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Abstract 

Agricultural production is highly vulnerable to climate change. Warming global temperatures, 

increased frequency of extreme weather events, such as flash flooding, and shifts in the ranges 

of crop pathogens highlight current agroclimate challenges faced in the 21st century. In the mid-

1990s, the UK observed plateaus in yields of staple crops including wheat (Triticum aestivum L.), 

and in recent years, strong yield impacts of high interannual weather variability have been 

observed nationally. To meet the growing demand for food and increase domestic production, 

there is an urgent need to increase the climate resilience of key cereal crops and the broader 

agri-food sector.  

This thesis explores how crop breeding and changes in weather and climate variables important 

to agriculture, i.e. the agroclimate, have contributed to cereal yield variability in the UK. In the 

first State of the UK Agroclimate, trends and variability in national yields and key agroclimate 

metrics are quantified for 1981-2020 to allow growers and farmers to make climate-informed 

decisions on crop and variety choices. Incorporating historical time-series records of these 

agroclimate metrics into statistical models with variety trials data establishes their relative 

importance in determining winter wheat yields and enables variety sensitivity to each metric to 

be investigated. In doing so, methods of identifying climate-resilient crop varieties are presented. 

The contribution of plant breeding to national cereal yields is quantified through the calculation 

of genetic gain. Given the importance of this metric for the evaluation of success of plant breeding 

programmes and for funding allocation, the sensitivity and robustness of this metric is explored. 

Changes in the UK agroclimate provide both risks and opportunities for cereal growers. The 

increase in solar radiation during grain fill observed in the South-East of the UK was shown to be 

beneficial for winter wheat yields, whilst increasing interannual yield variability has contributed 

to overall stagnation in yields in the last decade. Long-term warming trends have contributed to 

cereal drilling dates getting earlier, extending the growing season. However, in years of high 

autumn rainfall, delays in planting, a shortening of the growing season and lower yields were 

observed. Comparing national and variety trial yield trends shows that crop breeding is 

responsible for over 95% of yield increases over the last 30 years, however, to further optimise 

yield increases there is a need to grow varieties that perform best based on local climatic 

conditions. Use of case study datasets extracted from the variety trials data showed that genetic 

gain is sensitive to a number of factors, including the choice and number of long-term “check” 

varieties included in a variety trials programme. Recommendations are made on how best to 

calculate the metric.  
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1 The role of breeding and climate in UK cereal production, and 

the need to combine the two in analysis 

Challenges faced by agriculture in the 21st century are dominated by climate change and 

increasingly extreme weather events (Parolini, 2022). This has contributed to changes in the 

distributions of viable cropping areas and ranges of pests and diseases. Combined with an 

increasing global population, the goal of eliminating world hunger seems more and more 

unobtainable (FAO et al., 2021). As one of the main contributors to climate change, the 

agricultural industry needs to decrease resource usage, greenhouse gas emissions and 

biodiversity destruction whilst increasing productivity. Despite the continued contribution of 

plant breeding to yield increases (Peltonen-Sainio, Jauhiainen and Laurila, 2009; Mackay et al., 

2011; Noleppa and Cartsburg, 2021), in recent decades agricultural productivity has been limited 

by stagnating yields in vital crops.  

Crop yield is intrinsically linked with climate variability (Ray et al., 2015), along with management 

decisions and agronomic changes. Recent global events have demonstrated how vulnerable crop 

production is to external shocks. The COVID pandemic disrupted vital supply chains, such as 

through labour shortages (Hobbs, 2020), and the Russian invasion of Ukraine has highlighted the 

risks associated with high dependency on one or two countries for specific foods, in this case 

wheat (Triticum aestivum L.). There is a need to strengthen the resilience of domestic supply 

chains and food production as well as diversify international food supply to enhance the UK’s food 

security and overall national resilience (Berry and Brown, 2021; DEFRA, 2022).  

In recent years, the UK has seen significant yield fluctuations in staple food crops, including 

cereals (DEFRA, 2021a). This creates high instability in income for farmers and in prices for 

consumers. Identifying climatic causes of production variability is important for future-proofing 

UK agriculture as the changes in climate affect the likelihood of challenging weather events (Arnell 

and Freeman, 2021). Several studies have identified the risks associated with future climate 

change for UK crop production (Semenov, 2009; Cho et al., 2012; Arnell and Freeman, 2021) but 

very few have looked at how observed climate has affected historical yields, and the focus of 

these has largely been on one region (Addy et al., 2020, 2021a) or using national yield and climate 

data which can mask significant local weather and climate variability (Knight et al., 2012). Given 

the array of weather and climate risks to crops yields, there is an urgent need to utilise the 

detailed climate information now available to identify the best suited existing crops and varieties 

to grow locally, as well as to help develop climate resilient varieties. 
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This thesis investigates the genetic and environmental causes of recent variability and trends in 

UK cereal yields. Here, yield is defined as grain yield at 15% moisture content and measured in 

tonnes per hectare. The thesis explores how agroclimate information can be better incorporated 

into breeding programmes and made more accessible to growers. This analysis demonstrates the 

drivers of recent barley (Hordeum vulgare L.) and wheat yield variability and identifies wheat 

varieties with greatest sensitivity to the main climate drivers of yield.  Whilst it’s not possible to 

totally “weatherproof” agriculture as the title suggests, this thesis seeks to provide methods for 

improving the climate resilience of UK crops in the face of climate change. 

This chapter commences with a discussion on the challenges faced in achieving global food 

security and addresses the genetic, agronomic, and climatic causes of observed yield plateaus. 

Section 1.2 explores the importance of agriculture and crop breeding in the UK, how the UK’s  

growing climate is changing and the current literature on crop-climate relationships. Section 1.3 

identifies the opportunities to use climate data to support crop breeding and agriculture in the 

changing climate.  

1.1 Threats and opportunities for agriculture in changing climates 

1.1.1 The challenges of achieving global food security 

The term “food security” first appeared in the mid-1970s at the 1974 World Food Conference 

(FAO, 2006), and has evolved from focussing on food availability and price stability to incorporate 

four key dimensions: availability, access, utilization and stability. The challenge to achieve global 

food security and meet the Sustainable Development Goal of Zero Hunger by 2030 is multi-

faceted and has become increasingly difficult in recent years. The decline in world hunger seen 

since 2005 came to an end in 2014 (FAO et al., 2021). This is due, in part, to population growth,  

constraints on land availability for agriculture, an observed increase in weather variability and 

extreme events, and greater climatic uncertainty due to climate change (Cassman et al., 2011; 

Mandryk et al., 2015; Pörtner et al., 2022), with the COVID-19 pandemic contributing to recently 

rising levels of malnutrition (FAO et al., 2021). This has been compounded by the 2022 Russian 

invasion of Ukraine; together these two countries produce nearly 30% of the world’s traded 

wheat and so the military conflict has resulted in great uncertainty surrounding the export of this 

grain (Behnassi and El Haiba, 2022). This has driven up food prices and has highlighted the fragility 

of globalised food systems and risks associated with high dependency on one or two countries 

for specific foods. 

Observed impacts of climate change on agricultural productivity, documented in over 150 articles 

since the last Intergovernmental Panel on Climate Change (IPCC) Assessment Report in 2014, 
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indicates that climate change has had an overall negative impact of productivity thus far (IPCC, 

2022). Under current pledges for climate change mitigation, an anticipated 3oC of warming would 

result in more than 50% of agricultural area in China, Brazil, Egypt, Ethiopia, Ghana and India 

projected to be exposed to severe droughts of more than one year within a 30-year period (Price 

et al., 2022). GDP and welfare in all of these countries, except for China, are projected to be 

negatively impacted by declining crop yields due to this level of warming (Wang et al., 2021). 

Feeding the projected population of 9.7 billion in 2050 (Roser, 2013) with nutritious food and 

reduced environmental impact is an incredibly daunting task. Modelling studies have shown it is 

in theory possible (KC et al., 2018; Springmann et al., 2018), but would require drastic dietary 

changes (Vermeulen et al., 2020), which can take significant time. To prevent widespread 

starvation and loss of livelihoods, there is a need to understand how agriculture on a global scale 

can adapt to changing climates as quickly and efficiently as possible.  

1.1.2 Understanding recent yield trends 

A further challenge for increasing food production to meet global demand has been the slow yield 

increase observed in several staple crops in many parts of the world. The intensification and 

mechanisation of agriculture, along with genetic improvements, saw major crop yield increases 

in the 1960s, 1970s and 1980s. The green revolution resulted in a unique period in human history 

when food supply consistently outstripped demand (Cassman et al., 2011). While world food 

production has continued to increase, and yield gains have continued for some crops and 

countries, a decline in the rate of yield increase, often referred to as a ‘yield plateau’, arose at the 

turn of the new millennium in several crops and regions (Hafner, 2003; Cassman et al., 2011; 

Grassini et al., 2013). These include wheat in northwest Europe, Australia and India, maize (Zea 

mays L.) in China and rice (Oryza sativa L.) in China, Indonesia and India (Brisson et al., 2010; 

Cassman et al., 2011; Hochman et al., 2017; Espe et al., 2018). Globally, during 1990-2010 there 

was strong evidence for widespread deceleration in the rate of increase in average yields for 31% 

of total global rice, wheat and maize production (Grassini et al., 2013). There is limited scope to 

increase crop-growing areas, however closing the yield gap between the potential yield of a crop 

variety at a specific location, and the average actual yield achieved by farmers, could be a way of 

increasing crop production (Senapati and Semenov, 2019). Possible causes of yield plateaus and 

yield gaps can be loosely classified as genetic, agronomic or climatic (Brisson et al., 2010). Whilst 

each crop and location are unique, common causes for a yield plateau may apply. 
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Genetic factors 

A handful of studies have indicated that there may be a limit to genetic improvement which 

breeders have begun to reach, and as a consequence genetic yield improvement has not 

increased (Calderini and Slafer, 1998; Espe et al., 2018). However, genetic improvement through 

plant breeding has been widely shown to have contributed to continued increases in yield 

potential (Peltonen-Sainio, Jauhiainen and Hakala, 2009; Brisson et al., 2010; Mackay et al., 2011). 

For example, Brisson et al. (2010) showed that despite a yield plateau in wheat in France, yield 

potential, as defined as the improvement in variety trial yields, was still increasing in the order of 

0.1 t/ha/yr, indicating genetics has not contributed to observed yield stagnations. Furthermore, 

the emerging field of phenomics, in which whole-plant phenotypes (traits) are broken down into 

separate ones that are controlled by a smaller number of genes, is enabling targeted breeding 

focused on enhancing fundamental plant processes such as photosynthesis, which is expected to 

lead to further yield increases (Flood et al., 2011; van Bezouw et al., 2019; Simpson et al., 2022). 

One hypothesis addressing the observed yield plateaus, is that average national yields plateau 

when they reach 70-80% of the genetic yield potential ceiling (Lobell et al., 2009). The gap 

between average yields achieved by farmers and yield potential depends on the extent to which 

crop and soil management practices remove abiotic and biotic stresses, as well as the yielding 

capability of available crop varieties (Cassman, 1999; Grassini et al., 2013). Yield potential can be 

seen as a biophysical limit to the attainable yield at a given location (Knight et al., 2012; Grassini 

et al., 2013). It is neither cost-effective nor physically possible to achieve near perfect 

management on an industrial scale: as farmers’ yields approach the yield potential ceiling, 

incremental yield increases come from finer tuning of different management techniques, the 

costs of which can offset any monetary gain from small yield increases. Therefore, it should be 

expected that average yields stagnate when they approach a high fraction of the yield potential. 

For example, Ray et al. (2012) suggest wheat yields may have stagnated in Bangladesh and parts 

of India because current cultivars are approaching their yield potentials. The estimated global 

genetic yield gap, defined as the gap between the genetic yield potential of an optimized local 

wheat cultivar and the potential yield of the current local cultivar, is 51% (Senapati et al., 2022).   

On a local scale, this highlights the importance of regular cultivar replacement with new, better 

adapted and higher yielding varieties. At a global scale, substantial increases in food grain 

production will need to come from yield increases in countries in which the yield gap between 

obtained yield and yield potential is greatest, which will be a challenge given the low development 

levels of these countries (Grassini et al., 2013).  
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Agronomic factors 

There have been significant changes in agronomy since the 1960s, including changes in cropping 

regimes, fertiliser application and the introduction of stricter environmental policies that have 

limited the protection of crops from pests and diseases. For example, since 2000, the UK has seen 

a reduction in inputs of fertilizers (1.5%/year), plant protection product (1.2%/year), labour 

(0.8%/year) and capital (0.3%/year) (Noleppa and Cartsburg, 2021). 

Changes in crop rotations and stricter environmental policies have also impacted cereal yields. To 

increase food supply, intensive agriculture has used increasing quantities of nitrogen fertilizer (Gu 

et al., 2023), however more than half of the cropland nitrogen inputs are lost to the air and water. 

This has led to an array of negative environmental impacts, including air and soil pollution, whilst 

also contributing to climate change through the potent greenhouse gas nitrous oxide (Erisman et 

al., 2013; Steffen et al., 2015). As a consequence, a rise in environmental regulations for restricted 

nitrogen use, such as in Nitrate Vulnerable Zones, has resulted in a plateau in nitrogen application 

in the UK (Knight et al., 2012). Combined with an observed decrease in wheat crops following 

nitrogen-fixing legumes, this has contributed to a 24% decrease in soil nitrogen from 2000 to 

2019 (DEFRA, 2021a), and a reduction in UK wheat yields (Knight et al., 2012). The influence of 

more recent policy changes on yields, such as the ban on outdoor use of the slug pesticide 

metaldehyde in April 2022 (DEFRA et al., 2020), is yet to be quantified, but could well contribute 

to further stagnation. 

Climate factors 

Climate is widely recognised as being responsible for interannual variability in yield (Brisson et al., 

2010; Ray et al., 2015), however the effect on yield stagnation is less well understood, partly 

because interannual variability can mask the trend. The IPCC Sixth Assessment Report indicates 

wheat, soybean and maize production have been negatively impacted on by recent climate trends 

(IPCC, 2022). In Asia and Australia, yields of wheat and rice may have stagnated due to climate-

change related heat stress and increased night time temperatures (Ray et al., 2012; Sadok and 

Jagadish, 2020): from 1979-2003, rice grain yield in the Philippines declined by 10% for each 1oC 

increase in growing season (the period from planting to harvest) minimum temperature (Peng et 

al., 2004). In Europe, the effects of climate change may have partly counteracted the genetic 

progress made in wheat. The depressive effect of climate is greatest in areas of intensive cereal 

growing (Brisson et al., 2010). In Finland, an increase in mean temperatures reduced seed yield 

of newer rapeseed cultivars (Peltonen-Sainio et al., 2007). There is limited capacity of a single 
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crop genotype to perform well under climatic variability, thus a set of cultivars with diverse 

responses to weather conditions is required in order to spread risk (Kahiluoto et al., 2019). 

Competing objectives 

Whilst in the 1970s and 1980s, farmers’ main objective was often to maximise crop yield, in recent 

years farmers have had many other competing objectives, which means that high yields has not 

always been the end goal. Wheat and barley can be grown for different end uses, including bread-

making, biscuit-making, malt for brewing and for feed (AHDB, 2023), with each market a trade-

off in terms of quantity i.e. yield, and quality. Increased volatility in commodity prices in the world 

market and the lack of control over market prices for grain (Läänemets et al., 2011) can mean 

that a grower may seek lower risk, such as maximise gross margins for any one field but investing 

less in other fields, resulting in lower average yields. Changes in government policy and the 

introduction of more incentives for environmental protection (Knight et al., 2012) have 

encouraged a reduction in inputs, such as fertilisers, again having yield trade-offs.   

1.1.3 Methods of overcoming yield plateaus 
Overcoming yield plateaus and increasing production with reduced inputs and environmental 

impact is required to achieve food security. Production is a function of both yield and area, thus 

production can be increased by improving yields and/or increasing cultivation area (Bradshaw, 

2017). In the UK, 71% of land is dedicated to agriculture, such that there is little suitable additional 

land to further increase food production in this way (DEFRA, 2018; Downing and Coe, 2018). 

Rather, the most likely avenue for increasing self-sufficiency and reducing the yield gap is by 

increasing land productivity (AHDB Cereals & Oilseeds, 2018b), which is achieved by the 

optimisation of many factors, including using well-adapted cultivars, and good crop and soil 

management practices. 

1.1.4 The role of crop breeding in increasing yields 

Breeding has made a major contribution to increasing global agricultural productivity. In the UK, 

at least 88% of cereal and oilseed rape crop yield improvement from 1982-2007 was attributed 

to genetic improvement, as opposed to agronomic changes (Mackay et al., 2011). However, there 

is concern that major breeding efforts in the last century have caused a reduction in crop genetic 

diversity. This narrowing of the crop gene pool leaves crops at greater risk to strains of diseases. 

For example, there is a risk of the resurgence of stem rust (Puccinia graminis) in the UK, with the 

potential for widespread wheat and barley yield losses due to low genetic diversity and a lack of 

resistance to new strains (Lewis et al., 2018). There is conflicting evidence for changes in diversity 

level, even for the same crop and same regions (Roussel et al., 2004; Huang et al., 2007). A recent 
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assessment of the diversity of wheat responses to weather events in nine different European 

countries shows a decline in response diversity of wheat in farmer’s fields (Kahiluoto et al., 2019) 

Breeding cultivars better adapted to the changing climatic conditions will be pivotal to 

overcoming yield plateaus and closing yield gaps. In the most recent Assessment Report of the 

Intergovernmental Panel on Climate Change, cultivar improvement was identified as one of the 

effective adaptation options for enhancing food security (Pörtner et al., 2022). Current breeding 

programmes and cultivar selections don’t prepare for climatic uncertainty and variability: for 

example, there is a lack of positive responses of European wheat to abundant on-farm 

precipitation, yet in variety trials the negative yield response is less (Bradshaw, 2017). This 

suggests there is an unexplored potential to draw upon tested cultivars. For UK oilseed rape, 

better uptake of new varieties helped close the yield gap and overcome the yield plateau of 1994-

2004  (Knight et al., 2012). An in silico experiment showed that even in high productive countries, 

designing crop ideotypes, or virtual idealized crops expected to produce greater grain quality and 

quantity, can close the gap further and increase land productivity by providing key traits for crop 

improvement (Senapati and Semenov, 2019).  

In many developing countries, in particular where extreme weather events such as droughts are 

common, locally adapted, domesticated varieties, known as landraces, are the backbone of 

agricultural production. These traditional varieties of plants are well-adapted and can be 

genetically diverse (Azeez et al., 2018). They demonstrate a range of grain yield responses to 

these conditions, with all landraces producing some yield, whereas some modern cultivars fail. 

Research into barley has shown that landraces yield more than modern cultivars in low-input and 

stress conditions (Ceccarelli et al., 2007), whilst integrating  material from landraces  into spring 

wheat has been shown to increase yield under heat stress compared to elite lines, whilst leading 

to no significant yield penalty under favourable conditions (Molero et al., 2022). Landraces and 

wild relatives are the best source of resistance to abiotic and biotic stresses. Thus, replacing 

numerous landraces and traditional cultivars with few modern varieties is a huge threat to global 

food security (Upadhyaya et al., 2013; Bradshaw, 2017). There is a need to assess the existing 

collection of landraces for maintaining system resilience, and overcoming current yield stagnation 

and future climatic challenges (Mäkinen et al., 2015). 

Traditional breeding techniques are a form of artificial selection and thus far have been largely 

limited to naturally occurring varieties. However, in recent decades the direct manipulation of 

genes through DNA transfer has become possible, allowing new genes from one species to be 

incorporated into a completely unrelated species through genetic engineering, creating 
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genetically modified (GM) crops (Phillips, 2008). The capacity for genetic modification to combine 

desirable traits has already been demonstrated for several crops, including the transfer of a 

sunflower gene that encodes a stress-responsive transcription factor into soya bean, increasing 

its drought stress-tolerance (Cabello and Chan, 2012; Cabello et al., 2012). In 2015, GM crops 

were already being grown on over 10% of the world’s arable land (The Royal Society, 2016). There 

is great potential for GM crops to alleviate some future yield losses due to climatic changes, 

however widespread opposition delayed uptake in Europe and there has been a wide gap 

between the rapid acceptance of cultivating GM crops by farmers, and the often-limited 

acceptance by consumers (Falloon et al., 2015; Lucht, 2015). More recently, EU legislation has 

changed giving individual governments more power to decide whether to grow GM crops. 

Furthermore, gene editing, in which a small genetic change is induced often mimicking what could 

be produced through breeding, is becoming more widely accepted and in the UK, the new Genetic 

Technology (Precision Breeding) Bill is making its way through Parliament and seeks to make 

provision about the growth and sale of such plants (Vaughan, 2022). 

1.1.5 The influence of farm management on crop production 

To close the yield gap between theoretical yield potential and actual attained yield, optimal crop 

and soil management is required to alleviate more abiotic and biotic stresses that can limit crop 

growth and yield (Cassman et al., 2003, 2011). There is considerable opportunity for the yield gap 

between the current, local climatic yield potential and actual yield to be closed through suitable 

management practices (Licker et al., 2010; Liu et al., 2022). Chen et al. (2014) showed that 

implementing soil-crop system management practices that account for crop ecophysiology and 

soil biogeochemistry can substantially increase average yields for rice, wheat and maize without 

needing increases in nitrogen fertilizer. Furthermore, simulation of the combined effect of 

optimal farm management, and the breeding and growing of well-adapted varieties, suggests that 

crop-level management adaptations could increase global yields in a 2oC warmer world by an 

average of 7-15% relative to no-adaptation scenarios (Challinor et al., 2014).  

Precision agriculture offers additional methods of achieving more production with more 

sustainable agronomy, through the automation and precision application enabled through 

technology (Bhakta et al., 2019). This application of technology, however, may not be feasible for 

poorer farmers in developing countries.  

Ultimately, there is a need for an integrated approach to achieving sustainable food security in a 

changing climate (Lipper et al., 2014). Practices need to be adapted to fit local contexts and 

actions both on-farm and beyond the farm. Incorporating weather and climate information into 
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all aspects of farm management is an important step for decreasing the yield gap. In the North 

China Plain, varietal changes in both wheat and maize have helped stabilise the length of the pre-

flowering period and extend the length of the grain-filling period (Liu et al., 2010). Using climate 

information to support crop breeding and growers’ decisions in this way has great potential to 

increase yields (Falloon et al., 2015).  

1.1.6 The carbon dioxide fertilisation effect 

The current atmospheric carbon dioxide concentrations (417 mm) are projected to double by the 

end of the century, under the high emissions Representative Concentration Pathway (RCP) 8.5 

(Stocker et al., 2013). Elevated CO2 has been shown to increase biomass and yields in C3 plants, 

such as wheat, (Jablonski et al., 2002; Högy et al., 2009; O’Leary et al., 2015; Fitzgerald et al., 

2016), but decrease protein content and overall nutritional value (Taub et al., 2008; Myers et al., 

2014; Blandino et al., 2020; Carreras Navarro et al., 2020). Crop modelling studies using future 

climate projections, have found that the CO2 fertilisation effect often outweighs the negative 

effects associate with climate change, such as increase in drought and heat stress (Cho et al., 

2012; Putelat et al., 2021; Leung et al., 2022). However, as has been observed in the UK, yield 

stagnation in cereal crops has occurred, despite the increase in carbon dioxide. This indicates that 

on real farms, these projected yield benefits are not always seen. The overall strength of the CO2 

fertilisation effect on future crop growth in the UK, and globally, contributes significant 

uncertainty to future crop production estimates and requires further research (Ritchie et al., 

2019). 

1.2 The influence of a changing climate on UK agriculture 

In 2020, agriculture covered 71% of land in the UK and 19% of land was used for arable crops 

(DEFRA, 2021a). Arable farming is typically focussed in the drier east whilst livestock farming is 

more common in the west (DEFRA, 2020). Wheat and barley are the predominant cereal crops, 

covering 1.4 million ha each in 2020. By comparison, the next most widely grown crop was oilseed 

rape, covering 0.38 million ha the same year (DEFRA, 2021a). Agriculture in 2020 contributed 

0.49% to the national economy and its share of employment was 1.44% (DEFRA, 2021a), whilst 

the broader agri-food sector accounts for around 13% of the UK total workforce (Downing and 

Coe, 2018). The agri-food sector is therefore a vital part of the UK economy and livelihoods. 

The UK has faced uncertainty in recent years due to changes resulting from Brexit (Lang et al., 

2018). These include the transition from the European Common Agricultural Policy (CAP), which 

previously contributed to the majority of farm business income for many farms (Downing and 

Coe, 2018; Environment Food and Rural Affairs Committee, 2018) to the UK’s Agricultural Act, 
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and the influence leaving the EU has had on trade. Prior to Brexit, the UK sourced 30% of its food 

from the EU, along with a further 11% via deals negotiated by the EU with other countries. Whilst 

leaving the EU has created many challenges, it has also provided the opportunity for the UK to 

import foods from elsewhere and encourages increased domestic food production to improve 

the declining self-sufficiency, which is currently about 60% (Lang et al., 2018). In the most recent 

UK Food Security Report (DEFRA, 2021b), the biggest medium to long-term risk to domestic 

production was identified as climate change and other environmental pressures, such as soil 

degradation. The current cost of soil degradation, erosion and compaction on food production is 

estimated to be £1.2 billion each year (DEFRA, 2021b). Hence, the challenge of increasing 

domestic food production is not trivial. 

1.2.1 The importance of crop breeding 

Crop breeding is a means of increasing yields and overall production, as well as adapting to the 

changing climate. Crop improvement through breeding relies on producing genetic combinations 

that result in cultivars with novel phenotypes that can differ substantially to parental varieties 

(Mackay et al. 2019). These cultivars can be better adapted to local growing environments and 

demonstrate improved biotic and abiotic stress tolerance (Lüttringhaus et al., 2020; Senapati and 

Semenov, 2020). Since 2000, without breeding-induced crop improvement, the EU would have 

become a net importer of all major arable crops in 2020 (Noleppa and Cartsburg, 2021). In Wales, 

without further genetic improvement programmes (Bell et al., 2019), suitable area for most crop 

species is projected to decrease due to increased drought risk. 

In the UK, the typical breeding cycle for winter wheat can take at least 10 years. Variety trials arise 

from the need to evaluate newly bred varieties for their value in cultivation and use. Testing the 

relative genetic potential of the new varieties ensures the release of only the best proportion for 

commercial use (Laidig et al., 2008). Varieties can be dropped at any stage of testing if they are 

outclassed by new varieties, or offer no improvement on old varieties (Mackay et al., 2019).  

Varieties are initially tested in single and then multilocation trials by breeders, and these stages 

can typically last two to three years. If a variety is successful in these trials, it is then entered into 

the National List (NL) trials. These multi-environment trials allow breeders to test their varieties 

across current climates, soil types and locations within the UK’s growing area. After at least two 

years in the NL trials, the Recommended List committee will review variety performance and if 

successful, a variety will then move into the Recommended List (RL) trials until outclassed, which 

is typically six years, but can be over 20 years (Austin, 1999; Mackay et al., 2011; Berry et al., 

2015). 
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There are deviations from the approximately 10-year breeding cycle timeline. Firstly, the release 

of the variety is also governed by how quickly sufficient seed can be multiplied up to sell, which 

is dependent on when the breeder is willing to make the commitment to this. For example, a 

breeder may wait to see if their variety’s performance is good enough in NL1 before multiplying 

up the seed. Secondly, although it may take 10 years to get a variety fully listed, the rate of 

breeding is faster than this. A breeder can commit to using a new line as a parent at any stage, 

depending on their view of its potential as a parent. In spring barley, there have been cycle times 

of three years from at least one breeder. Finally, there is expectation that genomic prediction and 

selection will reduce the breeding time further (Hickey et al., 2017). This has the potential to 

reduce the length of both breeder’s trials and NL/RL trials and can also reduce the time required 

before new parents are selected. As such, this 10-year release time may well decrease.  

1.2.2 Genotype-by-environment interaction  

Unlike animals, plants are sessile, hence they are highly affected by the weather they experience 

and their environment. This has resulted in the development of complex and highly varied genetic 

systems that allow plants to adapt to changes in the environment in order to complete their life 

cycle (Miflin, 2000). The phenotype of a given plant is dependent on both its genotype and 

environment, along with the interaction between the two. The genotype-by-environment 

interaction (GxE) is important and has a crucial impact on the phenotype observed (Gillberg et 

al., 2019). The greatest cause of variability in crop yields is variation in the environment, hence 

the GxE variance component of traits such as yield is often larger than that of genetic variance 

(Seyedsadr et al., 1996; Mackay et al., 2019). Consequently, variability in weather and climate can 

result in highly varying yield responses from year to year.  

1.2.3 UK growing climate 

The growing climate is defined as the climatic conditions experienced in the growing season, 

during which conditions permit plant growth to occur. The UK climate is defined as a humid 

temperate oceanic climate, or Cfb, on the Köppen climate classification system (Beck et al., 2018). 

Its location between the relatively warm waters of the Atlantic Ocean and continental mainland 

Europe in the mid-latitude westerly wind belt contribute to frequent changes in air mass and 

variable weather that the UK is renowned for (Met Office, 2022d). 
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There are large regional variations in climate, with the east and south of the UK tending to be 

drier, warmer, less windy, and sunnier than the north and west (Figure 1.1), hence the distribution 

in arable and livestock farming described earlier. One of the major drivers of weather patterns in 

the UK, Ireland and Western Europe is the North Atlantic Oscillation (NAO). The NAO index is 

defined as the normalized pressure difference between Iceland and the Azores (Jones et al., 

1997). Stations at these sites are located close to the centres of action for the NAO and have 

provided homogenous pressure series from which a monthly or seasonal NAO index can be 

calculated. A positive NAO corresponds to a large pressure difference (with Azores pressure being 

higher and/or Icelandic pressure lower than average), causing westerly winds to dominate and 

more frequent Atlantic storms. A negative NAO corresponds to a weaker than usual pressure 

difference, causing easterly winds, reducing the influence of Atlantic weather systems in north-

west Europe (Kendon et al., 2019). NAO impacts vary seasonally: a positive winter NAO (WNAO) 

brings mild and wet conditions, whilst a negative WNAO brings cold and dry conditions (Maisey 

et al., 2018). By contrast, a positive summer NAO (SNAO) is usually associated with higher 

temperatures but lower rainfall, while negative SNAO are associated with the opposite (Met 

Office, 2021b). The NAO has been shown to have impacts on cereal yields and grain quality 

throughout Europe (Atkinson et al., 2005, 2008; Ceglar et al., 2017; Heino et al., 2018).   

Winter wheat accounts for over 95% of the wheat grown in the UK, as the temperate climate 

allows the crop to grow throughout the winter, contributing to higher yields than seen in spring 

wheat (Cho et al., 2012). Wheat is often grown in a rotation with oilseed rape and sugar beet, 

although this has become less common given the concentration of sugar beet processing on four 

Figure 1.1: Mean temperature, total rainfall and total sunshine duration for the UK in 2018. The maps have a 

1km x 1km spatial resolution and can be downloaded from the Met Office 

(https://www.metoffice.gov.uk/research/climate/maps-and-data/uk-actual-and-anomaly-maps).  

https://www.metoffice.gov.uk/research/climate/maps-and-data/uk-actual-and-anomaly-maps
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sites, with none north or west of Newark-on-Trent. In recent years, more spring barley has been 

grown than winter barley, particularly in growing seasons when there have been difficulties in 

establishing winter crops. In the UK, winter barley is typically sown slightly earlier in autumn than 

winter wheat, but drilling dates can vary widely both year-to-year as well as across the country 

(Turner et al., 2021), depending largely on the amount of rainfall in early autumn. Harvest dates 

also vary widely across the country and interannually, largely due to the variation in weather and 

climate. Heavy rainfall in mid-summer can prevent cereal grains from drying to their required 

moisture content, as well as creating difficulties getting onto the land to harvest. There are a 

range of markets for wheat and barley grain, including feed wheat, bread wheat, biscuit wheat, 

feed barley and malting barley. Therefore, there is a trade off in terms of yield potential amongst 

the varieties to each specific market, and as such average yields reflect the diversity in variety 

types.  

Agricultural production is intrinsically linked with climate due to its influence on viability. Globally, 

climatic variability is estimated to account for roughly one third of the observed global yield 

variability, with the explained variance exceeding 50% for maize and rice in some countries (Ray 

et al., 2015). The sensitivity of cereals to the high UK weather variability is reflected in the 

interannual yield variation, with wheat yields varying by up to 50% in the last decade (Figure 1.2) 

(Berry and Brown, 2021). Ray et al. (2015) found that either precipitation variability or both 

temperature and precipitation variability explained approximately 45% of UK wheat yield 

variability. The 2020 growing season exemplified the vulnerabilities: a very wet autumn resulted 

in a reduction in winter cereal drilling and production dipped to a 30-year low. This was followed 

by difficulties establishing spring crops as a result of several storm events in February 2020 and 

subsequently a protracted spring dry period from late March through to end of May (DEFRA, 

2021a). The media documented the impacts of the drop in yields and production totals, which 

resulted in sharp increases in the price of bread (Rowlatt, 2020; Tasker, 2020).  
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Figure 1.2: UK (black) wheat yields (t/ha) from 1999-2020 relative to the 1980-2020 mean. England (yellow), 

Wales (red), Scotland (blue) and Northern Ireland (green) yields also given for 1999-2019. Data from DEFRA 

(2021). 

1.2.4 Recent climatic changes 

Globally, average temperatures have risen by 1.1oC since 1880 with the majority of the warming 

occurring since 1975 (Lenssen et al., 2019; GISTEMP Team, 2022). An increase in global 

heatwaves, cold events, heavy rain and drought has been attributed to the changing climate (Met 

Office, 2022b). Analysis of global heatwave occurrences shows that since the 1950s heatwave 

frequency, duration and cumulative heat have all accelerated (Perkins-Kirkpatrick and Lewis, 

2020). The changing climate has included a northward migration in European agroclimate zones 

(Ceglar et al., 2019), which has resulted in an average poleward shift in the latitudinal ranges of 

crop pests and pathogens of 2.7 km/year since 1960 (Bebber et al., 2013). 

The UK has already seen an increase in the frequency and length of warm and hot spells, shorter 

and less frequent cold spells, less frost and snow, and several high temperature records broken 

(Met Office, 2022a). Notably, on the 19th July 2022, 40.3oC was recorded in Lincolnshire, setting 

a new UK temperature record 1.6oC above the previous record. This marked the first time 

temperatures have exceeded 40oC in England, and 35oC in Scotland (Kendon, 2022). The State of 

the UK Climate 2021 (Kendon et al., 2022) showed that all of the top-ten warmest years on record 

for the UK have occurred since 2002. 2020 was the first year to have sunshine duration, total 

rainfall and temperature all in the top 10 on record (Kendon et al., 2021). 
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1.2.5 Crop-climate relationships in wheat and barley 

Climate change provides a multitude of challenges for UK agriculture, from longer-term changes 

in climate affecting crop viability, to an increase in extreme weather events, to the indirect 

impacts of changing pests and diseases. To understand the impacts of these changes both in 

recent years and in the future, the influence of weather and climate on wheat and barley at 

different growth stages is first explored. 

Winter barley and winter wheat are drilled in autumn and harvested in late summer, whilst spring 

barley is sown from December until late April, although due to frost sensitivity it’s typically sown 

later in the period in the colder North (AHDB Cereals & Oilseeds, 2018a). Development of crops 

sown on different dates becomes more synchronised by the increasing daylength in spring 

(Kettlewell et al., 2003).  

Barley and wheat go through the following cereal growth stages: germination (GS00-GS09), 

seedling growth (GS10-GS19), tillering (GS20-GS29), stem elongation (GS30-GS39), booting 

(GS40-GS49), ear emergence (GS50-GS59), flowering (GS60-GS69), milk development (GS70-

GS79), dough development (GS80-89) and ripening (GS90-GS99) (AHDB Cereals & Oilseeds 

2018a) (Figure 1.3). Speed of development differs between varieties, less so for spring barley. If 

there is adequate soil moisture, seeds will germinate, with germination rate controlled by soil 

temperature. 

Temperature also drives leaf emergence during seedling growth. The first leaf emerges soon after 

drilling and leaves then emerge continuously on the main tillers (shoots) and stem until the flag 

leaf emerges. Tillering occurs after leaf three emerges and continues until stem extension begins. 

Tiller production and survival are affected by both the climate and husbandry. Spring barley 

generally produces fewer leaves and tillers than winter barley. Grain number per ear is 

determined between flag leaf and ear emergence (AHDB Cereals & Oilseeds, 2018a).  

Once the canopy is established, it expands rapidly from the beginning of stem elongation (GS30) 

in spring until shortly after ear emergence in late May/early June (Kettlewell et al., 2003). Grain 

growth starts at flowering (anthesis), which is an important transition time from vegetative to 

reproductive growth. Timing of flowering should maximise radiation intake but also avoid adverse 

biotic and abiotic stresses (Bentley et al., 2013; Sheehan and Bentley, 2021). Flowering is followed 

by grain filling, during which reserves in the stems and leaves are redistributed to the developing 

grain. Grain fill depends on stem reserves and photosynthesis. When grain filling and grain growth 

cease, grain ripening takes a further two to three weeks, during which dry matter content 
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increases and moisture decreases before harvest (TEAGASC, 2017; AHDB Cereals & Oilseeds, 

2018a).  

The influence of climate on growth and yields of crops is centralised around temperature. For 

winter wheat and winter barley, warmer temperatures only have a limited effect on the period 

between the crop emerging and the beginning of stem elongation as they must undergo 

vernalisation. Vernalisation is an important process in which prolonged, cold-exposure (0-10oC 

for about one month or more) enables flowering in the warmer spring (Xu and Chong, 2018). For 

spring barley, which has little or no vernalisation requirement, development is accelerated at 

higher temperatures during all growth stages (Knight et al., 2012). There is a risk that rising 

temperatures will prevent vernalisation taking place in current winter varieties, impacting 

negatively on grain yields. Introduction of varieties with lower vernalisation demands could be an 

effective adaptation strategy (Zhang et al., 2013), and there is evidence that some newer cultivars 

already have lower vernalisation requirements (Grogan, Anderson, et al., 2016; Grogan, Brown-

Guedira, et al., 2016; Rezaei et al., 2018).  
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Figure 1.3: The major disease and weather and climate risks to winter wheat and winter barley yields at various stages of the growing season. The diseases 

affect both winter crops, except for those indicated by WW = winter wheat and WB = winter barley. Growth stages from AHDB Cereals & Oilseeds (2018b). 
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The influence of climate and disease pressure varies across the growing season for both spring 

and winter cereals (Figure 1.3). Meanwhile timing of weather events, such as heavy rainfall and 

extreme heat, also influences overall yield (Powell and Reinhard, 2016). Heavy rainfall in early 

autumn limits feasible drilling days due to land access issues, contracting the sowing time period, 

which can reduce variability in development growth stages later on, increasing the vulnerability 

of the crop to further weather impacts (Sheehan and Bentley, 2021). Drilling late shortens the 

growing season length, reducing potential yield, as well as increasing the risk of exposure to 

extreme heat during anthesis. In extreme years, like the 2020 growing season, extreme wet 

during autumn reduced crop acreage (Rowlatt, 2020). Even short periods (e.g. three days) of 

waterlogging can be detrimental for wheat in the first few weeks of growth (Malik et al., 2002). 

Soil moisture availability in September influences the development of a crop’s root system. A wet 

early autumn and therefore high soil moisture content can lead to shallower roots as water is 

easily accessible at that time. A larger, deeper and more efficient root system can develop in drier 

conditions, which can be beneficial later in the growing season in the event of drought and heat 

stress (Manschadi et al., 2006; Senapati and Semenov, 2020). With a poor root system, drought 

conditions in spring can create issues with nutrient uptake from soil.  

In the winter and spring months, frost is common in the UK, with the risk of occurrence decreasing 

later into the growing season. Late frosts in spring and summer, when winter-hardiness is lost, 

can cause leaf chlorosis and floret sterility, as well as grain damage, including shrunken kernels, 

leading to a reduction in yield (Gusta and Fowler, 1976; Cromey et al., 1998; Barlow et al., 2015). 

Heat stress (~Tmax>32oC) around anthesis can induce abnormal ovary development, reduce floret 

fertility and pollen viability, and drastically reduce the primary grain setting number and final yield 

(Saini et al., 1983; Wheeler et al., 2000; Grant et al., 2011; Prasad and Djanaguiraman, 2014; Sage 

et al., 2015). Drought around this time can cause premature abortion of florets and reduced 

viability, reducing spike fertility and seed setting (Dong et al., 2017; Senapati et al., 2021). Heat 

stress (~Tmax>35oC) during grain fill poses risk to the crop, reducing grain number and therefore 

final yield (Dreccer et al., 2018; Rezaei et al., 2018). Solar radiation during grain fill is important 

as it facilitates rapid dry weight growth where starch and protein are deposited in expanded grain 

cells, supplied by photosynthesis and the redistribution of stem reserves (AHDB Cereals & 

Oilseeds, 2018c). As such, rainfall and more cloud cover during grain filling reduces 

photosynthesis and decrease grain yields. During harvest time, heavy rainfall and waterlogging 

delays access to land and prevents the grain from drying (it is costly to have to dry grain once 

harvested), as well as causing direct damage to the crop through bending the stem, known as 

lodging (Posthumus et al., 2009; AHDB Cereals & Oilseeds, 2018c). High wind and heavy rain any 
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time after stem elongation increases the risk of lodging, with potential yield losses of up to 75%, 

and decreases the spraying window, making it difficult for a farmer to treat the crop with 

fungicides and pesticides. 

There are many diseases that affect wheat and barley across the growing season in the UK, with 

varying degrees of impact on grain yield and quality. Some of the significant diseases for winter 

wheat and barley, and their main risk windows, are outlined in Figure 1.3, along with their 

respective main weather risk factors. Several of the diseases can affect both wheat and barley, 

albeit by slightly different fungal and bacterial strains. Additional factors affect disease 

susceptibility including variety, sowing date and cultivation, as well as crop rotations, so whether 

the crop follows a cereal or something else. For example, delayed sowing of winter wheat reduces 

Septoria leaf blotch pressure regardless of the variety (AHDB Cereals & Oilseeds, 2018b, 2018c).  

1.2.6 Changing crop-climate relationships 

The UK’s climate is projected to see an increase in warmer, wetter winters and hotter drier 

summers. By mid-century, hot summers like 2018 could occur, on average, every other year and 

hot spells (Tmax >30oC), particularly in the south-east, are projected to increase (Met Office, 

2021c). This will likely be accompanied by an increase in the intensity of heavy summer rainfall 

events and of short duration rainfall intensity in the autumn (Met Office, 2021c). The projected 

increase in intensity of rainfall events is likely to increase the risk of waterlogging in wheat (Malik 

et al., 2002). In winter, all regions of the UK will have increased cloud cover and decreased solar 

radiation, whilst in summer the south will see a decrease in cloud coverage and the north-west 

an increase (Burnett et al., 2014).  

Incorporating future climate projections into process-based crop models, such as SIRIUS 

(Jamieson et al., 1998) and DSSAT (Hoogenboom et al., 2010), is a widely used method of 

forecasting potential impacts of climate change on future agricultural productivity (White et al., 

2011). Despite the projected lower total summer precipitation in the UK, relative wheat yield 

losses from drought (without accounting for any effects of increased atmospheric carbon dioxide) 

are predicted to be moderated by higher temperatures accelerating the growing season and 

bringing the maturity date earlier (Semenov and Shewry, 2011). For UK barley production, climate 

change could be beneficial, with the largest increases in yields expected to be seen in western 

UK, though also accompanied by increased yield variability (Yawson et al., 2016).  

Climate change also affects production indirectly, through changes in distributions and impacts 

of plant pathogens. At high latitudes and for most crops, increasing yields are likely to be 

accompanied by an increase in infection risk as a result of increasing temperatures (Chaloner et 
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al., 2021). In the UK, a rise in Fusarium ear blight, which threatens wheat ear quality, has already 

been seen (Turner et al., 2021). Changes in climate affect cultivar susceptibility to disease, such 

as though interactions with temperature-sensitive disease resistance genes (Steffenson et al., 

2009; Dawson et al., 2015). 

The changing climate is accompanied and partially caused by increases in atmospheric CO2. 

Various field experiments show that grain yield increases under increased atmospheric CO2 levels 

(Batts et al., 1997; Hazra et al., 2019). In the UK, simulated yields over 1892-2016 increased by 

up to 9.4% when accounting for increased atmospheric CO2 (Addy et al., 2021b). Sowing date 

adjustment and additional CO2 fertilisation are projected to compensate for projected wheat 

yield losses as a result of temperature and precipitation changes at a national level (Cho et al., 

2012).   

There is great value in using mechanistic models to look at the potential impacts of climate change 

on future crop production, in terms of adaptation and decision making. However, there are also 

some limitations. One of the difficulties in modelling extreme events is that the temporal and 

spatial scale varies significantly which can affect the impacts on yields: for example, in the isolated 

regions where floods occur, yields are zero but other areas may be unaffected (Okom et al., 2017). 

Extreme events like these are also unaccounted for in some models (e.g. Cho et al., 2012). 

Modelling future climate impacts on yields is inherently uncertain due to the large uncertainties 

in future greenhouse gas emissions and climate scenarios. For example, in projecting the yield 

impacts of climate change and enhanced CO2 by the 2080s for soybean, Deryng et al. (2014) 

showed that soybean exhibits both positive and negative impacts due to the differences in climate 

model scenarios.  

Fewer models consider effects of climate variability as well as mean variables (Wreford and 

Adger, 2010). Timing of extreme weather events is of great importance in determining yield 

effects and the effects can be positive or negative depending on the week in which they occur 

(Powell and Reinhard, 2016). Furthermore, model intercomparisons have shown substantial 

differences in the ways models respond to interannual variations, indicating there is still 

insufficient research on how yields are affected by interannual variability in commonly studied 

parameters such as temperature, rainfall and solar radiation, and how these can be modelled 

successfully (Ruane et al., 2016).  
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1.3 Using climate information to support crop breeding and agriculture in a 

changing climate 

Current crop breeding programmes do not always incorporate current or future climate 

information, despite the rise in open access, high resolution climate datasets. This likely 

contributes to the large genetic yield gap seen in European wheat, where current local cultivars 

are far from their optimum (Senapati and Semenov, 2019). In the UK, the Agriculture and 

Horticulture Development Board (AHDB) variety selection tool (https://ahdb.org.uk/variety-

selection-wheat) has a distinct lack of detailed integrated weather and climate information, 

beyond splitting the UK into three regions, meaning farmers can easily select varieties that aren’t 

well suited to their growing environment. Part of this lack of inclusion is due to insufficient 

research into how varieties perform within the different environments and how they respond to 

different weather events. Highest yielding varieties do not typically have stability or resistance to 

extreme weather events and climate variability (Redhead et al., 2020). Hence there is a potential 

to deliver varieties more resilient to extreme weather and select those best suited to changing 

local climates, by combining meteorological data with agricultural data. Climate information has 

the potential to help define breeding targets in new crop breeding programmes (Falloon et al., 

2015). The Oklahoma Mesonet, launched in 1991, is an initiative that today consists of 121 

environment-measuring stations, providing real-time agroclimate data. Farmers have made use 

of this open access resource and it provides an excellent example of where the use of weather 

information for agricultural decisions has resulted in significantly increased profitability 

(Ziolkowska and Zubillaga, 2018). Therefore, defining breeding targets and identifying 

meteorological parameters most useful to UK breeders is an important line of research.  

1.3.1 State of agroclimate services in the UK 

To enable breeders, growers and local policy makers to make climate-informed decisions on crops 

and varieties to grow, there needs to be an accessible agroclimate resource that provides 

agriculturally relevant information on how the climate is changing in their locality and recent 

variability that may help explain observed yield.  

Addy et al. (2021) characterised the temporal patterns of key weather variables over crop 

production years into 10 distinct weather patterns. One weather cluster was shown to have 

dominated the 21st century: warmer temperatures and more intense rainfall with a dry June. Five 

frequently occurring weather clusters in the 20th century have not recurred in recent times. These 

included cold winter and early-spring (cluster 2), cold August to September (cluster 3) and cool 

and dry March (cluster 10).   The clusters more typical of the 20th century, rather than 21st century, 

https://ahdb.org.uk/variety-selection-wheat
https://ahdb.org.uk/variety-selection-wheat
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were associated with higher winter wheat yields. This highlights how changes in the UK 

agroclimate have already affected cereal production.  

The Met Office provides a valuable summary of UK weather and climate each year, in the form of 

the State of the UK Climate report (e.g. Kendon et al. 2022). It highlights trends, variability, and 

extremes in many important climate variables, including temperature, precipitation, sunshine 

duration, and Growing Degree Days. However, its relevance to agriculture is limited by two main 

factors. Firstly, its restriction to the calendar year makes it difficult to understand the full impact 

of weather and climate across each growing season, which for winter crops typically starts in the 

autumn of the previous year and ends late summer. Secondly, it focusses on months and seasons, 

rather than important crop-specific periods, such as anthesis and grain fill, making it harder to 

reveal the impacts of weather and climate variability on recorded agricultural production. 

1.3.2 Agroclimate metrics as tools to monitor climatic changes affecting agriculture 

Use of agroclimate indicators has been shown to be useful for quantifying the effect of changes 

in weather and climate on agriculture, and can significantly improve crop model performance 

over simpler raw weather data (Mathieu and Aires, 2018). They provide valuable information for 

supporting specific farm management decisions. Internationally there has been much research 

into indicators of climate change in agricultural systems (Qian et al., 2013; Piticar, 2019; Hatfield 

et al., 2020) and the US Department of Agriculture has compiled and analysed a comprehensive 

range of metrics (Walsh et al., 2020), encompassing physical indicators such as heat waves, 

biological indicators such as crop pathogens, crop and livestock indicators such as animal heat 

stress, phenological indicators such as winter chill units and socioeconomic indicators such as 

crop insurance payments (Figure 1.4).  
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Figure 1.4: Agroclimate and food system indicators used by the U.S. Department of Agriculture to show how 

climate change is influencing U.S. agriculture (Walsh et al., 2020). 

In Europe, classification of climate stressors at different development stages showed that the 

primary climate driver of yield shocks in 2000-2018 was extreme warming in Western and 

Northern Europe, high water demand in Eastern Europe, and low water supply in Southern 

Europe (Zhu et al., 2021). The critical growth stage for extreme warming driven yield shocks was 

the reproductive period. Furthermore, the occurrence of yield shocks due to extreme warming 

was projected to increase under both the moderate emissions RCP 4.5 and high emissions 

scenario RCP8.5. In parts of Europe, including the Mediterranean, agroclimate metrics showed 

that increased water deficit limited rainfed agriculture. Across Europe the risk of extremely 

unfavourable years and adverse weather events is likely to increase (Trnka et al., 2010, 2014). 

The main adverse weather risk to the UK is increased field inaccessibility due to wetness in 

southern and eastern England (Trnka et al., 2015), however this will likely be partly offset by the 

yield benefits of increased availability of solar radiation.   

In the UK, indicators have focussed on future climate change impacts on agriculture. Arnell and 

Freeman (2021) project a range of agroclimate indicators using UK Climate Projections UKCP18 

representing a range of greenhouse gas scenarios and both drought and heat risks for some 

production types will increase. These indicators contributed to the broader UK Climate Risk 
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Indicator tool (uk-cri.org), which enables future changes in various agriculture-related and other 

(e.g. wildfire) indicators to be explored at different spatial scales. By contrast, using two wheat 

indices, Semenov (2009) showed that despite the projected higher summer temperatures and 

lower precipitation, the impact of drought stress on simulated wheat yield is predicted to be 

smaller than present due to temperature-induced accelerated growth resulting in earlier 

maturity. The magnitude of impact due to increased drought risk on wheat yields is uncertain 

(Berry and Brown, 2021; Clarke et al., 2021). 

Projecting the yield impacts of late frost and heat stress during reproductive and grain fill periods 

under different greenhouse gas emissions demonstrated that the probability of occurrence will 

likely remain small by 2050 (Harkness et al., 2020). A report by the Climate Change Committee 

provides a synthesis of the potential agricultural risks associated with exceeding extreme 

temperature thresholds (Jones et al., 2020). A range of indices have been used to look at the 

observed agroclimate (Rivington et al., 2013; Harding et al., 2015; Arnell and Freeman, 2021). 

Whilst these provide an excellent summary of the agroclimate over 30-year periods, this masks 

the variability that is of interest. Identifying the specific causes of historical yield variability could 

help reduce the uncertainties associated with the projected increase in yield variability (Trnka et 

al., 2010).  

Analysis of the effect of weather on interannual variation in crop yield response to nitrogen 

fertilizer showed that wheat yields in the South-East of England are particularly sensitive to mean 

temperature in in November, April and May, and to total rainfall in October, February and June 

(Addy et al., 2020). Using national weather and yield data in a multivariate analysis, Knight et al. 

(2012) showed that March rainfall, June sunshine and December sunshine are the weather 

variables most closely associated with variation in national wheat yields. Whilst these studies both 

provide useful insight on important monthly weather yield impacts, research on all growing 

regions with cereal growth-specific weather variables is still lacking.  

Agroclimate metrics are often based on temperature and precipitation data, with some using 

sunshine duration as a proxy for solar radiation (Knight et al., 2012; Ruane et al., 2016). Few 

studies have used solar radiation data to create agroclimate metrics to specifically explain 

observed phenotypes, instead using monthly or growing season total solar radiation (Villegas et 

al., 2016).  Experimental techniques, such as variable shading have been used to investigate the 

relationship between solar radiation and yield (Kirkegaard et al., 2018) however, solar radiation 

data is not regularly used with crop yield data. The availability of high-quality satellite solar 

radiation data, such as CM-SAF surface incoming solar radiation (SIS) (Pfeifroth, Trentmann, et 
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al., 2018), provides an excellent opportunity to explore the effect of solar radiation  on important 

stages of the growing season and on final yields. This data will enable analysis at broader spatial 

and temporal scale than field experiments have thus far been capable of. 

1.3.3 Opportunities provided by combined multi-environment trials and climate data 

Identifying climatic causes of recent production variability is important for future-proofing UK 

agriculture as future changes in climate will affect the likelihood of challenging weather events 

(Arnell and Freeman, 2021). Numerous studies have utilised regional and national yield data 

(Peltonen-Sainio et al., 2010; Olesen et al., 2011; Cho et al., 2012), while no known studies have 

used variety trials data for this purpose. Historical trials data is a valuable resource for high-quality 

yield data for multiple varieties in multiple environments (Smith et al., 2005) and is therefore 

useful for understanding the drivers of GxE. The wide array of environments and varieties 

represented in trials can be used to see the impact of biotic and abiotic stresses on variety 

performance (Pidgeon et al., 2006). Given that trials data is recorded every year, it reflects 

changes in climate over time.  

Published studies using historical trials datasets date to as early as the start of the 20th century. 

Student (1923) analysed two spring barley varieties (Archer and Goldthorpe) grown in multi-

environment trials from 1901-1906. He concluded that Archer was on average higher yielding and 

hypothesised that differences due to weather variability outweighed varietal differences. Other 

studies have revealed important results in terms of changes in crop performance over time, and 

have explored the environmental drivers of yield variation. Peltonen-Sainio et al. (2007) showed 

that the latest turnip rape (B. r. ssp. rapa) cultivars in Finnish variety trials were more sensitive to 

elevated temperatures at seed setting and filling. Use of variety trials data from across Europe 

showed that wheat in Slovakia has the greatest climate resilience while the Czech Republic had 

the least of the nine countries tested (Kahiluoto et al., 2019). Peltonen-Sainio et al. (2009) showed 

that plant breeding has contributed to increased genetic yield potential of all cereal crops, despite 

levelling of national yields as cereal productions become less intensive. 

In the UK, Mackay et al. (2011) combined the UK NL/RL dataset with national climate data and 

showed that UK winter wheat varieties had the greatest sensitivity to summer rainfall and winter 

temperature. However, the magnitude of the yield impacts of these climate variables was not 

quantified. Given the number of high resolution gridded observational and reanalyses datasets 

that now exist for the UK region, there is a great opportunity to build on this work based on 

national data to incorporate site-specific agroclimate data.  
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Analysis of variety performance in variety trials and national variety use can also give a good 

indication of variety uptake. In the USA, farmers have shown reluctance to change their crop mix 

or agricultural practices in response to rising temperatures, suggesting a lack of engagement in 

long-term production adaptation (Burke and Emerick, 2016). This reluctance to adapt will need 

to be overcome to ensure future food security and requires an integrated industry approach to 

adaptation, with research that demonstrates the value of growing locally adapted, more climate-

resilient cultivars. 

1.3.4 Isolating the contribution of breeding and climate to crop yields  

Analysing the impacts of agroclimatic factors on yield is complex and requires robust statistical 

analysis to identify causal explanations (Shmueli, 2010). Various statistical models have been used 

in yield trend analyses, most frequently linear regression (Michel and Makowski, 2013; Takashima 

et al., 2013; Laidig et al., 2014; Weymann et al., 2015). In particular, linear mixed models have 

been shown to be useful in dissecting genetic and non-genetic sources of yield variability (Mackay 

et al., 2011; Piepho et al., 2014). It is important to understand the masking effect of the 

environment relative to heritable traits, to quantify the effect of environment and GxE on 

phenotypic variation in traits (Nehe et al., 2019). 

In isolating the genetic effects from the environmental effects, it is possible to calculate the 

realized genetic gain of the trait of interest (Austin et al., 1989; Austin, 1999). Genetic gain is a 

metric used to quantify the increase in performance of a trait achieved through selection 

(Jayaraman, 2000; Xu et al., 2017; Sinha et al., 2021). Realized genetic gain refers to the observed, 

rather than expected, gain due to selection over cycles (Jessica E. Rutkoski, 2019). In breeding 

programmes realized genetic gain is a valuable measure of success of the programme 

(Covarrubias-Pazaran, 2020; Covarrubias-Pazaran et al., 2022) and can quantify return on 

investment. 

Many programmes are typically more limited in length and contain many fewer varieties overall 

and per year than the UK NL/RL trials.  Varieties can appear for a couple of years and their 

performance is measured against longer term control varieties to account for interannual 

weather variability which influences varietal performance, as well as longer term factors such as 

changes in agronomic practices and climate. A frequent problem in calculating genetic gain is the 

confounding genetic and year effects due to a lack of genetic connectivity when breeding 

materials are tested for just one or two years, hence the importance of the connectivity provided 

by control varieties (Jessica E. Rutkoski, 2019). Overall, the effectiveness and accuracy of genetic 

gain estimated from these programmes is not well known. Hence there is a need to quantify the 
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influence of long-term varieties and connectivity on genetic gain calculations to understand the 

most robust method of calculation. 

Combining trials and climate data can lead to high dimensional datasets, which can make 

statistical model output difficult to interpret, or even prevent models from converging. To 

overcome this issue, variable selection and shrinkage methods can be used on linear models and 

linear mixed models (Fan and Li, 2012). Identifying the best method to use on a large, high 

dimensional crop-climate dataset is not straightforward and few agroclimate modelling studies 

have utilised these methods (Gouache et al., 2015; Mathieu and Aires, 2018; Addy et al., 2020). 

As such, there is a need to explore the best-suited variable selection methods to use in 

agroclimate research to identify the optimal model for explaining crop traits such as yield.  

1.4 Summary and research aims  

The effects of climate change are already being observed across all aspects of society including 

agriculture. There is great need for breeders, climate scientists and crop modellers to collaborate 

to achieve future food security for the UK and beyond. This must also be achieved sustainably, 

minimising agriculture’s environmental impact. Understanding the climatic conditions and 

extreme weather events plant breeders should consider and prepare for when looking for 

desirable traits to breed into crops is key to maximising future crop yields. Variety trials data is an 

underexploited industrial resource which can be combined with crop-specific agroclimate data to 

reveal how past crop yields have been affected by breeding programmes and interannual weather 

and climate variability. This can help us to understand how interannual variability affects yield, 

which can feed into process-based crop models. Quantifying agroclimate trends will highlight how 

the UK agroclimate is changing, enabling agronomists, growers and decision-makers to make 

climate-informed decisions, leading to variety-location combinations that will optimise yield. 

The overall aim of this research was to reveal the individual and combined impacts of crop 

breeding and climate variability on UK cereal production. After the ‘yield plateau’ of the 1990s 

and 2000s, what do we now see emerging in yield records? How can we use variety trial records 

to quantify the genetic contribution to recent yield trends? Which of an array of new high-

resolution climate datasets should we synthesize into our analysis in order to most effectively 

isolate the confounding impact of spatial and temporal climate variability? The research challenge 

required a strongly interdisciplinary approach, both in terms of science and methods.  
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To address this overall aim, the specific research objectives were as follows: 

1. To select the best methods of utilising large crop-climate datasets to isolate crop-climate 

relationships (Chapter 3) by: 

i. Trialling variable selection methods on a combined dataset of early 20th century Irish 

spring barley variety trials data and historical weather data 

ii. Using this case study to demonstrate the extent to which interannual variation in 

yields can be partially explained by weather variability  

2. To create the first State of the UK Agroclimate report as a periodic assessment of the changing 

UK agroclimate and its influence on production (Chapter 4) by:  

i. Analysing changes and variability in national and regional on-farm and variety trial 

data for the last four decades 

ii. Quantifying recent trends and variability in the UK climate that may have affected 

these yields through the use of carefully selected agroclimate metrics 

3. To quantify the relative contribution of breeding and the environment to variety trial yield 

trends (Chapter 5) by: 

i. Calculating the genetic gain of UK cereals in variety trials using mixed effect modelling  

ii. Exploring the uncertainty in genetic gain estimates using case study periods extracted 

from the NL/RL dataset 

4. To identify the significant agroclimate variables in determining winter wheat yields in the UK 

and the varieties with the greatest resilience in the changing climate (Chapter 6) by: 

i. Modelling historical winter wheat trials data and gridded historical weather data  

ii. Dissecting the genotype-by-environment component to identify varieties responding 

favourably to changing climate conditions  
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2 Materials and Methods  

This thesis chapter introduces the datasets and methods used to:  

1. Identify the best variable selection method to use on large crop-climate dataset and 

model the relationship between the agroclimate and spring barley yields in the early 20th 

century, presented in Chapter 3 

2. Analyse variability and trends in the UK agroclimate since 1981, presented in Chapter 4 

3. Model the genetic drivers of yield variability in UK cereal crop variety trials, presented in 

Chapter 5 

4. Model the climate drivers of yield variability in UK winter wheat (Triticum aestivum L.) 

variety trials, presented in Chapter 6.  

A combination of historical climate and agricultural datasets from a wide range of sources were 

downloaded and analysed. A subset of these datasets was then combined in a selection of 

statistical models to identify drivers of yield variability in both early 20th century Ireland spring 

barley (Hordeum vulgare L.) and recent UK cereal crop variety trials.  

2.1 Datasets and methods for Chapter 3 

In Chapter 3, a historical Irish barley trials dataset, documented by Student (1923), was combined 

with recently released climate data for the early 20th century to identify suitable statistical 

methods for quantifying the yield impacts of interannual climate variability and to explore the 

relative stability and resilience of the two barley varieties grown. This was a useful dataset for 

testing these methods before use on a much bigger, modern variety trials dataset, whilst also 

demonstrating that climate data from as early as the beginning of the 20th century can be used 

to help explain yield variability.  

2.1.1 Irish spring barley data 

Spring barley trials data was extracted from Student (1923) and consists of two varieties – Archer 

and Goldthorpe – in unreplicated 2-acre plots at 18 distinct farm locations across the barley-

growing districts in Ireland (Figure 2.1a and 2.1b). 

Locations for each trial site are given by the town and 

district, from which a latitude and longitude has been 

estimated. The number of trial sites increased each 

year, from 4 in 1901 to 12 in 1906 (Table 2.1). 

Year No. trial sites 

1901 4 

1902 6 

1903 8 

1904 10 

1905 11 

1906 12 

Table 2.1: Number of Irish spring barley trial 

sites per year. Data from Student (1923). 
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Yield data was recorded in barrels and stones per acre and price was recorded in £sd per acre. To 

give the values modern context, these was converted to tonnes/ha and £/ha, respectively. 

Each trial site was paired with weather data for the growing season from the nearest weather 

station operating during the period (Figure 2.1b). Growing season was defined as 1st March to 

31st August, based on present-day spring barley growing practices.  

2.1.2 Irish climate data 

Daily temperature data was downloaded from https://www.met.ie/climate/available-data/long-

term-data-sets. The temperature data forms part of the recently released Ireland Long-term 

Maximum and Minimum Air Temperature dataset (ILMMT), for which raw daily observations from 

12 long-term and 21 short-term maximum and minimum air temperature series were rescued 

from archives (Mateus et al., 2020).  

Daily rainfall data was obtained for the period 1901-1906 from Met Éireann and forms part of 

Ireland’s pre-1940 rainfall records (Ryan et al., 2021). Monthly rainfall totals for the Island of 

Ireland (IOI) were downloaded from a 305-year (1711-2016) rainfall data record (Murphy et al., 

2018) to allow for longer-term analysis of national rainfall trends. 

Both daily climate datasets are the product of a large data rescue project by Met Éireann and 

Maynooth University, which also forms part of the worldwide data rescue effort I-DARE 

(https://www.idare-portal.org/). Part of this project involves digitising Met Éireann’s pre-1960s 

rainfall and climate station records, including manuscripts and daily weather reports. Due to the 

large volume of data in need of rescue, school and undergraduate groups were involved in the 

transcription and helped double-key the data to reduce the risk of transcription errors (Mateus 

et al., 2020; Ryan et al., 2021). 

To enable long term localised climate analysis, daily climate data for post-1960 was downloaded 

from the Met Éireann website (https://www.met.ie/climate/available-data/historical-data). This 

data was combined with the pre-1960 data (Tables 2.2 and 2.3). It is worth noting that the units 

change from inches to mm within some of the pre-1940 rainfall datasets; therefore, it is necessary 

to check the accompanying metadata prior to using the data to ensure unit consistency.  

  

https://www.met.ie/climate/available-data/long-term-data-sets
https://www.met.ie/climate/available-data/long-term-data-sets
https://www.idare-portal.org/
https://www.met.ie/climate/available-data/historical-data
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Station Years Datasets used Frequency Units Reference 

Birr Castle 

01/01/1880-
31/12/1920 

Birr Castle telegraphic 
reporting station 
(ILMMT) 

Daily oC (Mateus et 
al., 2020) 

01/01/1921-
31/12/1954 

Birr Castle telegraphic 
reporting station 
(ILMMT) 

Daily oC (Mateus et 
al., 2020) 

01/10/1954-
30/09/2009 

Station data 
downloaded from Met 
Éireann"dly4919" 

Daily oC (Met 
Éireann, 
2021) 

Glasnevin 

01/01/1834-
31/12/1958 

Botanic Gardens 
Dublin_1834-1958 
(ILMMT) 

Daily oC (Mateus et 
al., 2020) 

01/01/1961-
30/11/2020 

Station data 
downloaded from Met 
Éireann 

Daily oC (Met 
Éireann, 
2021) 

Phoenix 
Park 

18/01/1831-
31/12/1958 

Phoenix Park 
Dublin_1831-1958 
(ILMMT) 

Daily oC (Mateus et 
al., 2020) 

01/01/1959-
31/12/1959 

Phoenix Park 
Dublin_1959 (ILMMT) 

Daily oC (Mateus et 
al., 2020) 

01/01/1961-
31/08/2012 

Station data 
downloaded from Met 
Éireann 

Daily oC (Met 
Éireann, 
2021) 

Roches 
Point 

14/01/1872-
31/12/1920 

Roches Point_1872-
1920 (ILMMT) 

Daily oC (Mateus et 
al., 2020) 

01/01/1921-
31/12/1956 

Roches Point_1921-
1956 (ILMMT)  

Daily oC (Mateus et 
al., 2020) 

01/01/1957-
28/02/2021 

Station data 
downloaded from Met 
Éireann 

Daily oC (Met 
Éireann, 
2021) 

Table 2.2: Temperature datasets used for each Irish weather station. 
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Station Years Datasets used Frequency Units Reference 

Ardee 
01/01/1886-
31/07/1913 

Data_GDJ > ARDEE 
(LISRENNY) 

Daily inch (Ryan et 
al., 2021) 

Birr Castle 

01/01/1875-
31/12/1951 

Data_GDJ > BIRR CASTLE Daily inch [Jan 
1875-
Apr 
1914]; 
mm 
[May 
1914-
Dec 
1951] 

(Ryan et 
al., 2021) 

01/10/1954- 
25/11/2009 

Station data downloaded 
from Met Éireann 

Daily mm (Met 
Éireann, 
2021) 

Foulkesmill 

01/01/1874-
31/12/1906 
01/01/1914-
31/12/1940 

Data_GDJ > 
FOULKESMILL 
(LONGRAIGUE) 

Daily inch (Ryan et 
al., 2021) 

01/01/1941-
31/12/2020 

Station data downloaded 
from Met Éireann 

Daily mm (Met 
Éireann, 
2021) 

Greenore 
01/01/1876-
31/12/1940 

Data_GDJ > GREENORE Daily inch (Ryan et 
al., 2021) 

Roches 
Point 

01/07/1873-
31/12/1940 

Data_GDJ > ROCHES 
POINT 

Daily inch [Jul 
1873-
Apr 
1914]; 
mm 
[May 
1914-
Dec 
1940] 

(Ryan et 
al., 2021) 

01/01/1941-
30/06/1996 
01/04/2008-
29/02/2016 

Station data downloaded 
from Met Éireann 

Daily mm (Met 
Éireann, 
2021) 

Birr Castle 
1850-2010 Long-Term-IIP-Network  Monthly mm (Noone et 

al., 2016) 

Foulkesmills 
1850-2010 Long-Term-IIP-Network  Monthly mm (Noone et 

al., 2016) 

Phoenix 
Park 

1850-2010 Long-Term-IIP-Network  Monthly mm (Noone et 
al., 2016) 

Roches 
Point 

1850-2010 Long-Term-IIP-Network  Monthly mm (Noone et 
al., 2016) 

IIP_National 
1850-2010 Long-Term-IIP-Network  Monthly mm (Noone et 

al., 2016) 

Island of 
Ireland 
monthly  

1711-2016 IOI_1711 Series Monthly mm (Murphy 
et al., 
2018) 

Table 2.3: Rainfall datasets used for each Irish weather station. 
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To locate and calculate the distance between the nearest rainfall and temperature station and 

each trial site, the Distance Matrix function in QGIS (QGIS Development Team, 2021) was used. 

The distance between a trial site and allocated precipitation station ranges from 0.6km to 58km, 

whereas the distance between each trial site and nearest temperature station ranges from 1km 

to 116km (Table 2.4, Figure 2.1b).  

Station 
Number 

Station Name County 
Rainfall 

(Ryan et al., 2021) 
Temperature 

(Mateus et al., 2020) 

438 Ardee (Lisrenny) Louth Yes  

119 Birr Castle Offaly Yes Yes 

1823 Dublin (Glasnevin) Dublin  Yes 

108 Foulkesmill (Longraigue) Wexford Yes  

338 Greenore Louth Yes  

175 Phoenix Park Dublin  Yes 

1004 Roches Point Cork Yes Yes 
Table 2.4: The closest weather station to the early 20th century Irish barley trials sites with daily data for 

1901-1906. 
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Figure 2.1: a. The location of Ireland relative to Europe and North Africa. b. Weather stations open between 

1901-1906 and closest to barley trial sites (+). Stations with rainfall only (blue circle), temperature only (red 

x) and both rainfall and temperature data are shown. Growing season (March-August) average temperature 

(oC) (c.), total rainfall (mm) (d.) and surface photosynthetically active radiation (MJ m-2) (e.) for 1901-1930, 

calculated using ERA-20C (Poli et al., 2016).  

There were two daily temperature datasets available for Birr Castle for the period 1901-1906. 

After comparing these datasets, the Birr Castle Telegraphic station was chosen over the Birr Castle 

second order station since it has a stronger correlation with the temperature station at Roches 

Point and temperature data was collected at the same times (08:00 and 18:00) as Roches Point. 

It also covers a significantly longer period (1880-1956 vs. 1872-1911). The two Birr stations have 

very high correlation for both maximum (r=0.983) and minimum (r=0.942) temperature (Figure 

2.2). There were also two temperature datasets for the Glasnevin site. The Botanic Gardens 

Dublin dataset was chosen over the NLI dataset due to the greater length of record and the lack 

of missing data for 1901-1906. The two datasets also exhibit very high correlation with each other 

for maximum (r = 0.995) and minimum (r=0.994) temperature (Figure 2.3).  
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Figure 2.2: Birr Castle temperature station comparison for daily maximum (left) and minimum (right) 

temperature (oC), for the period of overlap 1880-1911. The degree of correlation between the two stations 

is shown as well as any bias relative to the 1:1 line (black).  

 

Figure 2.3: Glasnevin Dublin temperature station comparison for daily maximum (left) and minimum (right) 

temperature (oC), for the period of overlap 1882-1952. The degree of correlation between the two stations 

is shown as well as any bias relative to the 1:1 line (black). 

In addition to station data, ECMWF’s twentieth century reanalysis (ERA-20C) (Poli et al., 2016) 

dataset was used to add a gridded and regional context to the weather stations and as a further 

quality control check. ERA-20C is a gridded dataset spanning 1900-2010, with a horizontal 

resolution of approximately 125km. It was produced with model IFS version Cy38r1 and it 

assimilates observations of surface pressure and surface marine winds. Daily, invariant and 

monthly mean data is available: http://apps.ecmwf.int/datasets/data/era20c-daily/. Here the 

Monthly Means of Daily Means for 2 metre temperature (K) and total precipitation (m) were used. 

Monthly Means of Daily Means for photosynthetically active radiation at the surface (J m-2) were 

also downloaded - this was to supplement the lack of daily or monthly location-specific solar 

radiation data.  

http://apps.ecmwf.int/datasets/data/era20c-daily/
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To download the 1o x 1o-gridded monthly ERA-20C data, the server.retrieve() function from the 

ecmwfapi module in Python (Van Rossum and Drake, 2009) was used. The files were then stitched 

together using the Climate Data Operator (CDO) (Schulzweida, 2021) mergetime command and 

the data type converted to double precision floating-point to overcome the common error 

“Numeric conversion not representable”.  The temperature data was converted from Kelvin to 

degrees Celsius and rainfall from m to mm.  

As the precipitation data corresponds to mean daily total precipitation for each month, monthly 

total rainfall was calculated by multiplying the monthly mean of daily mean value by the number 

of days in the month using xarray (Hoyer and Hamman, 2017) in Python. Growing season average 

temperature (Figure 2.1c), total rainfall (Figure 2.1d) and total photosynthetically active radiation 

(PAR) (Figure 2.1e) for 1901-1930 confirm that the driest and sunniest region is the south-east of 

Ireland.  

Growing Degree Days (GDD) were calculated using daily temperature data for growing season 

months March to August and the following equation: 

𝐺𝐷𝐷(5.6) = {
∑

𝑇𝑚𝑖𝑛 + 𝑇𝑚𝑎𝑥

2
,

𝑇𝑚𝑖𝑛 + 𝑇𝑚𝑎𝑥

2
> 5.6

0,
𝑇𝑚𝑖𝑛 + 𝑇𝑚𝑎𝑥

2
≤ 5.6

, [2.1] 

where 𝑇𝑚𝑖𝑛 is daily minimum temperature and 𝑇𝑚𝑎𝑥 is daily maximum temperature. 𝐺𝐷𝐷(5.6) 

gives a day-by-day sum of the number of degrees by which the mean temperature exceeds 5.6oC 

(Rivington et al., 2013; Arnell and Freeman, 2021; Kendon et al., 2022). To ensure that missing 

data did not incorrectly reduce the final GDD value, growing seasons with at least one day of 

missing maximum and/or minimum temperature data were dropped. Roches Point was missing 

data from 18 years (1872, 1994-2008, 2010, 2015), Dublin was missing 9 years (1959, 1960, 1963, 

1965-1967, 1969, 1988, 2020) and Birr Castle 3 years (1952-1954). None of the years in 1901-

1906 study period were missing data. Monthly and GDD values were then combined with the 

trials data using the pandas join function, to ensure each trial site had climate data for the nearest 

weather station for the months of the growing season (March to August).  

In the climate analysis two averaging periods were used: the full record of selected weather 

datasets, to provide context for extreme events, and the relevant 30-year period, as the basis for 

the calculation of anomalies.  For the weather station data, the 30-year period used was 1891-

1920, however for the gridded reanalysis dataset ERA-20C, which begins in 1900, this was 1901-

1930. 
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Given the known influence of the North Atlantic Oscillation (NAO) on the Irish climate, the WNAO, 

SNAO and spring NAO indexes were calculated for 1824-2020 using the NAO index series 

maintained by the University of East Anglia Climatic Research Unit (Jones et al., 1997). Each index 

is calculated as the average NAO index across the three corresponding monthly index values. In 

this analysis winter consists of December to February, spring is March to May and summer is 

defined as June to August, to provide consistency with the rest of this work. The WNAO influence 

on temperature can persist into early spring, especially through its effect on surrounding sea 

temperatures, hence it is included in this analysis. 

2.1.3 Modelling Irish spring barley and climate data 

Total rainfall, mean maximum and mean minimum temperature for each month were calculated 

using the weather station data (Table 2.5). April maximum daily rainfall was also included in the 

analysis due to its low correlation with total rainfall in this month. 
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Variable (units) Range 

Yield (t/ha) [1.34,3.93]  

Value (£/ha) [11.12,28.91] 

Year [1901,1906] 

Variety Archer or Goldthorpe 

Farm 
18 locations within latitude = [51.82,54.05] 
and longitude = [-8.23,-6.13] 

Maximum daily 
rainfall (mm) 

apr_rain_dmax [5.3,36.1] 

Total monthly 
rainfall (mm) 

mar_rain_tot [32.8,173.5] 

apr_rain_tot [21.9,110] 

may_rain_tot [15.9,95] 

jun_rain_tot [30.3,143.7] 

jul_rain_tot [16.2,128.6] 

aug_rain_tot [53.3,202.2] 

Mean monthly 
maximum 
temperature 
(oC) 

mar_temp_max [8.0,10.9] 

apr_temp_max [10.2,13.2] 

may_temp_max [12.7,17.8] 

jun_temp_max [15.4,19.6] 

jul_temp_max [17.6,21.1] 

aug_temp_max [17.1,20.6] 

Mean monthly 
minimum 
temperature 
(oC) 

mar_temp_min [0.5,5.0] 

apr_temp_min [1.1,6.3] 

may_temp_min [4.7,8.3] 

jun_temp_min [7.4,11.2] 

jul_temp_min [9.8,13.5] 

aug_temp_min [8.1,12.6] 
Table 2.5: Variables of interest and their range of values for Irish barley yield modelling. 

Prior to including the climate covariates, a linear model was run using lm in R (R Core Team, 2021) 

to understand the significance of year, variety and site effects, as well as their interactions: 

𝑦𝑖𝑗𝑘 =  𝜇 + 𝑣𝑖 + 𝑟𝑗 + 𝑓𝑘 + 𝑣𝑟𝑖𝑗 +  𝑓𝑟𝑗𝑘 + 𝑣𝑓𝑟𝑖𝑗𝑘 + 𝑒𝑖𝑗𝑘 [2.2] 

𝑦𝑖𝑗𝑘 is the yield of variety 𝑖 in year 𝑗 at farm 𝑘,  𝜇 is the overall trial series mean, 𝑣𝑖 is the effect 

of variety 𝑖, 𝑟𝑗 is the effect of year 𝑗, 𝑓𝑘 is the effect of farm 𝑘, 𝑣𝑟𝑖𝑗 is the effect of variety 𝑖 in year 

𝑗, 𝑠𝑗𝑘  is the effect of the site, at farm 𝑘 in year 𝑗, 𝑣𝑓𝑟𝑖𝑗𝑘 is the interaction between variety 𝑣𝑖 with 

farm 𝑘 in year 𝑗 and 𝑒𝑖𝑗𝑘  is the residual term. Year was included in this model as a factor, using 

the as.factor function, and then as a variable to see if there is any specific year effect over the 

short six-year time span. 
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The spring barley variety trials are located across 18 different sites, creating a clustered dataset 

where trial yields are not independent. At a given site, the yields are all dependent on more similar 

environmental factors such as rainfall and soil type, as well as the same farmer and agronomy. 

Furthermore, not all farms were used each year (Table 2.1). Therefore, farm should be modelled 

as a random effect, creating the need for linear mixed-effect modelling. Year is also modelled as 

a random effect as the data is very incomplete, with some sites missing in some years.  

The following model was fitted to the combined trials and climate dataset using REML through 

lmer from the lme4 package (Bates et al., 2020) in R:  

𝑦𝑖𝑗𝑘 =  𝜇 + 𝑇𝑗𝑘 + 𝑃𝑗𝑘 + 𝑣𝑖 + 𝑟𝑗 + 𝑣𝑇𝑖𝑗𝑘 + 𝑣𝑃𝑖𝑗𝑘 + 𝑠𝑗𝑘 + 𝑒𝑖𝑗𝑘  [2.3] 

𝑇𝑗𝑘  is the effect of monthly temperature in year 𝑗 at farm 𝑘, 𝑃𝑗𝑘 is the effect of monthly 

precipitation in year 𝑗 at farm 𝑘, 𝑣𝑇𝑖𝑗𝑘  is the interaction between variety 𝑖 and monthly 

temperature 𝑇𝑖𝑗𝑘  in year 𝑗 at farm 𝑘, and 𝑣𝑃𝑖𝑗𝑘 is the interaction between variety 𝑖 and monthly 

precipitation 𝑃 in year 𝑗 at farm 𝑘. 𝑠𝑗𝑘  is the effect of site within years, representing the 

interaction between year term 𝑟𝑗 and farm term 𝑓𝑘. This term has been included due to model 

convergence issues caused by including farm 𝑓𝑘 as a main effect in the mixed model. This also 

means each farm is treated as different each year, which is a more accurate representation, given 

the exact location of fields is unknown and may have varied, along with the corresponding 

environmental factors such as soil type.  

The monthly variables 𝑇𝑗𝑘  and 𝑃𝑗𝑘 encompass the growing season (March-August) climate 

variables (Table 2.5). The site term 𝑠𝑗𝑘  is fitted as a random effect, whilst the variety × 

temperature 𝑣𝑇𝑖𝑗𝑘  and variety × rainfall 𝑣𝑃𝑖𝑗𝑘 terms are fitted as fixed effects as the specific 

reaction of individual varieties (genotype) with the climate covariates is of interest.  

2.1.4 Variable selection methods 

To reduce the dimensionality of the data and identify the most significant monthly temperature 

and precipitation variables in determining yield to include in [2.3], best subset selection, forwards 

and backwards stepwise selection, the lasso (Tibshirani, 1996) and elastic net (Zou and Hastie, 

2005) were used on the linear model run using lm in R: 

 

𝑦𝑖𝑗𝑘 =  𝜇 + 𝑇𝑗𝑘 + 𝑃𝑗𝑘 +  𝑒𝑖𝑗𝑘 [2.4] 



63 
 

These were implemented in R using the functions and arguments detailed in Table 2.6. Significant 

variables (p < 0.05) in each of the selected models were identified using an analysis of variance 

(ANOVA). Here a type III sum of squares (SS) was used as the order of importance of the climate 

variables isn’t known. For each method, the root mean square error (RMSE) and adjusted R2 were 

calculated for the selected model.  

Best subset selection, forwards and backwards stepwise selection were chosen as these are the 

most widely used variable selection methods. The elastic net  and lasso  were selected from the 

range of penalised regression methods due to their ability to reduce model complexity by setting 

some covariate coefficients to 0. Specifically, the lasso minimises the residual sum of squares by 

shrinking some variable coefficients and setting others to 0 (Zou and Hastie, 2005), whilst the 

elastic net encourages a grouping of strongly correlated predictors, such that they are in or out 

of the model together (Tibshirani, 1996). Ridge regression is often preferred over the lasso when 

there is a high degree of collinearity between covariates. It shrinks all coefficients towards zero 

by a tuning parameter, which means all variables are included in the final model. This is 

undesirable in this instance when the aim is to reduce the number of covariates to then include 

in further models. 
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Table 2.6: Methods of variable selection used to select climate covariates. 

 Method Functions Packages Arguments Reference 

1 = 
cv.b 

Best subset 
selection using 
cross-
validation  

regsubsets 
 

tidyverse 
caret 
leaps 

nvmax = 19 (Wickham et 
al., 2019) 
(Kuhn, 
2020) 
(Lumley, 
2020) 

2a = 
s.bo 

Stepwise 
selection in 
both 
directions 

stepAIC MASS direction = “both” (Venables 
and Ripley, 
2002) 

2b = 
s.ba 

Backwards 
stepwise 
selection 

trainControl leaps 
caret 
tidyverse 

number = 10 (Kuhn, 
2020) 
(Lumley, 
2020) 
(Wickham et 
al., 2019) 

train method = 
“leapBackward” 

2c = 
s.f 

Forwards 
stepwise 
selection 

trainControl leaps 
caret 
tidyverse 

number = 10 (Kuhn, 
2020) 
(Lumley, 
2020) 
(Wickham et 
al., 2019) 

train method = 
“leapForward” 

3a = 
l.m 

Lasso using 
optimal λ that 
minimises the 
cross-
validation 
error 

cv.glmnet tidyverse 
caret 
glmnet 

family = “gaussian”, 
alpha = 1 

(Wickham et 
al., 2019) 
(Lumley, 
2020) 
(Friedman et 
al., 2010) 

glmnet family = “gaussian”, 
alpha = 1 
lambda = 
cv.lasso$lambda.min 

3b = 
l.1 

Lasso using λ 
with gives the 
simplest 
model and lies 
within one 
standard error 
of lambda.min 

cv.glmnet tidyverse 
caret 
glmnet 

family = “gaussian”, 
alpha = 1 

(Wickham et 
al., 2019) 
(Lumley, 
2020) 
(Friedman et 
al., 2010) 

glmnet family = “gaussian”, 
alpha = 1 
lambda = 
cv.lasso$lambda.1se 

4 = 
e.n 

Elastic net 
using optimal 
λ and that 
minimise the 
cross-
validation 
error 

trainControl tidyverse 
caret 
glmnet 
 

method = 
“repeatedcv”, number 
= 10, repeats = 5 

(Wickham et 
al., 2019) 
(Lumley, 
2020) 
(Friedman et 
al., 2010) 

train 

glmnet method = “glmnet”,  
tuneLength = 10 

family = “gaussian” 
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Mixed-effect model backwards elimination was also carried out using step on equation [2.3] 

modelled using lmer from lmerTest package (Kuznetsova et al., 2017). glmmLasso from 

glmmLasso (Groll, 2017) was used to explore the effect of using L1-penalty shrinkage to the fixed 

effects in equation [2.3] (Groll and Tutz, 2014). Here the gaussian link function “identity” was 

used. A sequence of tuning parameter values λ was specified, ranging from 0 to 200 in steps of 5. 

To enable comparison with the frequentist modelling methods described above, Bayesian 

methods were also used. Initially, a Bayesian linear regression model was fitted to the climate 

covariates using rstanarm (Goodrich et al., 2020) packages stan_glm and describe_posterior, 

specifying the probability value ci = 0.95, with the equation taking the same form as [2.4]. The 

significant variables were then included in a Bayesian linear mixed model using brm, along with 

variety, year and site, as in [2.3].  

2.1.5 Principal Component Analysis 

A Principal Component Analysis was implemented using the ggcorr function from GGally 

(Schloerke et al., 2021) and prcomp function from stats.  

2.1.6 Pearson’s correlation analysis 

Pearson’s correlation analysis was used to identify the climate covariates with the highest 

correlation with yield as well as the degree of correlation between the climate covariates. 

2.1.7 Akaike Information Criterion  

Each climate variable was input into equation [2.3] iteratively and the significance of that variable 

and accompanying model Akaike Information Criterion (AIC) was calculated. The AIC was then 

compared with [2.3] without any climate variables to see if the additional variable improved the 

fit, using anova(model1,model2) in R. Additional climate variables were iteratively added and their 

significance and model AIC assessed. 

2.1.8 Model assumptions 

The first assumption is linearity, which is checked by plotting the model residuals against the 

predictor. If they appear random, then no mathematical transformation of the predictor or 

response is required (Palmeri, 2017).  
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The second assumption is the homogeneity of variance, which means that the variance of the 

residuals is equal across groups e.g. sites (Palmeri, 2017). This can be checked using plot(model) 

in R, which creates a fitted vs residual plot. If this assumption is satisfied there should be an even 

spread around the centred line.  

The third assumption of the linear model is that the residuals have an approximately normal 

distribution (Palmeri, 2017). The Shapiro-Wilk test can be used to check the normality of 

residuals. The null-hypothesis of this test is that the population of residuals is normally 

distributed, therefore if the p-value is less than the selected alpha value (e.g. 0.05), the null 

hypothesis is rejected. For normal residuals, the Shapiro-Wilk test will return a p-value greater 

than the chosen alpha value. 

Results of these tests are not discussed in the text as the model assumptions were not violated. 

2.1.9 Comparison of standard error of difference between means 

Student (1923) calculates the standard error of the mean difference in variety means. To 

understand if the models run in this analysis can improve on this value, this was first repeated 

using the equation 𝑆𝐸(𝑑) =  
𝑠𝑑

√𝑛
, where 𝑠𝑑 is the standard deviation of the differences and 𝑛 is 

the number of paired trials. After checking this against Student (1923), the value was then 

converted to t/ha.  

To find an estimate of the standard error of difference between the varieties in the selected 

model, the emmeans function in R was used.  The model and variable of interest, variety 𝑣𝑖, were 

specified.  The contrast function was then applied to this, using method = “pairwise”.  This 

calculates the estimate of difference, standard error, degrees of freedom, t. ratio and p value for 

the variety pair. The statistical significance of the difference in mean values was then checked by 

calculating the t-statistic. 

2.2 Datasets and methods for Chapter 4 

In Chapter 4, national, regional and variety trial yield data was used to quantify recent yield trends 

and variability, to see if the ‘yield plateau’ still exists. Several climate datasets were used to create 

a set of agroclimate metrics to explore long-term changes and interannual variability in the UK 

agroclimate and how this has affected historical UK cereal production.  

2.2.1 UK variety trials data 

The National List (NL) and Recommended List (RL) field variety trial data for winter wheat, spring 

barley and winter barley were provided by the Agriculture and Horticulture Development Board 
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(AHDB) for 2007-2018. This was combined with earlier trials data for 1982-2006 (1983-2006 for 

spring barley) provided by National Institute of Agricultural Botany (NIAB). The AHDB 

Recommended Lists is managed by a project consortium of AHDB, BSPB, MAGB and UKFM. Full 

data is available at ahdb.org.uk/rl. Trials were located throughout England, Wales, Scotland and 

Northern Ireland, focused in the relevant growing areas. Since 1982, cereal trials have been split 

into untreated and treated trials, with the former receiving no fungicide treatment and the latter 

full fungicide treatment. Variables included in the trials data are yield (t/ha), site location and 

fungicide treatment. Drilling date, harvest date, soil type and previous cropping were also 

provided for 1988-2018 for winter wheat and 2008-2018 for winter and spring barley.  

2.2.2 UK on-farm data 

National annual wheat and barley yield and planted area data for 1984-2020 were downloaded 

from the Department for Environment, Food and Rural Affairs (DEFRA) Food and farming website 

(https://www.gov.uk/government/statistical-data-sets/structure-of-the-agricultural-industry-in-

england-and-the-uk-at-june). Regional wheat yield data was also downloaded for 1999-2019. 

Very little spring wheat is grown in the UK, therefore national wheat yields were used as a proxy 

for national winter wheat yields (Mackay et al., 2011).  

To add further context to recent observed production trends, annual UK wheat and barley yield 

and area data for 1961-2020 was downloaded from FAOSTAT 

(https://www.fao.org/faostat/en/#data/QCL).  

2.2.3 UK temperature and precipitation dataset selection 

The importance of quality, accurate input weather data for crop models is highlighted in multiple 

studies (e.g. Battisti et al. 2019; Parkes et al. 2019). There is an array of gridded weather datasets 

available, with various spatial and temporal resolutions and coverage. Three high resolution 

datasets (Table 2.7) were downloaded and validated against observational weather station data 

to identify the most suitable dataset for use in this research: HadUK (Hollis et al., 2019), MÉRA 

(Gleeson et al., 2017) and ERA5-Land (Copernicus Climate Change Service (C3S), 2019). HadUK is 

obtained from interpolation of ground-based station data (Hollis et al., 2019) while MÉRA and 

ERA5-Land are obtained from reanalysis of weather model runs, satellite and observed data 

(Gleeson et al., 2017; Muñoz Sabater, 2019). The year 2017 was chosen as the validation year as 

it was the most recent year with available data from all of the gridded weather datasets at the 

time and there was minimal missing data that year. 

 

https://www.gov.uk/government/statistical-data-sets/structure-of-the-agricultural-industry-in-england-and-the-uk-at-june
https://www.gov.uk/government/statistical-data-sets/structure-of-the-agricultural-industry-in-england-and-the-uk-at-june
https://www.fao.org/faostat/en/#data/QCL
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Name Resolution Time frame 
Spatial 

coverage 
Primary 

source type 
References 

HadUK 
1km; 
Daily 

1862-2018 UK 
Weather 
station data 

Hollis et al. 
(2019) 

ERA5-Land 
0.1o  or ~9km; 
Hourly 

1981-
present 

Global Reanalysis  
Muñoz 
Sabater (2019) 

MÉRA 
2.5km; 
Hourly 

1981-July 
2019 

UK and 
Ireland 

Reanalysis 
Gleeson et al. 
(2017) 

Table 2.7: Gridded weather datasets used to identify the most suitable dataset for use in the agroclimate 

analysis 

Observed weather data was retrieved from 21 stations around the UK. These stations belong to 

the Met Office weather station network (https://www.metoffice.gov.uk/) and were selected 

based on their proximity to important cropping regions and the completeness of the data 

available for daily maximum and minimum temperature and rainfall (Table 2.8, Figure 2.4). These 

stations also cover a wide distribution in weather conditions, with 2017 annual precipitation, for 

example, ranging from 483 mm (Wittering, Cambridgeshire) to 1447 mm (Cardinham, Cornwall). 

Station Number Station Name County Latitude (o) Longitude (o) 

3066 Kinloss Inverness 57.65 -3.56 

3088 Inverbervie Aberdeenshire 56.85 -2.27 

3144 Strathallan Stirling 56.33 -3.73 

3158 Charterhall Berwickshire 55.71 -2.38 

3171 Leuchars Fife 56.38 -2.86 

3382 Leconfield Humberside 53.87 -0.44 

3414 Shawbury Shropshire 52.79 -2.66 

3462 Wittering Cambridgeshire 52.61 -0.46 

3469 Holbeach Lincolnshire 52.87 0.14 

3590 Wattisham Suffolk 52.12 0.96 

3680 Rothamsted Hertfordshire 51.81 -0.36 

3716 St Athan Cardiff 51.41 -3.44 

3761 Odiham Hampshire 51.24 -0.94 

3823 Cardinham Cornwall 50.50 -4.67 

3872 Thorney Island West Sussex 50.81 -0.92 

3882 Herstmonceux East Sussex 50.89 0.32 

3917 Aldergrove Belfast 54.66 -6.23 

99008 East Malling Kent 51.29 0.45 

99025 Sutton Bonnington Nottinghamshire 52.84 -1.25 

99080 Wisley Surrey 51.31 -0.48 

99207 Ross-on-Wye Gloucestershire 51.91 -2.58 
Table 2.8: Synoptic weather stations used for validation of the gridded weather datasets HadUK, ERA5-

Land and MÉRA. 

For validation purposes, 2017 daily Tmin and Tmax (oC) and rainfall (mm) nearest grid point values 

were extracted from MÉRA, ERA5-Land and HadUK for the 21 station locations, using the weather 

station latitudes and longitudes (Table 2.8).  

https://www.metoffice.gov.uk/
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Validation of UK temperature and precipitation datasets 

For the three gridded temperature and precipitation datasets (Table 2.7), daily bias, RMSE, 

relative bias, relative RMSE, and Pearson’s correlation coefficient were calculated against the 21 

weather station data (Table 2.8, Figure 2.4).  Relative bias and relative RMSE were calculated by 

dividing bias and RMSE by the mean observation for each station. The forecast accuracy of each 

dataset was also computed. For temperature, forecast accuracy of heat (Tmax ≥ 20oC) days and 

forecast accuracy of cold (Tmin < 0oC) days was used. For rainfall, forecast accuracy was calculated 

for dry days (< 1 mm), where forecast accuracy is 
number of hits  + number of correct negatives 

number forecasted events 
. 

Of the three gridded temperature datasets, HadUK estimates maximum and minimum 

temperature with the highest correlation, lowest bias and RMSE (Table 2.9). HadUK also has the 

highest forecast accuracy for heat (Tmax > 20oC) and cold (Tmin < 0oC) days.  

  

Figure 2.4: Met Office stations used for validating gridded weather datasets. 
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Statistic 
Maximum temperature (Tmax) Minimum temperature (Tmin) 

HadUK 
ERA5-
Land 

MÉRA  HadUK 
ERA5-
Land 

MÉRA 

Correlation 1.0 0.98 0.98 1.0 0.94 0.95 

Bias (oC) 0.47 -1.0 -0.36 -0.28 0.32 -0.30 

RMSE (oC) 0.64 1.63 1.3 0.46 1.7 1.5 

Forecast accuracy of 
temperatures  

0.98 0.93 0.95 0.98 0.95 0.96 

Table 2.9: Daily maximum and minimum temperature comparison statistics for three gridded temperature 

datasets. 

HadUK also performed the best at replicating rainfall observations. HadUK has very high 

correlation (0.99) with the station data (Table 2.10). ERA5-Land and MÉRA have weaker 

correlations (mean r = 0.79, 0.71, respectively), with much greater variability from station to 

station. Daily mean bias is significantly larger for ERA5-Land (0.12 mm) than MÉRA (0.027 mm), 

with both overestimating daily rainfall totals, but MÉRA has the highest daily RMSE. Again, HadUK 

has the lowest bias and RMSE, indicating better performance.  

Statistics HadUK ERA5-Land MÉRA 

Correlation 0.99 0.79 0.71 

Bias (mm) 0.003 0.12 0.027 

RMSE (mm) 0.45 2.5 3.1 

Forecast accuracy of 
dry days (< 1mm) 

0.99 0.84 0.83 

Table 2.10: Daily rainfall comparison statistics for three gridded rainfall datasets. 

Conclusion from validation 

HadUK performed best in both the temperature and rainfall comparisons. This is somewhat 

unsurprising given the very high resolution of the data (1 km) and that it has access to higher 

weather station density so doesn’t need to fill in gaps using a model. It has also successfully been 

used in similar analyses (e.g. Arnell et al., 2021). Hence HadUK has subsequently been used in this 

when daily UK temperature and rainfall data is required.  

2.2.4 Additional UK climate data 

Based on the results of the validation step, HadUK daily gridded weather data for 1981-2020 was 

subsequently downloaded from the Met Office 

(https://www.metoffice.gov.uk/research/climate/maps-and-data/data/haduk-grid/datasets) via 

the CEDA data archive using Linux (Hollis et al., 2019). Three daily variables were extracted: 

maximum air temperature (Tmax), minimum air temperature (Tmin) and precipitation (P). 

https://www.metoffice.gov.uk/research/climate/maps-and-data/data/haduk-grid/datasets


71 
 

HadUK daily precipitation values represent the total precipitation measured between 0900 UTC 

on day D and 0900 on day D+1. Similarly, maximum air temperature is for the period 0900 UTC 

on day D to 0900 UTC on day D+1, whilst minimum air temperature is for the period 0900 UCT on 

day D-1 to 0900 UCT on day D (Hollis et al., 2019; Tanguy et al., 2019). These definitions were 

accounted for in calculating weekly and seasonal climate summaries used in the analysis. 

Surface solar radiation data 

Daily surface incoming shortwave radiation (SIS) data was downloaded for a UK domain from the 

EUMETSAT CM-SAF website for 1987-2020 

(https://wui.cmsaf.eu/safira/action/viewDoiDetails?acronym=SARAH_V002). CM-SAF SIS data is 

derived from Meteosat satellite observations and is available for the region ± 65o longitude and 

± 65o latitude (Pfeifroth, Trentmann, et al., 2018).  

Hydrology data 

To calculate the water balance across the UK, gridded potential evapotranspiration and 

precipitation data was downloaded from the Centre for Ecology and Hydrology’s CHESS-PE 

(Robinson et al., 2020b) and CHESS-met (Robinson et al., 2020a) data repositories, respectively. 

Both CHESS products cover 1961-2017 at 1km resolution.  

The UK drought tool (Centre for Ecology and Hydrology, 2022) was also used to identify periods 

with an anomalous Standardized Precipitation Index (SPI). SPI values quantify the number of 

standard deviations by which an observed precipitation anomaly deviates from the long-term 

mean, accumulated over several months, for example, SPI-3 corresponds to SPI over three 

months (NCAR, 2020). Only SPI was available through the drought tool, hence it was used instead 

of the more comprehensive Standardized Precipitation and Evapotranspiration Index (SPEI). 

UK climate maps and data 

UK and regional time-series data for monthly and seasonal maximum temperature, minimum 

temperature, rainfall and sunshine duration were downloaded from the Met Office 

(https://www.metoffice.gov.uk/research/climate/maps-and-data). Temperature, rainfall and 

sunshine duration anomaly maps were also used for 2001-2022. Additional anomaly maps for the 

earlier 1981-2000 period were also created based on HadUK gridded data for rainfall and 

temperature anomalies and based on CMSAF-SIS data for solar radiation anomalies. Anomalies 

are given relative to 1991-2020, consistent with the current Met Office reference period.  

https://wui.cmsaf.eu/safira/action/viewDoiDetails?acronym=SARAH_V002
https://www.metoffice.gov.uk/research/climate/maps-and-data
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Growing season (September to August) temperature, rainfall and sunshine anomaly graphs were 

created using the Met Office HadUK year ordered monthly time-series data 

(https://www.metoffice.gov.uk/research/climate/maps-and-data/uk-and-regional-series). 

2.2.5 Quality control of variety trials datasets 

Prior to statistical analysis, pre-processing and quality control of the trials data was required to 

amalgamate data from different databases, as summarised in Figure 2.5. 

Variety names had to be collated so that variations in the use of capitals letters and misspellings 

did not result in individual varieties being treated as distinct. A handful of varieties included some 

starred “*” versions, which initially implied distinct varieties e.g. Solstice* different to Solstice, 

since variety names can be recycled over time. The variety IDs were found to be the same for 

both starred and unstarred varieties, hence all were included as the unstarred names. 

Site information was only provided for 1988-2018 for winter wheat, and only 2007-2018 for 

winter and spring barley. For the 1988-2006 winter wheat data, this site information took the 

form of grid references. There were four common issues with the grid references provided (Table 

2.11), relating to missing data, an incorrect main grid letter and Easting and Northing the wrong 

way around. In example 1 (Table 2.11), although grid reference has been used from the 

corresponding treated trial, soil type is not used as it is possible this untreated trial was grown in 

a nearby field that has a different soil type. Once corrected, grid references were then used to 

find latitude and longitudes for each site. 

Example Issue Decision 

1 Untreated trial has no grid reference (GR), but there is a GR 
for the paired treated trial with the same sitename and other 
trial information for 1997. For years 1996 and 1995 treated 
and untreated same location 

Use 1997 treated 
GR for untreated 
1997 

2 1992 GR is TQ whilst rest of this sitename are TL. TQ maps the 
site to Wales, not Essex as the sitename indicates. 

Change TQ to TL 

3 Eastings and Northings the wrong way around in 1994, given 
the sitename. TL502204 should be TL204502 

Change GR to 
TL204502 

4 GR, soil texture, sowing date, previous crop information 
missing for trial in 2006 

AHDB website* 
for GR 

Table 2.11: Common site information issues in the variety trials dataset. GR = grid reference. *The AHDB 

Harvest Results archive (https://ahdb.org.uk/knowledge-library/harvest-results-archive) filled in the 

gaps for some of the missing grid reference for 2002 onwards. 

For the 2007-2018 winter wheat data, the provided latitude and longitude were used to obtain 

the grid references for each site for use in statistical models. All sites for all years were then 

mapped using QGIS, to ensure their locations were within the United Kingdom. Using the 

https://www.metoffice.gov.uk/research/climate/maps-and-data/uk-and-regional-series
https://ahdb.org.uk/knowledge-library/harvest-results-archive
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intersect function, only one winter wheat trial was found to lie outside the UK, in Ireland. 

Therefore, this trial site was removed.  

 

Figure 2.5: Pre-processing and quality control steps undertaken prior to any statistical analysis. The National 

Institute of Agricultural Botany (NIAB) provided the 1982-2006 trials data, whilst Agriculture and 

Horticulture Development Board (AHDB) provided the 2007-2018 data. 

To maximise the trials included in the analysis, those with no site information were allocated 

unique site codes, based on the trial ID, and if this wasn’t provided, sitename and harvest year 

were combined instead.  
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Data was then validated to remove duplicates. In Excel, this was achieved by sorting by years, 

then yield and then varieties. Variety-year combinations with only 1 or 2 sites were also removed 

to avoid potentially unrepresentative results due to insufficient replication. For example, the 

winter wheat variety Consort was only grown at one site in 2014. Not all years and sites are 

connected by common cultivars, limiting connectivity upon which to evaluate non-genetic 

factors. Furthermore, varieties in trial for only 1 or 2 years provide little information for trend 

analyses, therefore these varieties were also removed from the dataset (Mackay et al., 2011; 

Piepho et al., 2014; Laidig et al., 2021). 

Drilling and harvest dates were checked for potential errors. Several of the 2001 winter wheat 

trials were drilled in January and February 2001. The drilling of these trials was delayed because 

of the very wet autumn weather in 2000 (Figure 4.8) (Philpott, pers. comm), therefore these 

drilling dates were not discarded. 

Several trials in 1988-1994 had harvest dates of the 1st January, which is the default date given if 

harvest date isn’t provided, therefore these harvest dates were removed. A harvest date of 17th 

June 2011 was also removed as it appears abnormally early given the high yields recorded for this 

trial. Dates were also corrected for 4 additional trials. Specifically, WW2009ES821U had a 

supposed drilling date of 4th October 2010, despite being harvested 30th August 2009. The drilling 

date was subsequently corrected, based on additional supporting information to 29/09/08. 3 

trials in 2007 had recorded harvest dates in March (WW2007ES104U) and June 

(WW2007NIOO9U and WW2007IS129T), which were corrected to 03/09/07, 06/09/07 and 

06/08/07, respectively, upon consultation with Ellie Marshall, the data provider at AHDB.  

 The summary of the data structure, after quality control, can be seen in Table 2.12. The 

distribution of the 2007-2018 trials relative to the respective crop growing area (EDINA, 2022) 

can be seen graphically in Figure 2.6.  

Table 2.12: Structure of winter wheat (WW), winter barley (WB) and spring barley (SB) trials data after 

quality control and restricting for varieties present for minimum 3 years. 

The number of varieties and trials, and therefore total observations, fluctuate year on year for a 

variety of reasons (Table 2.13). Variety numbers depend on how many are submitted by breeders 

into NL trials and how many are then selected by the RL committees to progress through the 

system. Trial sites tend to remain relatively stable in their locations. Some sites are reviewed on 

Crop 
No. 

observations 
No. 

varieties 
Start 
year 

End 
year 

Varieties 
per year 

Treated 
trials 

Untreated 
trials 

T-U 
pairs 

WW 64,719 274 1982 2018 42 42,472 22,247 17,952 

WB 38,786 197 1982 2018 29 21,610 17,176 11,565 

SB 34,872 184 1983 2018 32 18,613 16,259 10,468 
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an annual basis, whilst the core trial programme is reviewed every five years. This can cause large 

fluctuations when trials are moved to accurately reflect the UK crop area. Some trials can also be 

abandoned at an early stage, for example due to poor weather causing crop damage, hence won’t 

be part of the data here (Marshall, pers. comm.). Changes in funding have also had a major 

influence on trial numbers. Given the large interannual variation in trial sites and varieties, this 

means not all varieties are grown on all sites and the trials data is unbalanced.  
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Figure 2.6: Trial locations (red) for 2007-2018 for winter wheat (left), winter barley (centre) and spring 

barley (right) relative to their respective growing areas (ha per 5 km x  km square) in the 2010 Agricultural 

Census (EDINA 2022). The regions shown in England are the government regions, whilst for Scotland these 

are the Met Office regions. Data on growing areas of all three crops in Northern Ireland and Wales was 

not available. 
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Year Observations Varieties Trial sites No. T No. U 

1982 456 19 29 111 345 

1983 1282 22 63 570 712 

1984 1467 28 60 660 807 

1985 1236 31 46 541 695 

1986 1305 28 54 592 713 

1987 893 25 43 398 495 

1988 1704 33 84 995 709 

1989 2049 41 81 1146 903 

1990 1817 47 74 1011 806 

1991 1511 43 66 760 751 

1992 1952 40 75 1230 722 

1993 2257 43 76 1367 890 

1994 2527 44 68 1467 1060 

1995 2788 54 69 1862 926 

1996 2752 54 68 1852 900 

1997 2764 51 59 1786 978 

1998 2494 53 61 1609 885 

1999 2423 47 59 1559 864 

2000 2338 50 59 1505 833 

2001 2300 56 49 1477 823 

2002 2056 58 44 1391 665 

2003 2295 59 48 1627 668 

2004 1990 58 35 1448 542 

2005 2073 56 53 1692 381 

2006 2154 56 57 1695 459 

2007 1272 36 30 979 293 

2008 1078 34 28 800 278 

2009 927 32 25 653 274 

2010 1187 35 28 800 387 

2011 1195 38 28 843 352 

2012 1376 42 31 1130 246 

2013 1214 44 30 970 244 

2014 1462 42 37 1110 352 

2015 1748 47 37 1388 360 

2016 1630 47 36 1322 308 

2017 1523 38 36 1181 342 

2018 1224 31 36 945 279 

Table 2.13: Yearly structure of winter wheat trials data after quality control and restricting for varieties 

present for minimum 3 years showing large variations in the number of varieties, trial sites and consequently 

total observations. No. T and No. U show fluctuations in the number of fungicide treated and untreated trial 

observations, respectively.  

To facilitate regional analysis, the trials data was split into government regions, based on the 

regions shapefile (https://geoportal.statistics.gov.uk/datasets/international-territorial-level-1-

https://geoportal.statistics.gov.uk/datasets/international-territorial-level-1-january-2021-uk-bgc/explore
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january-2021-uk-bgc/explore), using the zonal statistics function in QGIS. This splits England into 

the same regions used by DEFRA in their regional crop statistics. Met Office regions were used 

for Scotland (Figure 2.7).   

2.2.6 Crop yield anomaly analysis 

Trends in UK variety trial, national and regional yields were analysed for wheat and barley. 

Anomalous years were identified by first detrending the data and then subtracting the period 

mean to identify the top and bottom 10% of yields for each crop. Potential widespread climatic 

causes of anomalous yields were explored by looking at the ranked Met Office UK time series data 

and at climate anomaly maps.  

 

Figure 2.7: Regions used in the analysis are based on DEFRA regions for England and Met Office regions 

for Scotland. 

https://geoportal.statistics.gov.uk/datasets/international-territorial-level-1-january-2021-uk-bgc/explore
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2.2.7 Agroclimate metrics 

After a thorough review of the literature on agroclimate indicators and influential weather on UK 

cereals, a list of agroclimate metrics was compiled (Table 2.14). These encompass national and 

regional climate-based metrics, as well as site-specific agricultural metrics, such as drilling day of 

year, extracted from the trials data. Drilling and harvest dates used are for winter wheat, unless 

otherwise indicated, due to data availability. Regional metrics are calculated for government 

regions for England, combined with Met Office regions for Scotland (Figure 2.7).
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Variable Description Data source Motivation Reference 

Drilling Day of Year - NIAB/AHDB 

Drilling date influences the number of GDD available to the crop. 
Drilling date is affected by autumn rainfall, as heavy rainfall can lead 
to a delay in drilling, as well as non-weather factors such as 
ploughing/direct drilling and weed pressure. Want to see if drilling 
day of year is getting earlier and what might be the driver of this.  

 

Harvest Day of Year - NIAB/AHDB Identify trends in harvest date relative to changes in drilling date.  

Start of Growing 
Season  
SOGS 

The first of five 
consecutive days 
with Tmean > 5.6oC 
from 1st January 

HadUK 
This will show if the growing season is changing. Look at relationship 
between SOGS, GDD and harvest date. 

(Rivington et al., 2013; 
Harding et al., 2015; 
Arnell and Freeman, 
2021) 

Growing Degree 
Days  
gdd 

Sum Tmean > 5.6oC for 
September to August 

HadUK 
GDD allows predictions of development stages. Look at variability 
and changes across the period. 

(Harding et al., 2015; 
Arnell and Freeman, 
2021; Kendon et al., 
2021) 

Vernalisation 
Degree Days 
vdd 

Sum of vernalisation 
function x daily mean 
temperature from 
September to April 

HadUK 

Vernalisation is an important process for triggering reproductive 
growth for many winter crops. Increasing temperatures could affect 
the vernalisation fulfilment. Explore the relevance and value of this 
variable. 

(Xiuchen Wu et al., 
2017) 

Water balance 
pe_balance 

30-day running mean 
precipitation-
evapotranspiration 
difference 

CHESS-met 
CHESS-PE 

Explore variability in water balance over the period to identify years 
with extreme rainfall and drought. 

(Knox et al., 2010; 
Daccache et al., 2012; 
Arnell and Freeman, 
2021) 

Spring air frost days 
frost03 
frost04 
frost05 

Days Tmin < 0oC per 
spring month 

HadUK 

Rather than focussing on total frosts across the year because the 
study is on winter crops the focus is on frosts during spring when the 
crop is more vulnerable. After loss of winter-hardiness frost can 
cause leaf chlorosis, lower stem damage and floret sterility (Gusta 
and Fowler, 1976; Barlow et al., 2015). 

(Harding et al., 2015; 
Harkness et al., 2020; 
Arnell and Freeman, 
2021; Kendon et al., 
2021) 
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Heavy rainfall  
<month>_rain10 
<month>_rain20 

Days with >10mm or 
>20mm rainfall from 
September to August 

HadUK 

Mackay et al. (2011) found a sensitivity of winter wheat yield to 
summer rainfall. Knight et al. (2012) found a negative relationship 
between March rainfall and winter wheat yield. 
Kettlewell et al. (2003) show a negative relationship between 
summer precipitation and winter wheat grain specific weight.  
Heavy rain events can lead to delays in getting heavy machinery on 
the land to complete important jobs, such as spraying. 
Look at changes in monthly rainfall >10mm and >20mm to see if any 
significant changes at critical times of growing season.  

(Peltonen-Sainio, 
Jauhiainen and Hakala, 
2009) 

Extreme heat 
around anthesis 
anthesis32 

The number of days 
Tmax ≥ 32oC between 
1st May-15th June 

HadUK 

Several studies categorise 32oC as the threshold above which heat 
stress during the period prior to anthesis can be detrimental, causing 
sterility and reproductive damage. Want to see if the occurrence of 
these days has increased. 

(Cammarano et al., 
2020; Arnell and 
Freeman, 2021) 

Mild heat stress 
during grain fill 
grainfill31 

The number of days 
Tmax ≥ 31oC between 
16th June-31st July 

HadUK 

Used as an index in Ceglar et al. (2019) and Bönecke et al. (2020). 
Significant association between number of days above 30 degrees 
during grain filling, grain number and therefore yield (Dreccer et al., 
2018; Rezaei et al., 2018). 

(Dreccer et al., 2018; 
Rezaei et al., 2018; 
Ceglar et al., 2019; 
Bönecke et al., 2020) 

Extreme heat stress 
during grain fill 
grainfill35 

The number of days 
Tmax ≥ 35oC between 
16th June-31st July 

HadUK 

Shortens development period and decreases yield (Nasehzadeh and 
Ellis, 2017; Savill et al., 2018). Used as an adverse weather index 
(Harkness et al., 2020). Heat stress during grain fill has been linked 
to yield stagnation in France (Knight et al., 2012). 

(Yang et al., 2017; 
Harkness et al., 2020; 
Jones et al., 2020) 

Total solar 
radiation during 
grain fill  
grainfillSIS 

Total SIS during the 
period 16th June-31st 
July (MJ/m2) 

CMSAF SIS 
June sunshine shown to be important in determining wheat yield 
(Knight et al., 2012). Solar radiation during grain fill rarely quantified, 
how has it changed and varied within the period? 

(Knight et al., 2012) 

Septoria leaf blotch 
prevalence 

Flag and second leaf 
prevalence (area %) 
of foliar diseases of 
winter wheat on-
farm for 1976-2019. 

Winter 
wheat 

survey data 

Disease can cause widespread yield losses. It is highly dependent on 
the climate (temperature-humidity-rainfall during specific disease-
sensitive periods), and, and as the climate changes the risk of 
individual diseases will change. Septoria blotch is a common wheat 
disease and can have significant yield impacts, hence its inclusion. 

(Polley and Thomas, 
1991; Hardwick et al., 
2001; Turner et al., 
2021) 

Table 2.14: Summary of selected agroclimate metrics used in Chapter 4’s analysis of changes in the UK’s agroclimate. 
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In the UK, anthesis in wheat typically occurs in early- to mid-June, at a thermal time of 2100oC 

days after drilling (AHDB Cereals & Oilseeds, 2018c). The “anthesis” period defined here (Table 

2.14) is 1st May-15th June as it also encompasses the ~20 day period before anthesis, during which 

time increased temperatures have been shown to cause significant reduction of grain numbers 

(Yang et al., 2017; Jones et al., 2020). Meanwhile, grain fill is defined as the ~6-week period 

following on from this, 16th June-31st July.  

A combination of Climate Data Operator (CDO) and Python were used to process the climate 

datasets to create these metrics and to explore trends and variability over time. 

Growing Degree Days (GDD) were calculated using daily temperature data for the growing season 

months, defined nationally as September to August, and equation [2.1]. For individual trial sites, 

this metric has been calculated over the period defined by drilling and harvest dates. 

Vernalisation Degree Days (VDD) were generated using a method described by Wu et al. (2017), 

which calculates a vernalisation effectiveness function of daily temperature (VF) extracted from 

the ORCHIDEE_crop model (Wu et al., 2016) for the drilling to anthesis period: 

where 𝑇𝑚𝑒𝑎𝑛 is the daily mean temperature, 𝑇𝑜𝑝𝑡  is the optimal vernalisation temperature and 

𝑇𝑎𝑚𝑝 modifies the amplitude of the vernalising effect. Here 𝑇𝑜𝑝𝑡  and 𝑇𝑎𝑚𝑝 are parameterised as 

6.5oC and 10oC, respectively, according to Brisson et al. (2009). For Tmean > 16.5oC and Tmean < -

3.4oC VF is 0 (Figure 2.8). VDD is then calculated using: 

At a national scale September-April is used as the drilling to anthesis period. At each trial site, the 

drilling date and daily mean temperature values were used to estimate the anthesis date, 

classifying it as a thermal time of 2100oC days from drilling (AHDB Cereals & Oilseeds, 2018c).  

𝑉𝐹 = max (1 − [
𝑇𝑜𝑝𝑡 − 𝑇𝑚𝑒𝑎𝑛

𝑇𝑎𝑚𝑝
]

2

; 0) 
[2.5] 

𝑉𝐷𝐷 = ∑ 𝑉𝐹. 𝑇𝑚𝑒𝑎𝑛 [2.6] 



83 
 

 

Figure 2.8: The Vernalisation Effectiveness Factor for a range of mean temperatures (oC), as used by Wu et 

al. (2017), to calculate Vernalisation Degree Days (VDD).

2.3 Datasets and methods for Chapter 5 

In Chapter 5, statistical modelling is used to quantify the contribution of crop breeding to UK 

cereal yields and explore the robustness of the genetic gain metric used to calculate this.  

The yield datasets used in Chapter 5 are the UK NL/RL variety trials dataset after the quality 

control methods, as described in Sections 2.2.1 and 2.2.5, and on-farm national yields data 

introduced in Section 2.2.2.  

2.3.1 Winter wheat certified seed area statistics 

Winter wheat certified seed area statistics were also obtained from the British Society of Plant 

Breeders (BSPB) (2008-2018) and NIAB (1982-2007). These show how much winter wheat 

seed for each variety is sold each year as a percentage of total winter wheat seed purchased 

that year, and are a good representation of the proportion of national crop grown for each 

variety in the following year (Mackay et al., 2011).  

2.3.2 Modelling phenotype trends in UK variety trial data 

To analyse changes in variety performance over time and to estimate adjusted means across 

locations and years for each cultivar, the following linear mixed model was initially fitted to 

the treated trials data and then to the untreated trials: 

 𝑦𝑖𝑗𝑘 =  𝜇 + 𝑟𝑗  +  𝑣𝑖  +  𝑣𝑟𝑖𝑗 + 𝑠𝑗𝑘 +  𝑒𝑖𝑗𝑘 [2.7] 
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𝑦𝑖𝑗𝑘 is the yield of variety 𝑖 in year 𝑗 at site 𝑘,  𝜇 is the overall trial series mean, 𝑣𝑖 is the effect 

of variety 𝑖, 𝑟𝑗 is the effect of year 𝑗, 𝑣𝑟𝑖𝑗 is the effect of the interaction between variety 𝑖 and 

year 𝑗, 𝑠𝑗𝑘  is the effect of site 𝑘 in year 𝑗 and 𝑒𝑖𝑗𝑘 is the residual term (Mackay et al. 2011).  

Year 𝑟𝑗 is fitted as a factor and fixed effect due to the anticipated large non-linear effects of 

year and to provide consistency with Mackay et al. (2011). Likewise, variety 𝑣𝑖 is included as 

a fixed effect as it is historical data and individual varietal performance is of interest. The 

interaction terms varieties x years 𝑣𝑟𝑖𝑗 and sites within years 𝑠𝑟𝑗𝑘  are fitted as random effects 

as the data is incomplete.  

Estimated variety effects and year effects calculated this way are known as the best linear 

unbiased estimators (BLUEs) for variety and year, respectively. The BLUEs for variety and year 

were then regressed on year of variety entry and calendar year, respectively, to arrive at 

estimates for genetic gain and the effect of the environment. The standard error of the 

regression model is also extracted to quantify the uncertainty in the genetic gain estimate.  

2.3.3 Modelling the breakdown of disease resistance  

Changes in disease resistance of a variety can be observed by comparing treated and 

untreated trials grown at the same location. In this analysis, 17,952, 11,565 and 10,468 

treated-untreated pairs for winter wheat, winter barley and spring barley, respectively, were 

available for varieties with a minimum of three years in the trials dataset (Table 2.12). In 

calculating the yield difference in treated and untreated pairs, environmental effects cancel, 

and it is possible to quantify loss of yield due to disease, as well as quantify contributions of 

breeding to the disease resistance of untreated varieties. The fitted model used is: 

 𝑦𝑖𝑗𝑘
𝑑 =  𝜇𝑑 + 𝑎𝑗 + 𝑣𝑖

𝑑 + 𝑣𝑎𝑖𝑗 + 𝑠𝑟𝑗𝑘
𝑑 +  𝑒𝑖𝑗𝑘

𝑑  [2.8] 

𝑦𝑖𝑗𝑘
𝑑  is the yield difference in treated and untreated trials for variety 𝑖 at site 𝑘 after 𝑗 years, 

𝜇𝑑  is the mean difference, 𝑣𝑖
𝑑  is the effect of variety 𝑖 on yield difference, 𝑎𝑗 is the effect of 

variety age 𝑗 on yield difference, 𝑣𝑎𝑖𝑗 is the effect of the interaction between variety 𝑖 and 

variety age 𝑗, 𝑠𝑟𝑗𝑘
𝑑  is the effect of site 𝑘 in year 𝑗 on yield difference and 𝑒𝑖𝑗𝑘

𝑑  is the residual 

term. 

The variety effect 𝑣𝑖
𝑑  and variety age effects 𝑎𝑗 were fitted as fixed effects, whilst the variety 

x variety age 𝑣𝑎𝑖𝑗 and site 𝑠𝑗𝑘
𝑑  terms are fitted as random effects. Estimated variety age effects 

were then regressed on yield difference to see the extent of disease resistance breakdown as 

varieties age. Variety effect 𝑣𝑖
𝑑  represents an average resistance of a variety over its lifetime 
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and variety age 𝑎𝑗 represents the average decay in resistance of all varieties over their 

lifetimes. The variety x variety age interaction term 𝑣𝑎𝑖𝑗 is important for understanding 

whether different varieties lose resistance at different ages. 

Variety age was calculated by subtracting the harvest year from the year of entry into the trials 

system. For varieties present pre-1982, year of entry was found using old trials datasets, 

courtesy of Ian Mackay. Otherwise, year of entry is defined as the first year a variety is present 

in the trials data provided.  

2.3.4 Estimating uncertainty in genetic gain estimates 

To explore the various influences on genetic gain estimates and their uncertainty in trials 

datasets, the NL/RL winter wheat treated trials data was subset into case study periods. To 

define these case study periods, control varieties present for at least 10 consecutive years 

were first identified. These were referred to as the “checks”, which are frequently used in 

trials datasets to provide a comparison for new varieties (e.g. Fabio et al., 2017; Rutkoski, 

2019). A connectivity table was then created, to identify case study periods when at least four 

checks overlapped. These case study periods are summarised in Table 2.15.  

Breeding programmes frequently trial varieties for just one or two years, therefore rather than 

excluding varieties present for less than three years in the trials data, here only data for the 

first, second and third year of each variety is included. Initially a Python script was written to 

ensure that the two or three years were consecutive, as would be the case in a breeding 

programme. However, after running the analysis, it became evident that for 2008 this 

excluded all but one variety grown that year from the dataset, preventing models 

encompassing this year from converging. 13 varieties that were introduced into the NL/RL 

trials system in 2006 and grown in 2008, were not present in the 2007 acquired data. These 

varieties are Bantam, Cassius, Conqueror, Gallant, Grafton, Lear, Panorama, QPlus, Scout, 

Shogun, Viscount and Walpole. Requests were made for this data without success. An 

exception was therefore made to these 13 varieties, allowing the first three years to not be 

consecutive to enable the models to run. The check varieties and number of observations for 

each case study are shown in Table 2.15.  
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Case study 
(CS) 

Period Check varieties 
Observations 

(0 checks) 

1 1982-1991 Norman, Galahad, Fenman, Longbow 2,890 

2 1991-1999 Riband, Hereward, Soissons, Hussar 4,063 

3 1996-2006 Claire, Riband, Hereward, Consort, Soissons 5,982 

4 2000-2009 Claire, Consort, Solstice, Robigus 5,107 

5 2005-2015 Claire, Cordiale, Solstice, JB Diego, Alchemy 6,249 

6 2008-2017 JB Diego, Viscount, Cordiale, Grafton 7,263 
Table 2.15: Genetic gain winter wheat case studies for various periods and check varieties. Check 

varieties are those present for at least 10 consecutive years in the NL/RL trials dataset. Only the first 

three years of trials for varieties present for less than 10 years are included in each case study dataset. 

‘Observations’ indicates the number of data points within the period for the 0-check model. Adding in 

checks increases the data points. 

For each case study (Table 2.15), the genetic gain is calculated as in Section 2.3.2, by first 

estimating the BLUEs for year and variety and then regressing adjusted variety means on year 

of entry but here excluding the check(s). Checks are removed for the regression estimate to 

avoid biasing the estimate down by older year of entries. Initially this is calculated for all 

checks and varieties. For a case study with five checks, each check is then dropped individually 

to calculate the genetic gain with a combination of four checks. Subsequently each 

combination of two checks are dropped, then three checks, four checks and finally all checks. 

Hence the effect of the number of checks and the checks chosen on genetic gain and its 

uncertainty can be investigated.  

In addition to the case study periods, the genetic gain for the whole period 1982-2018 was 

recalculated, but this time using the dataset with the first 1-3 years for each variety to see the 

effect that this had on the calculated value. 

2.3.5 Quantifying the contribution of genetic improvement to national yields 

The certified seed statistics can be used to estimate the contribution of variety improvement 

to national yield. Winter wheat trials data was merged with the winter wheat seed statistics, 

taking care to match trials data year of harvest with the previous year’s seed statistics. Initially, 

treated and untreated trial yields were correlated with national yield to see which correlate 

better. Treated trials are selected due to the higher correlation (rt = 0.94, ru = 0.60) and the 

bias in the untreated trials due to disease breakdown. 

For this analysis, variety and year effects were taken from the treated phenotype trends 

analysis (Section 2.3.2). Many varieties purchased and present in the certified seed statistics 

in the 1980s entered the trials system pre-1982. Given these were excluded in the calculation 

of variety and year effects in Section 2.3.2, these were recalculated without a restriction on 
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their year of entry. A high proportion of the varieties in the 1982 seed statistics have 

insufficient years of data (< 3) in the 1982-2018 trials data to allow for variety effects to be 

calculated, therefore 1982 is not included in the subsequent analysis to prevent national yield 

estimates being based only on a couple of varieties. 

Following a three-step method adapted from Mackay et al. (2011), the deviation in variety 

effect was first calculated for each variety: 

 𝑢𝑖 =  𝑣𝑖 − 𝜇𝑣  [2.9] 

where 𝑢𝑖  is deviation in variety effect for variety 𝑖, 𝑣𝑖 is the variety effect for variety 𝑖 and 𝜇𝑣  

is the mean variety effect. 

 An estimate of national yield from the trials data is calculated using: 

 
𝑧𝑗 =  𝜇 +

∑ 𝑤𝑖𝑗𝑢𝑖𝑖

∑ 𝑤𝑖𝑗𝑗
+ 𝑦𝑗 

[2.10] 

where 𝑧𝑗  is the national yield estimate for the 𝑗th year; 𝜇 is the trials mean; 𝑦𝑗 is the year 

effect of year 𝑗; 𝑤𝑖𝑗  is the proportion of certified seed of variety 𝑖 grown in year 𝑗 − 1. 

Given the estimated national yield in trials 𝑧𝑗  was greater than observed national yield, the 

estimate was scaled by the ratio of observed to estimated yield for each year. Variety 

contributions for each year were also adjusted to the reference year 1983 by subtracting 

∑ 𝑤𝑖𝑢𝑖𝑖

∑ 𝑤𝑖
 for the reference year from all 

∑ 𝑤𝑖𝑗𝑢𝑖𝑖

∑ 𝑤𝑖𝑗𝑗
. The resultant estimate of the contribution of 

variety improvement to national yield in each year is: 

 
𝑐𝑗 = 𝑜𝑟𝑒𝑓 + (

∑ 𝑤𝑖𝑗𝑢𝑖𝑖

∑ 𝑤𝑖𝑗𝑗
−

∑ 𝑤𝑖𝑟𝑒𝑓𝑣𝑖𝑖

∑ 𝑤𝑖𝑟𝑒𝑓𝑖
) ×

𝑜𝑗

𝑧𝑗
 

[2.11] 

where ref refers to the reference year 1983, and 𝑜𝑗 is the observed national yield in year 𝑗.  

2.4 Datasets and methods for Chapter 6 

In Chapter 6, the linear mixed modelling used in Chapter 5 was modified to initially include 

seasonal climate data and trial site soil texture to build on work by Mackay et al. (2011), and 

subsequently to include the agroclimate metrics ([2.14]) site-specific time-series data to 

identify and quantify key agroclimate drivers of interannual yield variability in UK NL/RL winter 

wheat variety trials. Individual variety sensitivity and responses to these variables was also 

explored to identify varieties with greatest resilience to the changing climate. To evaluate 

each model the conditional R2, marginal R2 and RMSE were calculated. The conditional R2 
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takes both the fixed and random effects into account whilst the marginal R2 considers only 

the variance of fixed effects (Nakagawa et al., 2017). 

2.4.1 Reclassifying soil texture  

Across the NL/RL trials that had soil texture information, there were 19 soil texture 

abbreviations (Table 2.16). Using the LandIS Soil Portal 

(http://www.landis.org.uk/data/nmtopsoiltexture.cfm) and AHDB Principles of soil 

management (AHDB, 2019), the extended form of the abbreviations were found. Given the 

sheer number of textures, and that some were present less than 100 times, soil textures were 

reclassified using the AHDB soil texture triangle and peat rectangle (Figure 2.9). Given the 

composition of shallow (SHA) soils was not known, these trials were classified as having no 

soil texture data (Table 2.16). 

Soil texture 
Count Classification 

Abbreviation Texture 

C Clay 170 Heavy 

CL Clay loam 3592 Medium 

DC* Deep clay 4312 Heavy 

DF* Deep fertile silty 657 Sandy and light 

DS* Deep sandy 1435 Sandy and light 

LP Loamy peat 187 Peat 

LSD Loamy sand 2909 Sandy and light 

MED* Medium 10576 Medium 

ORG Organic 64 Organic 

PL Peaty loam 450 Peat 

PT Peat 31 Peat 

SC* Sandy clay 206 Medium 

SCL Sandy clay loam 5755 Medium 

SHA* Shallow 2028  
SL Sandy loam 4805 Sandy and light 

SZL Sandy silt loam 723 Sandy and light 

ZC Silty clay 361 Heavy 

ZCL Silty clay loam 4106 Medium 

ZL Silt loam 2798 Sandy and light 
Table 2.16: Soil textures and their classification. *Soil textures not in AHDB (2019) and Landis Soil Portal 

and instead suggested by Haidee Philpott (2021, pers. comm.). 

http://www.landis.org.uk/data/nmtopsoiltexture.cfm
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Figure 2.9: Classification of mineral soils into soil texture classes  (AHDB, 2019). 

2.4.2 Modelling yield impacts of seasonal climate at a regional level 

To quantify the sensitivity of winter wheat yields to climate, first regional seasonal climate 

data (from Section 2.24) was combined with winter wheat variety trials data. This was to 

update the seasonal temperature and precipitation sensitivity analysis by Mackay et al. (2011) 

to include the period 2008-2018 and to quantify the magnitude of the yield impacts of 

significant seasonal variables. Regional data rather than national data was used due to the 

large climate differences (Table 2.17) between regions (Figure 2.10) and ease of access to the 

regional data.  

Region Tmax (oC) Tmin (oC) Annual total precipitation (mm) 

East Anglia 14.4 6.3 619 

England E & NE 12.8 5.3 776 

England NW & Wales N 12.5 5.7 1313 

England SE & Central S 14.5 6.4 788 

South Wales & England SW 13.5 6.4 1254 

Northern Ireland 12.5 5.5 1138 

Midlands 13.6 5.7 792 

Scotland E 11.0 3.9 1175 

Scotland N 10.5 4.2 1695 

Scotland W 11.5 4.9 1807 
Table 2.17: Geographic location and climatology (1982-2018) of the 10 main regions used by the Met 

Office. Calculated using Met Office regional series annual average data. Here Tmax and Tmin correspond 
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to the average annual maximum and minimum temperature (oC) for each region over the period 1982-

2018. Precipitation values represent the average annual total precipitation over the same period.  

 

Initially a linear mixed model was fitted to the seasonal climate and trials data taking the form:  

 𝑦𝑖𝑗𝑘 =  𝜇 + ∑ 𝐶𝑗𝑘 + 𝑣𝑖 + 𝑟𝑗 + 𝑣𝑟𝑖𝑗 + ∑ 𝑣𝐶𝑗𝑘 + 𝑠𝑗𝑘 +  𝑒𝑖𝑗𝑘 [2.12] 

𝑦𝑖𝑗𝑘 is the yield of variety 𝑖 in year 𝑗 at site 𝑘,  𝜇 is the overall trial series mean, 𝐶𝑗𝑘  is the effect 

of the selected climate variable(s) in year 𝑗 at site 𝑘 (e.g. regional seasonal mean 

temperature), 𝑣𝑖 is the effect of variety 𝑖, 𝑟𝑗 is the effect of year 𝑗, 𝑣𝑟𝑖𝑗 is the effect of the 

interaction between variety 𝑖 and year 𝑗, 𝑣𝐶𝑗𝑘  is the interaction between variety 𝑣𝑖 and climate 

variable 𝐶𝑘 , 𝑠𝑗𝑘  is the effect of site 𝑘 in year 𝑗 and 𝑒𝑖𝑗𝑘 is the residual term. Here, the variety 

effects 𝑣𝑖, year effects 𝑟𝑗  and climate x variety interaction terms 𝑣𝐶𝑗𝑘 are fitted as fixed 

effects, whilst variety x years 𝑣𝑟𝑖𝑗 and sites within years 𝑠𝑗𝑘  are fitted as random effects.  

Soil texture was then added into the model. Here soil texture refers to the five reclassified soil 

textures (Table 2.16). Not all trials have soil types therefore this model uses a subset (30,227 

trials) of the dataset used in [2.12]: 

 𝑦𝑖𝑗𝑘𝑙 =  𝜇 + ∑ 𝐶𝑗𝑘 + 𝑣𝑖 + 𝑟𝑗 + 𝑙𝑙 + 𝑣𝑟𝑖𝑗 + 𝑣𝑙𝑖𝑙 + ∑ 𝑣𝐶𝑗𝑘 +  𝑠𝑗𝑘 + 𝑙𝑠𝑗𝑘𝑙

+ 𝑒𝑖𝑗𝑘𝑙  

[2.13] 

Figure 2.10: The 10 regions of the UK used in the regional seasonal analysis. Regions are defined 

by the standard areas used by the Met Office (Met Office, 2020). 
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where 𝑙𝑙 is the effect of soil texture 𝑙, 𝑣𝑙𝑖𝑙 for the interaction between variety 𝑖 and soil texture 

𝑙, 𝑙𝑟𝑗𝑙  for the interaction between soil texture 𝑙 and year 𝑗 and 𝑙𝑠𝑗𝑘𝑙  for the effect of the 

interaction between soil texture 𝑙 and site 𝑘 in year 𝑗 on yield.  

The effect of soil texture 𝑙𝑙 is included as a fixed effect and the variety x soil 𝑣𝑙𝑖𝑙 and soil texture 

x site 𝑙𝑠𝑗𝑘𝑙  interaction terms are included as random effects.  

2.4.3 Modelling yield impacts of seasonal climate using site-specific climate data 

To investigate the impact of using high resolution, localised climate data over regional data, 

site-specific seasonal temperature and precipitation data was combined with the treated trials 

data using the join function in Python and modelled using [2.12]. 

2.4.4 Modelling yield impacts of monthly climate using site-specific climate data 

Significant climate variables in the localised seasonal analysis (2.4.3) were broken down into 

the corresponding monthly variables. These monthly covariates were then combined with the 

treated trials data and [2.12] fitted to the data to identify the most important months in 

determining yield variability. 

2.4.5 Modelling the effect of the UK agroclimate on winter wheat yields 

To better understand how climate affects winter wheat at different stages in the growing 

season, time-series data for each selected climate data derived (i.e. not drilling and harvest 

date nor Septoria leaf blotch incidence) agroclimate metric (Table 2.14) was downloaded for 

each winter wheat variety trial site location. Given the very low occurrence of the two extreme 

heat metrics – anthesis32 and grainfill35 – these were not included in the models as, thus far, 

they have not occurred frequently enough to be able to model yield impacts in the UK. 

Monthly rainfall days were combined to get a growing season total at each trial site each year 

from September to August. The agroclimate metrics were then combined with the winter 

wheat yield data. Given the CEH CHESS-MET and CHESS-PE datasets, and therefore the 

calculated potential-evapotranspiration balance (pe_balance), are only available to 2017, the 

combined dataset was restricted to 1988-2017 to avoid any missing climate data. The 1993 

trials data also has no harvest dates which means VDD from planting to anthesis, GDD and 

pe_balance could not be calculated for this year. To allow easier comparisons between model 

performance containing different variables, 1993 was also dropped. 

Prior to modelling the agroclimate metrics, a base model was run using [2.7] to allow 

comparison with the agroclimate model. The modelling was then split into two phases, as in 

Hakala et al. (2012). During the first phase, all varieties with at least three years of data and 
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location information were included to establish the general relationship between specific 

agroclimate variables and winter wheat as a species under UK climatic conditions. After a 

univariate climate analysis, where each agroclimate metric and its interaction with variety 

were iteratively added to the base crop model ([2.7]) to test the significance of each variable’s 

relationship with yield, the significant climate variables and their interactions with variety 

were then combined in multivariate agroclimate analysis. The first phase test data included 

30,473 yield records. In the second phase, popular cultivars with at least 10 years of data were 

used (Table 2.18) which included 7,062 yield records.  

Absolute yield anomaly for each yield record was also calculated by removing the linear trend 

over years. Yield anomaly was then modelled, as in Mathieu and Aires (2018), but due to the 

easier interpretation of coefficients from the yield models and similarity in significant variables 

between the yield and yield anomaly models, a focus on modelling yield was maintained.  

A type III sum of squares (SS) was used as the order of importance of the climate variables 

isn’t known. 

2.4.6 Identifying climate-resilient varieties  

To explore individual varietal responses to the significant climate variables, the climate 

covariates were classified into three categories of equal numbers of trials, using a similar 

method to Hakala et al. (2012). The average national yield for each variety across the period 

1988-2017 was also calculated (Table 2.18). For each climate category, the percent yield of 

the average national yield for each variety was calculated. This was carried out for all the 

agroclimate metrics, not just significant ones. 
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Variety Average yield (t/ha) First year Last year 

Alchemy 10.34 2003 2015 

Claire 10.24 1996 2016 

Consort 10.20 1992 2014 

Cordiale 10.17 2001 2017 

Deben 10.48 1998 2007 

Einstein 10.32 2000 2011 

Gallant 10.03 2006 2016 

Grafton 10.40 2006 2017 

Hereward 9.09 1998 2008 

JB Diego 10.61 2005 2017 

Malacca 9.74 1994 2007 

Mercia 8.40 1983 1998 

Riband 9.68 1985 2006 

Robigus 10.53 2000 2012 

Savannah 10.59 1995 2004 

Scout 9.91 2006 2016 

Soissons 8.96 1991 2007 

Solstice 10.05 1999 2015 

Viscount 10.57 2006 2017 

Xi19 10.55 1999 2008 
Table 2.18: Average yields for varieties present at least 10 years in the UK National List/Recommended 

List winter wheat variety trials dataset. The first and last year each variety was present in the trials 

dataset is given. 

The genotype-by-environment interaction (GxE) was investigated further by extracting the 

variety x climate interaction terms from both the final multivariate model and the univariate 

climate model after it was rerun on the varieties present at least 10 years. For each climate 

variable, the numbers of varieties with significance exceeding a false discovery rate (FDR) 

threshold of <0.5 (Mackay et al., 2011) was assessed to understand the sensitivity of UK winter 

wheat to these variables, as well as individual varietal sensitivity to them. Using FDR enables 

the detection of the most sensitive varieties, rather than just relying on statistical significance.   
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3 Using the case of variability in early 20th Century Irish barley 

yields to identify best suited statistical modelling methods  

Spring barley (Hordeum vulgare L.) is the most widespread spring crop in Ireland as it is well 

suited to the Irish soils and long growing season, which offer high yield potential (TEAGASC, 

2017). In 2020, yields averaged 7.1 t/ha and over 1 million tonnes of spring barley were 

produced (CSO, 2021). Barley has been grown in Ireland for centuries. In the late 1800s, yields 

were small and highly variable across farms and plants and, as today, very weather dependent. 

Over 80% of barley grown during the 19th century was Chevalier (Maxted et al., 2014). In the 

1890s John Bennett, a grower of barley for Guinness, began comparing qualities of different 

seed varieties extending to several farms across Ireland. As a consequence, the Department 

of Agriculture and Technical Instruction (DATI) founded a Cereal Breeding Station on Bennett’s 

farm at Ballinacurra, County Cork, with financial support from Guinness in 1901 (West, 2006). 

Spring barley varieties grown in these trials during the early 20th century included Spratt, 

Archer and Goldthorpe (Student, 1923; Reid et al., 1929; West, 2006).  

Within barley’s germplasm there are genotypes that can tolerate abiotic stresses, such as 

drought and heat (Ivandic et al., 2000; Xiaojian Wu et al., 2017; Bindereif et al., 2021). Barley 

landraces can also grow well in biogeographical zones with reduced soil fertility in which 

modern elite barley varieties fail to reach maturity (Schmidt et al., 2019). As environmental 

stresses become more frequent and there is a need for varieties demanding fewer resource 

inputs, heritage varieties, such as those grown by Bennett, may provide valuable genetic 

variation and a possible resource for these wild-type traits.  

A well-documented set of multi-environment spring barley trials data for 1901-1906 exists, 

comparing two heritage spring barley varieties: Archer and Goldthorpe. Archer is a 2-row 

narrow-eared variety that originated in East of England and outperformed the long-running 

favourite Chevalier in yield, quality and straw strength (Hunter, 1913). Goldthorpe is a 2-row 

wide-eared barley known for its high malting quality. In 1889 a single wide ear was found in a 

field of Chevalier near Goldthorpe, Yorkshire and was selected and propagated to become 

Goldthorpe (Reid et al., 1929; Gothard et al., 1983; Malcolm, 1983). Analysis of these trials 

data by William Gosset in Student (1923) concluded that the chief difficulty in comparing 

variety performance was that differences between varieties are small compared with 

variations due to weather. Whilst weather was recorded during this period at various locations 

across Ireland, these data were not accessible to Student at that time. 
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A recent data rescue project has extended the temporal coverage of digitally available daily 

maximum and minimum air temperature and rainfall observations back to include this early 

20th century period (Mateus et al., 2020; Ryan et al., 2021). In this chapter, these historical 

weather data are combined with the barley trials data to quantify the effect of interannual 

weather variability on the early 20th Century spring barley yields and understand the sensitivity 

of each variety to weather variability. Combining trials and climate data can lead to high 

dimensional datasets, which can result in overfitting by models and make statistical model 

output difficult to interpret. Therefore, this research explores the effectiveness of four main 

variable selection and shrinkage methods: best-subset selection, stepwise selection, the lasso 

(Tibshirani, 1996) and the elastic net (Zou and Hastie, 2005), as justified in Chapter 2, 2.1.4. 

The performance of these methods on highly correlated data is evaluated and compared to 

the use of other techniques including Principal Component Analysis and correlation analysis.  

This chapter is comprised of work accepted for publication in the Annals of Applied Biology 

(Raymond et al., in press), with some additional material.

3.1 Spring barley yields show high variation 

Median yields varied from year-to-year by up to 50% for Archer and up to 58% for Goldthorpe 

(Figure 3.1). For both varieties the lowest yields occurred in 1903 (combined mean 2.2 t/ha), 

and highest in 1905 (combined mean 3.2 t/ha). There was large variation in yields within years, 

in particular for Archer in 1903 (standard deviation, SD = 0.59 t/ha) and for Goldthorpe in 1901 

(SD = 0.67 t/ha). This was despite the number of trials increasing each year.  
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Only three farmers were involved in all six years of the trials: Hawkins, McCarthy and Wolfe 

(Figure 3.2). There were clear differences from farm to farm in yields reflecting the differences 

in climate, soil type, topography, farm management practices and years. All three farms 

showed similar interannual variability: 1903 was the lowest yielding year while 1902 and 1905 

were the highest. Yields fluctuated by up to 50% with average yields increasing ~45% (1.8 t/ha) 

between 1903 and 1905, indicating low stability in these varieties.  

Figure 3.2: Spring barley trial mean yields (t/ha) at the three farms with data for the entire period 1901-

1906. Error bars show the difference between Archer and Goldthorpe variety yields. Data from Student 

(1923). 

Figure 3.1: Barley trials yields (t/ha) (black dots) for 51 trials across 18 farms between 1901-1906, for two 

varieties: Archer (blue) and Goldthorpe (yellow). Outliers (diamonds) represent trial yields in the 5th and 

95th percentiles. There were 51 trials per variety, increasing from 4 in 1901 to 12 in 1906. Data from 

Student (1923).  
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3.2 Spring barley price shows similar variation to yield 

Student used price as a measure of quality of the crop. The lowest quality of both varieties 

occurred in 1903 and highest in 1905 (Figure 3.3), as with yield (Figure 3.1). Student (1923) 

acknowledged that the value of the crop per acre was mostly dependent on the yield. 

3.3 Irish climate analysis 

3.3.1 Long-term climate reveals anomalous years 

On average, Ireland received 471 mm of rain during the March to August growing season 

across the period 1861-2010, but the period saw high variation from just 276 mm of rainfall 

in 1975, to 657 mm in 1986.  Growing season rainfall anomalies show large interannual 

variability, with differences of up to 300 mm between neighbouring years (Figure 3.4). 

Averaged across all stations, the lowest yielding year 1903 was the wettest of the six barley 

trial years 1901-1906, with a large positive anomaly relative to the 1851-2010 average. 

Nationally the 1903 growing season received over 20% more rainfall than average. 1901 and 

1902 were drier than average across the stations. Given the growing season in Ireland 

consistently receives high rainfall, water deficits are unlikely to be a yield-limiting factor.  

Figure 3.3: Barley trial price per hectare (£/ha) (black dots) for 1901-1906 for two varieties: Archer 

(blue) and Goldthorpe (yellow). Outliers (diamonds) represent trial yields in the 5th and 95th percentiles. 

There were 51 trials per variety, increasing from 4 in 1901 to 12 in 1906. Data from Student (1923). 
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Over the 1874-2020 period, significant long-term increases in Growing Degree Days of 0.8oC 

days yr-1 (r = 0.26, p=0.003) and 2.3oC days yr-1 (r=0.66, p<0.001) were seen at Birr Castle and 

Glasnevin respectively (Figure 3.5). The more extreme increase in GDD seen at Dublin is likely 

due to increased urbanisation and industrialisation in the city (Dublin City Council, 2017), 

increasing absorption of solar radiation and enhancing the urban heat island effect. In addition 

to being the wettest of the six years, 1903 growing season had the 11th lowest GDD recorded 

at both Birr Castle and Glasnevin stations across the period. 

 

Figure 3.4: Growing season (March-August) rainfall anomalies (mm) for Birr Castle, Foulkesmill and 

Roches Point stations and nationally for 1850-2010. Years 1901-1906 are shown in red. Here the 

national average anomaly is calculated using the Island of Ireland precipitation series from 25 

stations. 
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3.3.2 NAO index shows extremes in the period 1901-1906 

Winter, spring and summer NAO indices all show large interannual variability (Figure 3.6). All 

six years in the period 1901-1906 except 1902 have positive WNAO index values. The WNAO 

index for 1903 is particularly large at 2.47, ranked in the highest 6% of WNAO values on record 

(1824-2020). 1903 is the only year in the six year period with a positive SNAO value. 1902 has 

a large negative SNAO index of -1.56, ranked in the lowest 10% of SNAO values. 1904 has a 

large positive spring NAO index ranked in the highest 9% of values.  

Figure 3.5: Growing season Growing Degree Days (°C days) for Birr Castle, Roches Point and Glasnevin 

stations for 1874-2020. Growing Degree Days is the sum of the mean temperature on days when mean 

temperature is above 5.6oC from March to August.  
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Negative NAO in winter draws in colder, drier easterlies whereas a positive NAO in winter 

results in above average westerly winds from the mild, moist Atlantic Ocean (Figure 3.7) (Trigo 

et al., 2002; Correia et al., 2020; Met Office, 2021a). In the summer, lower NAO generally 

implies more meridional flow: South to North or North to South. When the flow is more South 

to North, this leads to warmer, moister air masses and heavier individual, slow moving rain 

events (Trigo et al., 2002). Given 1903 had a large positive NAO in the winter and a large 

negative NAO in the summer, this may explain why 1903 was much wetter than the other 

years in the period (Figure 3.6).  

Figure 3.6: Winter NAO index (top), spring NAO index (middle) and summer NAO index (bottom) for 

the period 1824-2020. Period 1901-1906 highlighted in grey. Data from Jones et al. (1997). 
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Figure 3.7: Late winter temperatures compared to the 1981-2010 average when the North Atlantic 

Oscillation (NAO) was strongly negative (top, Jan-March 2010) and when it was strongly positive 

(bottom, January-March 1990). When the NAO is negative, winters are often cooler than average across 

mid-latitudes. When the NAO is positive, they can be warmer than average. Image from NOAA 

Climate.gov (Lindsey and Dahlman, 2021). 

3.3.3 1891-1920 climatology reveals extreme wetness in 1903 

Comparing years 1901-1906 to the climate of 1891-1920 places the data in the context of the 

general climate at the time. The six-year period showed some extreme wetness and 

temperatures.  

March 1903 was the wettest March in the 1891-1920 30-year period for Ardee, Birr and 

Foulkesmill stations and nationally (Figure 3.8). The coastal stations Roches Point and 

Greenore saw more ‘normal’ rainfall amounts, with the former recording its highest March 

rainfall for the 30-year period in 1905. Cumulatively, 1903 was the wettest growing season in 

the 30-year period at Foulkesmill and nationally, recording over 600 mm rainfall. It was also 

the wettest growing season in the period 1901-1906 at Ardee, Birr and Greenore.  
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Figure 3.8: Cumulative monthly rainfall (mm) for Ardee, Birr Castle, Foulkesmill, Greenore, Roches Point 

stations and the national average across 25 stations for 1901, 1902, 1903, 1904, 1905 and 1906. The 

1891-1920 average is shown (solid black line) along with the period 10th and 90th percentile values (grey 

lines) and the period minimum and maximum values (dashed black line). Note: Ardee station only has 

data for 1891-1913 therefore the averages are for this period instead. Data from Ryan et al. (2020). 

Roches Point’s coastal location is evident from the less extreme temperature values, with 

higher mean minimum temperatures and lower mean maximum temperatures (Figures 3.9 

and 3.10). 1906 saw extremely low monthly mean minimum temperatures in April at all three 

stations, as well as the highest mean minimum temperature for August in the 30-years at 
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Dublin. The mean minimum temperatures at Roches Point and Birr Castle for this month were 

closer to the average highlighting that climate extremes vary spatially and can be localised, 

contributing to the range in observed yields. March 1902 saw relatively high mean minimum 

and maximum temperatures whilst May 1902 saw much lower-than-average mean maximum 

temperatures (Figure 3.10).  

 

Figure 3.9: 1891-1920 monthly mean minimum temperatures (oC) for Birr Castle, Roches Point and 

Dublin (Glasnevin) stations for the growing season. The range in temperatures for the coldest 5%, 

coldest 10%, warmest 10% and warmest 5% mean minimum temperatures are shown. Monthly mean 

minimum temperatures for 1901, 1902, 1903, 1904, 1905 and 1906 are also presented. Data from 

(Mateus et al., 2020). 
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Figure 3.10: 1891-1920 monthly mean maximum temperatures (oC) for Birr Castle, Roches Point and 

Dublin (Glasnevin) stations for the growing season. The range in temperatures for the coldest 5%, 

coldest 10%, warmest 10% and warmest 5% mean maximum temperatures are shown. Monthly mean 

maximum temperatures for 1901, 1902, 1903, 1904, 1905 and 1906 are also presented. Data from 

(Mateus et al., 2020). 

3.3.4 Climate anomalies encompassed parts of Europe 

Analysis of growing season rainfall data from ERA-20C for 1901-1906 relative to the 1901-

1930 averages shows that 1903 was much wetter than average across Ireland, the UK and 

much of Europe (Figure 3.11). 1906 was the driest year in the trials period. High rainfall is 

generally associated with a reduction in solar radiation and the 1903 growing season also 

received ~5% less photosynthetically active radiation (PAR) than the 1901-1930 average in 

Ireland (Figure 3.12). 1901 and 1904 show the most significant positive PAR anomalies over 

the growing season. Breaking this down into months, the four years 1901, 1902, 1904 and 

1905 all have positive PAR anomalies in July in sync with the grain fill period. 1905 was the 

only growing season in the period when Ireland had a positive temperature anomaly, of 

~0.3oC. Higher than average temperatures were also experienced across the UK and most of 
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central, eastern and northern Europe (Figure 3.13). 1903 was the coldest growing season in 

Ireland, about 1oC below the 1901-1930 average.  

 

Figure 3.11: Growing season (March to August) rainfall anomalies (%) relative to the 1901-1930 

average. Brown corresponds to drier than average and blue corresponds to wetter than average. 100 

km x 100 km resolution data from ERA-20C (Poli et al., 2016). 
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Figure 3.12: Growing season (March to August) total photosynthetically active radiation (PAR) 

anomalies (%) relative to 1901-1930 average. Purple corresponds to less PAR than average whilst 

orange corresponds to more PAR than average. 100km x 100km resolution data from ERA-20C (Poli et 

al. 2016). 

 

Figure 3.13: Growing season (March to August) mean temperature anomalies (°C) relative to 1901-1930 

average. Blue corresponds to colder than average whilst red corresponds to warmer than average. 

100km x 100km resolution data from ERA-20C (Poli et al., 2016). 
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3.4 Modelling Irish spring barley and climate  

A linear model was fit on equation [2.2] using lm in R, with the year term included first as a 

factor and then as a variable. Analysis of variance (ANOVA) between the two model show that 

the model including year as a factor results in better fit (R2=1 and R2=0.57, respectively) (Table 

3.1). Furthermore, the interaction Year x Farm term of interest is not significant when year is 

a variable. Therefore, from herein year is included as a factor. 

Variable 
Year as a factor Year as a variable 

Df SS Df SS p-value (sig.) 

Year 5 11.67 1 1.57 0.03 (*) 

Farm 17 9.13 17 9.34 0.09 

Variety 1 1.13 1 1.13 0.07 

Year:Farm 28 6.67 11 4.62 0.3 

Year:Variety 5 0.36 1 0.07 0.6 

Farm:Variety 17 1.03 17 0.98 1.0 

Year:Farm:Variety 28 2.26 11 0.78 1.0 

Residuals 0 0 42 13.76  
Table 3.1: Analysis of variance (ANOVA) of Irish barley model [2.2] including year as a factor and a 

variable, farm and variety and their interactions. Degrees of freedom (Df) and Sum of Squares (SS) are 

shown for each model term. The p-values and significance are also shown for the model with year as a 

variable but not for year as a factor as these cannot be calculated when the model has a perfect fit. 

*significant at the 95% confidence level. 

Rerunning this model without the three-way interaction term and performing an ANOVA 

shows that the two variety interaction terms are not significant (p>0.05) (Table 3.2). The 

model has an adjusted R2 of 0.747.  

Variable Df SS F value p-value (sig.) 

Year 5 11.67 28.89 3E-10 (*) 

Farm 17 9.13 6.64 6E-06 (*) 

Variety 1 1.13 13.99 0.0008 (*) 

Year:Farm 28 6.67 2.95 0.003 (*) 

Year:Variety 5 0.36 0.90 0.5 

Farm:Variety 17 1.03 0.75 0.7 

Residuals 28 2.26   
Table 3.2: ANOVA results for lm model including year (as a factor), farm and variety, and their two-

way interactions. Degrees of freedom (Df), Sum of Squares (SS), F-value and p-value are shown for 

each model term. *significant at the 95% confidence level. 

Therefore, the base model is given by: 

 𝑦𝑖𝑗𝑘 =  𝜇 + 𝑣𝑖 + 𝑟𝑗 +  𝑠𝑗𝑘 + 𝑒𝑖𝑗𝑘 [3.1] 
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where 𝑦𝑖𝑗𝑘  is the yield of variety 𝑖 in year 𝑗 at site 𝑘,  𝜇 is the overall trial series mean, 𝑣𝑖 is the 

effect of variety 𝑖,  𝑟𝑗  is the effect of year 𝑗, 𝑠𝑗𝑘  is the effect of site within years and 𝑒𝑖𝑗𝑘 is the 

error term. This model had an adjusted R2 of 0.771, which is higher than the previous model 

that includes the other interactions indicating a better model fit.  

3.4.1 Variable selection methods failed to significantly reduce model complexity  

The best subset selection method (cv.b), three forwards and backwards selection methods 

(s.bo, s.ba and s.f) and the elastic net method (e.n.) failed to sufficiently simplify the climate 

model to then include the selected climate covariates in the mixed model with year, variety 

and site [2.3] (Table 3.3). A combination of using too many highly correlated variables (Figure 

A1) and too few farm growing seasons likely contributed to this. The worst performing was 

backwards stepwise selection which did not drop any variables. The two lasso methods 

reduced the model complexity significantly from 19 to less than 7 climate variables, but these 

models had very low adjusted R2 values of close to 0, indicating a poor model fit (Table 3.4). 

Specifically, Table 3.3 shows: 

• The magnitude of selected variable coefficients and the corresponding significance of 

the variable (where available) 

• July maximum temperature (jul_temp_max) was included by all model selection 

methods 

• Variables included in most of the models are April maximum rainfall (apr_rain_dmax), 

April total rainfall (apr_rain_tot), June total rainfall (jun_rain_tot), July total rainfall 

(jul_rain_tot) and May minimum temperature (may_temp_min.) 

• August total rainfall (aug_rain_tot) was the most frequently dropped variable, 

followed by March total rainfall (mar_rain_tot) and July total rainfall (jul_rain_tot) 

Using the mixed-model backwards elimination approach and glmmLasso algorithm, all climate 

variables were dropped. A Bayesian linear model was also run on the climate covariates, to 

select the significant variables (Table 3.5). The eight significant climate variables in the linear 

model were identified by the 0.89% Credible Intervals (CI) not straddling 0. The 89% is the 

default CI level as it is deemed to be more stable than higher intervals, such as 95%.  Although 

not identical, the significant variables overlap with those from the frequentist variable 

selection models. 
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The linear models with the best performance (Table 3.3) were then incorporated into the 

mixed-effects model [2.3], but it was found that there were too many climate covariates to 

include resulting in issues with model convergence. A range of modifications were tried, 

including using joint regression analysis to represent the variety × climate interaction terms 

𝑣𝑇𝑖𝑗𝑘  and 𝑣𝑃𝑖𝑗𝑘, and dropping these terms entirely. This did not solve the problem. 
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Variable 

Coefficients p-value sig. (p < 0.05) 

c.m cv.b s.bo s.ba s.f l.m l.1 e.n c.m s.bo s.ba s.f c.m s.bo s.ba s.f 

(Intercept) 2.798 2.798 2.798 2.798 2.798 2.815 2.799 2.822         

apr_rain_dmax 0.423 0.503 0.348 0.423 0.458 0.073 0 0.132 0.0002 0.3096 0.0002 0.0021 * 
 

* * 

apr_rain_tot -0.241 -0.356 -0.212 -0.241 -0.345 0 0 -0.023 0.0423 0.0403 0.0423 0.0432 * * * * 

apr_temp_max -0.380 -0.373 -0.190 -0.380 -0.298 0 0 0 0.0131 0.0921 0.0131 0.1208 * 
 

* 
 

apr_temp_min 1.450 0.852 1.048 1.450 0.771 0 0 0.051 0.4955 0.0683 0.4955 0.1790 
    

aug_rain_tot 0.174   0.174  0 0 -0.012 0.2541  0.2541 
     

aug_temp_max 0.392 0.722 
 

0.392 0.603 0 0 0.082 0.0068  0.0068 0.9660 * 
 

* 
 

aug_temp_min 0.732 
 

0.762 0.732 0.125 0 0 0.096 0.0323 0.5125 0.0323 0.2499 * 
 

* 
 

jul_rain_tot -0.169   -0.169 -0.017 -0.154 -0.095 -0.152 0.0000 
 

0.0000 0.0000 * 
 

* * 

jul_temp_max -1.086 -0.430 -0.405 -1.086 -0.342 0.103 0.052 0.159 0.9697 0.0000 0.9697 0.0005 
 

* 
 

* 

jul_temp_min 1.849 1.123 1.501 1.849 1.003 0 0 -0.100 0.2139 0.6334 0.2139 0.0127 
   

* 

jun_rain_tot -0.064 -0.266 
 

-0.064 -0.225 -0.108 -0.010 -0.104 0.0142 
 

0.0142 0.0145 * 
 

* * 

jun_temp_max 1.293 0.430 1.269 1.293 0.435 0 0 0.068 0.0134 0.1631 0.0134 0.2878 * 
 

* 
 

jun_temp_min -2.219 -0.747 -1.949 -2.219 -0.774 0 0 0.072 0.3766 0.3315 0.3766 0.3515 
    

mar_rain_tot -0.234 
 

-0.176 -0.234 
 

0 0 0 0.1118 0.0193 0.1118 
  

* 
  

mar_temp_max 0.523 0.378 0.238 0.523 0.355 0.006 0 0 0.1178 0.1307 0.1178 0.3311 
    

mar_temp_min 0.466 
 

0.794 0.466 -0.038 0 0 -0.017 0.7155 0.0333 0.7155 0.7727 
 

* 
  

may_rain_tot 0.426 0.134 0.279 0.426 
 

0 0 -0.102 0.8492 0.0179 0.8492 
  

* 
  

may_temp_max 0.173 
  

0.173 -0.099 0 0 -0.079 0.4364 
 

0.4364 0.0210 
   

* 

may_temp_min -0.969 -0.524 -0.845 -0.969 -0.447 -0.035 0 -0.087 0.1127 0.0000 0.1127 0.0787 
 

* 
  

Table 3.3: Estimated coefficients and their p-values and significance for 7 different frequentist variable selection methods (Table 2.6), as well as the full climate 

model (c.m.). cv.b = best subset selection with cross-validation (Method 1), s.bo = cross stepwise selection in both backwards and forwards directions (Method 2a), 

s.ba = 10-fold cross-validation backwards stepwise selection (Method 2b), s.f = 10-fold cross-validation forwards stepwise selection (Method 2c), l.m = cross-

validation lasso using lambda that minimises the prediction error (Method 3a), l.1 = cross-validation lasso model using lambda for smallest model and within 1 

standard error (Method 3b), e.n = cross-validation elastic net using lambda and alpha that minimises the prediction error (Method 4). Of the 7 models shown, only 

4 give p-values and significance of each variable. 
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Model Adjusted R2 RMSE 

c.m 0.449 0.376 

cv.b 0.466 0.383 

s.bo 0.459 0.384 

s.ba 0.449 0.451 

s.f 0.443 0.446 

l.m -0.065 0.477 

l.1 0.024 0.496 

e.n -1.08 0.428 

Parameter Median 89% CI pd 

Intercept   2.798  [ 2.735,  2.872]  100.00% 

apr_rain_tot   -0.3  [-0.475, -0.118]  99.55% 

aug_rain_tot   0.011  [-0.193,  0.252]  52.78% 

jul_rain_tot   -0.06  [-0.274,  0.157]  68.92% 

jun_rain_tot   -0.176  [-0.390,  0.020]  91.47% 

mar_rain_tot   -0.067  [-0.278,  0.148]  68.90% 

may_rain_tot   0.162  [-0.119,  0.456]  81.30% 

apr_rain_dmax  0.44  [ 0.196,  0.690]  99.75% 

apr_temp_max   -0.264  [-0.530, -0.011]  94.67% 

aug_temp_max   0.421  [-0.102,  0.966]  88.55% 

jul_temp_max   -0.37  [-1.090,  0.285]  79.85% 

jun_temp_max   0.63  [ 0.000,  1.230]  95.03% 

mar_temp_max   0.331  [-0.105,  0.735]  89.25% 

may_temp_max   -0.041  [-0.313,  0.254]  58.43% 

apr_temp_min   0.839  [ 0.263,  1.395]  98.50% 

aug_temp_min   0.215  [-0.357,  0.810]  71.83% 

jul_temp_min   1.099  [ 0.403,  1.742]  99.33% 

jun_temp_min   -1.045  [-2.034, -0.071]  95.30% 

mar_temp_min   0.175  [-0.466,  0.810]  66.47% 

may_temp_min   -0.504  [-0.977, -0.030]  95.55% 
Table 3.5: Estimated model parameters from the stan_glm model. Median is the median value computed 

from the model simulations. CI represents the Credible Interval, which quantifies the uncertainty about the 

regression coefficients. The 89% CI computes the Credible Interval with 89% probability that a coefficient 

lies above the lower value of the two values and below the higher value. If the CI doesn’t straddle 0 then the 

coefficient is significant and is in bold. pd is the Probability of Direction, which is the probability the effect 

goes to the positive or negative direction (Bloggers, 2020). 

Table 3.4: Adjusted R2 and RMSE for the 7 different variable selection methods (Table 2.6), as well as the 

full climate model (c.m.). cv.b = best subset selection with cross-validation (Method 1), s.bo = cross 

stepwise selection in both backwards and forwards directions (Method 2a), s.ba = 10-fold cross-

validation backwards stepwise selection (Method 2b), s.f = 10-fold cross-validation forwards stepwise 

selection (Method 2c), l.m = cross-validation lasso using lambda that minimises the prediction error 

(Method 3a), l.1 = cross-validation lasso model using lambda for smallest model and within 1 standard 

error (Method 3b), e.n. = cross-validation elastic net using lambda and alpha that minimises the 

prediction error (Method 4). 
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A similar analysis was also repeated using the monthly extreme maximum and minimum 

temperature values (Table A1), rather than monthly mean maximum and mean minimum 

temperature. Results from the lasso and elastic net methods were not shown due to their poor 

performance in the monthly mean model. 

The variable selection methods reduced model complexity more successfully when using the 

maximum and minimum temperature values for each month. For example, for best subset 

selection with cross-validation (cv.b), only 10 variables were selected (Table A1), as opposed to 

13 for the mean temperature model (Table 3.3), for stepwise selection (s.bo) 9 variables were 

selected (Table A1), compared to 14 previously (Table 3.3) and for backwards stepwise selection 

(s.ba) 13 variables were selected (Table A1) as opposed to all of them with the mean minimum 

and maximum temperature data (Table 3.3). Generally, there was lower correlation between 

monthly extreme temperature values (Figure A2) than monthly mean temperature values (Figure 

A1). A high degree of collinearity would make it more difficult to drop individual climate variables.  

Use of the step function from the lmerTest package was also much more successful here and 

resulted in the selection of climate variables as well as Variety for the fixed effects (Table A2). The 

observed vs fitted plot for this model showed good agreement (Figure A3), as in all subsequent 

models in this chapter. Significant variables using this method overlapped well with the lmer 

model when it included the variables selected through stepwise selection (s.bo) and the Bayesian 

mixed model using the extreme temperature variables. 

3.4.2 Insufficient independent data for Principal Component Analysis 

Using PCA on the monthly mean temperature and total rainfall data found that the first six 

principal components (PC) explained ~90% of the observed variation in yield (Table 3.6). These 

were then input into equation [2.3], replacing the climate variables. PCs 2, 3, 4 and 5 were 

significant. However, the 4 PCs were not clearly defined by just one or two climate variables, 

rather several. Using PCA didn’t therefore simplify the model. 
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 Principal Component  

1 2 3 4 5 6 

Proportion of variance 0.26 0.22 0.18 0.10 0.091 0.043 

C
lim

at
e 

va
ri

ab
le

 

Apr_rain_tot 0.24 0 -0.03 0.44 -0.25 0.08 

Aug_rain_tot 0.19 0.34 0.1 -0.09 0.26 0.16 

Jul_rain_tot -0.11 -0.16 0.3 -0.4 -0.04 -0.09 

Jun_rain_tot 0.1 -0.15 0.32 -0.03 -0.24 0.53 

Mar_rain_tot 0.22 0.23 0.24 -0.29 0.07 0.33 

May_rain_tot -0.35 -0.18 -0.09 -0.17 0.12 0.25 

Apr_rain_dmax 0.03 -0.24 0.19 0.47 -0.24 0.23 

Apr_temp_max -0.2 0 -0.26 -0.11 -0.46 -0.21 

Aug_temp_max -0.38 -0.02 -0.2 0.16 0.06 0.3 

Jul_temp_max 0.03 0.43 -0.14 0.2 -0.01 0.12 

Jun_temp_max -0.2 0.29 -0.14 0.09 0.35 0.05 

Mar_temp_max 0.17 -0.02 0.28 0.31 0.38 -0.26 

May_temp_max 0.12 0.38 -0.11 -0.03 -0.24 0.12 

Apr_temp_min 0.35 -0.06 -0.17 -0.22 -0.21 -0.23 

Aug_temp_min -0.03 -0.27 -0.4 0.05 0.19 0.24 

Jul_temp_min 0.35 0.07 -0.31 -0.02 -0.08 0.11 

Jun_temp_min 0.24 -0.17 -0.35 0.03 0.22 -0.03 

Mar_temp_min 0.24 -0.36 0.05 0.07 0.21 -0.07 

May_temp_min 0.28 -0.21 -0.21 -0.25 0.12 0.3 
Table 3.6: The 6 main principal components (PCs) contributing to variance in spring barley yields. The 

proportion of variance of each PC is shown, along with the degree of correlation of each mean climate 

variable with each PC. Variables correlating by more than |0.3| are in bold. 

Overall, the conclusion from PCA and variable selection models is that there wasn’t enough data 

to build a complex multiple linear regression model with highly correlated data. Therefore, two 

final methods were explored: yield-climate correlation analysis, and manual climate variable 

selection by iteratively adding each climate variable individually to equation [2.3].  
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3.4.3 Highest correlations between July temperature and rainfall and yield 

In yield-climate correlation analysis July rainfall and July maximum temperature had the largest 

absolute correlation with yield: -0.49 and 0.45, respectively (Figure 3.14). These variables had a 

strong negative correlation (Figure A1).  

3.4.4 Use of Akaike Information Criterion reveals important climate variables 

To understand if adding temperature or rainfall climate variables to the mixed model [2.3] 

improved the fit, first the AIC of the mixed model of [3.1] without any climate covariates was 

calculated (Table 3.7). Each climate variable along with its interaction with variety were added to 

the model one at a time. None of the interactions with variety were significant, so the variety x 

climate interaction term was dropped from the model and the models with each climate variable 

were looped through again.  

Only three variables – July maximum temperature, August maximum temperature and July total 

rainfall – were significant when included in the model. The models which included either July 

maximum temperature or August maximum temperature improved the AIC and model fit. 

Notably all the models that contained temperature had a lower AIC and better fit than any of the 

rainfall models, including the significant July rainfall model (Table 3.7). 

Figure 3.14: Correlation between each monthly climate variable and yield for the 1901-1906 barley trials 

in Ireland. The dashed black lines show significant correlation (p<0.05, n=102). 
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Both July maximum temperature and August maximum temperature had a positive relationship 

with yield (Table 3.7), such that yield increased by ~ 1/4 t/ha per 1oC increase in July maximum 

temperature and by ~ 1/5 t/ha per 1oC increase in August maximum temperature.  

Climate variable 
Significance 

in model 
Coefficient AIC 

- - - 127.5 

Jul_temp_max 0.004 0.27 123.6 

Aug_temp_max 0.024 0.20 127.4 

Jul_rain_tot 0.028 -0.0069 135.0 

Apr_temp_min 0.059 -0.097 130.0 

Jun_temp_min 0.090 -0.11 130.4 

May_temp_min 0.101 -0.10 130.5 

Mar_temp_min 0.110 -0.095 130.7 

Jun_temp_max 0.120 0.11 130.6 

Jun_rain_tot 0.131 -0.0037 137.4 

Mar_rain_tot 0.190 -0.0035 137.7 

May_temp_max 0.212 0.098 131.2 

Jul_temp_min 0.340 -0.075 131.9 

May_rain_tot 0.534 0.0034 137.8 

Aug_temp_min 0.540 -0.044 132.5 

Apr_rain_tot 0.573 0.058 132.0 

Mar_temp_max 0.591 -0.0020 138.6 

Aug_rain_tot 0.635 0.062 131.5 

Apr_rain_dmax 0.693 -0.0013 139.0 

Apr_temp_max 0.842 -0.026 131.7 
Table 3.7: Statistical significance and corresponding coefficient of each climate variable in the mixed model 

with year, variety and year:farm. Significant variables are shown in bold. The AIC of the overall model is 

given, with lower values corresponding to a better model fit. 

3.5 Comparison of standard error of difference between means 

Student (1923) calculated the standard error of the mean difference in variety means to test 

whether there was a significant difference in varietal performance. To test if we get the same 

result using this method, first the mean difference in the variety values was calculated as £1.52/ha 

(12 shillings/acre) with a standard deviation of £2.95/ha (23.9 shillings/acre) and corresponding 

standard error of the mean difference £0.41/ha (3.3 shillings/acre), in accordance with Student 

(1923). This corresponds to a t-statistic of 3.68, which was statistically significant (p<0.001) at the 

95% level (Df = 50). This provided strong evidence that there was a difference in varietal 

performance. 
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To test whether the addition of climate variables reduces the yield difference associated with 

variety, the standard error of difference between variety values in the three mixed models 

containing significant climate effects (Table 3.7) was calculated. They all gave identical values (to 

2 s.f.) of £0.41/ha (3.3 shillings/acre). This indicates that the models do not reduce the standard 

error, which is expected given no variety x climate interactions were included in the final models. 

The climate variables simply partitioned the effects of Farm and Year and did not affect the 

Variety effect. 

3.6 Discussion 

3.6.1 Climatic causes of yield variability 

Use of recently digitised weather data for the early 20th century has showed that contrasting 

climatic conditions in 1903, and 1905 coincided with variation in spring barley varietal 

performance. In 1903 a wet March (Figure 3.8) likely made it challenging to drill the crop, resulting 

in delayed planting shortening the growing season and compounded by potential difficulties in 

crop establishment. Nationally, the 1903 growing season received over 20% more rainfall than 

average (Figure 3.4), contributing to greater cloud coverage and lower than average growing 

season PAR (Figure 3.12), notably during April, May, June and July. Reduced solar radiation 

interception during the grain fill period in June and July constrains photosynthesis, reducing the 

final ear weight amassed in this period (TEAGASC, 2017). The 1903 growing season was also 

cooler than average (Figure 3.9) with low GDDs (Figure 3.5). This coincides with the year of lowest 

mean yields and greatest yield variability for Archer, but much lower variability for Goldthorpe 

(SD = 0.22 t/ha) (Figure 3.1).  

To better understand the weather in this period, NAO indices were analysed. A large positive 

WNAO and large negative SNAO likely contributed to the higher precipitation received in 1903 

(Figure 3.6). 

A more recent experiment detailed by Gothard et al. (1983) found that Goldthorpe outperformed 

Archer when spring and summer rainfall was high. Combined, these results suggest Goldthorpe 

may be able to withstand much higher soil moisture and waterlogging. Hunter (1929) notes that 

Goldthorpe requires plenty of moisture to produce the best yields and quality, supporting this 

theory. Continual dampness can also increase disease pressures for diseases such as 

Rhynchosporium which prefer cool wet weather and which, if present early in the season, can 

reduce tiller survival and potential yields (TEAGASC, 2017). If Rhynchosporium was present, this 

may show greater resistance of Goldthorpe to the disease. 
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In contrast, the 1905 growing season was warmer than average (Figure 3.13) with high growing 

season GDDs (Figure 3.5). There was low growing season PAR (Figure 3.12), but high PAR in July, 

when high solar radiation is important for grain fill. The growing season was drier than average, 

starting wet but drying in June and July. These favourable conditions likely contributed to the 

relatively high yields seen in 1905 for both varieties.  

Of the farms with six years of trials data, Farmer Wolfe performed the best on average (Figure 

3.2). This farm was located ~30km south-west of Birr Castle and experienced higher summer 

temperatures and less summer rainfall than the other two farms. Other factors such as favourable 

agronomy, farm management and soil type may also have encouraged higher yields here.   

3.6.2 Statistical methods 

Through trialling various variable selection methods on both mean temperature and rainfall data 

and extreme temperature data, this research has highlighted the importance of identifying 

collinearity early on in analysis involving multiple covariates. The use of these methods and 

Principal Component Analysis was limited by the high correlation between covariates within a 

small dataset, but it was still possible to extract information on the most important variables using 

simple mixed models.  

July maximum temperature and August maximum temperature had a positive relationship with 

yield and July total rainfall had a negative relationship with yield (Table 3.7). July rainfall can also 

be used as a proxy for solar radiation, so a wet July would usually be associated with more cloud 

cover, reducing solar radiation interception during grain fill. Likewise, wet weather during grain 

filling can encourage ear and grain diseases, such as fusarium ear blight and ergot, which can 

cause shrivelled grain and mycotoxins (AHDB Cereals & Oilseeds, 2018b). Hence the plant benefits 

from more solar radiation and less rainfall in July. Higher July maximum temperature implies less 

daytime cloud cover intercepting solar radiation, hence the correlation between these two July 

variables and yield is of opposite polarity. In future analysis of more recent crop yield data, 

inclusion of solar radiation data in the models would be desirable to directly quantify the 

relationship between solar radiation and yield. 



118 
 

The finding that July maximum temperatures were positively correlated with spring barley yield 

(Figure 3.14) contrasts with other published research which shows that warmer temperatures 

during anthesis and grain fill can have a detrimental effect (Hakala et al., 2020; Addy et al., 2021a). 

This result is highly likely due to July maximum temperatures in Ireland in the early 20th century 

falling well short of those more regularly seen today in some major UK spring barley growing 

areas. Specifically, maximum temperature did not exceed 28oC during the six-year trials period 

whereas those in South-East England now regularly exceed 30oC in summer months (Kendon et 

al., 2022). This finding shows the importance of region-specific crop-climate research: despite the 

proximity of the UK to Ireland their climates differ and the same relationships between weather 

variables and yield cannot be assumed. 

It wasn’t possible to detect any GxE within the mixed models used (Table 3.7). The lack of 

significance throughout of climate variety interactions may well be related to the relatively small 

trials dataset, approximation of site locations and sometimes large distances to weather stations. 

However, it is clear from the more stable performance of Goldthorpe in 1903 relative to Archer 

coupled with wider evidence  (Reid et al., 1929; Gothard et al., 1983) that GxE is a driver of 

performance here. This highlights the importance of considering the local climate in crop variety 

selection.  

The last few years have seen a surge in the growing of heritage barley varieties from the early 

20th century. Goldthorpe, its predecessor Chevalier and offspring Irish Goldthorpe, as well as 

hybrids of Archer, such as Plumage Archer, have been grown for breweries across the UK and 

Ireland and are currently being investigated by organisations such as New Heritage Barley.  Some 

heritage varieties display highly desirable traits, such as Fusarium fungal disease resistance in 

Chevalier (BBSRC UKRI, 2016). How these varieties perform in the current and future climate is of 

interest given the performance of these varieties in the 1901-1906 trials. It is hoped that Archer 

and Goldthorpe will be trialled on large scale field plots to allow for comparisons with the yields 

from 1901-1906, but also to test the models in the current climate on larger datasets.  
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3.6.3 Limitations 

Use of any data sources comes with a degree of error and uncertainty. A lot is unknown about 

the spring barley growing season in the early 1900s, such as planting and harvest dates and 

relative disease pressures. The exact location of the sites was also unknown. Differences in soils 

and agronomic practices across trial sites were accounted for by the inclusion of the random site 

term, representing the farmer x year interaction. However, this research does not account for 

sources of error in the climate data. There are two main issues here. The first is that data has 

been recorded manually, by many different people using varying equipment, which introduces 

the possibility of human error. The second is potential transcribing errors, however to minimise 

inconsistencies each record was input twice (Murphy et al., 2018; Mateus et al., 2020).  

The distance of trial sites to the nearest temperature station was over 100 km for some sites. 

Whilst it was possible to compare station data with the ERA-20C reanalysis data to ensure station 

data was reasonably representative of the weather at each site, ERA-20C has very low spatial 

resolution itself (~125 km) therefore it is still possible that climate data assigned to a site is not 

reflective of the true climate at that location and time. This may in part explain why GxE was so 

difficult to detect. 

Given what is known about the importance of solar radiation for the growth and yield of barley, 

it would be desirable in future analysis of this kind to include solar radiation, or PAR, as a variable 

in statistical models. This would allow the contribution of solar radiation to yield to be analysed 

and quantified.  

There is a possibility that some spring barley was sown in February, as documented by Reid et al. 

(1929) in Lincolnshire on particular shallow soils in the late 1920s. This hasn’t been accounted for 

in the models, as it was not possible to access any of the Irish farming diaries or calendars from 

the time. Sowing dates would be useful to confirm this.  

3.7 Conclusion 

Through combining recently published historical rainfall and temperature data with spring barley 

trials data, it was possible to identify climatic influences on spring barley yield variability seen in 

early twentieth century trials data in Ireland, building on the earlier findings of Student (1923). 

Variety was found to have a greater influence on spring barley yields in 1901-1906 than individual 

climate variables. July total rainfall, July maximum temperature and August maximum 

temperature were the most important climate variables, with the former having a negative effect 

on yield and the latter two temperature variables having positive relationships with yield. 
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The dataset allowed different variable selection and mixed modelling methods to be trialled and 

evaluated, with some encouraging results as well as providing some important lessons on 

modelling correlated covariates. These methods and their applications are now better 

understood and can be used on larger datasets, such as the UK variety trials data in Chapter 6, 

with more confidence.  
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4 The State of the UK Agroclimate 

The grand challenge of producing more food for a growing population in a harsher, more variable 

climate requires an understanding of how past weather and climate variability has influenced 

crop production. Agroclimate indicators are a useful tool for quantifying the effect of changes in 

weather and climate on agriculture (Section 1.3.2) and aid interpretation of crop performance. 

This chapter addresses the limited historical analysis of agroclimate metrics and potential causes 

of recent cereal yield variability and trends in the UK. The output of this analysis can be used by 

farmers and growers to better understand performance, make climate-smart decisions on future 

crop and variety usage as well as inform farm management decisions. This information can be 

also integrated into national crop breeding and trial programmes to help identify and further the 

development of climate-resilient crop varieties. 

In this chapter, the concept of a State of the UK Agroclimate is introduced as a periodic 

assessment of the changing UK agroclimate and its influence on crop production. Initially, the 

regional and national farm and variety trial yield trends and variability are analysed to confirm 

whether a ‘yield plateau’ persists in UK wheat (Triticum aestivum L.) and barley (Hordeum vulgare 

L.). Yield outliers are identified and their causes explored. Relevant agroclimate metrics identified 

in Chapter 2 (Table 2.14) are created using carefully selected climate datasets. Trends and 

variability in these metrics are analysed over the last four decades (1981-2020) and are related 

to farming practices.  

4.1 Long-term production trends show increasing variability 

Very little spring wheat is grown in the UK, therefore national wheat yields were used as a proxy 

for national winter wheat yields (Mackay et al., 2011). From 1961 to 1990, wheat yields increased 

rapidly from 3.5 t/ha to 7 t/ha (~0.1 t/ha/yr) (Figure 4.1). From 1991 to 2010, the rate of growth 

slowed to 0.06 t/ha/yr, with 2001-2010 exhibiting a marked plateau (0.04 t/ha/yr). For 2011-

2020, increased interannual variability consistent with the anticipated increase in extreme events 

associated with climate change, masks the longer-term trend in wheat yield. The highest yields 

were achieved in this period (e.g. 2015 9.0 t/ha), indicating higher yield potential, but also greater 

potential for large yield losses (e.g. 2012 6.7 t/ha). Consequently, the estimated rate of yield 

increase was only 0.01 t/ha/yr for the last decade, indicating further wheat yield stagnation. 
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Wheat area increased 2.5-fold from 1961 to 1990 to 2 Mha, but subsequent years have seen 

variations in area of up to 20%. Total production followed a similar trend increasing rapidly from 

3 Mt in 1961 to 14 Mt in 1990 and then plateauing from 1990-2020 with large interannual 

variability of up to 4 Mt.   

National barley yields also showed significant growth from 1961 to 1990 of 2 t/ha (~0.07 t/ha/yr), 

before slowing across 1991-2010 to 0.04 t/ha/yr (Figure 4.2). In 2011-2020, there was again high 

variability of over 1.2 t/ha between years, indicating that whilst yields have still been increasing, 

there is greater potential for barley yield shocks. The falls in yield in 2013 and 2020 correspond 

to years of high spring barley and low winter barley area; more spring barley is grown in years of 

poor winter cropping conditions. As a result of this high interannual yield variability, the overall 

Figure 4.1: National annual wheat yields (green dots), area (blue) and production total (black) for 1961-2020 

(top) and 1980-2020 (bottom). The 5-year running mean yield (green dash) and quadratic (green) give an 

indication of long-term UK wheat yield trends. Spring and winter wheat are combined these plots due to the 

very low usage of spring wheat varieties. Data from FAOSTAT and DEFRA.  
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rate of yield increase in the most recent decade was very low at just 0.02 t/ha/yr. This indicates 

that on average, barley yields are still plateauing.   

Combined barley area halved from the mid-1960s to 1990 (Figure 4.2), due to changes in 

subsidies which encouraged growing of oilseed rape. A corresponding decline was seen in barley 

production. In the most recent decade barley planted area, in particular spring barley, and 

production has begun to rise again, linked with a decrease in oilseed rape (OSR) as flea beetles 

become more problematic, in part due to the banning of neo-nicotinoids and milder winters 

(Thursfield, 2019; AHDB, 2022).  

Figure  4.2: National annual combined winter and spring barley yields (green dots), combined area (blue) 

and production total (black) for 1961-2020 (top). Spring barley (grey dashed) and winter barley (grey) area 

and combined yield (green) are shown for 1984-2020 (bottom). The 5-year running mean yield (green dash) 

and quadratic (green) give an indication of long-term UK barley yield trends. Data from FAOSTAT and DEFRA. 
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Winter wheat, winter barley and spring barley variety trials all show linear increases in yield across 

1982-2018, at a rate of 0.08, 0.09 and 0.04 t/ha/yr, respectively (Figure 4.3). In contrast to the 

quadratic relationships between harvest year and national yields (Figures 4.1 and 4.2), the linear 

increases in variety trial yields shows variety trial yields have not plateaued. However, there is still 

high interannual yield variability, particularly in the last decade for winter wheat. 

 

Figure 4.3: Winter wheat, winter barley and spring barley median annual variety trial yields for 

1982-2018 (from 1983 for spring barley) for treated and untreated trials combined. 
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4.2 There are regional deviations to national yield anomalies 

Abnormally high yields occurred in 1984, 1996, 2015 and 2019 for both national wheat and 

barley (Figure 4.4). For wheat, the negative yield outliers occurred in 1987, 1988, 2012 and 

2020, whilst for barley they occurred in 1988, 1989, 2012 and 2018.   

Regionally, there were deviations from the national wheat yield anomalies (Figure 4.5). For 

example, in 2010 Northern Ireland had the largest positive yield anomaly of the period 1999-

2019, whilst the rest of the country experienced very small or slightly negative anomalies. Then 

in 2019, when nationally and across many regions there was a large positive yield anomaly, 

Northern Ireland’s wheat yields were very average. In 2018 Scotland experienced a large negative 

yield anomaly whilst the rest of the country only saw small negative deviations in yield. In 2001, 

large negative yield anomalies occurred in most regions, but this wasn’t detected at a national 

level. This highlights how national yield analysis alone can hide variation within the country.  

a. 

b. 

Figure 4.4: National yield anomalies for a. wheat and b. barley, after removing the long-term trends for 

1982-2020 and 1984-2020, respectively. Years in red represent anomalies in the top and bottom 10%. 

Data from DEFRA. 
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Figure 4.5: Regional wheat yield anomalies for 1999-2019, after removing the regional trend from 1999-

2019. Years in red represent anomalies in the top and bottom 10%. Data from DEFRA. 

There is overlap in the anomalous years in the on-farm data and trials data, particularly for 

positive yield anomalies, with 1996 and 2015 also identified in all three trials datasets as good 
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years (Figure 4.6). 2012 was a particularly bad year across the variety trials and national farm 

data.  

 

Figure 4.6: Variety trial yield anomalies for 1982-2018 for winter wheat and winter barley and 1983-2018 

for spring barley. Fungicide treated and untreated variety trials were combined. Harvest years in red 

represent anomalies in the top and bottom 10%. Data provided by AHDB. 

Given the available data on national, regional and variety trial yield anomalies for 1982-2020, the 

high yielding harvest years for wheat and barley were 1984, 1996, 2015 and 2019. The low 

yielding harvest years were 1988, 2001 and 2012. 2018 was also low yielding for spring barley 

and 2020 was for wheat (Figures 4.4, 4.5 and 4.6).  

4.3 Climate anomalies help explain anomalous yields 

Use of Met Office ranked data allowed anomalous months and seasons in outlying yield harvest 

years to be identified, and appropriate maps were then downloaded or created to see the spatial 
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extent of likely influential weather patterns (Figure 4.7 and Figure 4.8). Anomaly plots (Figures 

4.9 and A4-6) complement this spatial representation by giving an indication of the growing 

season climate from September to August. Winter North Atlantic Oscillation (WNAO) indices have 

also been included from Figure 3.6, to give a qualitative measure as to whether this may have 

contributed to the observed yield anomalies.  

The first good harvest year, 1984, experienced high sunshine (gridded data not available) and low 

rainfall in July across the whole of the UK (Figure 4.7), increasing the photosynthetic potential 

during the grain fill period. It was a relatively cool growing season, particularly January to April, 

encouraging an extended growth period and the spring and summer months were largely drier 

and sunnier than average (Figure 4.9). 1984 had a positive WNAO of 1.70. 

With the exception of January, all of the months between December and July in the 1996 harvest 

year were also cool (Figures 4.7 and 4.9), reflected in a later than average harvest (~30th August). 

May maximum temperature was the 4th coldest on record (of 104 years) and December was the 

8th coolest. June 1996 was in the top 10% for sunshine duration (Figure 4.9). 1996 had a strong 

negative WNAO of -2.24. 

Low September rainfall was a feature of the 2015 harvest year (Figure 4.7), allowing farmers onto 

the land to drill earlier than normal (~2nd October), as well as encouraging deeper root 

establishment which can be important in times of subsequent drought or low precipitation during 

the harvest year. The months May to August were cooler than average (Figure 4.9). 2015 had a 

strong positive WNAO of 2.06.  

The most recent good year, 2019, consisted of several very warm months, including the warmest 

February maximum temperatures on record, and December, July, March and November all 

experienced top 10% warmest minimum temperatures (Figure 4.7). Summer was also the 11th 

wettest nationally, although this was mostly in the North and Midlands, rather than growing areas 

in the East. 2019 had a positive WNAO 1.15. 

The first of the low yielding years, 1988 had the wettest July on record, with much of the country 

receiving over 200% of the 1991-2020 average (Figure 4.8). This was accompanied by low 

maximum temperatures and sunshine, receiving just ~85% of the period average for July. Drilling 

date was also late, with a median of 25th October. 1988 had a WNAO of -0.13. 

Autumn 2000 was the wettest on record, with parts of the South-East receiving over 350% of the 

1991-2020 average in October and over 200% in November (Figures 4.8 and 4.9). This coincided 

with delayed drilling of winter wheat trials (~20th October). By contrast, in Scotland November 



129 
 

rainfall was less than 70% of the average in the North and West, and October rainfall was only 

slightly more than average. This regional variation in rainfall anomalies may help explain why 

Scotland did not have a strong negative yield anomaly in 2001. 2001 had a WNAO of -0.44. 

The most extreme yield loss occurred in 2012, the year with the wettest April and June on record 

(Figure 4.8). The UK also received the lowest June sunshine on record and 3rd lowest in summer, 

leading to low photosynthesis rates during the grain fill period. Harvest dates were much later 

than average (~5th September), indicative of a long growing season. 2012 had a strong positive 

WNAO of 2.18.  

Spring barley was the only crop to yield in the lowest 10% in 2018. The spring 2018 rainfall 

anomaly was very split between a drier than average North-West of the UK and a very wet South 

and East of the country (Figure 4.8). The latter encompasses much of the growing area for spring 

barley (Figure 2.7) and given the crop is typically drilled at this time of year, heavy rainfall could 

have delayed field activity, which may explain the delayed spring barley trials drilling date of ~13th 

April, relative to the 2007-2018 mean of 27th March. This was followed by the hottest May and 

2nd hottest June and July on record, which encourages faster development, hence the earlier 

harvest date ~22nd August, the earliest in the 2007-2018 period. In Scotland, seven consecutive 

months (February to August) of below average rainfall (Figure 4.9) resulted in drought conditions, 

with a Standardized Precipitation Index (SPI) of <-2.0 i.e. “extremely dry” in some regions (Centre 

for Ecology and Hydrology, 2022). This was reported to have impacted both quality and yield of 

malt barley supply (Berry and Brown, 2021).  

The 2018 winter barley harvest was less affected by the poor spring conditions as the crop is 

already established by this time of year. Hot summer temperatures did likely limit winter barley 

crop yields somewhat by accelerating growth, as reflected by an earlier median harvest date of 

~7th August, nearly 2 weeks earlier than the 1988-2018 average. 2018 had a positive WNAO of 

0.91. 

The poor wheat (Figure 4.4) and spring barley (Figure 4.6) yields of 2020 came after a year of 

highly variable rainfall. For parts of the wheat growing area (e.g. East England), over 170% of the 

1991-2020 rainfall average fell in autumn 2019 (Figure 4.8), making land access more difficult and 

potentially delaying drilling (drilling dates unavailable for this year). This was followed by a series 

of storm events in February 2020, which contributed to this being the wettest February on record 

and made it difficult for spring crops to establish. Given both winter wheat and spring barley were 

mostly drilled at a time of high soil moisture, shallow root systems may have formed, such that in 

the subsequent very dry spring, in which much of the growing area received less than 50% of the 
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1991-2020 average rainfall, intake of nutrients without sufficient moisture could have been 

limited. 2020 had one of the highest WNAO on record, of 2.85. 

Combined, these show that monthly and seasonal climate anomalies can help explain some 

observed yields. However, for some years, such as 2019, the climatic contribution is less clear. 

Hence more specific agroclimate metric analysis is required. WNAO values showed some 

abnormal values in the anomalous yield years, for example high WNAO values in 2020 and 2012, 

which were both low yielding years. However, the high yielding year of 2015 also had a high 

WNAO and there was no obvious relationships between WNAO and average national yields.  
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Figure 4.7: Climate anomalies in years of high yields (top 10%). All anomalies are compared to the reference 

period 1991-2020. Temperature and precipitation data from HadUK has a 1km x 1km resolution (Hollis et 

al., 2019). SIS = surface incoming solar radiation from CMSAF has a resolution of 0.05o x 0.05o (Pfeifroth, 

Trentmann, et al., 2018). 
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Figure 4.8: Climate anomalies in years of low yields (bottom 10%). All anomalies are compared to the 

reference period 1991-2020. Temperature and precipitation data from HadUK has a 1km x 1km resolution 

(Hollis et al., 2019). SIS = surface incoming solar radiation from CMSAF has a resolution of 0.05o x 0.05o 

(Pfeifroth, Trentmann, et al., 2018). 
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4.4 The Changing UK Agroclimate 

4.4.1 Drilling day of year is earlier but harvest dates haven’t changed 

Winter wheat variety trial drilling and harvest dates were split into the four UK nations to look at 

variation across the UK. The median drilling day of year for 1988-2018 was 283 i.e. the 10th 

October, but drilling dates varied from early September to as late as early February (Figure 

4.10a.). Harvest dates were more dependent on the nation the trial site is in. Median harvest day 

of year across the UK was 233 i.e. 22nd August, but there is much variation between the nations 

(Figure 4.10b.). In Wales and England, where the latitude is lower, winter wheat trials are typically 

harvested much earlier, on day 228 (~16th August) and 231 (~19th August), respectively. In 

Northern Ireland and Scotland trials are harvested two weeks later, on day 245 (2nd September) 

and day 246 (3rd September). The higher latitude controls this, with cooler temperatures allowing 

Figure 4.9: Monthly temperature, sunshine duration and rainfall anomalies for anomalous yield growing 

seasons relative to the 1991-2020 averages for the growing season for the UK (red), England (blue), 

Wales (green), Scotland (purple) and Northern Ireland (NI) (orange). ‘Good’ harvest years are displayed 

first, followed by ‘bad’ harvest years. Data from Met Office year ordered time-series. 
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for slower development. As a result, winter wheat in Scotland and Northern Ireland has a longer 

growing season on average. 

To investigate the relationship between latitude and drilling and harvest day of year in England, 

regional dates were explored. However, the limited number of trials in several regions meant this 

analysis was inconclusive.  

Analysis of time-series data shows that since 1988, winter wheat trials drilling day of year has 

been getting earlier by one day every three years (Figure 4.11a.). However, in the last few years, 

there was more variability and the trend may have started to reverse, so drilling is occurring 

slightly later again. This trend has been documented in on-farm winter wheat surveys, which 

found that in 2017-2019 there was an increased proportion of farms drilling in October rather 

than late September (Turner et al., 2021).  

The delayed drilling for harvest years 1988 and 2001 really stands out. October 1987 was in the 

top 9% of wettest Octobers and autumn 2000 was the wettest on record, therefore heavy rainfall 

and possible waterlogging was likely a contributing factor to the delay. Sowing dates are also 

highly dependent on previous cropping: early sowing typically follows OSR, whilst late November-

sown crops often followed later harvested sugar beet or potatoes (Hardwick et al., 2001). Given 

that the proportion of wheat crops following OSR almost doubled from 1991-2016 on-farm 

(Turner et al., 2021) and in the trials data (Figure A7), long-term changes in cropping will also be 

affecting trends in sowing dates. Linked with previous cropping, drilling date has also been 

influenced by responses to black grass pressure as a confounding factor. The reduced blackgrass 

a. b. 

Figure 4.10: Cumulative a. drilling day of year and b. harvest day of year for winter wheat variety 

trials in Wales, England, Scotland and Northern Ireland for 1988-2018. The median drilling day of 

year is 283 (10th October) and harvest day of year is 233 (21st August). 
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risk through the reduction in repeat wheat has been reversed by the increased risk due to a 

movement towards minimum tillage (Turner et al., 2021).  

Harvest dates showed considerable variation from year to year with no significant trend over time 

(Figure 4.11b.). Overall, the growing season length (from drilling to harvest) increased by one day 

every two years since 1988 (p=0.003).  

The delayed harvests of 1988, 1996, 2000 and 2012 are noticeable. Heavy summer rainfall likely 

delayed harvest in 1988 and 2012, whilst in 1996 several months of cooler weather may have 

slowed development, leading to a later maturity date and longer growing season. 

Figure 4.11: The annual ranges in a. drilling day of year and b. harvest day of year for winter wheat variety 

trials, 1988-2018. The linear trend in drilling day of year is statistically significant (p<0.001). 

a. 

b. 
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4.4.2 The Start of the Growing Season is getting earlier  

Decadal mean SOGS show that the growing season starts earliest in the South of England and 

nationwide SOGS has gotten earlier when comparing 1981-1990 and 2011-2020 (Figure 4.12). 

There is variability across the 40-year period, such that the average SOGS for 2001-2010 was later 

than the previous decade. In 2011-2020 in parts of the South West and South East SOGS was as 

early as the 6-10th January. Crops respond to many environmental cues including temperature 

1981-1990 1991-2000 

2001-2010 2011-2020 

Figure 4.12: Start of the growing season (SOGS) day of year averages for 1981-1990, 1991-2000, 

2001-2010 and 2011-2020, calculated from 1st January each year. Created using HadUK 1km x 1km 

gridded temperature data (Hollis et al., 2019). 
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and day length, therefore an earlier SOGS may not necessarily mean that field tasks immediately 

follow.  

It might be expected that earlier SOGS also means earlier harvest date, however, use of winter 

wheat trials data shows that this was not the case (Figure 4.13). There was no relationship 

between SOGS and harvest date for winter wheat trials in the UK. An earlier SOGS can still be 

followed by a cool spring/summer, delaying the accumulation of the required GDD. 

4.4.3 The available Growing Degree Days has increased 

Growing Degree Days (GDD) (calculated from 1st September-31st August; Table 2.14) for each 

decade within 1982-2020 was highest in the South-East and East Anglia, at over 1800 oC days, 

compared to less than 1000 oC days in parts of Scotland (Figure 4.14). GDD increased each 

decade, with an overall ~15% increase in GDD between 1982-1990 and 2011-2020, aligning with 

findings of Nesbitt et al. (2022).   

Figure 4.13: Start of Growing Season against the harvest day of year for winter wheat trial sites across 

the UK for 1988-2018. Calculated using the method described in Table 2.14. 
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Figure 4.14: Mean Growing Degree Days (GDD) (oC days) from September to August for 1982-1990, 1991-

2000, 2001-2010 and 2011-2020. Created using 1km x 1km gridded temperature data from HadUK (Hollis 

et al., 2019). 

GDD was also calculated from drilling date to harvest date at winter wheat trial sites.  The range 

in GDD values (785-1946 oC days) calculated this way was smaller than those calculated from 1st 

1981-1990 1991-2000 

2001-2010 2011-2020 
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September to 31st August (Figure 4.15), as drilling typically takes place a few weeks after 1st 

September from when the national values were calculated.  

GDD at winter wheat trial sites significantly (p<0.001) changed from 1988-2018, increasing on 

average by 3 oC days every year (Figure 4.15). This could in part be due to the earlier drilling dates 

(Figure 4.11a.): drilling two days earlier increased GDD by 1 (p<0.001).  However, GDD for winter 

wheat variety trials showed no significant relationship with yield. 

4.4.4 Vernalisation Degree Days reveal coastal effect 

Keeping in mind the vernalisation effectiveness factor (Figure 2.10), Vernalisation Degree Days 

(VDD) (Figure 4.16) showed very different spatial patterns to GDD (Figure 4.14). Across all 

decades, the South-West, coastal Wales and Northern Ireland had the highest VDD. Low VDD 

over much of Scotland across the four decades was due to Tmean being suboptimal (optimal = 

6.5oC). The effect of temperature moderation by the sea on coastal locations is evident around 

parts of the UK, where VDD was higher especially in the most recent decades, likely due to fewer 

extreme cold or warm days from autumn to spring. As temperatures continue to rise in the UK, it 

is likely that this trend in increase in VDD will peak and then reverse, as winter and early spring 

temperatures go above the optimal value for vernalisation. In the coldest parts of the country, 

such as northern Scotland, rising temperatures could be beneficial for vernalisation for longer. 

Figure 4.15: Median Growing Degree Days (GDD) (oC days) at winter wheat trial sites from drilling date to 

harvest date for 1988-2018. The increase in growing degree days is significant (p<0.05) (black). 
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Figure 4.16: Vernalisation Degree Days (VDD) (oC days) from September to April for 1982-1990, 1991-2000, 

2001-2010 and 2011-2020. Created using equations [2.5] and [2.6] on the 1km x 1km gridded temperature 

data from HadUK (Hollis et al., 2019). 

VDD was also calculated for each winter wheat trial, from drilling date to an estimated anthesis 

date. Across the period the VDD mean was 1502. Calculating anthesis based on a thermal time of 

2100 oC days (AHDB Cereals & Oilseeds, 2018c) was flawed as for some sites and years the 

anthesis date was calculated to be in August (Figure 4.17), just days before being harvested: this 

1981-1990 1991-2000 

2001-2010 2011-2020 
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growth timeline seems unlikely. The years with the most extreme estimated anthesis dates were 

1988, 2001 and 2013, all of which had late drilling dates (Figure 4.11a.). Median harvest dates for 

these three years were at least a week later than the UK median day of year for 1988-2018 and 

all three years had negative yield anomalies (Figure 4.4a.) 

 

Figure 4.17: Estimated anthesis day of year calculated using a thermal time of 2100 oC days after drilling 

date for winter wheat trial sites, calculated using 1 km x 1km gridded HadUK temperature data (Hollis et 

al., 2019), extracted for each trial site. 

Estimated anthesis date (Figure 4.17) has been getting earlier at an approximate rate of a day 

every two years, which agrees with a previously calculated annual rate of change of flowering for 

UK winter wheat of -0.6 - -0.4 days/year for 1985-2014 (EEA, 2017). Anthesis date didn’t have a 

significant relationship with yield, whilst VDD did, contributing 1.5 t/ha increase for every 1000 

VDD, or 1.5 kg/ha/VDD. This lies within the range of values calculated by Wu et al. (2017) for 

Temperate Europe of 2.8 ± 1.5 kg/ha/VDD. Trial site VDD showed no statistically significant 

change over time at the trial sites, despite the observed earlier drilling dates. This could be 

influenced by the estimated anthesis date (Figure 4.17) used in the VDD calculation getting 

earlier. 

The VDD metric calculated here and by Wu et al. (2017) encompasses a long period of the growing 

season (September to April). In the UK, vernalisation in winter wheat typically takes place in 

November and December (Steve Penfield, pers. comm.), hence the national VDD metric was 

recalculated for November to February (Figure A8). The effect of modifying this metric on the 

relationship of VDD with yield is explored in Chapter 6 (Section 6.4). 
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4.4.5 Widespread decrease in April air frost days 

The number of air frost days in the UK in the spring months varied widely across the country, with 

the highest amount of frost in the North-West of the country and the least in the South-East 

(Figure 4.18). March typically had the most, with some parts of Scotland enduring on average 

over 20 frost days.  

The overall trend in the number of air frost days varied each month. In March, there was an East-

West divide, such that the West saw an increase in air frost days and the East a decrease. In April 

there was a widespread decrease in the number of air frost days, whilst in May there was very 

little change. This is significant for all growers, particularly those in the East of the country, who 

will likely have seen accelerated growth due to warmer temperature in March and April 

preventing frost formation but come May the risk of a frost day is still there, along with the 

potential of damage to sterility and abortion of formed grains around the earlier-occurring 

anthesis (Barlow et al., 2015).  
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Figure 4.18: The mean and rate of change in number of air frost days in the UK for 1981-2020 for March, 

April and May. Percentage change is calculated using the 1981-1985 and 2016-2020 periods. Created using 

1km x 1km gridded HadUK temperature data (Hollis et al., 2019). 

4.4.6 Seasonal variation in the water balance 

The national water balance gives a good indication of the seasonal cycle in water availability and 

years of extremes (Figure 4.19). Peaks correspond to winter when there is a water surplus and 

troughs correspond to summer when there is frequently a water deficit. The summer of 1995 

stands out as having the largest water deficit, likely due to national rainfall at less than 50% of the 

1991-2020 average for June and August (Figure A4). This resulted in widespread drought across 

the country in the summer months, with an SPI-3 of <-2 i.e. “extremely dry” across most areas of 

England, Wales and Northern Ireland (Centre for Ecology and Hydrology, 2022). In 1995, wheat 

and barley yields were generally above average, indicating it wasn’t detrimental for these crops. 
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Figure 4.19: Interannual variability in the 30-day accumulated national water balance (mm) for 1981-2017. 

The running annual mean is also shown (red). Created using CHESS-met and CHESS-PE (Robinson et al., 

2020a, 2020b).  

4.4.7 The distribution of wet days across the growing season has changed 

Across the growing season (September to August) the number of heavy rain days (>10mm) has 

changed since 1981 (Figure 4.20). September saw widespread reduction of up to 50%, which 

could be beneficial for field operations, such as winter cereal drilling, at that time of year. This 

may partially explain the trend in earlier winter wheat drilling (Figure 4.11a.) February saw the 

biggest increase in heavy rain days, by over 500% for some parts of the East. This is followed by a 

reduction for much of the UK in March, when spring crops are often drilled and the first round of 

winter crop spraying takes place (T0). A very wet February may still delay field operations in March 

if the ground does become severely waterlogged (Berry and Brown, 2021).  

In June and July, much of the country saw an increase in 10mm+ rain days (Figure 4.20) and 

20mm+ rain days (Figure 4.21). This is potentially problematic, as this can extend periods of cloud 

cover, limiting photosynthesis during grain fill and damp, mild conditions with high relative 

humidity can also encourage diseases such as Fusarium ear blight to spread (Bayer, 2020). In 

August, increasing heavy rain days will have made it more difficult to time harvest, as the crop 

may have reached maturity, but waterlogged land can make it too difficult for field operations 

and it is costly to have to dry grain once harvested wet. 
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Figure 4.20: The percentage change in the monthly number of heavy rain (>10mm) days in the 2011-2020 decade relative to the 1981-1990. An increase in heavy rain days 

is indicated in blue, a decrease in brown. Data from HadUK 1km x 1km gridded precipitation dataset (Hollis et al., 2019). 
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Figure 4.21: The percentage change in the monthly number of heavy rain (>20mm) days in the 2011-2020 decade relative to the 1981-1990. An increase in heavy rain days 

is indicated in blue, a decrease in brown. Data from HadUK 1km x 1km gridded precipitation dataset (Hollis et al., 2019). 
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4.4.8 Heat stress during anthesis and grain fill is still rare 

Across the 40-year period, extreme heat (Tmax > 32oC) was very rare. Looking at the trial sites, 

during the anthesis period Tmax > 32oC occurred only twice, one day in 1996 and one day in 2005 

at a few locations in East Anglia and South-East. Evidently, extreme heat during anthesis has not 

been a major risk in the past. Rising temperatures could increase this risk, however model 

simulations of 2oC of warming indicate exceedance of this threshold in only two days in a decade 

in the warmest region (London) and no exceedance for 4oC of warming in the 2050s (2040-2059) 

and 2080s (2070-2089) (Jones et al., 2020). This is due to the faster rate of thermal time 

accumulation due to warmer temperatures, such that heat stress is avoided by changes in crop 

phenology. In the UK, mean anthesis dates in 2050 are projected to be 10-11 days earlier using 

midrange emissions (RCP4.5) and 12-14 days earlier using high emissions (RCP8.5) (Harkness et 

al., 2020). This shift in anthesis dates has already been seen in the trials data (Figure 4.17). In 

Germany, an earlier heading date and a shift of the flowering period to cooler spring has 

compensated for any increase in risk (Rezaei et al., 2015).  

Similarly, extreme heat during grain fill (Tmax > 35oC) only occurred on one day in 2006, 2015 and 

2019 and two days in 2018, at a handful of trial sites in the East and South-East. Exceeding a Tmax  

of 35oC for at least 3 consecutive days has been shown to be detrimental to grain size and yield, 

therefore these events in the past 20 years are unlikely to have caused significant yield loss. The 

recent heatwave in July 2022, in which temperatures were above 35oC for two days in many areas 

of England, has shown the risk of extreme heat damage to grains during grain fill is possible in 

coming years. 

In a national screening assessment on likelihood of exceedance of various critical temperature 

thresholds in the natural environment, Jones et al. (2020) found that that the grain-filling 

threshold is exceeded under a 4oC scenario in four of the major wheat producing regions in 

England. Climate data to run the national screening assessments were extracted from UKCP18 12 

km resolution projections for a high emissions RCP8.5 pathway and used in the HADGEM 

Perturbed Physics Ensemble Model ID 7, with 2001-2010 as the baseline scenario. Threshold 

exceedance only occurs once or twice per decade per region, however the resulting economic 

losses in these events could be very high, with estimates of up to £19 million for a single event in 

the East Midlands, and £12 million in South East England. 
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The frequency of mild heat stress during grain fill (Tmax > 31oC) was much higher (Figure 4.22). An 

anomalous year within the period 1981-2020 was 2006, which had the hottest July on record and 

saw the grain fill threshold exceeded 10 times at several locations in Cambridgeshire. Whilst less 

detrimental than extreme heat, mild heat stress has been shown to affect grain size and yields 

(Dreccer et al., 2018). 2006 had a positive yield anomaly across most regions, including East Anglia 

and the South-East (Figure 4.5), suggesting that whilst it could have been yield limiting, several 

days of mild heat stress did not ruin the crop.  

4.4.9 Total solar radiation received during grain fill has increased in the East 

For the period 1987-2020, solar radiation received during grain fill was largely dependent on the 

latitude. The south of the UK received the most solar radiation during grain fill with over 800 

MJ/m2 on average received in the South-West England, South-East England and East Anglia 

(Figure 4.23). In Scotland, particularly in the north, crops received over 25% less grain fill SIS. This 

pattern of greater surface solar radiation in the South of the UK is not only seen during grain fill 

but also across the year (Pfeifroth, Sanchez-Lorenzo, et al., 2018). 

The change in grain fill SIS across the UK is highly dependent on longitude. Regions in the East 

saw increases in grain fill SIS of 5-13%, whereas those in the West saw decreases of up to 15%. A 

reduction in total summer surface solar radiation in the South West, Wales and Scotland was also 

observed by Pfeifroth et al. (2018a). For reference, annual grain fill SIS anomalies relative to the 

1991-2020 average are in Figure A9.  Analysis of trends in grain fill SIS at a national level indicates 

no change over the period, when evidently at a regional level there are significant and important 

changes for growers to consider (Figure 4.24).  

Figure 4.22: The number of mild heat stress (Tmax > 31oC) days during grain fill for 1981-2020 at (52.22,0.1) 

near a trial site in Cambridge. Calculated using gridded 1 km x 1km temperature data from HadUK (Hollis 

et al., 2019). 
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Figure 4.23: Mean total grain fill surface incoming solar (SIS) radiation (MJ/m2) (left) and percentage change 

in grain fill SIS from 1987-1991 to 2016-2020 (right). Grain fill incorporates the period 16th June-31st July. 

Created using gridded 0.05o x 0.05o degrees CMSAF-SIS data (Pfeifroth, Trentmann, et al., 2018). 

Regression analysis between regional grain fill SIS and regional wheat yields showed no significant 

relationship between the two variables. However, when site specific grain fill SIS data was paired 

with winter wheat variety trial yield data (Figure 4.25), significant positive correlations exist 

between grain fill SIS and winter wheat yield in the North-East, Northern Ireland, Scotland East, 

South-East and Wales (Table 4.1), highlighting the value of localised climate information.  
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Figure 4.24: Regional and national trends and variability in total surface incoming solar radiation (SIS) 

(MJ/m2) for the grain fill period 16th June-31st July. Calculated using gridded 0.05o x 0.05o degrees CMSAF-

SIS data (Pfeifroth, Trentmann, et al., 2018).
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Figure 4.25: Total grain fill surface incoming solar radiation (SIS) (MJ/m2) and winter wheat variety trial yield 

(t/ha) averaged across each trial site each year for each region of the UK. The grain fill period encompasses 

16th June-31st July. Total SIS was calculated using gridded 0.05o x 0.05o degrees CMSAF-SIS data (Pfeifroth, 

Trentmann, et al., 2018). 
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Region coef p 

East Anglia 0.067 0.3 

East Midlands 0.11 0.1 

North East 0.41 0.03 

North West -0.079 0.7 

Northern Ireland 0.29 0.05 

Scotland E 0.22 0.01 

Scotland N 0.17 0.5 

Scotland W 0.16 0.6 

South East 0.20 0.04 

South West 0.11 0.3 

Wales 0.79 0.004 

West Midlands -0.14 0.2 

Yorkshire and The Humber -0.004 1.0 

4.4.10 Disease prevalence shows high interannual variability 

Disease prevelance is highly dependent on climatic conditions. National disease survey data 

shows that there is large interannual variability in foliar disease prevalence in the flag and second 

leaf of the winter wheat crop (Polley and Thomas, 1991; Hardwick et al., 2001; Turner et al., 2021) 

(Figure 4.26).  

Table 4.1: Pearson correlation coefficient between grain fill (16th June-31st July) surface incoming solar 

radiation (SIS) and trial yield within each region is shown below, with significant correlations (p<0.05) in 

bold. 
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From 1976-1982, Septoria nodorum blotch was the most widespread disease recorded in the 

disease survey (Figure 4.26) (Polley and Thomas, 1991). Septoria leaf blotch was the most 

widespread foliar disease in most years since 1985, although it is more severe in the west and 

south-east and least in the East. Favourable conditions are warmer temperatures in May and 

June, the occurrence of which has increased, and rain-splash events (Turner et al., 2021), which 

have also increased in June (Figures 4.20 and 4.21). The risk of incidence of this disease will likely 

increase as the climate changes.  

Combining the national anomaly temperature and rainfall time-series graphs (Figures A4 and A6) 

with national disease prevalence statistics for highly affected years 1985, 2012 and 2014, it is 

evident that there was no relationship between national Septoria leaf blotch prevalence and 

national temperature and rainfall data for May and June. As reported in Turner et al. (2021), this 

Figure 4.26: National Flag (top) and second leaf (bottom) prevalence (area of leaf affected, %) of foliar 

diseases of winter wheat on-farm for 1976-2019. No disease data was recorded for harvest years 1983 

and 1984, or for tan spot pre-1999. Data from Hardwick et al. (2001), Polley & Thomas (1991) and 

Turner et al. (2021). 
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is likely due to localised rainfall events being more important here which national and regional 

climate analysis will mask.  This is exemplified by looking at changes in 10 mm and 20 mm rainfall 

events in May (Figures 4.20 and 26), where neighbouring locations within the same region and 

even county show opposing trends over time. 

There was also no significant relationship between Septoria leaf blotch flag leaf prevalence and 

national yields (p=0.98). Given the regional dependence of the severity of the disease, the 

relationship between regional yields and national disease prevalence was also investigated. 

Whilst no significant relationships were found, there were weak associations between yield and 

Septoria leaf blotch flag leaf prevalence in the higher severity regions of the South-West and 

Wales, but not in the South-East where it is also more severe (Figure A10).  

The trend in earlier drilling (Figure 4.11a.) has increased the risk of infection, as there is shorter 

time between harvest and drilling so more disease life cycles can carry over to the next growing 

season (Polley and Thomas, 1991; Gladders et al., 2001). 

Fusarium ear blight is an emerging threat to grain quality (AHDB Cereals & Oilseeds, 2018b; 

Turner et al., 2021). There have been several epidemics in the last two decades, such as 2007 and 

2014, and the incidence of the fungus has increased dramatically (Turner et al., 2021). Risk factors 

include warm dry springs allowing spore production followed by rain-splash events in June which 

spread the spores onto ears. The fungus favours warm humid conditions during flowering and 

high summer humidity and/or rainfall can allow the infection to spread (Bayer, 2020). As such, 

rising summer temperatures and increase heavy rainfall days in the summer months (Figures 4.20 

and 4.21), combined with the movement towards minimum tillage, may well encourage this 

disease in future. 

4.5 Discussion  

Increasing variability in wheat and barley yields has made it difficult to quantify the trend in recent 

yields after the documented yield ‘plateau’ of the 1990s and 2000s (Figures 4.1 and 4.2). Yield 

potential has increased, with the highest yields in the period of analysis in 2015, however the gap 

in yields between good and bad years has also increased, such that on average both barley and 

wheat yields have continued to stagnate and the yield plateau still exists. This contrasts with the 

decrease in yield variability seen in Finland since the 1990s (Peltonen-Sainio, Jauhiainen and 

Hakala, 2009). This lack of yield stability increases the risk of income fluctuations for farmers, who 

are also vulnerable to fluctuations in world prices, potentially inducing financial hardships. 

Increasing the stability of UK cereal yields is highly important. 
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The plateau in national yields (Figures 4.1 and 4.2) contrasts the continuous yield increases seen 

in the variety trials data (Figure 4.3), indicating that the plateau is not due to limited genetic 

improvement. A similar result was also seen in France in the 2000s (Brisson et al., 2010). In the 

USA, farmers have shown a reluctance to change their crop mix or agricultural practices in 

response to rising temperatures (Burke and Emerick, 2016). Therefore, it is possible that in the 

UK there is also a reluctance to adopt newer varieties that are better suited to the warmer, more 

variable climate, hence the observed plateau and greater variability in on-farm yields. The 

contribution of variety improvement to national yields is explored further in Chapter 5.  

Identification of yield anomalies and analysis of national climate time-series provided insight into 

the climate drivers of this variability. In some years, such as 2012 and 1984, the climatic causes 

of low and high yields respectively, were evident by looking at monthly temperature, rainfall and 

sunshine duration data. However, in other years (e.g. 2019), there were no clear explanations, 

suggesting that national monthly data is not sufficient to explain yield anomalies and/or these 

yield anomalies have non-climatic causes. Furthermore, this analysis highlighted that the climatic 

influences on yield are multi-faceted and favourable weather conditions at certain times of the 

year, such as high sunshine duration during June and July, do not always mean high yields, as the 

weather in the rest of the growing season may have been poor. Growing season (September to 

August) anomaly graphs for each harvest year provided a useful view of the growing season as a 

whole for the UK and individual nations (Figures 4.9 and A4-6).  

There have been significant changes in agronomy in the past 40 years, including an increase in 

minimum till and changes in cropping to more OSR and less barley. In addition to the reduction 

in heavy rain in September (Figures 4.20 and 4.21), these agronomic changes will have influenced 

the trend towards earlier drilling date (Figure 4.11a.). Earlier sowing is associated with higher 

GDD, however potential yield benefits have to be balanced with the increased risk of blackgrass 

and other weed pressure that come from a reduction in tilling.  

4.5.1 The value of agroclimate metrics 

The creation and analysis of various agroclimate metrics has been useful for quantifying changes 

in the climate that affect agriculture over the past 40 years, as well as variability within the period. 

However, some metrics could be modified in future to increase their potential usefulness. 

Decadal analysis showed that the trend in SOGS to earlier in the year was not linear (Figure 4.12). 

2001-2010 was seemingly colder, at least at the start of the year, than the previous decade. From 

2011-2020 SOGS in a few areas of the South was the 6th January, just a day after the earliest 
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possible SOGS. Long-term projections of this metric show that it will continue to get earlier at a 

national rate of ~5-10 days each decade (https://uk-cri.org/), which may well result in a saturation 

of the SOGS threshold, especially in the South. It also raises the question as to whether the metric 

could be calculated differently to incorporate earlier winter months, as it is possible the SOGS 

threshold is reached before this. This may also lead to a significant relationship between SOGS 

and harvest date. Furthermore, it is very possible that after the SOGS threshold has been met, a 

cold spell follows essentially pausing the growing season once again.  

National analysis of GDD showed that there is an increasing availability of GDD in the September-

August period (Figure 4.14). Combined with earlier drilling, this means that winter wheat trials 

had 3 oC days more per year from 1988-2018 (Figure 4.15). Increase in GDD early on in the 

growing season due to changes in drilling date and higher temperatures likely contributed to the 

changes in estimated anthesis date (Figure 4.17). This indicates farmers are making adaptations 

to cope with the changing climate, which should reduce the risk of extreme heat events, like that 

of July 2022, in future decades. The risk of heat stress during grain fill has thus far been very small 

in the UK, however expected increases in the exceedance of the threshold in a 4oC-warmer world 

could make it an emerging threat (Jones et al., 2020) and a common occurrence by the end of 

the century (Arnell et al., 2021). From a UK cereals perspective it is important that warming is 

limited to 1.5oC or at most 2oC. Breeding cultivars that tolerate heat stress is a clear priority. There 

is also the opportunity to share cultivars and knowledge with wheat-growing countries that 

already have a warmer climate, such as southern France and Australia.  

Increasing temperatures also have the potential to affect the vernalisation requirement of winter 

crops. At a national level, VDD was highest in the South-West, Wales, Northern Ireland and coastal 

areas and these areas also saw the biggest increases in available VDD (Figure 4.16) indicating an 

increase in optimal vernalisation temperatures. By contrast, Cho et al. (2012) showed that by the 

2080s, warmer winter temperatures are projected to cause a reduction in optimal vernalisation 

temperatures in the South West. At trial sites, VDD showed no change over time.  

The observed positive relationship between VDD and yield agreed with Wu et al. (2017), however 

it is not clear how useful this metric is. Whilst it is known that chilling is very important for winter 

crops, the amount of time crops require in these temperatures is not well understood. Different 

varieties also have different vernalisation requirements (number of VDD), therefore using one 

metric for all varieties is somewhat oversimplified. Given vernalisation in winter wheat typically 

takes place in November and December in the UK (Steve Penfield, pers. comm.), it is possible the 

modification to the time period for VDD November-February (Figure A8) is a better 

https://uk-cri.org/
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representation of the available VDD to winter crops than that used initially and by Wu et al. 

(2017). Evidently, there is an urgent need for crop modellers and physiologists to work together 

to define more suitable vernalisation metrics. Further investigations could also look at changing 

the upper temperature limit 𝑇𝑎𝑚𝑝 on VDD, and the change in the number of non-vernalisation 

days.  

The longitudinal dependence of change in grain fill SIS (Figure 4.23) was masked by an 

insignificant change nationally (Figure 4.24).  This change is important for growers. Those in the 

South-East and East can be reassured that they will, on average, receive ample solar radiation in 

June and July for cereals and soft fruits, but those in the West may want to consider crops less 

dependent on solar radiation at this important time. There was a significant positive correlation 

between grain fill SIS and winter wheat yield for some regions in the UK when using site specific 

data, which was masked when using regional yield and solar radiation data. This relationship is 

explored further through statistical modelling in Chapter 6. 

All of the agroclimate metrics can be modified as required for other crops and specific periods of 

interest. One limitation here is the use of static dates that in the national analysis, when year-to-

year drilling dates, and subsequently growth periods, can vary by a few weeks. 2022 had record-

breaking early harvests, with Suffolk farmers beginning as early as 29th June (Henderson, 2022), 

suggesting a shift in the growing season with a much earlier anthesis and grain fill period than 

used in this analysis. Drilling and harvest dates from the trials data were used when possible, 

however more information of trial and on-farm crop growth stages would be useful to increase 

the explanatory power of the agroclimate metrics for yield.  

A major limitation with the winter wheat disease data used in Section 4.4.10 (Figure 4.26), taken 

from the annual Cereal Disease Survey, is that samples of the crops are collected too late for 

yellow rust (James Brown, pers. comm.). This is reflected in the data for 2014, when there were 

“trace” amounts of yellow rust, but this was in fact the worst yellow rust year for about 20 years. 

Hence, the relative incidence of wheat diseases is not very accurate in Figure 4.26. Other more 

accurate disease data, collected across the growing season, would be useful here to gain a better 

understanding of what disease severity was each year.  

An additional metric that would be valuable here is the change in the number of days suitable for 

spraying. This is a vital part of crop management and allows the application of fungicides and 

pesticides to the crop, therefore understanding if the distribution of dry hours/days, with wind 

speeds low enough for this activity, is changing is important.   
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4.5.2 Creating an agroclimate tool for growers 

There is great potential to incorporate greater climate data into the UK breeding process, as well 

as make agroclimate metrics relevant to agronomists and growers. The current AHDB Variety 

Selection Tool (https://ahdb.org.uk/variety-selection-tool) has successfully incorporated disease 

resistance ratings, agronomic features and market options to help growers identify the best 

variety for their farm, however there is no inclusion of climate data. Variety trials involve testing 

the varieties across multiple environments, including climates, due to the importance of 

genotype-by-environment interactions in determining yield. Observed performance of varieties 

in these different environments can be used to help recommend growing climates for each 

variety, such that if a grower inputs their location into the tool, historical climate records will 

indicate which varieties may be most climate-smart at their farm location, in addition to the 

disease resistance ratings and agronomic factors.  

In addition to a variety recommendation tool that accounts for climate, it is also hoped that the 

State of the UK Agroclimate can be regularly updated and that an agroclimate tool can be created 

which allows farmers and growers to see at their farm how the agroclimate has varied from year 

to year and how it is changing to inform future management decisions. This can complement the 

data on projected changes in Climate Risk Indicators at uk-cri.org.  

4.6 Conclusion 

This analysis has allowed the identification of significant changes over the past 40 years, as well 

as variability within the period. Combining these agroclimate metrics with yield data has given an 

indication of whether they may have influenced cereal yields. Specifically, this research has found: 

• On-farm yield potential is increasing for both wheat and barley, but due to increasing 

yield variability, actual farm yields are still plateauing 

• Variety trial yields have increased linearly, suggesting the on-farm yield plateau is due to 

agronomic or management factors, rather than a limit of genetic improvement 

• The trend in earlier drilling dates has started to reverse in the last few years 

• Changes in heavy rain days across the growing season could make it easier for farmers to 

get on the land in September but more difficult to harvest in August 

• Heat stress during grain fill has not yet been a problem but is an emerging threat  

• Solar radiation during grain fill has increased in the East and decreased in the West 

https://ahdb.org.uk/variety-selection-tool
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There is great potential to use these metrics and other climate information in breeding 

programmes, in making crop and variety choices and management decisions. To understand the 

relative roles of the agroclimate metrics, statistical modelling is required to incorporate multiple 

agroclimate covariates in the same model, and to account for other factors such as changes and 

variability in genotype and agronomy. This is explored in Chapter 6. 
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5 Quantifying genetic drivers of yield variability of UK cereal 

crops 

Multi-environment trials allow investigation of varietal yield performance across a range of 

locations and years (Smith et al., 2005). In the UK, the National List/Recommended List (NL/RL) 

variety trials allows breeders to test new varieties in different growing environments, inducing a 

genotype-by-environment interaction (GxE) as the crop responds to the changes in its 

environment. To dissect genetic and non-genetic sources of yield variability and quantify the 

contribution of breeding to yield increases (i.e. the genetic gain), linear mixed models have been 

used (Mackay et al. 2011; Piepho et al. 2014). Using UK NL/RL winter cereal trials, Mackay et al. 

(2011) showed that from 1982-2007, 88% of the improvement in winter wheat (Triticum aestivum 

L.) and winter barley (Hordeum vulgare L.) yield was attributable to genetic improvement, 

indicating crop breeding in the UK has been fundamental to increasing the maximum attainable 

yields. Genetic gain estimates are therefore a valuable measure of success of a breeding 

programme (Covarrubias-Pazaran, 2020; Covarrubias-Pazaran et al., 2022) and contribute to 

funding decisions. However, the effectiveness and accuracy of genetic gain estimated from these 

programmes is not well known.   

In this Chapter, the extent to which crop breeding is contributing to the stagnating wheat and 

barley yields seen in Chapter 4 (Figures 4.1 and 4.2) is quantified to update analysis by Mackay et 

al. (2011). The effect of variety age on variety trial yields is modelled to understand how long-

term trends in individual variety performance can contribute to estimates of genetic gain. By 

subsetting NL/RL treated variety trials data into case study periods, introducing an upper limit on 

the number of years varieties are present for and varying the number of long-term varieties 

(checks), the strength of using genetic gain as a measure of success of breeding programmes is 

also investigated.  

5.1 Crop breeding has continued to contribute to cereal yield increases 

Winter wheat, winter barley and spring barley all had significant long-term increases in median 

treated and untreated yields (Figure 5.1). Treated trials are those that have received full fungicide 

treatment whilst untreated receive none.  Median treated and untreated variety yields for spring 

barley had the smallest interannual variability (~2 t/ha), whilst winter wheat yields varied by up 

to 4 t/ha between 2012 and 2015, indicating lower stability.  

Across all time periods, treatments and crops, the contribution of the variety effects to linear 

increases in yield was positive, indicating breeding has had positive contributions to yield 
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increases (Table 5.1, Figure 5.2). In the spring barley and winter wheat data treated and untreated 

plots there are no variety effect data points for 2011 (Figure 5.2a,c). In the original dataset, 

varieties introduced this year were only present for just one or two years and/or had just one or 

two sites per year and were therefore removed prior to analysis.  

 

Figure 5.1: Median winter wheat, winter barley and spring barley for fungicide treated (o) and fungicide 

untreated (x) trial yields for 1982-2018 harvest years. The linear increase in median yield is significant 

(p<0.05) for all 3 crops. 
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Years Treatment Crop Observations 
Linear trend over 

varieties (SE) 
(t/ha/yr) 

Linear trend 
over years 
(t/ha/yr) 

1982-2018 T WW 42472 0.063 (0.002) -0.0030 (ns) 

1982-2018 U WW 22247 0.109 (0.003) -0.076 

1982-2007 T WW 31260 0.076 (0.004) -0.013 

1982-2007 U WW 18667 0.108 (0.005) -0.087 

2007-2018 T WW 11509 0.063 (0.01) 0.025 

2007-2018 U WW 3535 0.220 (0.03) -0.046 

1982-2018 T WB 21306 0.054 (0.002) 0.035 

1982-2018 U WB 17034 0.057 (0.003) 0.0034 (ns) 

1982-2007 T WB 17959 0.068 (0.004) 0.017 

1982-2007 U WB 15454 0.078 (0.003) -0.032 

2007-2018 T WB 3546 0.063 (0.03) 0.075 

2007-2018 U WB 1672 0.053 (0.01) -0.0032 (ns) 

1983-2018 T SB 18613 0.058 (0.001) -0.019 

1983-2018 U SB 16529 0.068 (0.002) -0.027 

1983-2007 T SB 14387 0.059 (0.002) -0.013 

1983-2007 U SB 14430 0.079 (0.003) -0.048 

2007-2018 T SB 4512 0.074 (0.01) -0.083 

2007-2018 U SB 1978 0.081 (0.02) -0.17 
Table 5.1: Linear trend over varieties 𝑣𝑖 and with the standard error (SE), and linear trend over years 𝑟𝑗 ,  for 

winter wheat (WW), winter barley (WB) and spring barley (SB) for a range of periods within the trials 

datasets. The trend was calculated using equation [2.7]. T corresponds to fungicide treated trials; U 

corresponds to untreated trials. All trends are significant (p<0.05) unless denoted with (ns). 

For winter wheat, there was a strong positive trend of 0.063 t/ha/yr (SE = 0.002, p<0.001) 

between estimated variety yield (best linear unbiased estimator, or BLUE) and the year of origin 

for treated varieties in the period 1982-2018 (Figure 5.2ai). This indicates that breeders have 

successfully increased yields of new treated varieties by ~ 1 t/ha every 15-16 years in this period. 

The linear trend over years was insignificant (-0.0030 t/ha/yr, p=0.3).  Using the BLUEs for both 

variety and year, it was possible to calculate the contribution of genetic effects to any linear 

increases in yields using the  equation 
𝑉𝑎𝑟𝑖𝑒𝑡𝑖𝑒𝑠 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑉𝑎𝑟𝑖𝑒𝑡𝑖𝑒𝑠 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 + 𝑌𝑒𝑎𝑟𝑠 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛
 (Mackay et al., 2011). 

For treated varieties genetic effects contribute ~105% to the linear increases in yields.  Looking 

at the most recent decade in the trials period, 2007-2018, and comparing the genetic gain to that 

for 1982-2007, also calculated by Mackay et al. (2011), it is evident that the rate of genetic gain 

slowed for treated winter wheat, from 0.076 t/ha/yr to 0.063 t/ha/yr.  
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Untreated winter wheat variety trials (Figure 5.2aii) had a much greater genetic gain of 0.109 

t/ha/yr (SE = 0.003, p<0.001), suggesting that untreated variety yields increased by ~ 1 t/ha every 

10 years. Furthermore, the rate of increase in untreated variety effects appeared to increase from 

2012 compared to treated variety effects. The linear trend over years was significantly negative 

Figure 5.2: Trends in variety vi and year rj effect for fungicide treated (i) and untreated (ii) winter wheat (a.), 

winter barley (b.) and spring barley (c.) trial yields from 1982-2018 (1983-2018 for spring barley), modelled 

using equation [2.7]. Variety effects (red squares) were plotted against the first year they entered the trials. 

Year effects (line) are plotted against calendar years. 
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for untreated variety trials at -0.076 t/ha/yr (SE = 0.005, p<0.001). Untreated winter wheat 

genetic gain values were substantially higher than the treated genetic gain values for all 

calculated periods within 1982-2018 and the corresponding linear trend over years was 

significantly negative. 

Treated winter barley varieties experienced a lower genetic gain in yield, at 0.054 t/ha/yr for 

1982-2018 (Figure 5.2bi). In contrast to winter wheat, the linear trend over year was also positive, 

at 0.035 t/ha/yr, indicating year contributed ~40% to the linear increase in treated trial yields. 

Furthermore, untreated varieties genetic gain was only marginally higher (0.057 t/ha/yr) and the 

effect of year was not significant. For the most recent decade, both treated and untreated genetic 

gain values decreased relative to 1982-2007.  

Spring barley genetic gain values were more consistent with the pattern seen in winter wheat. 

The effect of year was negative for each time period and untreated variety trials consistently 

displayed higher genetic gain than treated variety trials (Table 5.1). For 1982-2018 the treated 

variety trials had a genetic gain of 0.058 t/ha/yr, but in the most recent period 2007-2018 the 

genetic gain increased to 0.074 t/ha/yr, suggesting that spring barley is the only crop of the three 

for which breeding has increased the rate of genetic gain and contribution to yield.  

Year effects showed large variability from to year-to-year in both the treated and untreated trials 

for all crops (Figure 5.2). Where these variations coincided in both sets of trials likely reflects 

abiotic effects of the environment, such as climate variability. For example, all six trials have peaks 

in 1984 and 2015, both of which are known for being years with favourable weather and troughs 

in 2012, a year known for having detrimental weather (Section 4.3). The year effects varied 

considerably more in the untreated trials, which was likely due to variability in biotic effects i.e. 

diseases.  

To test this hypothesis, winter wheat disease data was extracted from three national winter 

wheat disease surveys (Polley and Thomas, 1991; Hardwick et al., 2001; Turner et al., 2021) and 

combined with the yield difference between detrended untreated and treated year effects (Table 

5.2). This yield difference can loosely be defined as the yield loss due to disease. There were 

several years within the period when untreated yields were >0.5 t/ha lower than treated and 

these typically coincided with years of higher disease prevalence. For example, the large dip in 

the untreated year effect (Figure 5.2aii) in 2012 occurred in a year when over 9% of second leaf 

and 5% of the flag leaf areas were affected by Septoria leaf blotch. 1993 untreated yield loss 

coincided with the highest area of Septoria nodorum blotch on both the flag and second leaf.   



170 
 
 

 

  

Disease 
Septoria 

nodorum blotch 
Septoria leaf 

blotch 
Powdery 
mildew 

Yellow rust Brown rust Tan spot 
Fusarium 
ear blight 

U-T 
difference 

Leaf Flag 2nd  Flag 2nd Flag 2nd  Flag 2nd Flag 2nd Flag 2nd   

1982 0.5 4.2 t 0.3 0.9 2.6 t 0 0.2 0.3    -0.15 

1985 1.1 3.6 4.7 15.5 0.2 0.8 0 0 t t    -0.67 

1986 0.2 1.7 0.1 1 0.1 0.3 0 0 0 0    0.26 

1987 0.4 2.8 1.3 4.7 0.1 0.2 0 0 0.1 0.1    -0.13 

1988 0.1 0.2 0.4 2.1 0.2 0.7 0.3 0.2 0.5 0.5    -0.17 

1989 t t 0.1 0.7 0.1 0.4 0.6 0.9 0.1 0.2   t 0.33 

1990 t t 0.2 0.6 0.2 0.5 0.3 0.2 0.3 0.6   0.1 0.51 
1991 t 0.1 1.5 4.2 0.2 1.1 t t 0.1 0.1   0.1 0.08 

1992 t 0.1 0.2 1.2 0.1 0.5 t t t 0.1   0.1 -0.15 

1993 0.1 0.5 0.9 4.2 0.1 0.8 t t 0.4 0.8   0.1 -0.80 

1994 t 0.3 0.1 1.2 0.1 0.4 t t 0.1 0.1   t 0.81 

1995 t t 0.2 0.8 t 0.2 t 0 t 0.1   t 0.58 

1996 t t 0.1 2.1 0.1 0.3 0 0 t t   t 0.47 

1997 t 0.3 0.7 3.1 t 0.2 0.1 t t t   0.1 -0.77 

1998 t 0.1 2.9 7.8 t 0.1 0.1 0.1 0.2 0.5   0.6 -1.28 

1999 0.02 0.13 1.77 6.74 0.05 0.15 0.02 0.04 0.67 0.7 0 0  -1.37 

2000 0.03 0.27 2.18 7.22 0.03 0.11 t 0.01 0.06 0.13 0 0  -1.07 

2001 0.01 0.06 0.11 1.05 0.03 0.11 0.01 0.01 0.01 0.01 0 0  0.86 

2002 0.01 0.03 2.76 9.01 0.05 0.14 t t 0.02 0.03 0 t  -0.07 

2003 t 0.01 0.76 3.78 0.03 0.19 0 0 0.05 0.04 0 t  0.63 

2004 t 0.01 1.54 4.6 0.05 0.17 0 t 0.02 t T t  -0.02 

2005 0.01 0.01 1.55 3.69 0.06 0.17 t t 0.15 0.08 0.03 0.04  0.32 

2006 t t 1.1 5.11 0.03 0.09 0.03 0.02 0.12 0.03 0.02 0.03  0.24 

2007 t t 0.98 3.02 0.01 0.02 0.01 0.01 0.27 1.14 0.01 0.01  -0.55 

2008 t t 1.13 2.84 0.02 0.06 t t 0.01 0.03 0.01 0.02  -0.03 
2009 t t 0.23 1.53 0.02 0.08 t t t 0.01 0.03 0.05  0.76 

2010 0 0 0.1 0.51 0.04 0.06 t t 0 0 0.01 0.03  1.90 

2011 0 0 0.31 1 0.02 0.09 0.01 t 0.02 0.05 0.04 0.07  1.03 

2012 0 0 5 9.59 t t 0.02 0.02 0.08 0.05 0.02 0.04  -0.76 

2013 0 0 0.18 0.65 0.03 0.08 t t t t T 0.01  1.22 

2014 0 0 5.86 11.5 0.01 0.03 t t 0.01 0.02 0.03 0.04  -1.30 

2015 t t 0.31 1.3 0.01 0.02 0 0 0.04 0.05 0.02 0.03  0.21 

2016 0 0 0.15 0.69 t 0.01 0.02 0.02 t t T 0.02  -1.16 

2017 0 0 1.37 2.61 0.02 0.06 t t 0.09 0.05 0.02 0.06  -1.44 

2018 0 0 0.36 1.76 0.02 0.09 t t 0.02 0.04 T t  0.96 

Table 5.2: Winter wheat disease incidence severity (average percentage area of leaf) of foliar diseases and fusarium ear blight combined with the difference between the 
detrended year effects for untreated and treated variety trials with year effects <-0.5 shown in bold. Disease data from Hardwick et al. (2001), Polley & Thomas (1991) and 
Turner et al. (2021). No disease data was available for 1983 and 1984.  
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Linear regression showed that there is a negative relationship (β=-2.42 t/ha/%, p<0.001) between 

the difference in detrended untreated-treated year effects and Septoria leaf blotch such that 

higher incidence of Septoria leaf blotch was associated with a greater yield loss in the untreated 

varieties trials. However, there were significant deviations from this, such as in 2016 when there 

was little Septoria leaf blotch but large U-T differences.  

Genetic gain estimates based on limited observations generate much larger standard errors and 

show the regression model is less precise.  This is an important consideration in making this 

calculation. Looking at the four periods within 1982-2018 with the winter wheat trials data, there 

were large fluctuations in the estimated genetic gain of treated varieties (Figure 5.3). 1982-1991 

had the lowest genetic gain (0.022 t/ha/yr) and greatest standard error (SE = 0.04 t/ha/yr) which 

reflects the lower number of observations (6498 compared to 10,000+) contributing to it. 1991-

2000 and 2009-2018 had the same genetic gain (0.087 t/ha/yr), but 2000-2009 dipped to 0.065 

t/ha/yr. Selection by breeders at more sites per variety and more trials overall would reduce this 

standard error. 

 

Figure 5.3: Genetic gain estimates and standard error for fungicide treated variety trials for four periods 

within 1982-2018: 1982-1991, 1991-2000, 2000-2009 and 2009-2018. The 1982-2018 genetic gain and 

standard error are shown by the horizontal line in black, and grey, respectively. 

5.2 The breakdown of disease resistance is seen in untreated variety trial yields 

Yield difference in treated and untreated trials at the same site varied significantly year to year 

(Figure 5.4). Comparisons between the crops show that on average spring barley exhibited the 
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lowest median yield difference each year relative to mean treated and untreated trial yields and 

winter wheat the largest yield differences. This suggests winter wheat was the most susceptible 

of the three crops to yield impacts from disease.  

Some of the peaks in yield difference overlapped across the crops, for example in 2012 treated 

trials significantly outperformed untreated for all three crops. For winter wheat, 1997-2000, 

2007, 2014, 2016 and 2017 also had large relative yield differences of over 30%. Some of these 

years corresponded to high disease pressure in the winter wheat disease severity surveys (Table 

5.2) and suggest fungicide treatment was particularly important. In 1984, 1994 and 1995 treated 

trials average yields were less than 10% higher than untreated yields across the UK. There was a 

significant positive correlation between year and yield difference for winter wheat (r = 0.49, 

p=0.002), suggesting that treated varieties were outperforming untreated varieties by an 

increasing amount over the period 1982-2018.  

 

Figure 5.4: Relative median yield difference (%) between fungicide treated and untreated trial yields for 

winter wheat (WW, blue), winter barley (WB, orange) and spring barley (SB, green).  

There was a positive linear relationship of 0.064 t/ha/yr (SE = 0.006, p<0.001) (Figure 5.5a), 0.032 

t/ha/yr (SE = 0.002, p<0.001) (Figure 5.5b) and 0.015 t/ha/yr (SE = 0.004, p<0.001) (Figure 5.5c) 

between treated and untreated yield difference and variety age for winter wheat, winter barley 

and spring barley, respectively. As variety age increased, the mean estimated yield difference 

between treated and untreated trials increased, suggesting that after varieties were first 

introduced into the trials network, disease resistance broke down. To investigate this further, the 

effect of variety age on treated and untreated trial yields were also modelled separately (Figure 

5.6).  
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Figure 5.5: Variety age against the treated-untreated variety trials yield difference for a. winter wheat, b. 

winter barley and c. spring barley. The effect of variety age on the yield difference between fungicide treated 

and untreated varieties was modelled using equation [5.8]. Variety age indicates the number of years since 

the variety entered the trials system. The red line shows the linear relationship between the two variables. 

The difference in treated to untreated variety trial yields increased as the varieties aged until at 

least 12 years when there was greater variability (Figure 5.5). In the two winter crops, after the 

first two years, treated variety trial yields increased as the variety aged (Figure 5.6). By contrast, 

spring barley treated variety trial yields decreased as the variety aged until it was in the trials 

system for 10 years, when its yields increased.  

All three crops exhibited yield decreases as untreated varieties aged (Figure 5.6). This was 

attributed to loss of disease resistance and as a consequence the effect of year is overestimated 

downwards resulting in variety means being overestimated, giving much higher biased estimates 

of untreated genetic gain. After ~12 years in trial, the longer lasting untreated varieties showed 

slight yield increases again.  

The relationship between variety age and yield was less clear as the variety age increased past 10 

years, when looking at treated varieties, untreated varieties and the yield difference between the 

two. This is likely because there were fewer varieties as the variety age increased. For example, 

in the winter wheat analysis (Figure 5.5a., 5.6) there were only eight varieties present for at least 

a. 

b. c. 
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15 years, with only one spanning 21 years and two spanning 20 years, which means that rather 

than being a good estimate of the average effect of variety age it moved instead to being the 

average effect of one or two varieties.   

The analysis was repeated restricting varieties to 10 years old to reduce the bias of longer lasting 

varieties (Figure 5.7). The linear relationship between variety age and yield difference was clearer 

across all three crops, which stems from the greater overlap of varieties for varieties aged up to 

10 years. As varieties aged in the untreated trials, their yield decreased (Figure 5.7). The effect is 

biggest in winter wheat, which shows yield losses of 1 t/ha for a variety present for 10 years in 

the trials system. Spring barley untreated varieties experienced yield losses of 0.6 t/ha and winter 

barley yield losses were only 0.3 t/ha over 10 years.   

Winter 

wheat 

Spring 

barley 

Winter 

barley 

Treated Untreated 

Figure 5.6: Variety age against treated and untreated trial yields for winter wheat, winter barley and spring 

barley. Here the effect of variety age on varieties under full fungicide treatment and no fungicide treatment 

was modelled using equation [2.8] separately. Variety age indicates the number of years since the variety 

entered the trials system. The red line shows the linear relationship between the two variables. 
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Figure 5.7: The effect of variety age on yield difference between fungicide treated and untreated variety trials, on treated variety trial yields and on untreated 

variety trial yields for winter wheat, winter barley and spring barley. The effect of variety age on the yield difference, treated and untreated variety yields was 

modelled using equation [2.8] and restricted to varieties aged up to 10 years. Variety age indicates the number of years since the variety entered the trials system. 

The red line shows the linear relationship between the two variables. 

Treated Untreated 

Winter 

wheat 

Spring 

barley 

Winter 

barley 

Treated - Untreated 
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For treated varieties, there was an initial drop in yield after two years (Figure 5.7). Winter 

wheat and winter barley yields then gradually increased, but there was no overall clear long-

term trend. In spring barley, there was an overall negative relationship between variety age 

and yield. Across the 10 years the yields only decreased by 0.3 t/ha, half the rate of the 

untreated varieties, hence the increasing yield difference as a variety ages still occurred. 

5.3 Genetic gain estimates are susceptible to bias 

Breakdown in disease resistance can result in biased estimates of untreated trials datasets. 

Factors affecting genetic gain estimates of treated variety trial yields were explored using 

subsets of the NL/RL dataset (Figure 5.8), specifically the inclusion of check varieties (i.e. 

varieties present at least 10 consecutive years) to increase connectivity and the number of 

checks included.  

The number of checks involved in a breeding programme significantly influenced the genetic 

gain estimate (Figure 5.8). This was particularly clear for the first four case studies, in which 

the genetic gain estimate was highest when there were no checks included and decreased by 

~30-40% upon the inclusion of one check, ~10-20% when there were two checks, ~5-10% 

when there were three checks. The values also begun to converge as the checks increased, so 

that estimates with four and five checks were similar to three checks, but with small standard 

errors. This effect on standard error was as expected given the standard error is proportional 

to the number of data points, which increases as more checks are included in the dataset. 

For the two most recent time periods, the 5th and 6th case study (Figure 5.8), the decay pattern 

was less clear. This is partly due to the size of genetic gain values, which were all much lower 

for these two periods. For 2005-2015 the values decreased by 20% on average from zero 

checks to one check, and then by a few percent between subsequent increases in checks. 

Unfortunately, for 2008-2017 it was also not possible to calculate the genetic gain for zero 

checks as there was insufficient data. When checks were added this was no longer an issue.  

The 1982-2018 treated genetic gain for winter wheat was recalculated using just the first 

three years of data for each variety with no checks. The estimated genetic gain was 0.158 

t/ha/yr (SE = 0.003), which is 2.5 times larger than the original estimate of 0.063 t/ha/yr (SE = 

0.002). This suggests that having zero checks results in an increased genetic gain, as seen in 

the case studies (Figure 5.8).  
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Figure 5.8: Winter wheat genetic gain estimates for six case study periods and varying numbers of 

checks extracted from the 1982-2018 NL/RL dataset. Checks refer to varieties present in the trials system 

for a minimum of 10 consecutive years. Varieties with more than three years of data were restricted to 

their first three years in trial. 

Another finding is the effect of the choice of check on the genetic gain estimates (Figure 5.8). 

This is shown by the spread in genetic gain estimates for all case study periods with just one 
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check. For example, for 2005-2015 with the variety Alchemy as a check, the period had a 

genetic gain of 0.050 t/ha/yr, compared to almost half that at 0.029 t/ha/yr when Claire was 

the check variety. For 1982-1991, the values ranged from 0.21 t/ha/yr (Galahad) to nearly 

50% larger at 0.29 t/ha/yr (Fenman).  

5.4 Variety improvement contributes over 95% of improvements in national 

yields 

Estimated national yields 𝑧𝑗  on trials are higher than observed national yields 𝑜𝑗 by an average 

of 1.28 t/ha. Variety trials routinely outperform on-farm yields, likely because trials are located 

on better soils and are typically located in the middle of fields so are unaffected by edge-

effects that reduce yields (Ian Mackay, pers. comm.). 

National winter wheat yields increased over the 36-year period from less than 6.5 t/ha to over 

8 t/ha (Figures 5.9 and 4.1).  A spline (black) was fitted to the national yield data using the 

smooth.spline function from the stats base package in R. There was a clear decrease in the 

rate of improvement in winter wheat yields from around 1998 which continued to 2018, also 

seen in Section 4.1. Variety improvement contributed almost all (95.5-99.8%) the 

improvements in yield observed over the period 1983-2018, in agreement with the findings 

in trials yields in Section 5.1 and hypothesis made in Chapter 3.   

 

Figure 5.9: Estimated contribution of variety improvements to national winter wheat yield increases for 

1983-2018. DEFRA national yield data (black dots) are fitted with a spline (black line), as used in (Mackay 

et al., 2011). The contribution of variety effects 𝑣𝑖 to national yield is shown (red line) and was calculated 

using equation [2.11] on the AHDB variety trials data and DEFRA national yield data. 
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5.5 Discussion 

5.5.1 Disease resistance as a driver for treated and untreated yield trends  

Variety trial yields have increased over time for all three crops (Figure 5.1). Winter wheat 

showed the highest interannual variability in yields (Figure 5.1), indicating lower yield 

stability than barley, which has also been observed in Denmark (Macholdt et al., 2021). Winter 

wheat also had the largest relative yield differences between treated and untreated yields 

(Figure 5.4) which were partially attributed to the yield effects of disease such as Septoria leaf 

blotch (Table 5.2). As discussed in Section 4.5.1, the winter wheat disease survey data used in 

Table 5.2 and Figure 4.26 (Polley and Thomas, 1991; Hardwick et al., 2001; Turner et al., 2021) 

does not record the full extent of some diseases, in particular yellow rust, as the survey is 

often undertaken once the disease has left the crop. In addition to 2014 (Section 4.5.1), 2016 

was also a bad year for yellow rust (James Brown, pers. comm.), as well as 1998-2000 because 

of the breakdown in the resistance gene Yr17 (Bayles et al., 2000), none of which were picked 

up in the survey data (Table 5.2). In all five of these years untreated yields were at least 1 t/ha 

less than treated yields. The significant correlation between untreated-treated yields and 

Septoria leaf blotch incidence is likely confounded by the occurrence of yellow rust that hasn’t 

been recorded and years with greater untreated-treated yield differences may instead be due 

to yellow rust. The analysis should be repeated with a more appropriate dataset to confirm 

this hypothesis and reveal the relative disease impacts on the untreated-treated yield 

differences.  

Barley diseases such as Rhynchosporium, mildew and rusts have smaller but persistent effects, 

which may help explain the lower yield differences in treated and untreated yields in barley 

compared to wheat (Figure 5.4) (Steve Hoad, pers. comm.). Winter barley had larger relative 

yield differences between treated and untreated variety trial yields compared to spring barley 

variety trials. Two important diseases - Rhynchosporium and net blotch - affect winter barley 

more than spring barley, likely contributing to this difference. Furthermore, the development 

of resistant spring barley varieties to powdery mildew has reduced the impacts of the disease 

in recent years (AHDB Cereals & Oilseeds, 2018a), whereas few winter barley varieties have 

the resistance genes and are more susceptible. 

Comparison of genetic gain values suggests that winter wheat, and to some extent spring 

barley, untreated genetic gain was overestimated and this is thought to be due to loss of 

disease resistance shown by the effect of variety age on yield (Figure 5.5). The effect of 

breakdown in disease resistance on the estimated year effect is a negative bias resulting in 
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the downward trend in year effect (Figure 5.2aii and 5.2cii), which the estimated variety effect 

compensates for by being overestimated upwards (Figure 5.10). It is unlikely that winter 

wheat varieties have experienced a break down in Septoria leaf blotch resistance, as varieties’ 

Septoria ratings remained largely stable over the study period, although they have since 

declined (AHDB, 2021). Rather its more likely to do with rust resistance and occasionally 

mildew resistance, some of which are known to be non-durable (James Brown, pers. comm.). 

To explore the contribution of individual diseases further, a more in-depth analysis focussing 

on individual varieties and their relative disease resistances is required.   

In France, this higher rate of genetic gain in untreated wheat trials was also observed, but 

instead was attributed to improvement in resistance to fungal disease (Brisson et al., 2010). 

This has also been suggested as an explanation in the UK (Shorinola et al., 2022) but it seems 

unlikely as the yield difference between treated and untreated yields was found to be 

increasing for winter wheat (Figure 5.4), suggesting either improved fungicide treatments, 

reducing the outbreak of disease and yield impacts in treated varieties, or an increase in 

disease susceptibility in untreated varieties or disease pressure. If it’s the former and 

Figure 5.10: Model demonstrating the effect of loss of disease resistance on estimation of variety and year 

effects. Here variety effects increase by 0.1 t/ha per year and then decline linearly due to breakdown in 

disease resistance. The difference in variety performance for those present in successive years is -0.1 t/ha, 

which gives an estimated year effect of -0.1 t/ha, as opposed to an actual year effect of 0. Differences in 

variety performance are estimated by calculating the differences between a variety and its predecessor(s) 

within years, +0.2 t/ha. This results in variety effects biased upwards and year effects biased downwards. 

Figure taken from Mackay et al. (2011). 
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resistance to fungal disease has also improved but at a slower rate, this would still not explain 

why untreated varieties see such a significant decline in yield as they age. 

Winter barley untreated yield losses were much smaller (Figure 5.6) and this is reflected in 

the smaller untreated genetic gain values (Table 5.1). This is possibly also explained by lower 

susceptibility of barley to disease. Untreated variety trial yields still showed long-term 

decreases because two important barley diseases – Rhynchosporium and net blotch – have a 

system of variety-specificity which isn’t well understood and varieties’ ratings for both 

diseases decline over time. 

The increase in the variety age effect of both treated and untreated yields after ~10 years 

(Figure 5.6) for all three crops has not previously been documented. Long-term varieties in 

this dataset were introduced at different points in the period of interest, therefore it does not 

appear to be the effect of increasing yields at some point in the timeseries which is 

independent of genotype. Some varieties may have become more resistant to disease as 

different disease races come to dominate. For example, a variety is normally more susceptible 

to one or more races of yellow rust rather than all races of yellow rust. If, over time, the 

dominant race isn’t the one it’s susceptible to, its resistance could improve and this may 

explain the observed uptick seen. It may also be possible that these longer standing varieties 

end up benefitting from the effect of being surrounded by newer resistant varieties, so they 

get less disease than they would if older, less resistant varieties were nearby. A more 

sophisticated analysis at the plot level, taking into account the effects of neighbouring plots 

could be a way of testing this.  

In the treated variety age plots (Figure 5.7), there were distinct drops in yield after the first 

and second year a variety is in trial. The first two years (age 0 and 1) correspond to the NL trial 

years, during which breeders submit only modest quantities of seed. It is in the breeders’ best 

interest to select the best seed, on size, density and even germination tests, for trial which 

will yield higher than the average seed. In the RL trials (age 2 onwards), much larger quantities 

are required, lowering average yields. Hence seed quality could be an influence on the initial 

yield drop observed.  

Selection bias could also have contributed to the initial yield drop. In a simplified process, 

there is a first stage to get onto the NL and a second stage to get through and onto the RL. If 

the heritability (i.e. the degree of variation in yield due to genetic variation) is 1, there should 

be no difference in the phenotype between the two years and if there is no selection from 

stage 1 to 2 there should be no difference, on average. However, with some selection and 
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with heritability less than 1, the lines selected in the first stage will have better performance 

than the population mean for two reasons: they are genetically better and they tend to have 

positive environmental deviations. Re-testing in the second stage, the lines will still be 

genetically better, but their environmental deviations will be zero on average. Hence the 

mean of the selected group in stage 1 will look worse than the mean of the same lines 

retested.  

With the NL/RL, this selection bias will only prevail if there is little selection between NL1 and 

NL2 and some selection from NL2 to RL1. In subsequent years of the RL, there is selection but 

because of the many sites used with a year, the heritability is higher and selection also 

incorporates results from the previous year. Testing this through a simulation of the original 

dataset could indicate whether selection bias is contributing here. 

Whilst the explanation of this drop is not clear, it is a notable strength of the historical datasets 

that there is sufficient power to pick up small effects. The difference between years one and 

two and subsequent years for winter wheat is <1%. This is clearly visible in the graphs, but the 

power to detect a different this small in a typical bespoke experiment is close to zero.  

5.5.2 Uncertainty in genetic gain estimates 

Estimates of genetic gain for different case study periods within the 1982-2018 NL/RL trials 

data were dependent on the number of check varieties included in the dataset and the specific 

checks chosen. Specifically, increasing the number of long-running check varieties lowered 

the genetic gain estimates (Figure 5.8). Absence of check varieties results in low connectivity 

which means the estimates of genetic gain can be confounded with the year effect, hence it 

is recommended that checks are used to improve estimates (Covarrubias-Pazaran, 2020). 

Having multiple checks makes it easier to identify the effects of year. However, it also means 

an increased proportion of the estimate of genetic gain comes from the difference in age and 

yield between the checks themselves. If these yields are increasing at a lower rate than the 

new varieties, this could be dragging the estimate down.  

Genetic gain estimates were also highly dependent on the checks chosen, particularly when 

only one check was included. This is likely because the checks weren’t completely stable and 

behaved differently within the case study periods. They had different mean yields and some 

showed slight increases over time whilst others didn’t, all of which will have influenced the 

genetic gain estimate. 
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Additional model runs that included checks in the 

regression estimate showed that this lowers the 

genetic gain estimate further. The extent to 

which the estimate is lowered is dependent on 

the mean yield of that check. For example, a 

check with a higher adjusted mean yield (c2 in 

Figure 5.11) will lower the genetic gain estimate 

(G2) compared to a check (c1) that behaves the 

same across the period but with a lower adjusted 

mean yield introduced in the same year, as newer 

varieties with higher adjusted mean yield won’t 

show as large relative increases in comparison. 

When checks are included in the final regression 

estimate of genetic gain, it could therefore be 

possible to, knowingly or not, bias a genetic gain 

estimate upwards by using a consistently low 

yielding check in a breeding programme (Figure 5.11). Use of unstable checks can also 

influence this estimate. Evidently this method of calculating genetic gain needs refining to 

reduce the vulnerability of the estimate to the choice and number of checks. 

A large inflation in the genetic gain estimate is also seen in the 1982-2018 dataset when it is 

restricted to the first three trial years for each variety (0.158 t/ha/yr vs. 0.062 t/ha/yr). In this 

particular winter wheat dataset it was found that variety yields decreased in the first three 

years they were present in the system, before showing overall long-term increases (Figures 

5.6 and 5.7). Therefore, it is possible that the treated genetic gain value here is biased in the 

same way the untreated variety trials were (Figure 5.10).  

Furthermore, a long-term increase in yield was found in long-lasting winter wheat varieties 

(Figure 5.6). This means in the full dataset analysis (Figure 5.1ai) the adjusted mean yields for 

long lasting varieties were higher than in the analysis restricted to the first three years during 

which yields generally declined, resulting in a lower genetic gain estimate as explained in 

Figure 5.11.  

Figure 5.11: Model to demonstrate the effect of 

using a low yielding check (c1) vs. a high yielding 

check (c2) on the estimate of genetic gain. Genetic 

gain is calculated by regressing the adjusted 

variety mean yields on year of entry across all 

varieties (diamonds). If the check variety has a low 

adjusted mean yield, then the estimated genetic 

gain will be higher (G1 line) than the genetic gain 

estimate (G2 line) of a dataset including a high 

yielding check (c2) instead. 
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The effect of inclusion of a check can be demonstrated using a model dataset which includes 

a check variety present across all years whose yield increases linearly each year (variety g) 

(Table A3). This is equivalent to the variety effect being constant but year effects increasing 

linearly. Using a simple linear model of yield 

including year and variety, there is a slight 

overestimate in the relative yield increase 

between the oldest (variety a) and newest 

(variety e) by 4.5 (Table 5.3, model 1), but when 

the check is dropped from the model this 

overestimate is accentuated with a relative 

yield increase of 6 as the effect of year 

increasing yields by 1 each year is not 

accounted for (Table 5.3, model 2).  

The drop in yield when the variety moves from 

NL to RL can also be simulated. By adding in a 

seed term to models 1 and 2 (Table 5.3), results 

show that the effect of the drop from NL to RL 

seen in all three crop trials datasets results in an 

overestimate of genetic gain (Table 5.3, models 3 and 4). When a new variety enters the 

system in year three of an older candidate, it will appear to have a higher relative yield 

compared to the same variety entering in year two, increasing the apparent rate of genetic 

gain. In models 3 and 4, where seed source has been included as a term, the variety means 

were estimated perfectly, therefore recovering the true (simulated) values. This suggests that 

the age of the variety or seed source factor may need to be included in these analyses 

routinely.  

5.5.3 Limitations of using the UK National List/Recommended List dataset 

The NL/RL trials data used in this analysis is thought to be biased as each year some trials don’t 

make it to the harvest results as they are scrapped, whether that be due to extreme weather, 

difficulties planting, large losses due to disease etc. As a result, the worst trial yield results of 

the year are not seen. Theoretically, the sites that fail should be failing at random, but this is 

not likely at all as it will depend on, for example, location.  

There were several variety-year combinations with very few sites, particularly for winter 

wheat. These were dropped from the analysis to prevent false representation of variety 

Variety 
Model 

1 2 3 4 

a 4.4 3.67 4.5 4.5 

b 5.54 5.17 5.5 5.5 

c 6.67 6.67 6.5 6.5 

d 7.8 8.17 7.5 7.5 

e 8.93 9.67 8.5 8.5 

g 4 - 4.5 - 

Table 5.3: Adjusted variety means calculated 

using four linear models on a model yield 

dataset (Table A3). Model 1 includes all data 

and accounts for year and variety, model 2 

doesn’t include the check but accounts for year 

and variety, model 3 includes all data and 

accounts for year, variety and whether it’s in the 

NL or RL year and model 4 doesn’t include the 

check and accounts for year, variety and NL/RL 

year.  
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performance across multiple environments. It is not clear why there is such a large reduction 

in sites in these cases. It is possible these varieties survived with a regional recommendation 

only so weren’t tested outside of the region, but there would still be more than one site per 

region if this were the case. By dropping this data, it did result in interruptions in the continuity 

of some variety series which was problematic and disappointing.  

There were significant data access issues, such that it took over a year to be granted access 

to this important dataset. Extensive quality control and cleaning of the data was required 

before any analysis could take place as there were a lot of mistakes in variables such as grid 

references and drilling dates. Furthermore, even after the data was re-extracted by the data 

holders, there was still missing data for 2007 for several varieties, which made it difficult to 

estimate genetic gain for 2007-2018. There are several varieties that were introduced in 2006 

and present for several years, but not 2007 (i.e. Viscount, Grafton, Gallant, Scout). All four of 

these varieties are in seed statistics data from 2008 suggesting the NL1, NL2 and RL years were 

2006, 2007 and 2008, then they could be bought for 2009 harvest.  

One assumption made when comparing the NL/RL variety trials data and the national on-farm 

crop data is that the agronomy of UK farms and variety trials have changed in the same way 

over this period. Until the introduction of separate treated and untreated trial series in 1982, 

the agronomy of the trials followed “best practice”. After that change, untreated trials 

received no fungicide treatments and treated trials were treated prophylactically. The 

protocol for trials management can be found at https://ahdb.org.uk/ahdb-recommended-

lists-for-cereals-and-oilseeds-2021-2026. Aside from fungicide treatments, it continues to 

adopt UK best practice and is under the control of the grower in whose field the trial is located. 

Since trials are located on uniform ground and away from headlands, hedges and trees, the 

average yield of the treated trials is always higher than the national yield, as seen here. 

However, annual variation in yield in the two trial series remains very similar, hence this 

assumption on same agronomy seems valid.   

5.6 Conclusion 

This research has shown that breeding is still contributing to increases in yield in winter wheat, 

winter barley and spring barley for both treated and untreated variety trials in the UK. 

Statistical modelling has shown that an increasing yield difference between fungicide treated 

and untreated variety trials as varieties age is driven by both a breakdown in disease resistance 

of untreated varieties and previously unobserved long-term yield increases of varieties in 

treated trials.  

https://ahdb.org.uk/ahdb-recommended-lists-for-cereals-and-oilseeds-2021-2026
https://ahdb.org.uk/ahdb-recommended-lists-for-cereals-and-oilseeds-2021-2026
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Use of NL/RL trials data has allowed potential sources of uncertainty in genetic gain estimates 

to be explored. Varying the number of long-term check varieties in the data has shown that 

inclusion of checks leads to a less biased estimate of year effects. However, the genetic gain 

estimate is highly sensitive to the check chosen and is influenced by the initial drop in yield 

associated with moving from NL to RL. This raises important questions in terms of how much 

emphasis should be put on genetic gain estimates and how best to calculate them. 

To reduce the risk of bias it is recommended that: 

• check varieties are included to increase connectivity between varieties 

• checks are used to calculate best linear unbiased estimators (BLUEs) for variety and 

year effects but then removed for the regression estimate 

• the effect of variety age or seed source on yield is considered prior to estimating 

genetic gain, and if there is a distinct yield drop as seen in the NL/RL data, a term is 

included in the mixed model to account for this 

It is also recommended that a similar analysis is redone using those varieties present in years 

3, 4 and 5 to remove the effect of the yield drop in the first two years. Further research is 

required into reducing bias in genetic gain is required to gain a fuller understanding on the 

causes of variation in the estimates seen here. 
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6 Identifying the key climate drivers of interannual yield 

variability in winter wheat in the UK 

This chapter builds on the linear mixed modelling in Chapter 5 and seasonal sensitivity analysis 

by Mackay et al. (2011). Since Mackay et al. (2011)’s analysis of UK National List/Recommend List 

(NL/RL) variety sensitivity to seasonal climate, there has been a surge in availability of high-

resolution climate data and an additional decade of variety trial results. Here NL/RL data from 

1988-2017 is combined with site-specific influential climate variables identified in Chapter 4 and 

quantify the impact of key climate drivers of interannual yield variability in UK winter wheat 

(Triticum aestivum L.) variety trials.  

Initially, regional seasonal climate data is used in mixed modelling to explore the sensitivity of 

winter wheat yields to seasonal temperature and rainfall for the most recent decade. Regional 

data is then replaced by site-specific seasonal data to demonstrate the value of using high 

resolution, localised climate data. Significant seasonal temperature and rainfall data is dissected 

into monthly data to identify the most influential months within important seasons. Specially 

selected agroclimate metrics are then incorporated into the analysis to quantify winter wheat 

sensitivity to more specific variables, such as solar radiation during grain fill and April frost. 

Individual variety sensitivity and responses to these variables are explored to identify varieties 

with greater resilience to the changing climate. 

6.1 Summer rainfall significantly affects yield 

The effect of regional seasonal mean temperature and rainfall on winter wheat variety trial yields 

were modelled ([2.12]). Of these, only summer rainfall had a statistically significant relationship 

with yield, such that higher summer rainfall was associated with lower yields with a coefficient 

estimate of β=-0.8 (± 0.2) t/ha/100 mm (p<0.001) (Table 6.1) The genotype-by-environment 

interaction (GxE) of varieties with summer rainfall was also found to be significant and explained 

~20% of the overall variability associated with the fixed effects, substantially outweighing the 

variation explained by climate (0.7%) (Table 6.1). This indicates winter wheat varieties had a 

diverse response to summer rainfall. The conditional R2 and marginal R2 for this model are 0.25 

and 0.94, respectively with a Root Mean Squared Error (RMSE) of 0.96. The variance associated 

with each random effect term are in Table A4 and fitted vs. observed yield values are shown in 

Figure A11. 
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 Sum Sq Df F value p (sig.) coef coef SE 

son_temp 0.04 1 0.20 0.7 -0.1 0.2 

djf_temp 0.76 1 3.62 0.06 0.3 0.2 

mam_temp 0.05 1 0.22 0.6 -0.1 0.3 

jja_temp 0.34 1 1.62 0.2 -0.2 0.2 

son_rain 0 1 0.00 1.0 0.0 0.001 

djf_rain 0.3 1 1.44 0.2 -0.001 0.0009 

mam_rain 0.05 1 0.22 0.6 -0.0007 0.002 

jja_rain 3.65 1 17.37 0.000 (*) -0.008 0.002 

Year 31.9 30 5.06 0.000 (*)  

Variety 568.19 246 10.98 0.000 (*) 

jja_rain:Variety 150.13 246 2.90 0.000 (*) 
Table 6.1:  Sum of squares for fixed effects in the seasonal climate model of winter wheat, using [2.12] on 

the UK National List/Recommended List treated variety trials data for 1988-2018 and regional climate data 

from the Met Office (Met Office, 2022c). Fitted vs. observed values for this model are shown in Figure A11.  

*significant at the 95% confidence level. son = autumn, djf = winter, mam = spring and jja = summer. 

Coefficient estimates and standard error (SE) are given for the climate variables. 

6.2 Site-specific data shows winter rainfall affects yields  

Inclusion of site-specific seasonal climate data into the crop-climate model [2.12] found that both 

winter rainfall (β=-0.4 ± 0.1 t/ha/100 mm, p=0.008) and summer rainfall (β=-0.4 ± 0.2 t/ha/100 

mm, p=0.02) had significant negative relationships with yield (Table 6.2), such that higher rainfall 

corresponded to lower yields. GxE contributed 24% of the total variation in yield, with more 

variation in varietal response to summer rainfall than winter rainfall. Again, the GxE sum of 

squares is much higher than that for climate variability (0.7%) (Table 6.2). The conditional R2 and 

marginal R2 for this model were 0.26 and 0.94, respectively, the former a slight increase on the 

regional climate model with an RMSE of 0.96. The variance associated with each random effect 

term is shown in Table A5. 
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 Sum Sq Df F-value p (sig.) coef coef SE 

son_temp 0.71 1 3.35 0.07 0.3 0.2 

djf_temp 0.32 1 1.52 0.2 0.2 0.1 

mam_temp 0.26 1 1.25 0.3 -0.2 0.2 

jja_temp 0.58 1 2.75 0.1 -0.2 0.1 

son_rain 0 1 0.00 1.0 -0.00005 0.001 

djf_rain 1.47 1 6.98 0.008 (*) -0.004 0.001 

mam_rain 0.23 1 1.09 0.3 0.001 0.001 

jja_rain 2.88 1 13.69 0.000 (*) -0.004 0.002 

Year 32.78 30 5.19 0.000 (*)  

Variety 626.38 246 12.09 0.000 (*) 

djf_rain:Variety 103.61 246 2.00 0.000 (*) 

jja_rain:Variety 110.27 246 2.13 0.000 (*) 
Table 6.2: Sum of squares for fixed effects in the seasonal climate model of winter wheat, using [2.12] on 

the UK National List/Recommended List treated variety trials data for 1988-2018 and site-specific climate 

data, extracted from HadUK (Hollis et al., 2019).  *significant at the 95% confidence level. son = autumn, djf 

= winter, mam = spring and jja = summer. Coefficient estimates and standard error (SE) are given for the 

climate variables. 

Inclusion of soil type in the model, as in [2.13], reduced the variation in yield attributed to variety 

(Table 6.3) and assigned it instead to the random interaction term between variety and soil type. 

In doing so, summer temperature also becomes significant when the variety x climate interaction 

terms aren’t present. Adding in the variety x climate interaction terms for the significant climate 

terms summer and winter rainfall, and summer temperature, the variation in yield attributed to 

summer temperature was partially absorbed into the interaction with variety, resulting in the sum 

of squares in (Table 6.3). The marginal R2 and conditional R2 for this model were 0.27 and 0.94 

respectively and the model had an RMSE of 0.95. The variance associated with each random 

effect term is shown in Table A6. 
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 Sum Sq Df F-value p (sig.) coef coef SE 

son_temp 0.25 1 1.30 0.3 0.2 0.2 

djf_temp 0.56 1 2.91 0.09 0.2 0.1 

mam_temp 0.02 1 0.08 0.8 -0.06 0.2 

jja_temp 0.72 1 3.70 0.06 -0.2 0.2 

son_rain 0.01 1 0.07 0.8 0.0003 0.001 

djf_rain 1.44 1 7.44 0.006 (*) -0.004 0.001 

mam_rain 0.12 1 0.64 0.4 0.001 0.001 

jja_rain 2.48 1 12.81 0.000 (*) -0.003 0.002 

Soil_class 2.15 4 2.77 0.03(*)  

Year 28.64 30 4.92 0.000 (*) 

Variety 510.93 246 10.71 0.000 (*) 

jja_rain:Variety 82.62 246 1.73 0.000 (*) 

jja_temp:Variety 244.36 246 5.12 0.000 (*) 

djf_rain:Variety 111.62 246 2.34 0.000 (*) 
Table 6.3: Sum of squares for fixed effects in the seasonal climate model of winter wheat including soil 

texture, using [2.13] on the UK National List/Recommended List treated variety trials data for 1988-2018 

and site-specific climate data, extracted from HadUK (Hollis et al., 2019).  *significant at the 95% confidence 

level. son = autumn, djf = winter, mam = spring and jja = summer. Coefficient estimates and standard error 

(SE) are given for the climate variables. 

Winter wheat yields were highest on heavy, clay soils, averaging 10.2 t/ha, and lowest on organic 

soils (7.8 t/ha) (Figure 6.1), however there were so few variety trials on organic soils (64) that the 

overall variation in yield explained by soil was small (~0.2%), therefore in future models it was not 

included.  

6.3 Monthly rainfall is more important than temperature in determining yield 

The significant seasonal variables in the site-specific analysis (Table 6.2) were then split into 

monthly variables to understand which months were contributing most to yield variation. Given 

Figure 6.1: Adjusted means and standard error for each soil type calculated from the localised seasonal climate 

model using equation [2.13]. H = heavy soils i.e. clay or deep clay, M = medium e.g. clay loam and sandy clay, 

O = organic, P = peat, S = sandy and light.  
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the significance of summer temperature in the seasonal soil analysis (Table 6.3), the monthly 

summer temperature variables were included to test their significance individually. July, 

December and January rainfall were all found to have a significant relationship with yield, with 

higher July and January rainfall associated with yield decreases of -0.5 (± 0.3) t/ha per 100 mm of 

rainfall and higher December rainfall contributing to increases in yield of 0.1 (± 0.3) t/ha per 100 

mm (Table 6.4). The large standard error relative to the coefficient estimate for December rainfall 

suggests low precision in the estimated yield impact, which may help explain why January and 

December rainfall seem to have conflicting yield impacts. Overall, these results suggest that in 

the UK, particularly in the summer and winter, rainfall is a more important determinant of yield 

than mean temperature. The marginal R2 and conditional R2 for this model were 0.29 and 0.94, 

respectively, with an RMSE of 0.95. The variance associated with each random effect term are in 

Table A7. 
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 Sum Sq Df F-value p (sig.) coef coef SE 

Jun_rain 0.13 1 0.615 0.4 -0.006 0.003 

Jul_rain 0.84 1 3.994 0.05 (*) -0.005 0.003 

Aug_rain 0.46 1 2.183 0.1 -0.003 0.002 

Jun_tmean 0.21 1 1.027 0.3 -0.11 0.1 

Jul_tmean 0.29 1 1.389 0.2 -0.1 0.1 

Aug_tmean 0.27 1 1.310 0.3 0.1 0.1 

Dec_rain 1.01 1 4.848 0.03 (*) 0.001 0.003 

Jan_rain 1 1 4.800 0.03 (*) -0.005 0.003 

Feb_rain 0.28 1 1.351 0.2 -0.002 0.002 

Year 31.34 30 4.996 0.000 (*)  

Variety 325.02 246 6.319 0.000 (*) 

Jul_rain:Variety 90.56 246 2.178 0.000 (*) 

Dec_rain:Variety 70.67 246 1.761 0.000 (*) 

Jan_rain:Variety 91.47 246 1.374 0.000 (*) 
Table 6.4: Sum of squares for fixed effects in the monthly climate model of winter wheat, using [2.12] on 

the UK National List/Recommended List treated variety trials data for 1988-2018 and site-specific climate 

data, extracted from HadUK (Hollis et al., 2019).  *significant at the 95% confidence level. Coefficient 

estimates and standard error (SE) are given for the climate variables. 

6.4 Growing Degree Days accounts for most winter wheat yield variation  

Agroclimate metrics from Table 2.14 for each variety trial site were combined with the NL/RL yield 

data and incorporated individually, along with their interaction with variety, into the linear mixed 

crop model [2.7]. April frost (frost04), May frost (frost05), grain fill surface incoming solar 

radiation (grainfillSIS), the number of 10 mm+ rain days (rain10), the two Vernalisation Degree 

Days (VDD) metrics (VDD from November to February, vdd_novfeb, and VDD from planting to 

anthesis, vdd_p2a) and Growing Degree Days (GDD) had significant effects on yields (Table 6.5).  

𝐶𝑗𝑘  Coefficient SS clim p clim (sig.) SS var x clim p var x clim (sig.) 

frost03 0.022 0.010 0.8 88.4 0.000 (*) 

frost04 -0.006 5.060 0.000 (*) 78.8 0.000 (*) 

frost05 -0.103 1.976 0.004 (*) 99.9 0.000 (*) 

grainfill31 -0.042 0.056 0.6 71.6 0.007 (*) 

grainfillSIS 0.003 0.885 0.05 (*) 205.4 0.000 (*) 

rain10 -0.023 1.042 0.04 (*) 121.3 0.000 (*) 

rain20 -0.065 0.385 0.2 137.0 0.000 (*) 

SOGS -0.006 0.522 0.1 170.0 0.000 (*) 

vdd_novfeb 0.002 4.485 0.000 (*) 237.4 0.000 (*) 

gdd -0.002 10.072 0.000 (*) 243.0 0.000 (*) 

vdd_p2a 0.004 20.061 0.000 (*) 148.7 0.000 (*) 

pe_balance -0.002 0.021 0.8 158.4 0.000 (*) 
Table 6.5: Univariate climate model sum of squares (SS), p-value and significance for each climate variable 

and the respective climate x variety interaction term, calculated using [2.12] on each single climate variable  

𝐶𝑗𝑘  paired with the treated variety trials data for 1988-2018. *significant at the 95% level. 
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Significant variables in the univariate analysis (Table 6.5) were combined in a single model to 

identify the most influential climate variables. Due to the questions raised previously in Chapter 

4, Section 4.5 about the calculation of VDD from planting to anthesis, only vdd_novfeb was 

included in the model. In addition to the harvest year and variety, yield variation was attributed 

to variation in grain fill surface incoming solar radiation, the number of 10 mm+ rainfall days, GDD 

and the range in responses of each variety to the different climatic conditions (Table 6.6). The 

marginal R2 and conditional R2 for this model were 0.22 and 0.92, respectively and the RMSE was 

0.92. 

 Sum Sq Df F-value p (sig.) 

frost04 0.074 1 0.287 0.6 

frost05 0.590 1 2.300 0.1 

grainfillSIS 1.121 1 4.368 0.04 (*) 

rain10 2.121 1 8.264 0.004 (*) 

gdd 4.040 1 15.742 0.000 (*) 

vdd_novfeb 0.295 1 1.149 0.3 (*) 

Year 24.469 28 3.406 0.000 (*) 

Variety 23.233 19 4.765 0.000 (*) 

frost04:Variety 3.079 19 0.632 0.9 

frost05:Variety 6.635 19 1.361 0.1 

grainfillSIS:Variety 7.288 19 1.495 0.08 

rain10:Variety 13.713 19 2.813 0.000 (*) 

gdd:Variety 19.436 19 3.986 0.000 (*) 

vdd_novfeb:Variety 10.736 19 2.202 0.002 (*) 
Table 6.6: Sum of squares for fixed effects in the multivariate agroclimate model of winter wheat, using 

[2.12] on the UK National List/Recommended List treated variety trials data for 1988-2018.  *significant at 

the 95% confidence level. 

To obtain the multivariate model in the simplest form, backwards elimination using step from 

lmerTest was used. This method was used as it works on mixed models, unlike several of the 

methods trialled in Chapter 3. Due to the low correlation between the covariates and the much 

larger dataset, this approach was far more successful at reducing model complexity than in the 

Irish barley trials analysis in Chapter 3. Specifically, backwards elimination removed both the frost 

terms and their interactions with variety, as well as the grainfillSIS x variety interaction term. 

Hence the optimal model is: 

𝑦𝑖𝑗𝑘 =  𝜇 + 𝑜𝑗𝑘 + 𝑝10𝑗𝑘 + 𝑔𝑗𝑘 + 𝑑𝑗𝑘 + 𝑣𝑖 + 𝑟𝑗 + 𝑣𝑝10𝑗𝑘 + 𝑣𝑔𝑗𝑘 + 𝑣𝑑𝑗𝑘 + 𝑣𝑟𝑖𝑗 + 𝑠𝑗𝑘

+ 𝑒𝑖𝑗𝑘  

[6.1] 

with model terms defined in Table 6.7. 
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Variable Variable description 
Fixed (F) or 
random (R) 

𝑦𝑖𝑗𝑘 yield of variety 𝑖 in growing season 𝑗 at site 𝑘  

𝜇 𝜇 is the overall trial series mean F 

𝑜𝑗𝑘 
the effect of grain fill surface solar radiation in growing season 𝑗 
at site 𝑘 

F 

𝑝10𝑗𝑘 
the effect of the number of 10 mm+ rain days in growing season 
𝑗 at site 𝑘 

F 

𝑔𝑗𝑘  the effect of the available GDD in growing season 𝑗 at site 𝑘 F 

𝑑𝑗𝑘 
the effect of available VDD from November to February in 
growing season 𝑗 at site 𝑘, 

F 

𝑣𝑖 the effect of variety 𝑖 F 
𝑟𝑗 the effect of growing season 𝑗 F 

𝑣𝑝10𝑗𝑘 
the interaction between variety 𝑣𝑖 and the number of 10 mm+ 
rain days 𝑝10𝑗𝑘 

F 

𝑣𝑔𝑗𝑘  the interaction between variety 𝑣𝑖 and the available GDD 𝑔𝑗𝑘 F 

𝑣𝑑𝑗𝑘 
the interaction between variety 𝑣𝑖 and the available VDD from 
November to February 𝑑𝑗𝑘,   

F 

𝑣𝑟𝑖𝑗 
the effect of the interaction between variety 𝑖 and growing 
season 𝑗 

R 

𝑠𝑗𝑘  the effect of site 𝑘 in growing season 𝑗 R 

𝑒𝑖𝑗𝑘 residual term R 
Table 6.7: Variable description of variables in the final agroclimate model [6.1] for winter wheat. Each 

variable is fitted as a fixed effect (F) or a random effect (R). 

The marginal R2 and conditional R2 for this model were 0.22 and 0.92, respectively and RMSE was 

0.92, so very similar values to the more complex model (Table 6.6) before using backwards 

elimination. Comparisons of this model to the base model that doesn’t contain any climate 

variable or climate x variety interaction term ([2.7]) shows that the agroclimate model [6.1] is 

significantly better at capturing the data than the simpler model [2.7] (χ2=291.4, Df=61, p<0.001). 

To provide context to the results and model coefficients (Tables 6.8 and A7), the mean and 

categorised values for each variable for the varieties and sites in this model are given (Table 6.9).  

Analysis of variance of the model covariates show that of the four climate covariates, GDD 

accounts for the most variation in yield (Table 6.8). This was accompanied by a very small negative 

model coefficient, indicating that a big increase in GDD is associated with small decreases in yield. 

There was large variation in yield responses to GDD, with varietal response to different GDD 

availability accounting for ~18% in overall yield variation in this model. Increases in the number 

of 10 mm+ rain days decreased yields by ~0.13 t/ha per 10 extra 10 mm+ rain days. Higher solar 

radiation during grain fill increased yields by ~0.3 t/ha per extra 100 MJ/m2. However, the 

interaction term with variety was dropped in the backwards elimination process, suggesting the 

yield response between different varieties to solar radiation during grain fill is not significantly 
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different to each other, rather they largely respond in a similar, positive way. VDD from November 

to February was included in this final model but proved not to significantly affect yield (p=0.1). 

The variance associated with each random effect term in model [6.1] are in Table A8. 

 SS Df F value p (sig.) coef coef SE 

grainfillSIS 1.043 1 4.071 0.04 (*) 0.0030 0.001 

rain10 1.987 1 7.753 0.005 (*) -0.013 0.008 

gdd 4.123 1 16.086 0.000 (*) -0.000050 0.0004 

vdd_novfeb 0.676 1 2.637 0.1 0.00049 0.001 

Year 26.709 28 3.722 0.000 (*) 

See Table A9 

Variety 36.927 19 7.584 0.000 (*) 

rain10:Variety 14.16 19 2.908 0.000 (*) 

gdd:Variety 20.968 19 4.306 0.000 (*) 

vdd_novfeb:Variety 11.838 19 2.431 0.001 (*) 
Table 6.8: Sum of squares for fixed effects in the multivariate agroclimate model of winter wheat, using the 

optimised model [6.1].  *significant at the 95% confidence level. Coefficient estimates and standard error 

(SE) are given for the climate variables. 

6.5 Statistical modelling can be used to identify climate-resilient varieties 

There was a range in yield responses (Figure 6.2, Figure A13) by each winter wheat variety (Table 

2.18) to the different agroclimate conditions (low/medium/high; Table 6.9). The interaction 

between grain fill solar radiation and variety was included here to explore individual varietal 

responses to varying levels of solar radiation, despite the interaction term not being included in 

the final agroclimate model. The majority of varieties yielded higher under high GDD, for example 

Gallant yielded 6% more than average in years with high GDD and 7% lower than average in years 

with low GDD suggesting it may yield well on farms in the East and South-East where the UK 

receives on average the most GDD each year (Figure 4.23). There were several exceptions which 

contribute to the overall negative relationship between GDD and yield. For example, both Mercia 

and Soissons yielded highest in years of low GDD.  

Variable Units Mean  Categories 

grainfillSIS MJ/m2 786.6 559-755, 755-815, 815-1002 

rain10 Number of days 16.2 3-12, 12-17, 17-89 

gdd oC days 1442.7 861-1369, 1369-1513, 1513-2186 

vdd_novfeb oC days 973 323-925, 925-1042, 1042-1301 
Table 6.9: The low/medium/high categories for each agroclimate metric included in the final model [6.1]. 

Varietal yield responses to the number of 10 mm+ rain days suggest that between 12-17 10 mm+ 

rain days across the growing season is preferable for winter wheat (Figure 6.2). All 20 varieties, 

except Mercia, Soissons and Savannah produced their highest yields in this “medium” rainfall 

category, whilst these three varieties preferred less rainfall. Mercia also produced higher yields 



196 
 

during growing seasons with fewer rain days of 20 mm+ and reduced water availability 

(pe_balance; Figure A13).  Several varieties had a strong positive response to high solar radiation 

during grain fill, particularly Claire, Cordiale, Deben and XI19 which yielded at least 5% higher than 

average. Given the demonstrated increase in grain fill solar radiation in the South-East and East 

in Chapter 4 (Figure 4.24), these varieties may benefit from growing in this area. Varieties such 

as Soissons which had less yield variation in response to solar radiation conditions could be 

considered for growing in the West of the UK where decreased solar radiation is expected (Figure 

4.24). 

Despite the insignificant relationship between Vernalisation Degree Days from November to 

February and yield (Table 6.8), there was a distinct yield penalty across most varieties when 

available VDD was in the “low” category. Yield responses for medium and high levels of VDD were 

very similar across most varieties, suggesting there is a minimum VDD requirement and once this 

is reached more VDD will not increase yields further.  
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Figure 6.2: Yield responses (% of average) of each variety to low (white), medium (light blue) and high (dark 

blue) (as defined in Table 6.9) Growing Degree Days (GDD), growing season 10mm+ rainfall days (rain10), 

surface incoming solar radiation during grain fill (grainfillSIS) and Vernalisation Degree Days from November 

to February (vdd_novfeb). Varieties included here are those present at least 10 years in the variety trials 

dataset from 1988-2017. The statistical significance of the interaction between variety and the agroclimate 

metric is given, except for grainfillSIS due to the interaction term not being included in the final model. 

Given the low frequency in occurrence of mild heat stress during grain fill (Tmax>31oC) and air frost 

days in May, the yield response to these climate variables was split into two: whether they 

occurred or not.  The influence of granfill31 on yield is minimal here, however late spring frost is 

more detrimental to yield (Figure 6.3). Across all varieties, the occurrence of at least one May 

frost day resulted in yield losses, with Mercia showing the smallest yield loss (<2%) and XI19 the 
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largest (>10%). Frost earlier on in spring (frost03 and frost04 in Figure A13) had a much less 

detrimental yield impact. 

 

Figure 6.3: Yield responses (% of average) of each variety to zero (white) or at least one (dark blue) 

occurrences of mild heat stress during grain fill (grainfill31) and air frost in May (frost05). Grain fill 

corresponds to the period 16th June-31st July. 

Using the statistical significance of each variety x climate interaction in the univariate climate 

models (Table 6.5) and a false discovery rate (FDR) < 0.5, it was possible to detect varieties which 

were more sensitive to specific climate variables. In total, 74 interactions were detected across 

19 varieties (Table 6.10). Four varieties had FDR < 0.5 for 6 variables: Riband, Scout, Soissons and 

XI19. GDD was of greatest importance here, aligning with the results of the multivariate ANOVA 

(Table 6.8).   
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Variety 
frost04 
(days) 

frost05 
(days) 

grainfillSIS 

(MJ/m2) 
rain10 
(days) 

gdd 
(oC days) 

vdd_novfeb 
(oC days) 

vdd_p2a 
(oC days) FDR<0.5 

CLAIRE 0.02 0.03 0.0004 0.005 -0.0002 0.0007 -0.0002 2 

CONSORT 0.03 0.1 -0.003 -0.01 -0.001 -0.0007 0.00002 5 

CORDIALE 0.04 -0.05 -0.0004 -0.006 -0.0006 0.0006 -0.0006 3 

DEBEN 0.04 0.05 -0.00004 -0.004 -0.0008 -0.0003 -0.0005 2 

EINSTEIN 0.03 -0.06 -0.001 0.003 -0.001 -0.00008 -0.0002 3 

GALLANT 0.03 -0.1 0.0003 -0.003 -0.0001 0.002 -0.001 3 

GRAFTON 0.03 -0.04 -0.0003 0.01 -0.0006 0.0007 0.0002 4 

HEREWARD 0.03 0.08 -0.001 -0.01 -0.0007 0.00002 -0.001 5 

JB DIEGO 0.03 -0.1 0.0003 -0.002 -0.0002 0.0009 -0.001 3 

MALACCA 0.03 0.06 -0.002 -0.004 -0.001 -0.001 0.0002 3 

MERCIA 0.04 0.1 -0.002 -0.006 -0.002 -0.001 -0.00004 4 

RIBAND 0.07 0.07 -0.003 -0.009 -0.001 -0.001 0.0009 6 

ROBIGUS 0.03 -0.003 -0.0009 -0.005 -0.0002 0.0003 -0.0001 2 

SAVANNAH 0.07 0.1 -0.004 -0.03 -0.002 -0.002 -0.001 6 

SCOUT 0.02 -0.05 -0.0004 -0.007 -0.0007 0.0001 -0.001 2 

SOISSONS 0.04 0.1 -0.003 -0.02 -0.002 -0.003 -0.0008 6 

SOLSTICE 0.04 -0.00008 -0.001 -0.002 -0.0008 0.00005 -0.001 4 

VISCOUNT 0.02 0.06 -0.002 -0.001 -0.001 -0.0006 0.0006 5 

XI19 0.03 -0.2 0.001 -0.01 -0.0002 0.001 -0.0009 6 

FDR<0.5 9 6 12 7 16 13 12 74 

Table 6.10: Variety x climate variable interaction coefficient for each variety with at least 10 years of data, giving the offset from the mean response of all varieties. Interactions 

with a false discovery rate (FDR) < 0.5 are highlighted in grey. The total number of interactions detected with an FDR < 0.5 for each climate variable and variety are shown at 

the end of each column and row, respectively. Climate variables included here were significant in the univariate climate models (Table 6.5). The variety ‘Alchemy’ is not included 

here as it’s not possible to extract the interaction coefficient from the model’s intercept term.  
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6.6 Discussion 

The use of multi-environment trials data, specifically the NL/RL variety trials dataset, enabled the 

identification and quantification of specific agroclimatic influences on UK winter wheat yields. The 

inclusion of trial site location in the dataset allowed the data to be paired with historical site-

specific seasonal climate and agroclimate data which has not previously been undertaken for the 

whole UK.  

6.6.1 Site-specific climate data reveals additional winter wheat yield drivers 

An initial analysis of yield responses to seasonal climate demonstrated the value that using higher 

resolution, localised climate data as opposed to regional or national data, can have on identifying 

crop-climate interactions.  

The significant negative relationship between summer precipitation and yield (Tables 6.1-6.3) 

aligns with the results of Kettlewell et al. (2003) who found that higher summer precipitation 

negatively affected winter wheat grain specific weight, one of the determinants of grain yield. 

Summer rainfall can reduce specific grain weight through alternate wetting and drying causing 

wrinkling of the grain surface and reducing the packing efficiency of the grain (Bracken and Bailey, 

1928; Kettlewell et al., 2003). Furthermore, summer rainfall is inversely related to solar radiation, 

such that higher rainfall is generally associated with greater cloud cover, reducing available solar 

radiation the crop can photosynthesise during grain fill. In the multivariate agroclimate model 

lower grain fill solar radiation was associated with decreased yields (Table 6.8, Figure 6.2). Wetter 

summers also linked to increased disease risk: for example, rain-splash events in June can 

encourage the spread of Septoria leaf blotch (Turner et al., 2021), as discussed in Section 4.4.10.  

Using localised seasonal climate data instead of regional, it was possible to identify winter rainfall 

as an additional significant climate variable. Winters in the UK are typically the wettest season 

and therefore higher winter rainfall could cause lower yields through waterlogging, rather than 

low rainfall inducing a water deficit for the crop. As discussed in Section 1.2.5, higher than average 

rainfall in autumn/early winter can also encourage shallow root development, leaving the crop 

vulnerable to dry conditions in spring and summer. The negative relationship between winter 

rainfall and yield (Table 6.2) contradicts findings by Lopes (2022), who observed positive 

correlations between winter rainfall and wheat yield in Northern Europe. Possible explanations 

for the difference in results could include the difference in climates of countries within Northern 

Europe to the oceanic climate of the UK. Furthermore, Lopes (2022) use both national yield data 

and national climate summaries as opposed to site-specific variety trial yield data and climate 

data which may be oversimplifying the relationship. At some range, the rainfall relationships must 
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stop being linear, as there is an optimum between being completely submerged and completely 

dry. 

Summer temperature had a significant effect on yield when soil texture was included in the model 

(Table 6.3). This could be due to different soils warming up and cooling down at different rates, 

affecting crop growth rates, however this would need investigating further in additional models 

that include a climate x soil interaction term. This model showed yield differences between the 

soil textures, however deciphering these textures was somewhat difficult due to the wide-ranging 

acronyms used in recorded trials data. Soil texture is typically included in the dataset to ensure 

the correct quota of trials that represent farms on the same soil type (David Schafer, pers comm.), 

therefore some soil types only featured a handful of times and categorising them was challenging. 

Given the very few trials grown on organic soils, an additional model run would be useful to see 

whether soil texture still varies significantly between the more common soil types which showed 

more similar yields (Figure 6.1). A more reliable soil dataset would enable the interaction between 

soil type and the agroclimate metrics to be investigated, and how varieties respond on different 

soils.  

In Germany, the Ackerzahl metric is often used for soil rating to quantify the fertility of the soil 

and is available for locations across Germany (Schachtschabel et al., 1976; Piepho et al., 1998). It 

incorporates several variables including soil type, geological age, the stage of degradation and 

average temperature and rainfall. It has been valuable for calculating yield potential at specific 

sites (Piepho et al., 1998; Bönecke et al., 2020). A similar metric in the UK would allow suitability 

mapping of varieties, as well as the calculation of yield potential, using a more comprehensive 

and reliable metric for soil than has been available for this analysis. 

6.6.2 Univariate agroclimate analysis as a tool for climate variable selection 

Running a mixed model for each climate variable and its variety interaction gave an initial 

indication as to the most important agroclimate yield drivers, and their relationship with yield 

(Table 6.5). Early spring frost (frost03), the start of the growing season (SOGS), the number of 

mild heat stress days during grain fill, the number of growing season heavy rain days (rain20) and 

growing season precipitation-evapotranspiration balance (pe_balance) were not significant 

(Table 6.5). Whilst there was variation in yield responses to March frost amongst cultivars (Table 

6.5, SS var x clim = 88.4), winter wheat yields were evidently not overly sensitive to early spring 

frost, which is perhaps unsurprising given the high frequency of frost days in March across the UK 

(Figure 4.18). This contrasts the univariate analysis findings for later in spring, when more April 

and May frost days had significant detrimental effects on yield, with May frost decreasing yields 
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by 0.1 t/ha per frost day. May typically coincides with the reproductive stage of winter wheat, 

when the size of the yield impact from frost damage is greater than any other stage (Frederiks et 

al., 2012). 

The lack of relationship of SOGS with winter wheat yield is also expected, given the definition of 

the metric which growing could only begin from the 6th January despite being in the ground from 

as early as the preceding September. When the number of 20 mm+ rain days increased, yields 

decreased but this effect was statistically insignificant despite a significant effect for the 10mm+ 

rain days. Splitting the growing season into shorter periods e.g. growth stages if phenological data 

was available could have facilitated a more useful and successful analysis when looking at the 

number of rain days and pe_balance. Whilst mild heat stress (Tmax>31oC) during grain fill occurs 

more frequently than extreme heat stress (Tmax>35oC), it perhaps hasn’t occurred often enough 

or for long enough periods to have detectable yield effects found in other studies (Dreccer et al., 

2018; Ceglar et al., 2019).  

6.6.3 Combined agroclimate multivariate analysis 

In the context of a warming climate, the significant negative relationship between GDD and yield 

(Table 6.8) is concerning given the increase in GDD availability shown in Chapter 4 across the last 

four decades. To fully understand the exact cause of this relationship, it would be useful to break 

this term down into shorter time periods to see if it’s a rise in temperature, and so GDD, at a 

particular time of year contributing to the negative yield effects, or more the accumulation across 

the growing season due to accelerated development. In the individual varietal responses, winter 

wheat varieties yielded higher, on the whole, when above the low threshold of 1369 GDD and 

then yields didn’t increase in the higher category, seemingly plateauing (Figure 6.2). Soissons was 

one exception that showed higher yields in years of low GDD. This early flowering French variety 

might be performing better in years of low GDD because it flowers and matures early and can 

escape a cold, wet summer which suppresses yields of other varieties. 

A similar pattern is seen with Vernalisation Degree Days in November-February, such that after 

the low threshold, yield doesn’t increase further between medium and high vdd_novfeb (Figure 

6.2). The fact that this vernalisation term is not significant in the final multivariate model (Table 

6.8) despite the very consistent yield response seen (Figure 6.2) could be because of the positive 

correlation between VDD and GDD (0.5, Figure A12) such that GDD might be explaining the same 

variation. This could be explored further by partitioning GDD into shorter time periods as 

previously described.  The positive response of winter wheat to solar radiation during grain fill 
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complements the findings in Figure 4.25 that in most areas of the country there is also a positive 

relationship with yield, regardless of the genotype grown.  

6.6.4 Individual varietal response to climate variability  

The investigation of individual varietal yield response to climate variability wasn’t just restricted 

to current varieties on the Recommended List, but also included older varieties no longer grown. 

Breeders can still use the sensitivity results from this research and use old varieties as parent 

material if they have demonstrated a desirable trait. The individual varietal responses to 

agroclimate variability (Section 6.6.4) are very dependent on the range of conditions experienced 

by each variety. Given that varieties are trialled across different sites in different years, no two 

varieties are likely to have experienced the same range of weather and climate variability. Unlike 

Mackay et al. (2011) who used varieties with just three years of data or more, here varieties had 

at least 10 years of data to ensure they had experienced a wider range of weather and climate 

variability which improved the chances of the rarer agroclimate events occurring e.g. May frost.  

Categorising agroclimate metrics into low, medium and high (Hakala et al., 2012) was a useful 

way of seeing how different varieties responded to variation in the metrics. For example, XI19 

yielded higher under low and medium March frost days (Figure A13), indicating it may be better 

suited to the East of the country, where March frost days were shown to be decreasing (Figure 

4.18). Mercia yielded higher in growing seasons with fewer rain days of 20 mm+ and lower overall 

water availability (Figure A13), suggesting it is better suited to drier parts of the country and could 

be more resilient to future drier summers. Yield impact of late spring frost was substantial across 

all varieties except for Mercia (Figure 6.3) which combined with the yield responses to March and 

April frost (Figure A13) implies it could be frost resistant. To fully understand individual variety 

responses to the agroclimate metrics, these results should be shared with breeders whose 

greater knowledge of variety characteristics should give insight into why they are responding in 

these ways.  

To check the stability of the yield response method it would be interesting to increase the number 

of weather categories, whilst being mindful of the limited amount of yield data that would be 

contributing to each category and see if the observed relationship remains the same. This could 

reveal any thresholds above which yields no longer increase/decrease. Furthermore, it would be 

useful to test the significance of the difference in yield responses observed in Figures 6.2, 6.3 and 

A11 for each variety to each agroclimate metric. 

The false discovery rate (FDR) method was useful in identifying the most sensitive varieties and 

their significant relationships with yield. However, care must be taken when interpreting the 
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variety x climate interaction coefficients (Table 6.10). For example, there was a significant positive 

yield response of winter wheat to increasing solar radiation during grain fill in both the 

multivariate analysis (Table 6.8) and univariate analysis (Table 6.5). However, the individual 

varietal responses were mostly negative (Table 6.10), which alone would incorrectly imply that 

increases in solar radiation during grain fill decreases their yields. Rather, these individual varietal 

responses are relative to the overall response of winter wheat to solar radiation during grain fill 

so if combined for each variety, show that most varieties still respond positively to this variable.  

One of the limitations of this research is the use of static periods e.g. for grain fill. Given the wide 

range in drilling dates seen (Figure 4.11) and the range in climates and GDD experienced by crops 

across the country, periods such as anthesis and grain fill can occur several weeks apart at 

different sites in different years. Furthermore, the benchmark period for grain filling is 45 days, 

but can be as short as 28 days in severe drought conditions (AHDB Cereals & Oilseeds, 2018c). 

Given the lack of historical phenological observations for crops in the UK, an attempt was made 

to calculate anthesis for each variety trial (Figure 4.17) using a thermal degree day value given by 

AHDB. However, this was shown to have major weaknesses, giving estimated anthesis dates that 

were close to the actual harvest date. Hence it was decided to use a static period in this modelling. 

The implication of the results from analysis of trials data should be applicable to on-farm winter 

wheat yields as well. Trials data is useful as it removes some of the noise created by management, 

allowing these crop-climate relationships to be extracted. A similar analysis could be repeated 

using on-farm yield data to check this.  

To understand variety sensitivity and yield response to additional climate variables, this modelling 

can be repeated with these variables. From this, a picture should build up on exactly how different 

varieties respond to different weather and climate events, and therefore where they might be 

best suited across the UK. 

The AHDB variety selection tool (https://ahdb.org.uk/variety-selection-tool) is an excellent 

resource for helping growers to select varieties based on various disease and agronomic factors, 

such as desired disease resistance, end-use of the crop and latest safe sowing date. However, 

there is no way of accounting for the grower’s local climate in the selection tool. Ultimately results 

from agroclimate sensitivity analyses such as those presented here can enhance selection tools 

to allow improved variety suitability mapping that considers varietal preference to different 

climates. A useful additional piece of research would be to rerun these agroclimate models on 

quality traits, such as protein content, to allow the effect of climate on these metrics to be further 

explored and subsequently used in the tool.  

https://ahdb.org.uk/variety-selection-tool
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How future climate will play out is uncertain: to be prepared we need genetic diversity at hand 

and improved modelling that considers the interactions between genotype and environment, 

such as has been demonstrated in this chapter. Furthermore, as the climate changes, varieties 

need to be trialled in environments where projected UK weather already occurs e.g. southern 

France, and current varieties grown successfully there could be seen as potential future varieties 

for the UK, especially the South-East. International collaboration is essential in achieving future 

food security. 

6.7 Conclusion 

This research has gone beyond the simplistic seasonal climate sensitivity analysis by Mackay et al. 

(2011) and demonstrated the opportunities provided by historical variety trials datasets when 

combined with local or site-specific weather and climate data in determining the most important 

climate drivers of crop performance. Use of linear mixed models allows the response of each 

variety to the climate metric of interest to be extracted and interpreted to help understand how 

individual varieties respond in different environments. There is great potential for this work to be 

done on a more regular basis, with an array of climate variables, to help growers and breeders 

identify climate-resilient varieties to grow in their area.  
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7 Conclusions and recommendations 

7.1 Thesis summary 

In 2014 Professor Tim Benton, the 2011-2016 UK Champion for Global Food Security, wrote “We 

are used to having plentiful food, and at an affordable price. But the crisis in Ukraine should remind 

us that we cannot take Britain’s food security for granted” (Benton, 2014). Eight years later and 

the situation feels all too familiar. Except that in 2022, this is also in the context of post-Brexit 

supply chain disruptions and increased food insecurity induced by the covid-19 pandemic (Ipsos 

Mori and Food Standards Agency, 2022). Not to mention a more variable climate, exemplified by 

the record-breaking heatwave in July 2022 during which temperatures went well above several 

critical physiological thresholds for UK crops, resulting in enormous irrigation demand and 

associated (expensive) energy use for pumping at a time of drought and competition for water, 

culminating in substantial crop losses for crops such as potatoes and sugar beet (Riley, 2022). 

These have all contributed to a 40-year high in overall inflation, with food prices in June 2022 

inflated by 9.8% relative to 12 months previous (Gurung et al., 2022).  

To reduce the UK’s vulnerability to international supply chains in the future requires increased 

domestic production that is resilient to a changing, increasingly volatile climate. There has already 

been a northward migration in agroclimate zones (Ceglar et al., 2019), which has resulted in a 

poleward shift in the latitudinal ranges of crop pests and diseases (Bebber et al., 2013) as well as 

an increase in the frequency and length of warm and hot spells (Met Office, 2022a). There has 

been significant research into the effect of climate change on important food crops in the UK, but 

largely focused on projected, rather than observed, impacts. These have included studies on how 

the UK agroclimate is projected to change (e.g. Arnell & Freeman 2021; Harding et al. 2015; 

Harkness et al. 2020; Rivington et al. 2013) and how this translates into yield impacts (e.g. Cho et 

al. 2012; Semenov 2009). The limited work on past changes in the agricultural climate and how 

interannual variability has affected yields focused on one region of the UK (Addy et al., 2020, 

2021a) and on using monthly weather variables (Knight et al., 2012).  

This thesis has addressed the gap in historical agroclimate analysis across the UK and has 

documented how the UK agroclimate has changed from 1981-2020. High resolution gridded 

weather data has enabled a spatial analysis, revealing local variability and trends across the 

country rather than constrained to the UK as a whole (Chapter 4). Using this data, it is now 

possible to look at how the agroclimate has varied across the period at any location in the UK and 

assess the overall trend in each agroclimate variable (Table 2.14), paving the way toward a ‘State 

of the UK Agroclimate’ report.  
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Variety trials records have been used in several countries (e.g. France, UK, Finland) to quantify 

the contribution of plant breeding to yield improvements and yield variability (e.g. Brisson et al., 

2010; Mackay et al., 2011; Peltonen-Sainio, Pirjo et al., 2009; Shorinola et al., 2022). Building on 

Mackay et al. (2011), Section 5.1 presented a quantification of the genetic gain for 2007-2018 for 

winter wheat (Triticum aestivum L.), winter barley (Hordeum vulgare L.) and spring barley in the 

UK and evidenced how breeding has continued to positively contribute to linear increases in 

yields for both treated and untreated variety trials (Table 5.1, Figure 5.2). The inflated untreated 

variety trial genetic gain values discussed in in the literature (Mackay et al., 2011; Shorinola et al., 

2022) was also seen in Chapter 5 and discussed in Section 5.5.1. Given the importance of genetic 

gain in determining the success of breeding programmes and future funding allocation 

(Covarrubias-Pazaran, 2020; Covarrubias-Pazaran et al., 2022), the robustness of the metric was 

subsequently tested and demonstrated (Section 5.3) in a novel analysis using subsets of UK 

National List/Recommended List (NL/RL) variety trials data and showed high sensitivity of the 

metric to the connectivity of the varieties, seed source (i.e. NL or RL) and the specific long-term 

varieties used.  

Combining multi-environment variety trials data with climate data also provides great 

opportunity to understand how crops respond at a species level to different climatic conditions, 

as well as how individual varieties interact with the environment and the overall climate resilience 

of current crops (Kahiluoto et al., 2019; Peltonen-Sainio, P. et al., 2007). In Chapter 3, pairing the 

best available weather and climate data of the period with barley trials data documented by 

Student (1923) demonstrated that much can be learnt about varietal response to different 

weather, even using variety trials data from as early as the start of the 20th century. Whilst the 

limited number of sites and years restricted model performance, analysis of variability in the early 

20th century Irish agroclimate (Section 3.1.3) helped explain up to 58% of the high interannual 

variation in yield and price (Figures 3.4 and 3.6). The results of this chapter have been submitted 

for publication (Raymond et al., in press). This initial mixed modelling exercise was also a good 

opportunity to test several variable selection methods on a small dataset before modelling the 

much larger UK NL/RL variety trials dataset.  

The NL/RL data had previously only been correlated with national seasonal temperature data 

(Mackay et al., 2011), therefore the crop-climate statistical modelling in Chapter 6 (Section 6.1.1) 

is the first documented statistical model combining NL/RL data with climate data in the UK. 

Comparing the results of regional (Section 6.1.1) and site-specific seasonal (Section 6.1.2) climate 

data highlighted the value of using site-specific climate data in analyses like this. This was 

developed further by incorporating site-specific agroclimate variables to identify which of these 
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most strongly determine historical winter wheat yields in the UK, as well as the sensitivity of 

specific varieties. The results of this modelling exercise, along with analysis of the changing UK 

agroclimate, can be used to inform breeders and growers of the best growing climate for each 

variety included in the analysis. This research was co-funded by the British Society of Plant 

Breeders (BSPB) who therefore provide a direct route for impact from this research. The extent 

to which the work in this thesis can help improve climate resilience of UK cereals will likely be 

revealed in future years in the observed yield variability and depend on the extent to which the 

information is used to make climate-informed decisions on crop and variety choice. 

7.2 Addressing the overarching research questions 

7.2.1 After the ‘yield plateau’ of the 1990s and 2000s, what do we now see emerging 

in yield records? 

From the 1990s, as documented in Section 1.1.2, yields began stagnating in key crops globally 

including wheat, maize and rice (Brisson et al., 2010; Cassman et al., 2011; Hochman et al., 2017; 

Espe et al., 2018), as well as nationally (Knight et al., 2012). National and regional yield trend 

analysis showed that high wheat and barley yield variability, of up to 50%, has dominated the 

most recent decade 2011-2020 (Figures 4.1 and 4.2; Section 4.1), with increased yield potential 

realised in some years but also greater yield losses in others contributing overall to further 

decadal yield stagnation, on average. In Chapter 4, national and variety trial yield anomalies 

(Section 4.2) were combined with national climate data to help explain some of the observed 

yield variation (Section 4.3). ‘Good’ high yielding years were characterised by higher-than-average 

June and July sunshine, a cooler growing season and a drier autumn (Figure 4.7) ‘Bad’ low yielding 

years typically had either a very wet autumn, or a wet summer (Figure 4.8). This further 

highlighted the increasing challenges which farmers are facing in coping with both inter- and 

intra-annual weather and climate variability. 

7.2.2 How can we use variety trial records to quantify the genetic contribution to recent 

yield trends? 

The discrepancy between the national yield stagnation and linear increase in variety trial yields 

seen in Section 4.1 indicated that the yield plateau was not driven by a lack of genetic 

improvement. Instead, using a selection of statistical models presented in Chapter 5, it was shown 

that genetic improvement was responsible for over 95% of yield increases seen in national wheat 

yields (Figure 5.9). Indeed, crop breeding was shown to have contributed to yield increases in 

winter wheat, spring barley and winter barley, all three of which had positive genetic gain 

estimates across the period 1982/3-2018 (Figure 5.2, Table 5.1). This suggests that the genetic 
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resource made available to farmers by breeders is underutilised, shining a light on the impact of 

climate variability and on aspects of agronomic practice.  

Use of the UK NL/RL variety trial records also made it possible to investigate the sensitivity of this 

genetic gain metric. The identified sources of uncertainty went beyond the loss of disease 

resistance that has previously been shown to contribute to overestimates in untreated variety 

trial genetic gain estimates. Specifically, Chapter 5 showed that lack of connectivity between 

varieties (e.g. when all varieties are present <3 years in a breeding programme trials) leads to 

overestimates in variety effects and that inclusion of long-term “check” varieties in both steps of 

the genetic gain calculation (Section 2.3.3) can bias the estimate. Modelling the effect of variety 

age on yield revealed a small (<1%) but distinct yield difference between years one and two and 

subsequent years for winter wheat, indicative of a variety going from NL1 to NL2 to RL where 

more seed is progressively required. Thus, seed source, due to its influence on the effect of yield 

as a variety ages, was also found to bias the estimate. Without this modelling, the influence of 

seed source was masked. Hence Chapter 5 also demonstrated the power that large trials datasets 

offer for revealing small but important yield trends. The power to detect a difference this small 

(<1%) in a typical bespoke experiment is close to zero. 

7.2.3 Which of an array of new high-resolution climate datasets should we synthesize 

into our analysis in order to most effectively isolate the confounding impact of 

spatial and temporal climate variability? 

In this research, several high-resolution gridded climate datasets were used to disentangle the 

complex interaction between crops and their environment. The gridded nature of these datasets 

enabled changes in the UK climate to be seen both spatially and temporally. Of the three 

temperature and precipitation datasets compared in Section 2.2.3, HadUK (Hollis et al., 2019) 

performed best, but ERA5-Land (Muñoz Sabater, 2019) and MÉRA (Gleeson et al., 2017) could 

also have been used to create the temperature- and precipitation-derived agroclimate metrics. 

Gridded satellite surface incoming solar radiation (SIS) data enabled the first known spatial 

analysis of changes in grain fill solar radiation. These datasets underpinned Chapter 4, The State 

of the UK Agroclimate, which showed some important changes in the UK agroclimate from 1981-

2020. Specifically, there has been a widespread increase in available GDD (Figure 4.14) and there 

are now fewer 10 mm+ rain days in September but more in August (Figure 4.20), which has likely 

contributed to the trend in earlier drilling dates, although this has started to reverse in recent 

years (Figure 4.11a.). The number of early spring frost days (Figure 4.18) and total solar radiation 

during grain fill (Figure 4.23) have both decreased in the East and both increased in the West. 
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Statistical modelling in Chapter 6 showed that high-resolution gridded climate datasets from a 

range of sources can be used to create agroclimate time-series for site-specific locations, which 

when combined with geolocated crop trait data, isolate the impacts of climate variability on both 

crop and individual variety performance. For example, multivariate analysis showed that winter 

wheat yields respond positively to increased solar radiation during grain fill (Figure 6.7). In this 

large-scale analysis, it was also possible to detect the genotype-by-environment interaction (GxE), 

which was subsequently dissected to reveal variety sensitivity to individual metrics which can be 

used to make localised variety recommendations. For example, both Deben and XI19 showed very 

strong positive responses to the highest amounts of solar radiation (Figure 6.2), indicating they 

could be best suited to the South-East of England where grain filling solar radiation has historically 

been highest and has increased (Figure 4.23). There is great potential to use the methods here to 

explore yield responses to additional agroclimate variables and for different crops, as well as the 

response of other important traits, such as quality and protein content, based on the interests of 

a farmer or breeder.  

In addition to using gridded datasets, yield and climate anomaly analysis in Chapter 4 (Section 

4.3) showed that several climate resources exist that are easily accessible which require minimal 

processing and can aid in yield variation interpretation. The array of climate tools on the Met 

Office website (https://www.metoffice.gov.uk/research/climate/maps-and-data) can be 

integrated into yield analysis and provide a high-level indication of how interannual climate 

variability may have contributed to observed yield variability.  

The crop-climate modelling in Chapter 3 highlighted the value of data rescue projects, such as 

that led by Met Éireann (Mateus et al., 2020; Ryan et al., 2021). By digitising and releasing 

historical weather records from the early 20th century, their work enabled the investigation into 

individual and combined impacts of variety and climate variability on spring barley trial yields in 

Ireland from 1901-1906. Whilst no variety x climate interaction was detected in the model, this 

climate data showed that Goldthorpe was more stable than Archer in a year of heavy rainfall and 

more soil moisture, which could be useful for breeders interested in introducing heritage varieties 

such as these, into their breeding programmes. Analysis like this can be completed on any multi-

environment trials dataset with location data, provided both the climate and trials datasets are 

accessible. 

7.3 Recommendations for stakeholders 

There are several relevant audiences for whom the results presented in this thesis are of value. 

Primarily, growers and farmers of UK cereals can use the results from Chapter 4 State of the UK 

https://www.metoffice.gov.uk/research/climate/maps-and-data
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Agroclimate to understand how the agroclimate in their area has changed to make climate-

informed decisions in the near future, as well as to help explain past crop production on their 

farms. To make this information accessible beyond the academic community, it is intended that 

the results will be incorporated into an online agroclimate tool such as the UK Climate Risk 

Indicator Tool (uk-cri.org), with the option for stakeholders to click on a location of interest and 

see the 40-year time series for the agroclimate metrics used here, as well as the trend over the 

period. It will also be used to create an accessible report which is updated every five years. By 

integrating farmers and breeders into the evaluation process of the first State of the UK 

Agroclimate report, further issues can be modified to ensure it best meets stakeholder needs. 

There is great potential for this agroclimate analysis to also be incorporated into the UK breeding 

process, as well as to encourage use of this data by agronomists and growers. As discussed in 

Section 6.6.4, the current Agriculture and Horticulture Development Board (AHDB) Variety 

Selection Tool (https://ahdb.org.uk/variety-selection-tool) does not include climate data. 

Combining what is known about the changing agroclimate (Chapter 4) with individual variety 

sensitivity to the selected agroclimate variables (Chapter 6) into the tool would enable 

recommendations on growing climates and therefore regions for each variety, such that if a 

grower inputs their location, historical climate records will indicate which varieties may be most 

climate-smart at their farm location, complementing the existing disease resistance ratings and 

agronomic factors. To best facilitate this analysis, the crop-climate modelling would need to be 

repeated each year to include new varieties, keep the results current and could include additional 

agroclimate variables as seen necessary for winter wheat and other crops. This could help tackle 

the difference in trends in on-farm yields and variety trial yields by encouraging use of newer, 

locally adapted varieties.  

The combined results of the winter wheat agroclimate modelling and variety sensitivity analysis 

in Sections 6.1-6.5 could be used by breeders to make decisions on which traits to breed into 

future varieties. Furthermore, through identifying varietal resilience to different agroclimate 

conditions, this has also provided a possible resource from which to select parent varieties to use 

to create new, better adapted and more resilient varieties. Given the projected increase in 

extreme events, it is important farmers grow varieties with yield response diversity, therefore it 

might be necessary to increase the number of varieties on the AHDB Recommended List to 

facilitate increased diversity or create more extensive regional Recommended Lists. The rapidly 

changing climate will give rise to novel climates in the UK; therefore, incorporating a range of 

international variety trial sites in areas of countries that are already experiencing similar climates 

to those projected for the UK is needed urgently. 

https://ahdb.org.uk/variety-selection-tool
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The observed changes in the agroclimate can also be used by DEFRA and government to make 

agroclimate-informed projections on future cropping and production totals, as well as to 

encourage farmers and growers to adopt new varieties which grow best in their growing 

environment.  

The continued contribution of breeding to variety trial yield increases for winter wheat, winter 

barley and spring barley will be fed back to breeding companies via BSPB, the co-funders of this 

research, as an indicator of their recent success. However, the question raised about the 

robustness of genetic gain estimates in Chapter 5 also needs to reach breeding programmes and 

their funders. Further research should be undertaken on the least biased way of calculating 

genetic gain such that it doesn’t over- or underestimate the value. Based on the results in Chapter 

5 and discussion in Section 5.5.3, to reduce the risk of bias it is recommended that: 

• Long-term “check” varieties are included to increase connectivity between varieties 

• Checks are used to calculate the best linear unbiased estimators (BLUEs) for variety and 

year effects but then removed for the regression estimate 

• The effect of variety age or seed source on yield is considered prior to estimating genetic 

gain, and if there is a distinct yield drop as seen in the NL/RL data, a term is included in 

the mixed model to account for this. 

As the collators and providers of the NL/RL variety trials data, AHDB should improve the pipeline 

from variety trials data collection to data storage to data release. Accessing this fundamental 

dataset for use in this thesis took over a year. Subsequent months were dedicated to carrying out 

quality control as described in Section 2.2.5, such as checking for duplicates and ensuring sowing 

dates, harvest dates and trial site locations were realistic. There was almost double the amount 

of data for 2008 as every other year, and 2007 and 2009 were seemingly lacking data. Thus, half-

way through the research, it was necessary for AHDB to re-extract the data for these years and 

for this data to then be combined with the longer record. It is estimated that the time spent 

during the PhD project on quality control, pre-processing and chasing the data amounts to over 

1.5 years. To streamline for future researchers, this refined dataset for 1982-2018 will be shared 

with AHDB and published (with AHDB approval) alongside journal paper submissions. Future 

variety trials data should be added to this dataset once the same quality control methods have 

been completed. The ease of access to the Irish barley trials data made this dataset very attractive 

and easy to use and showed that despite its age, there is still much to learn from historical 

datasets. It is recommended that today’s large-scale multi-environment field trial datasets are 
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made widely available to facilitate and encourage research like this to take place to enhance our 

knowledge of crop-climate interactions in a changing climate. 

It would be useful if AHDB kept records of cultivar trials which don’t make it to trial, often as a 

result of weather events. As in much of Europe (Kahiluoto et al., 2019), large yield losses due to 

weather events are currently not recorded in cultivar trials. This makes it difficult to see in future 

years the diversity of responses to past weather variability. For example, it can mask the effect of 

localised heavy rainfall causing waterlogging and crop abandonment and suggest crop yields are 

less vulnerable to certain weather events than they are if yields don’t reflect this loss. By 

documenting yield losses and sharing this information with NL/RL variety trials dataset users, this 

can provide additional context to the data and may help explain years when the agroclimate 

cannot seemingly explain the yields.  

The final recommendation to the AHDB and DEFRA would be to make phenological dates more 

available, even if it’s at a regional level rather than site-specific. Records of on-farm planting and 

harvest dates would enable a similar analysis of on-farm data, as well as allow comparisons 

between trends in dates in variety trials and on-farm. A global analysis of crop planting dates does 

not include the UK as this data wasn’t available (Sacks et al., 2010). Other dates, such as the start 

of anthesis, would make date ranges in agroclimate metrics more representative supporting a 

more accurate analysis of cereal phenology.   

7.4 Future research 

This thesis has demonstrated methods to improve the climate resilience of UK cereals through 

better incorporation of weather and climate data into breeding programmes and UK cereal 

growing and highlighted to ways to improve the robustness of genetic gain estimates. Several of 

the issues raised warrant further investigation. Firstly, building on the results of the case study 

examples used to estimate the uncertainty of genetic gain in Section 5.3, further research is 

required into reducing bias in genetic gain to gain a fuller understanding of the causes of variation 

in the estimates seen here. Using a different variety trials dataset from another breeding 

programme (i.e. not NL/RL trials) could highlight additional factors to consider when calculating 

the metric.  

Secondly, soil quality plays an important role in enhancing resilience to climate change and 

climate variability (Qiao et al., 2022). Soil texture varies considerably across the country (National 

Soil Resources Institute, 2022) and variation in soil texture was shown to contribute significantly 

to yield variation (Section 6.2; Table 6.3). Due to the subjectivity in soil texture classification and 

the uncertainty in some of the soil texture acronyms recorded at trial sites, soil texture was 
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dropped from the statistical models without examining any variety-climate-soil interactions. 

Hence with the use of accurate, site-specific soil type data it would be useful to re-run this analysis 

and explore the roles of soil further, incorporating the interaction between soil and climate, and 

soil, climate and variety into the model. This could show which areas of the UK may be more 

vulnerable to yield shocks in response to variability in specific agroclimate variables, as well as 

which varieties are better suited to specific soils in different climatic regions. By overlaying the 

distribution of soils and the agroclimate, suitability maps could be developed for different 

varieties. 

Additional analysis that incorporates management options beyond drilling dates could give 

greater insight into options available to farmers to improve their resilience to weather and 

climate variability. To do so would require use of on-farm crop data or on-farm experimentation 

data, which has been proposed could help transform agriculture globally by allowing these 

interactions between management, genotype and the environment to be investigated in a real-

world setting (Lacoste et al., 2022).  

Work in this thesis has been constrained to analysis of temperature, precipitation, and solar 

radiation or sunshine duration. Analysis of wind, solar radiation at other times in the growing 

season, and soil moisture would aid in a more complete analysis of the changing UK agroclimate. 

Likewise, breaking metrics, such as the number of 10 mm+ rainfall days, down into shorter sub-

monthly periods would be beneficial for identifying the most vulnerable periods of the growing 

season to heavy rainfall.  

Further research should also utilise the Standardised Precipitation and Evapotranspiration Index 

(SPEI) instead of the Standardised Precipitation Index (SPI). The SPEI metric incorporates a 

measure of evaporative demand, which is especially dependent on temperature. SPEI is sensitive 

to the rising global temperatures and would be a more comprehensive metric to analyse the 

impact of the changing climate on crop yields (Vicente-Serrano et al., 2010; Price et al., 2022). 

SPEI-12 at harvest would provide a good measure of loss (or gain) of ground water over the cereal 

growing season. Spatial and temporal changes in this metric could be analysed to better 

understand how climate change has affected crop water availability in recent decades. This metric 

could also be included as a variable in the statistical modelling to identify the varieties least 

sensitive to drought and waterlogging.  Incorporation of an NAO metric in to the statistical 

modelling could provide an indication of some of the larger scale processes influencing historical 

yield variability. Furthermore, other teleconnections could also be considered, such as the El Niño 
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Southern Oscillation, which has already been shown to have yield effects in several countries 

(Heino et al., 2018) 

Finally, to create a more comprehensive report on The State of the UK Agroclimate, yield trends 

and anomalies for other crops grown in the UK should be analysed along with additional relevant 

agroclimate metrics. Due to site-specific data availability, it was only possible to complete the 

crop-climate statistical modelling for winter wheat. Therefore, if it was possible to access site-

specific information on variety trials data for other crops, including spring and winter barley, this 

analysis could be repeated to improve understanding of agroclimate drivers of yield variability for 

other crops in the UK. This analysis does also not need to be limited to yield, but could be applied 

to other desirable traits, such as protein content and quality.  

7.5 Concluding remarks 

This thesis has demonstrated the relative contributions of plant breeding and the changing 

agroclimate to UK cereal yields. It is envisaged this work can encourage increased integration of 

crop-specific weather and climate data into breeding programmes, variety trial evaluation and 

when making crop and variety recommendations and selections. To help secure the future of UK 

food security and reduce the financial burden induced by high interannual yield variability, this 

integration will be necessary.   
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Appendix 

Supplementary figures 

 

 

Figure A1: Correlation matrix for Irish spring barley growing season (March-August) monthly mean 

maximum and mean minimum temperature and total monthly rainfall. Only significant correlations (p < 

0.05) are shown. The larger the square the stronger the correlation. Dark red corresponds to strong 

negative correlations, dark blue corresponds to strong positive correlations.  
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Figure A2: Correlation matrix for Irish spring barley growing season (March-August) monthly maximum 

and minimum temperature and total monthly rainfall. Only significant correlations (p < 0.05) are shown. 

The larger the square the stronger the correlation. Dark red corresponds to strong negative correlations, 

dark blue corresponds to strong positive correlations. 
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Figure A3: Observed versus fitted values from using lmerTest on the extreme maximum and minimum 

monthly temperature, and total monthly rainfall data with the Irish spring barley trials data from 1901-

1906. All the linear mixed model plots of observed vs. fitted values in Chapter 3 showed very similar graphs, 

so were excluded to avoid repetition.  
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Figure A4: Growing season rainfall anomaly (% 1991-2020 average) plots for the UK (red), England (blue), 

Wales (green), Scotland (purple) and Northern Ireland (NI) (orange). Data from Met Office year ordered 

time-series. 
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Figure A5: Growing season sunshine duration anomaly (% 1991-2020 average) plots for the UK (red), 

England (blue), Wales (green), Scotland (purple) and Northern Ireland (NI) (orange). Data from Met Office 

year ordered time-series. 
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Figure A6: Growing season mean temperature anomaly (oC difference to 1991-2020 average) plots for the 

UK (red), England (blue), Wales (green), Scotland (purple) and Northern Ireland (NI) (orange). Data from 

Met Office year ordered time-series (Met Office, 2022c). 



231 
 

Figure A7: Change in the percentage of winter wheat trials following oilseed rape (OSR) (red) and the 

average winter wheat trials yield. Calculated using national yield data from DEFRA. 
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Figure A8: Vernalisation Degree Days (VDD) (oC days) from 1st November to 28th February for 1982-1990, 

1991-2000, 2001-2010 and 2011-2020. Calculated using equations [2.5] and [2.6] using 1 km x 1km gridded 

HadUK temperature data (Hollis et al., 2019).   

1981-1990 1991-2000 

2001-2010 2011-2020 
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Figure A9: Annual surface incoming solar radiation (SIS) anomalies (%) relative to 1991-2020 average. 

Calculated using gridded 0.05o x 0.05o degrees CMSAF SIS data (Pfeifroth, Trentmann, et al., 2018). 
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Figure A10: National Septoria blotch flag leave prevalence (area affected %) (Polley and Thomas, 1991; 

Hardwick et al., 2001; Turner et al., 2021) and regional wheat yields (t/ha) (DEFRA, 2021a) for 1999-

2019. 
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Figure A11: Observed versus fitted winter wheat yield values (t/ha). Fitted values are from the seasonal 

climate model on winter wheat (sum of squares shown in Table 6.1), which used [2.12] on the UK 

National List/Recommended List treated variety trials data for 1988-2018 and regional climate data 

from the Met Office (Met Office, 2022c). The subsequent models in Chapter 6 had very similar 

distributions of observed vs. fitted values, hence these plots haven’t been included.  
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Figure A12: Pearson's correlation coefficient between each pair of climate variables. Only significant 

correlations (p<0.05) are shown. The stronger and darker the correlation the larger the square, with 

positive correlations shown in blue and negative correlations shown in red. 
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Figure A13: Yield responses (% of average) of each variety to low (white), medium (light blue) and high 

(dark blue) (as defined in Table 6.9)numbers of frost days in April (frost04) and March (frost03), 20mm+ 

rainfall days (rain20), precipitation-evapotranspiration balance (pe_balance) and Vernalisation Degree 

Days from planting to anthesis (vdd_p2a).  
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Supplementary tables 
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Variable 
Coefficients p-value sig. (p < 0.05) 

c.m cv.b s.bo s.ba s.f c.m s.bo s.ba s.f c.m s.bo s.ba s.f 

(Intercept) 2.798 2.798 2.798 2.798 2.798 NA NA NA NA NA NA NA NA 

apr_rain_dmax 0.219 0.068 0.214 0.284 0.168 0.0003 0.0007 0.0003 0.0008 * * * * 

apr_rain_tot -0.117 NA -0.113 -0.157 -0.077 0.0433 0.0377 0.0376 0.0389 * * * * 

apr_temp_max -0.042 NA NA NA NA 0.0146 NA NA NA * NA NA NA 

apr_temp_min 0.182 0.283 0.240 0.181 0.168 0.1802 0.6958 0.6657 0.9031 
    

aug_rain_tot 0.015 NA NA NA NA 0.2565 NA NA NA 
 

NA NA NA 

aug_temp_max 0.249 0.367 NA 0.153 0.233 0.7813 NA 0.4569 0.2586 
 

NA 
  

aug_temp_min 0.085 0.144 NA NA 0.101 0.1100 NA NA 0.1985 
 

NA NA 
 

jul_rain_tot -0.069 NA -0.116 -0.083 -0.071 0.0000 0.0000 0.0000 0.0000 * * * * 

jul_temp_max 0.247 0.303 0.267 0.242 0.244 0.2188 0.0000 0.0001 0.0000 
 

* * * 

jul_temp_min -0.030 NA NA NA -0.074 0.0030 NA NA 0.1132 * NA NA 
 

jun_rain_tot -0.115 NA -0.208 -0.210 -0.097 0.0147 0.0119 0.0119 0.0125 * * * * 

jun_temp_max 0.035 NA NA NA NA 0.4634 NA NA NA 
 

NA NA NA 

jun_temp_min 0.092 NA NA 0.124 0.094 0.0526 NA 0.3337 0.2968 
 

NA 
  

mar_rain_tot 0.031 NA NA 0.079 NA 0.1136 NA 0.4793 NA 
 

NA 
 

NA 

mar_temp_max 0.060 0.162 NA NA 0.064 0.3643 NA NA 0.2599 
 

NA NA 
 

mar_temp_min 0.090 0.216 0.180 0.111 0.115 0.2404 0.4417 0.8278 0.8076 
    

may_rain_tot -0.231 -0.306 -0.085 -0.207 -0.250 0.8500 0.9611 0.6170 0.9613 
    

may_temp_max -0.144 -0.142 NA -0.107 -0.128 0.2740 NA 0.0042 0.0063 
 

NA * * 

may_temp_min -0.265 -0.334 -0.354 -0.334 -0.268 0.0732 0.0004 0.0045 0.0378 
 

* * * 

Table A1: Estimated coefficients and their p-values and significance for 4 different variable selection methods, as well as the full climate model 

(c.m.) for the extreme monthly Irish climate dataset. cv.b = best subset selection with cross-validation (Method 1), s.bo = cross stepwise 

selection in both backwards and forwards directions (Method 2a), s.ba = 10-fold cross-validation backwards stepwise selection (Method 2b), 

s.f = 10-fold cross-validation forwards stepwise selection (Method 2c) model using lambda for smallest model and within 1 standard error. p-

values and significance of each variable where available. 
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Parameter 

Coefficient estimate p-value and significance1 

lmer 
post 

selection 

Backwards 
elimination 

Bayesian 
post 

selection 

lmer post 
selection 

Backwards 
elimination 

Bayesian 
post 

selection 
Intercept 2.90 2.90 2.88 0.000 *** 0.000 *** 0.000 * 

apr_rain_tot -0.11  -0.12 0.198    0.117  

jul_rain_tot -0.12 -0.18 -0.12 0.098 . 0.004 ** 0.098  

jun_rain_tot -0.21 -0.21 -0.20 0.005 ** 0.003 ** 0.007 * 

may_rain_tot -0.08  -0.08 0.244    0.241  

apr_rain_dmax 0.21 0.17 0.23 0.014 * 0.011 * 0.022 * 

jul_temp_max 0.27 0.19 0.27 0.000 *** 0.001 ** 0.001 * 

apr_temp_min 0.24  0.11 0.033 *   0.284  

mar_temp_min 0.18  0.15 0.027 *   0.080  

may_temp_min -0.35  -0.18 0.005 **   0.236  

varietygoldthorpe -0.21 -0.21 -0.21 0.000 *** 0.000 *** 0.000 * 

Table A2: Coefficient estimates, p-values and their significance for three linear mixed model methods 

using the Irish monthly extremes climate data. lmer post selection uses the results from variable 

selection of climate variable, backwards elimination is the result of running step from lmerTest on the 

full linear mixed model, and Bayesian post selection represents the Bayesian mixed model run after 

climate covariate selection using lm.  1Signif. codes:  0 *** 0.001 ** 0.01 * 0.05 . 0.1. 

Year Variety Seed Yield 

1 a NL 2 

2 a NL 3 

3 a RL 3 

2 b NL 4 

3 b NL 5 

4 b RL 5 

3 c NL 6 

4 c NL 7 

5 c RL 7 

4 d NL 8 

5 d NL 9 

6 d RL 9 

5 e NL 10 

6 e NL 11 

7 e RL 11 

1 g RL 1 

2 g RL 2 

3 g RL 3 

4 g RL 4 

5 g RL 5 

6 g RL 6 

7 g RL 7 
Table A3: Model dataset for estimating genetic gain in the UK NL/RL trials. Seed means seed source, so 

whether its NL = national list or RL = recommended list. Here g is the check (control) variety. 
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Groups Variance 

Variety:Year 0.037 

Year: Site 2.22 

Residual 0.210 

Table A4: The variance components of the random effects in the UK regional, seasonal climate model 

(Section 6.1). 

Groups Variance 

Variety:Year 0.033 

Year:Site 2.22 

Residual 0.211 

Table A5: The variance components of the random effects in the UK localised seasonal climate model 

(Section 6.2). 

Groups Variance 

Variety:Year 0.18 

Year:Site 1.50 

Variety:Soil_class 0.043 

Residual 0.44 

Table A6: The variance components of the random effects in the UK localised, seasonal climate and 

soil model (Section 6.2). 

Groups Variance 

Variety:Year 0.17 

Year:Site 1.49 

Residual 0.46 
Table A7: The variance components of the random effects in the UK localised monthly climate model 

(Section 6.3). 

Groups Variance 

Variety:Year 2.37 

Year:Site 0.040 

Residual 0.26 

Table A8: The variance components of the random effects in the UK agroclimate model (Section 6.4). 
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 Estimate Std. Error Df t value p (sig.) 

(Intercept) 6.9280 1.0615 998.9 6.526 0.000 (*) 

grainfillSIS 0.0030 0.0015 750.3 2.018 0.044 (*) 

rain10 -0.0134 0.0085 1342.6 -1.579 0.115 

gdd 0.0000 0.0004 4958.7 -0.122 0.903 

vdd_novfeb 0.0005 0.0011 1211.2 0.447 0.655 

Year1989 -0.0659 0.7373 867.2 -0.089 0.929 

Year1990 0.2179 0.6386 891.0 0.341 0.733 

Year1991 0.5017 0.6167 914.2 0.814 0.416 

Year1992 0.3492 0.6435 914.4 0.543 0.588 

Year1994 0.4987 0.8036 869.8 0.621 0.535 

Year1995 0.1664 0.6400 889.9 0.260 0.795 

Year1996 0.9874 0.6234 909.2 1.584 0.114 

Year1997 0.5827 0.6427 987.9 0.907 0.365 

Year1998 1.0585 0.6162 904.1 1.718 0.086 

Year1999 1.8059 0.6523 896.4 2.768 0.006 (*) 

Year2000 1.8509 0.6219 889.9 2.976 0.003 (*) 

Year2001 0.2195 0.6408 876.9 0.343 0.732 

Year2002 1.2752 0.6098 919.8 2.091 0.037 (*) 

Year2003 1.0236 0.6000 908.0 1.706 0.088 

Year2004 1.3383 0.6094 932.7 2.196 0.028 (*) 

Year2005 0.5656 0.6113 894.8 0.925 0.355 

Year2006 0.7783 0.7019 866.3 1.109 0.268 

Year2007 0.2420 0.6451 888.1 0.375 0.708 

Year2008 1.3373 0.6261 902.3 2.136 0.033 (*) 

Year2009 0.8528 0.6679 897.6 1.277 0.202 

Year2010 0.3294 0.6852 894.2 0.481 0.631 

Year2011 0.7845 0.7676 952.8 1.022 0.307 

Year2012 -0.5507 0.6288 910.5 -0.876 0.381 

Year2013 -0.0813 0.6747 898.7 -0.120 0.904 

Year2014 1.5490 0.6206 908.3 2.496 0.013 (*) 

Year2015 1.6953 0.6040 916.3 2.807 0.005 (*) 

Year2016 0.9117 0.6138 938.3 1.485 0.138 

Year2017 0.8714 0.6136 945.8 1.420 0.156 

VarietyCLAIRE -0.5134 0.4262 2309.0 -1.205 0.228 

VarietyCONSORT 0.8722 0.4693 2937.8 1.859 0.063 

VarietyCORDIALE 0.0487 0.4425 2224.7 0.110 0.912 

VarietyDEBEN 0.9702 0.5568 3032.4 1.742 0.082 

VarietyEINSTEIN 0.7159 0.4580 2078.9 1.563 0.118 

VarietyGALLANT -0.9041 0.4924 2518.8 -1.836 0.066 

VarietyGRAFTON 0.1822 0.5376 2503.9 0.339 0.735 

VarietyHEREWARD -0.8191 0.5093 2517.2 -1.608 0.108 

VarietyJB DIEGO 0.0231 0.4629 2254.0 0.050 0.960 

VarietyMALACCA 0.7411 0.4945 2743.1 1.499 0.134 

VarietyMERCIA 0.3012 0.6138 3266.0 0.491 0.624 

VarietyRIBAND 1.1334 0.5238 3127.6 2.164 0.031 (*) 



244 
 

VarietyROBIGUS 0.3835 0.5072 2573.0 0.756 0.450 

VarietySAVANNAH 2.9004 0.5155 3029.4 5.627 0.000 (*) 

VarietySCOUT 0.4761 0.5345 2685.6 0.891 0.373 

VarietySOISSONS 1.8207 0.5729 2665.4 3.178 0.001 (*) 

VarietySOLSTICE 0.3802 0.4303 2311.4 0.884 0.377 

VarietyVISCOUNT 1.5487 0.5038 2836.7 3.074 0.002 (*) 

VarietyXI19 -0.2191 0.5890 2782.9 -0.372 0.710 

rain10:VarietyCLAIRE 0.0025 0.0052 6178.9 0.477 0.633 

rain10:VarietyCONSORT -0.0134 0.0057 6264.9 -2.336 0.020 (*) 

rain10:VarietyCORDIALE -0.0089 0.0054 6170.9 -1.627 0.104 

rain10:VarietyDEBEN -0.0058 0.0061 6184.2 -0.952 0.341 

rain10:VarietyEINSTEIN 0.0013 0.0058 6165.8 0.230 0.818 

rain10:VarietyGALLANT -0.0083 0.0059 6185.3 -1.413 0.158 

rain10:VarietyGRAFTON 0.0071 0.0073 6176.1 0.970 0.332 

rain10:VarietyHEREWARD -0.0126 0.0057 6281.3 -2.211 0.027 (*) 

rain10:VarietyJB DIEGO -0.0041 0.0054 6179.9 -0.758 0.448 

rain10:VarietyMALACCA -0.0050 0.0056 6204.1 -0.894 0.372 

rain10:VarietyMERCIA -0.0052 0.0073 6394.5 -0.715 0.475 

rain10:VarietyRIBAND -0.0092 0.0062 6353.3 -1.478 0.139 

rain10:VarietyROBIGUS -0.0065 0.0059 6168.6 -1.104 0.270 

rain10:VarietySAVANNAH -0.0258 0.0062 6242.3 -4.158 0.000 (*) 

rain10:VarietySCOUT -0.0089 0.0067 6170.8 -1.322 0.186 

rain10:VarietySOISSONS -0.0137 0.0068 6295.0 -1.997 0.046 (*) 

rain10:VarietySOLSTICE -0.0042 0.0052 6161.9 -0.797 0.425 

rain10:VarietyVISCOUNT -0.0019 0.0071 6176.8 -0.267 0.789 

rain10:VarietyXI19 -0.0173 0.0063 6172.8 -2.755 0.006 (*) 

gdd:VarietyCLAIRE -0.0007 0.0003 3512.7 -2.236 0.025 (*) 

gdd:VarietyCONSORT -0.0015 0.0003 3620.3 -4.637 0.000 (*) 

gdd:VarietyCORDIALE -0.0014 0.0003 3452.9 -4.144 0.000 (*) 

gdd:VarietyDEBEN -0.0011 0.0004 4105.2 -2.790 0.005  (*) 

gdd:VarietyEINSTEIN -0.0018 0.0003 3553.3 -5.253 0.000  (*) 

gdd:VarietyGALLANT -0.0012 0.0004 3870.1 -3.290 0.001 (*) 

gdd:VarietyGRAFTON -0.0014 0.0004 4460.0 -3.404 0.001 (*) 

gdd:VarietyHEREWARD -0.0011 0.0003 3798.2 -3.224 0.001 (*) 

gdd:VarietyJB DIEGO -0.0008 0.0003 4253.9 -2.391 0.017 (*) 

gdd:VarietyMALACCA -0.0012 0.0003 3952.3 -3.460 0.001 (*) 

gdd:VarietyMERCIA -0.0021 0.0004 3943.8 -4.984 0.000 (*) 

gdd:VarietyRIBAND -0.0019 0.0004 3794.0 -5.230 0.000 (*) 

gdd:VarietyROBIGUS -0.0005 0.0004 4246.8 -1.290 0.197 

gdd:VarietySAVANNAH -0.0020 0.0004 3680.4 -5.456 0.000 (*) 

gdd:VarietySCOUT -0.0012 0.0004 4227.8 -3.022 0.003 (*) 

gdd:VarietySOISSONS -0.0022 0.0004 3592.0 -5.798 0.000 (*) 

gdd:VarietySOLSTICE -0.0013 0.0003 3634.1 -4.123 0.000 (*) 

gdd:VarietyVISCOUNT -0.0013 0.0004 3610.7 -3.424 0.001 (*) 

gdd:VarietyXI19 -0.0008 0.0004 4260.7 -2.092 0.037 (*) 

vdd_novfeb:VarietyCLAIRE 0.0012 0.0005 732.2 2.243 0.025 (*) 
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vdd_novfeb:VarietyCONSORT 0.0012 0.0006 1217.0 1.905 0.057 

vdd_novfeb:VarietyCORDIALE 0.0019 0.0005 592.7 3.732 0.000 (*) 

vdd_novfeb:VarietyDEBEN 0.0007 0.0007 1571.3 0.935 0.350 

vdd_novfeb:VarietyEINSTEIN 0.0017 0.0005 577.1 3.123 0.002 (*) 

vdd_novfeb:VarietyGALLANT 0.0027 0.0006 604.4 4.867 0.000 (*) 

vdd_novfeb:VarietyGRAFTON 0.0019 0.0006 565.9 3.263 0.001 (*) 

vdd_novfeb:VarietyHEREWARD 0.0014 0.0006 1087.3 2.126 0.034 (*) 

vdd_novfeb:VarietyJB DIEGO 0.0016 0.0005 638.4 3.072 0.002 (*) 

vdd_novfeb:VarietyMALACCA 0.0002 0.0007 1456.6 0.343 0.732 

vdd_novfeb:VarietyMERCIA 0.0011 0.0008 1234.5 1.432 0.152 

vdd_novfeb:VarietyRIBAND 0.0012 0.0007 1277.0 1.840 0.066 

vdd_novfeb:VarietyROBIGUS 0.0005 0.0007 1226.8 0.698 0.485 

vdd_novfeb:VarietySAVANNAH 0.0003 0.0007 1336.4 0.477 0.633 

vdd_novfeb:VarietySCOUT 0.0013 0.0006 550.3 2.265 0.024 (*) 

vdd_novfeb:VarietySOISSONS 0.0001 0.0007 1149.2 0.142 0.887 

vdd_novfeb:VarietySOLSTICE 0.0013 0.0005 641.5 2.591 0.010 (*) 

vdd_novfeb:VarietyVISCOUNT 0.0007 0.0006 579.6 1.227 0.220 

vdd_novfeb:VarietyXI19 0.0017 0.0008 1539.5 2.229 0.026 (*) 

Table A9: Final UK multivariate agroclimate model fixed effects coefficient estimates and associated 

standard error, degrees of freedom (Df), t statistics and p value significance *significant at the 95% 

confidence level.  
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Glossary 
AHDB = Agriculture and Horticulture Development Board 

AIC = Akaike Information Criterion  

BLUE = best linear unbiased estimator 

BSPB = British Society of Plant Breeders 

DEFRA = Department for Environment, Food and Rural Affairs 

FDR = false discovery rate 

GDD = Growing Degree Days 

GxE = genotype-by-environment interaction 

ILMMT = Ireland Long-term Maximum and Minimum Air Temperature  

IOI = Island of Ireland 

IPCC = Intergovernmental Panel on Climate Change 

NAO = North Atlantic Oscillation 

NIAB = National Institute of Agricultural Botany 

NL = National List 

RCP = Representative Concentration Pathways 

RL = Recommended List 

RMSE = root mean square error 

SNAO = Summer North Atlantic Oscillation  

SPI = Standardised Precipitation Index 

SPEI = Standardised Precipitation and Evapotranspiration Index 

VDD = Vernalisation Degree Days 

WNAO = Winter North Atlantic Oscillation 
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