Once we have collected a much larger dataset of data
from many individuals, we will also be able to explore deeper and more
complex neural network architectures and more recent neural network
advancements, such as attention mechanisms.

Ultimately, we hope to expand this work to enable the automatic
generation of records of daily living activities. The identification of
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specific activities could be used to build a timeline of events for a given
day. This would enable clinicians to review a patient’s function with
increased context, allowing more complex, higher-level observations
such as: How often is the patient eating? How frequently does the
patient brush their teeth, at what times, and for how long? Such an
automatically generated record could be used to replace conventional
but subjective and inaccurate paper-based approaches. Beyond, this
work could also aid in the generation of objective measures for disease
staging, grading, and management, and for the monitoring of treatment
outcomes.
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