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Summary

The evolution of solitary waves governed by perturbations of the Korteweg–de Vries (KdV)

equation is considered, focussing in particular on the Burgers–Korteweg–de Vries (BKdV)

equation. Using matched asymptotic expansions the structure of the wave is determined for all

timescales. A tail appears behind the main waveform, the structure of which is determined in the

form of a convolution integral. Numerical results are presented using a pseudospectral scheme

but modified so that linear terms are incorporated into an integrating factor. All details of the

asymptotic structure of the waveform are validated by numerical results. Comparisons are made

with earlier asymptotic analyses of decaying solitary waves.

1. Introduction

Modelling of the surface elevation of long-wavelength, small-amplitude disturbances on a fluid layer

leads to the Korteweg–de Vries (KdV) equation (1)

ft + 6ffx + λfxxx = 0. (1.1)

Including uniform surface tension modifies λ, the coefficient of dispersion, but if the Bond number,

which characterises the relative importance of surface tension forces, is close to a critical value,

an additional fifth-order spatial derivative term arises (2). More recently a governing equation was

derived taking account of viscous dissipation due to the base boundary condition and arbitrary stress

conditions applied at the free surface (3). This general theory covers the case of normal electric

fields (4 to 6) and more general electromagnetic forcing, along with the case of surfactant transport

giving rise to tangential stress at the surface. In each case the governing equation can be written as

a perturbed KdV equation of the form

ft + 6ffx + λfxxx = ǫR(f ),

where the additional physical processes described above are absorbed into R(f ) term. In this paper

we are concerned with solutions of these problems when the effect of these additional processes are
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2 D. GRUNDY AND P. W. HAMMERTON

small, that is ǫ ≪ 1. Particular cases are discussed in due course, with the physical interpretation of

ǫ explained.

The unperturbed KdV equation is well known for having solitary wave, or soliton, solutions. The

single soliton solution of (1.1) takes the form

f (x, t) = A sech2 (α(x− Ct)) , with α =
√
A

2λ
, (1.2)

where the propagation speed is given by C = 2A. This has the property of constant unchanging

amplitude, with the speed and width of the wave directly depending on the magnitude of the

amplitude. In (3) numerical solutions of the perturbed KdV equation were presented taking the

soliton solution as an initial condition. A wide range of behaviour is seen, which can not be

immediately explained in physical terms. For this reason, investigation of the case when the

perturbation is small (ie ǫ ≪ 1) seems to be a good starting point.

Solutions of the equation

ft + α1ffx + α2fxxx = ǫR(f ), (1.3)

are considered by (7, 8) for ǫ ≪ 1. Four different linear terms R(f ) are considered covering the

physical situations of magnetosonic waves damped by electron-ion collisions, ion sound waves

damped by ion-neutral collisions and by electron Landau damping, and shallowwater waves damped

by viscosity. The final case previously having been considered by Keulegan (9), though without

casting the physical problem in the form of a perturbed KdV equation. The approach taken is

to consider the solution in the form (1.2) but with A a slowly varying function of time, with its

dependency on t determined by a solvability condition. This is sometimes known as the adiabatic

approximation and is explained in more detail in section 3. The advantage of this approach is that

the leading-order variation of A with t is easily determined, however changes in the structure of

the waveform other than amplitude decay are not identified. Subsequent papers using multi-scale

perturbation analysis considered higher order effects—see for example (10 to 14) and references

therein. A similar approach is taken by Ostrovsky (15) in which a perturbation scheme is described

for localised nonlinear waves with application to the evolution of solitons perturbed by dissipation,

amplification and refraction. These approaches mean that the change in the shape of the waveform

can be calculated along with higher order corrections to the wave amplitude and propagation speed.

An alternative approach is to combine perturbation theory and inverse scattering transforms.When

ǫ = 0 the inverse scattering method (16) provides an exact solution of (1.3) for arbitrary initial

conditions. In a sequence of papers (17 to 19) the first order perturbation in ǫ to the soliton solution

was obtained in the form of an integral for arbitrary R(f ). Similar methods were also applied to

other perturbations of the KdV equation (20). In (21) explicit results for the caseR(f ) = −Ŵ(t)f are
obtained and compared with numerical solutions. In all cases the small perturbation was found to

have three major effects: (a) a slow change in soliton parameters; (b) a deformation of the soliton

shape and (c) the formation of a small amplitude tail behind the soliton core consisting of a near

constant ‘shelf’ followed by a region of oscillatory decay. This structure is illustrated in Fig. 1.

The advantage of inverse scattering method is that in theory more information about the evolution

of the disturbance is possible. The disadvantage is that for a given perturbation ǫR(f ), obtaining

the explicit form of the solution for f (x, t) is very cumbersome. With extensive use of algebraic

computer packages, the results from inverse scattering theory can be used to find an explicit form

for the core solution, but obtaining expressions for the soliton tail is still difficult. In addition it is

unclear whether non-uniformities arise in the perturbation solution which restrict its validity.
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INTERNAL STRUCTURE OF DECAYING SOLITARYWAVES 3

Fig. 1 Schematic illustration adapted from Fig. 1 of (21) showing a ‘shelf’ behind the core soliton, followed

by an oscillating tail.

While the decay of solitary waves governed by perturbedKdV equations is clearly a much studied

problem there has been little work on validation of asymptotic results by numerical comparisons, or

on detailed comparison of the whole wave structure predicted by the different approaches. The aim

of the present paper is to draw together the earlier analyses of perturbed KdV equations, illustrating

how the two approaches of multi-scale perturbation theory and inverse scattering theory complement

each other. In addition we aim to construct an approximation that is uniformly valid over a broad

range of time scales, describing the structure of the wholewaveform and not just thewave amplitude.

We choose to focus on the Burgers–Kortweg–de Vries (BKdV) equation when the perturbation

is of the form R(f ) = fxx rather than the general case in order to provide explicit results since

an important part of any asymptotic analysis is validation by comparison with numerical results.

However the BKdV equation models various physical problems.

(i) The introduction to (22) surveys the use of BKdV in the field of wave propagation

through cosmic plasmas. Particular examples include the propagation of ion-acoustic and
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4 D. GRUNDY AND P. W. HAMMERTON

magneto-sonic waves, with f denoting perturbations in either ion velocity, ion density or

electrostatic wave potential depending on the exact context.

(ii) For a long wavelength disturbance propagating through a liquid with gas bubbles the BKdV

equation arises with the perturbation term arising due to viscous, acoustic and heat losses from

the pulsations of individual bubbles (23).

(iii) Another application of the BKdV equation is propagation of gas ‘slugs’ through fluidised beds

(24) when f describes the voidage fraction, though in this case the perturbation term ǫfxx no

longer directly represents a viscous dissipation term and the coefficient ǫ can be either positive

or negative.

In the present analysis we treat BKdV as a model equation without considering the significance of

the solutions to the physical processes discussed above. However the physical relevance of studying

the small-ǫ limit is most obvious when studying the case of waves propagating through a liquid

containing a low concentration of gas bubbles.

The layout is as follows. In section 2, the problem is formulated and expressed in a form amenable

to asymptotic analysis. In section 3 the solution is analysed for three separate stages of wave

evolution, focussing on the structure of the solution and the wave amplitude. Numerical methods and

solutions for the BKdV equation are discussed in section 4, and the asymptotic results are validated.

Finally in section 5, comparisons are made with the earlier work outlined in this introduction.

2. Formulation

We consider the Burgers–Kortweg–de Vries (BKdV) equation

η∗
t∗ + 6η∗η∗

x∗ + λη∗
x∗x∗x∗ = ǫ∗η∗

x∗x∗ ,

with boundary conditions η∗ → 0 as x∗ → ±∞. If ǫ∗ = 0 then travelling wave solutions exist of

the form

η∗ = 2λα20 sech
2(θ ), θ = α0(x

∗ − ξ∗), ξ∗
t∗ = 4λα20 .

In this paper we consider the initial condition η∗(x∗, 0) = 2λα20 sech2(α0x
∗), and solve for

t > 0, corresponding to the model problem of taking a travelling wave solution and switching

on the damping term at t = 0. Analysis is simplified by non-dimensionalising, setting t∗ = λα30 t,

η∗ = λα20η, x
∗ = x/α0 and ǫ

∗ = λα0ǫ to give

ηt + 6ηηx + ηxxx = ǫηxx, (2.1)

with initial condition η(x, 0) = 2 sech2(x). We then seek solutions in the case ǫ > 0 in the form

η = 2γ 2W(θ, t), θ = γ (x− ξ − χ) ξt = 4γ 2,

where γ and χ are functions of t to be determined by the analysis. The reason for this formulation is

that we anticipate that the solution will behave like a standard solitary wave but the relation between

amplitude, position and propagation speed will be modified.W then satisfies

Wt + γ 3 (Wθθθ + 12WWθ − 4Wθ ) = ǫγ 2Wθθ − 2γt

γ
W − γt

γ
θWθ + γχtWθ .
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INTERNAL STRUCTURE OF DECAYING SOLITARYWAVES 5

From the initial conditions, at t = 0, we set γ = 1, ξ = χ = 0 and W = sech2θ . Recalling that

when ǫ = 0, then the amplitude, wave number and propagation speed are constant, when ǫ ≪ 1 we

seek a solution where γ, χ are functions of a slow time τ = ǫt, in which case

Wt + γ 3 (Wθθθ + 12WWθ − 4Wθ ) = ǫγ 2 (Wθθ + µ {W + (θW)θ } + µ1Wθ ) ,

where

µ = − γτ
γ 3
, µ1 = χτ

γ
. (2.2a,b)

At this stage µ and µ1 are functions of τ to be determined. An alternative method of reaching

this solution would have been to set θ = γ (x − ǫ−1
∫
C dτ ) and then expand the wavespeed C(τ )

as a perturbation series for small ǫ. This agrees with the formulation above with C0 = 4γ 2 and

C1 = γµ1.

We are interested in the perturbation away from the ǫ = 0 solution and so, writing the solution in

the form

W = F(θ ) + δH(θ, t̃), F = sech2(θ ), δ = ǫ

γ
, t̃ =

∫ t

0
γ 3 dt, (2.3)

and noting that δt̃ = µδ2, gives

Ht̃ = {R(F) − L(H)} + δ
{
R(H) − µH − 6(H2)θ

}
,

where

L(V) = Vθθθ + 12(FV)θ − 4Vθ , R(V) = Vθθ + µ(V + (θV)θ ) + µ1Vθ . (2.4)

Since we are interested in the small-ǫ perturbation, we then consider the small-δ limit. The reason

for the non-standard definition of the parameter δ as a function of τ , and for the scaling of the new

time variable t̃, is so that the full perturbation equation involves only the one parameter, δ. Looking

now at the small δ expansion with H = J(θ, t̃) + δK(θ, t̃) + O(δ2), the first two perturbation terms

satisfy

Jt̃ = −L(J) + R(F), Kt̃ = −L(K) + R(J) − µJ − 6(J2)θ , (2.5a,b)

with J(θ, 0) = K(θ, 0) = 0.

When comparing the predictions of asymptotic analysis with numerical results in section 4, one

key comparison is the maximum amplitude of the solution, ηM , and its position, xM , as functions of

time. The maximum is located at θM = 1
2δJθ (0, t̃) + O(δ2), and hence correct to the order ǫ term,

ηM(t) = 2γ 2
(
1 + ǫ

J(0, t̃)

γ

)
, xM = 1

ǫ

∫ ǫt

0
(4γ 2 + ǫγµ1)dτ + Jθ (0, t̃)

2γ 2
ǫ. (2.6)

In the next section we analyse the evolution of J with time, focussing in particular on the validity of

the perturbation expansions over different timescales.

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

am
/article/78/1/hbae014/7951151 by 93000 user on 13 January 2025



6 D. GRUNDY AND P. W. HAMMERTON

3. Analytic solutions of the linear perturbation equation

In this section we consider solutions of the perturbation equation

Jt̃ = −L(J) + R(F), J(θ, 0) = 0, (3.1)

for different ranges of time. Here the operators R(.),L(.) are defined in (2.4) and the scaled time

variable t̃ is defined in terms of t in (2.3).

3.1 Small t expansion

When t ≪ 1, then γ ∼ 1 − µǫt, t̃ ∼ t and we can expand J as a power series in t̃,

J =
∑

r=1

Jr(θ )t̃
r, J1 = R(F), Jr≥2 = −1

r
L
(
Jr−1

)
.

Solving for Jr(θ ) and setting θ = 0 gives

J(0, t̃) = 2(µ− 1)t̃+ 384t̃3 + O(t̃4), Jθ (0, t̃) = −2µ1t̃ + (48 + 8µ)t̃2 + O(t̃3), (3.2)

while looking at the equation for K(θ, t̃) for t̃ ≪ 1 shows that K = O(t̃2). Hence from (2.6) and the

definitions of µ,µ1 and t̃, the maximum wave amplitude and its position are given by

ηM = 2 − 4ǫt+ O
(
ǫt3, ǫ2t2

)
, xM = 4t + 24t2ǫ + O

(
ǫt3, ǫ2t2

)
.

Carefully taking account of the higher order correction terms in the definition of η, θ and t̃ shows

that these results are independent of µ and µ1 to all orders. Indeed the calculation of the maximum

amplitude and its position can be accomplishedmore easily from the original equation (2.1), however

we chose to calculate these expressions in the framework of the equations analysed in the remainder

of this section. It is only at later times that the values of µ and µ1 become important.

While the leading order term in these expansions is valid when ǫt = o(1), the first correction term

is only valid when t = o(1), and hence we now consider the form of solution when t = O(1).

3.2 Solution for t = O(1)

Before considering the solution for J when t = O(1) we note that when J satisfies (3.1) then there

are three integral constraints on J,

∫ ∞

−∞
FJ dθ = 2

(
µ− 8

15

)
t̃,

∫ ∞

−∞
J dθ = 2µt̃,

∫ ∞

−∞
θJ dθ = 8(µ− 4

5 )t̃
2 − 2µ1 t̃.

(3.3a,b,c)

These constraints are derived in Appendix A. One thing that can be immediately concluded from

these relations is that there is no time-independent solution which decays as θ → ±∞. However,

it is still worthwhile to consider what stationary solutions are possible which are bounded in space,

and how they must be modified to simultaneously satisfy the three integral constraints.
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INTERNAL STRUCTURE OF DECAYING SOLITARYWAVES 7

3.2.1 Stationary solution. We begin by considering the solution J = Ĵ(θ ) in which case Ĵt̃ = 0

and (2.5a) becomes

Ĵθθθ + 12(F̂J)θ − 4̂Jθ = Fθθ + µ(F + (θF)θ ) + µ1Fθ . (3.4)

Integrating up once with respect to θ it can be noted that Fθ = −2 tanh θ sech2θ is a homogeneous

solution of the second order linear equation obtained.By writing Ĵ = G(θ )Fθ , and solving the second

order equation for Gθ the general solution for Ĵ(θ ) is finally obtained,

Ĵ = a cosh2 θ +
(
µ

8
− 1

15

)
tanh θ cosh2 θ + b tanh θ +

(
b− µ

8
+ 1

5

)
(1 − tanh θ )

+ µ

4
θ sech2θ − µ

8
θ2 sech2θ tanh θ + d(θ tanh θ − 1) sech2θ + c tanh θ sech2θ.

Here a, b, c are arbitrary constants and d = 3b − 3
8µ − 1

4µ1 + 3
5 . To ensure that Ĵ does not grow

exponentially as θ → ±∞ the coefficients of the first two terms must be set to zero and hence a = 0

and µ = 8
15 .

Looking at the next two terms it is clear that the boundary condition Ĵ → 0 can not be satisfied at

both θ = ±∞. It is to be expected that the disturbance tends to zero rapidly in front of the propagating

disturbance and hence we set b = 0. This assumption is validated by the numerical results presented

in section 4. With these conditions imposed, the stationary solution takes the form

Ĵ = 1

15

(
2(1 − tanh θ ) + 2θ sech2θ − θ2 sech2θ tanh θ + (6 − 15

4 µ1)(θ tanh θ − 1) sech2θ
)

+ c tanh θ sech2θ. (3.5)

Since µ = 8
15 , from (3.3a)

∫∞
−∞ sech2θJdθ = 0. Imposing this condition on Ĵ (since sech2θ

is exponentially small away from the core region) and using the standard integral identities in

Appendix B fixes µ1 = 8
15 . Thus Ĵ is determined apart from the coefficient c,

Ĵ = Ĵ0 + c tanh θ sech2θ,

Ĵ0 = 1

15

(
2(1 − tanh θ ) + 2θ sech2θ − θ2 sech2θ tanh θ + 4(θ tanh θ − 1) sech2θ

)
. (3.6)

Moreover, since µ = µ1 = 8
15 , γ (τ ) which describes the evolution of the wave amplitude and wave

number is given by solving (2.2a),

dγ

dτ
= −

8γ 3

15
=⇒ γ =

1

(1 + 16
15τ )

1
2

, (3.7)

with the speed of propagation given by ξt + ǫχτ = 4γ 2 + 8
15γ ǫ. The maximum disturbance

amplitude is then given by

ηM = 2

1 + 16
15τ

(
1 + Ĵ(0, t̃)ǫ + O(ǫ2)

)
∼ 2

(
1 +

(
Ĵ(0, t̃) − 16

15 t
)
ǫ
)
, as ǫt → 0.
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8 D. GRUNDY AND P. W. HAMMERTON

However, as previously noted, this solution does not satisfy the required boundary as θ → −∞,

indeed as θ → −∞, Ĵ → 4
15 , and hence we write

J =
{
J̃(θ, t̃), θ < −θM,
Ĵ(θ ), θ > −θM.

Here J̃(θ, t̃) describes the transition from 0 as θ → −∞ to 4
15 at θ = −θM , which we term the tail

region. The value of θM will be discussed in due course, but in section 4, numerical examination of

Ĵ(θ ) as θ → −∞ reveals it is within 1% of its limiting value for θ < −4.

Matching of the stationary (or core) solution to the tail solution is described in section 3.2.3, and

involves using the integral constraints (3.3 b,c). The contribution to these integrals from the core

solution is readily evaluated using the identities in Appendix A,

∫ ∞

−θM
Ĵ dθ ∼

4

15
(θM − 1)

∫ ∞

−θM
θ Ĵ dθ ∼

1

15

(
π2

4
− 2θM

2

)
+ c, as θM → ∞. (3.8a,b)

3.2.2 Tail solution. In the tail region, F(θ ) is exponentially small, so we consider the solution of

J̃t̃ +
(̃
Jθθθ − 4̃Jθ

)
= 0,

with J̃ → 0 as θ → −∞ and J̃ → 4
15 , J̃θ → 0 as θ → −θM in order to match to the core stationary

solution.

First writing y = θ + 4t̃ + D, with D an as yet undetermined constant, the tail solution satisfies

J̃t̃ + J̃yyy = 0. Then in terms of a similarity variable, z, J̃ satisfies

TJ̃T + (̃Jzzz − z̃Jz) = 0, where z =
θ + 4t̃ + C

T
, and T = (3t̃)

1
3 . (3.9)

Thus as t̃ increases, z increases for fixed θ and the matching condition for J̃ becomes J̃ → 4
15 and

J̃z → 0 as z → ∞. The solution of (3.9) can be obtained by taking the Fourier transformwith respect

to z. However, a more concise derivation is possible by observing that J̃z = Ai(z) is one solution and

writing J̃ as a spatial convolutionwith the Airy function, J̃ = g ∗Ai. The function g(z,T) is obtained
by substituting into (3.9), to give TgT = zgz. This is satisfied if g(z,T) = ψ(Tz) for any ψ such that

the convolution integral exists. Thus the leading order solution for the soliton tail is given by

J̃(z, t̃) =
∫ ∞

−∞
ψ (T(z− y))Ai(y) dy, T = (3t̃)

1
3 .

When comparing the analytic solution in the tail region with numerical solutions, it is more

convenient to consider the first derivative of J since the matching condition is J̃z → 0 as z → ±∞.

Using the solution above we can then write

J̃z(z) =
∫ ∞

−∞
Tφ (T(z− y))Ai(y) dy, (3.10)

where ψ ′(z) = φ(z).
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INTERNAL STRUCTURE OF DECAYING SOLITARYWAVES 9

In the next section we consider matching of the tail solution to the core solution, and so the

asymptotic forms of J̃,
∫ z
J̃dz and

∫ z
z̃Jdz for z ≫ 1 are required. In Appendix C it is shown that if

φ is a spatially compact, piecewise constant function of z then

J̃ → K0,

∫ z

−∞
J̃dz → K0z− T−1K1,

∫ z

−∞
z̃Jdz → 1

2

(
K0z

2 − T−2K2

)
, (3.11a,b,c)

where

K0 =
∫ ∞

−∞
φ(x) dx, K1 =

∫ ∞

−∞
xφ(x) dx, K2 =

∫ ∞

−∞
x2φ(x) dx.

It can also be demonstrated numerically that the same limiting forms apply when φ(x) decays

exponentially as |x| → ∞, but a proof of this is not attempted here.

3.2.3 Matching. Summarising the structure of the solution constructed,

J(θ,T) =




J̃ =

∫∞
−∞ψ(Ty)Ai(z− y) dy, ψ(x) =

∫ x
−∞ φ(x′) dx′ θ < −θM,

Ĵ = Ĵ0 + c tanh θ sech2θ, θ > −θM,
(3.12)

where z = T−1(θ + 4t̃+C) and Ĵ0 is given by (3.6). In the region about θ = −θM both the functions

are constant and it is in this region that the matching occurs, which fixes K0 = 4
15 . The constants c

and C are now determined in terms of φ(x) using the integral constraints.

From (3.8a) and (3.11b),

∫ ∞

−∞
J dθ =

∫ ∞

−θM
Ĵ dθ + T

∫ zM

−∞
J̃ dz = 4

15
(θM − 1) + 4

15
(−θM + 4t̃+ C) − K1

=
16

15
t̃ +

4

15
(C − 1) − K1,

which is consistent with (3.3b) if C = 1 + 15
4 K1. However at this point we observe that a constant

horizontal shift in g(z) (replacing z by z + Z) gives the same shift in J̃(z) while the change in K1 is
4
15Z. Hence the tail solution is unaltered by the value of K1, so we choose K1 = 0 and hence

z = (3t̃)−
1
3 (θ + 4t̃+ 1). (3.13)

Similarly, using (3.8b) and (3.11c),

∫ ∞

−∞
θJ dθ = −32

15
t̃2 − 16

15
t̃ + c− 1

15

(
2 − 1

4
π2

)
− 1

2
K2.

This is consistent with the third integral constraint (3.3c) if c = 1
15

(
2 − 1

4π
2
)

+ 1
2K2. Thus

assuming that the function φ(x) which determines the tail solution is known, then the perturbation
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10 D. GRUNDY AND P. W. HAMMERTON

solution governedby (2.5) is known for all t̃ once the stationary formof the core is reached.However,

without knowledge of the small t̃ solution, φ(x) is undetermined, except that

∫ ∞

−∞
φ(x)dx =

4

15

∫ ∞

−∞
xφ(x)dx = 0,

and the core solution is related to φ(x) via

c = 1

15

(
2 − 1

4
π2

)
+ 1

2

∫ ∞

−∞
x2φ(x)dx. (3.14)

In section 4 we compare these asymptotic predictions with numerical results, focussing in particular

on the development of the tail behind the main disturbance and the maximum amplitude ηM .

However first the validity of this composite descriptionmust be considered, as t increases. In the core

region, it has been demonstrated that the perturbation δJ is small compared with the leading order

term, as long as δ = γ−1ǫ is small. Since γ ∼ (ǫt)−
1
2 as t → ∞, the first perturbation term remains

small compared with the leading order term until t = O(ǫ−3). However it is not guaranteed that the

next perturbation term δ2K is smaller that δJ – that is, the first non-uniformity in the expansion may

occur when the second and third terms in the perturbation expansion become comparable in size.

Indeed considering the equation for K there will be no free parameter in the particular integral of

the stationary solution. This points to the presence of a term proportional to t in the core solution

for K, leading to a non-uniformity in the expansion when ǫt = O(1). This is seen more precisely by

observing that

d

dt

(∫ ∞

−∞
FKdθ

)
=
∫ ∞

−∞
F(R(J) − µJ − 6(J2)θ )dθ,

where the right hand side is a non-zero constant. This expression indicates how the breakdown in

the asymptotic description can be eliminated and this is described in the next sub-section.

3.3 Solution for τ = ǫt = O(1)

In the previous section J(θ, t), the first perturbation away from the leading order soliton solution, was

determined by assuming that a core solution develops which is independent of t. It was seen that this

represents a small perturbation until t = O(ǫ−3), but that non-uniformity in the perturbation series

may arise earlier due to the next term δ2K becoming comparable in size to δJ. This can be analysed

by recognising that the core solution is not truly stationary but evolves on the slow timescale τ = ǫt.

Thus in the core J = J(θ, τ ) and (2.5) becomes

L(J) = R(F), L(K) = R(J) − µJ − 6(J2)θ − Jτ

γ 2
. (3.15a,b)

The solvability conditions are now subtly different from those used in section 3.2. Noting from

Appendix A, that
∫∞
−∞ FL(V) dθ = 0 for any function V(θ ) that decays sufficently rapidly to zero

as θ → ±∞, the solvability conditions become
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INTERNAL STRUCTURE OF DECAYING SOLITARYWAVES 11

∫ ∞

−∞
F(F′′ + µ(F + (θF)θ ) + µ1Fθ )dθ = 0,

∫ ∞

−∞
F

(
J′′ + µ(θF)θ + µ1Jθ − 6(J2)θ −

Jτ

γ 2

)
dθ = 0.

On evaluating the integrals involving hyperbolic functions, the first of these equations fixes µ = 8
15

as before, but µ1 is left undetermined at this order. The core solution for J is given by (3.5) which

we write in the form

J = J + µ1(τ )g+ c̃(τ ) tanh θ sech2θ, (3.16)

where

J = 1

15

(
2(1 − tanh θ ) + 2θ sech2θ − θ2 sech2θ tanh θ − 6(1 − θ tanh θ ) sech2θ

)
,

g = 1

4
(1 − θ tanh θ ) sech2θ.

Substituting into the second solvability condition, all the terms involving c̃ cancel out, and so the

evolution of c̃ with τ can not be determined at this order. The remaining terms simplify to

I1 + µ1I2 = 1

γ 2

dµ1

dτ
I3,

where

I1 =
∫ ∞

−∞
F
(
Jθ + µθJ − 6J

2
)
θ
dθ = 176

225

I2 =
∫ ∞

−∞
F
(
gθ + µθg− 12gJ + J

)
θ
dθ = −2

5

I3 =
∫ ∞

−∞
Fg dθ = 1

4
.

Here the integrals are evaluated using standard results for hyperbolic functions and checked using the

symbolic manipulation software MAPLE. Using these numerical values and the result γτ = − 8
15γ

3

from (3.7), the ODE for µ1(T) can be written as

γ
dµ1

dτ
− 3γτµ1 = −88

15

γτ

γ 4
=⇒ µ1(τ ) = 88

45
+ Cγ 3.

The core solution (3.16) breaks down as τ → 0, but can be matched to the t = O(1) solution given

by (3.6). This then fixes µ1(0) = 8
15 and hence

µ1(τ ) = 8

45

(
11 − 8γ 3

)
.

However, µ does not vary with τ and hence the expression for γ (τ ) previously derived for t = O(1)

remains valid when τ = O(1). Thus the core solution valid for ǫt = O(1) is given by

η(x, t) = 2γ 2F(θ ) + 2γ
(
J(θ ) + 8

15 (11 − 8γ 3)g(θ )
)
ǫ, γ = (1 + 16

15τ )
− 1

2 ,
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12 D. GRUNDY AND P. W. HAMMERTON

where

θ = γ
(
x+ ( 152 log γ )ǫ−1 −

(
11
3 γ

−1 + 4
3γ

2 − 5
))
. (3.17)

The fact that c̃(τ ) is not determined at this order is hardly surprising since the term ǫc tanh θ sech2θ

in the perturbation series for W can be interpreted as an O(ǫ) correction to the propagation speed

and so would be determined at the next order.

3.4 Summary of asymptotic results

The asymptotic analysis presented has demonstrated the solution to be a slowly varying core with

propagation speed varying on the slow timescale τ , followed by a tail evolving on the faster timescale

and consisting of a near horizontal shelf followed by a decaying oscillation. The structure of the tail

is described by a convolution integral involving a single function undetermined by the asymptotic

analysis. In the next section this function is determined numerically, but themainmeans of validating

the asymptotic theory is by considering the maximum amplitude of the wave and its position. From

(2.6) the asymptotic prediction of the maximum amplitude for the different timescales, is given by

ηM =





2 (1 − 2ǫt) t = o(1) (3.18a)

2

1 + β

(
1 + J(0, t̃)ǫ

)
t = O(1) (3.18b)

2

1 + β

(
1 +

(
2
9 (1 + β)

1
2 − 16

45 (1 + β)−1
)
ǫ
)

t = O(ǫ−1) (3.18c)

where β = 16
15ǫt as before. The corresponding result for the position of the maximum amplitude is

given by

xM =





4t+ 24t2ǫ t = o(1) (3.19a)

4t+
(
1
2Jθ (0, t̃) + 8

15 t −
32
15 t

2
)
ǫ t = O(1) (3.19b)

15
4 log(1 + β)ǫ−1 +

(
11
3 (1 + β)

1
2 + 4

3 (1 + β)−1 − 5
)

+1

2
c̃(τ )(1 + β)ǫ t = O(ǫ−1) (3.19c)

The functions J̃(0, t̃) and J̃θ (0, t̃) are obtained from the numerical solution of (3.1), with the

asymptotic analysis of section 3.2 demonstrating that J̃(0, t̃) → − 2
15 and J̃θ (0, t̃) → c as t̃ → ∞. As

previously noted, the function c̃(τ ) can only be determined by considering higher order terms and

this is not pursued here, however as τ → 0, c̃→ c and hence as ǫt → 0 (corresponding to β → 0) the

final results for both maximum amplitude and position match the t = O(1) result. Similarly letting

t → 0 and using the asymptotic form of J̃(0, t̃) and J̃θ (0, t̃) given in section 3.2, (3.18b) and (3.19b)

agree with (3.18a) and (3.19a).
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INTERNAL STRUCTURE OF DECAYING SOLITARYWAVES 13

4. Numerical results

4.1 Numerical schemes

Numerical solutions of the BKdV equation (2.1a) and the linear perturbation equation (2.5) are

obtained using a pseudospectral scheme (25) but with linear terms absorbed into an integrating factor

following the method of Trefethen (26). Defining the Fourier transform of η to be

η̂(k, t) = F [η] =
∫ ∞

−∞
η(x, t)eikx dx

the transform of (2.1) takes the form

η̂t + 3ikF
[
(F−1[̂η])2

]
− ik3η̂ = −ǫk2η̂. (4.1)

Solving this directly using a Runge-Kutta scheme in time leads to a stability criterion of the form

(1t)k3m < C where km is the maximum wavenumber. Hence fine spatial resolution requires an

extremely small time step. However, writing V = eh(k)tη̂, where h(k) = −λik3 + ǫk2, (4.1) becomes

Vt = −3ikeh(k)tF

[(
F

−1[e−h(k)tV]
)2]

.

Evaluation of the right hand side requires two discrete Fourier transforms, and hence advancing

forward in time with a fourth order Runge Kutta scheme requires eight transforms for each time

step. Calculations were performed using MATLAB with transforms evaluated using the standard

in-built Fast Fourier Transform routines. For the KdV equation, Trefethen reports that utilising the

integrating factor means that a time step can be used which is five or ten times larger than that used

to solve (4.1) directly. For the BKdV equation solved here, similar results are found (27).

The Trefethen schemewas first used to solve the dimensionlessBKdV equation (2.1) with ǫ = 0.1,

and initial conditionsη = 2 sech2x. Guided by the asympotic analysis that predicts a slowly decaying

tail behind a core propagating to the right, a large spatial range [−400π, 400π] was taken, with
N = 215 spatial points giving a spatial step size 1x ≈ 0.04. The advantage of the Trefethen

formulation is that even though a fine spatial mesh is used, a relatively large time-step can be used

without encountering numerical stability problems. Results are presented in Fig. 2 for t = 10, 20,

illustrating that the main disturbance propagating to the right at speed C ≈ 4 with the maximum

amplitude decreasing with time. Behind the core is a constant ‘shelf’ extending back to x ≈ 0,

followed by a decaying tail, in agreement with the asymptotics described in section 3. Direct

comparison of the numerical results with the analytical results are discussed in section 4.3.

The asymptotic analysis presented in section 3 relates to the solution of the perturbation equation

(2.5a). While this is a linear equation for J(θ, t̃), a similar scheme to that described above is used.

The presence of the (FJ)θ term requires two discrete Fourier transforms, akin to the treatment of the

nonlinear term in the first scheme, with the other terms linear in J being removed using an integrating

factor eh1(k)t̃ , where h1(k) = −ik3 − 4ik. The system to be solved is then

Vt̃ = −12ikeh1(k)t̃F
(
F

−1(e−h1(k)t̃V)F
)

+ F

(
Fθθ + 8

15 (F + (θF)θ + Fθ )
)
,

where F = sech2θ as before. Note that the final transform term is independent of t̃ and hence is

only evaluated once.
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14 D. GRUNDY AND P. W. HAMMERTON

Fig. 2 Plot of η(x, t) for ǫ = 0.1 at times t = 10, 20, showing the decay in amplitude with increasing t and

the development of a decaying tail.

4.2 Numerical results for perturbation equation

We now consider numerical solutions of the perturbation equation (2.5a). In Fig. 3, numerical results

for J(θ, t̃) are plotted for t̃ = 2, 5. The first thing to note is that the core solution (the solution

around θ = 0) has already approached a stationary form at t̃ = 2. Ahead of the core, the solution

decreases rapidly to zero confirming the analysis presented in section 3.2.1. Behind the core, a shelf

of constant amplitude has appeared by t̃ = 5 and the matching range between core and tail discussed

in section 3.2 corresponds to the region −15 < θ < −5. Results for larger t̃ show that the extent of

the shelf increases as t̃ increases.

The stationary formof the solution around θ = 0 is now comparedwith the predicted analytic form

of the core (3.6). Focussing first on the value of J(0, t̃), the numerical results confirm the small t̃ limit

J(0, t̃) ∼ − 14
15 t̃ from (3.2) and the large t̃-limit J(0, t̃) → − 2

15 from (3.6), with J(0, t̃) attaining 95%

of its limiting value when t̃ = 0.7 and 99% by t̃ = 1.1. The undetermined coefficient c appearing

in the core solution can be directly extracted from the numerical results in a number of different

ways. Directly from the numerical solution, Jθ (0, t) → c as t → ∞. Alternatively, from the integral

constraint (3.8b)

c ∼
∫ ∞

−θM
θ Ĵ dθ − 1

15

(
π2

4
− 2θM

2

)
.
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INTERNAL STRUCTURE OF DECAYING SOLITARYWAVES 15

Fig. 3 Plot of numerical solution J(θ, t̃) for t̃ = 2 and t̃ = 5 illustrating the development of a stationary core

about θ = 0, a constant ‘shelf’ behind the core, followed by an oscillating tail.

Here θM is taken to be in the overlap region, so Ĵ ∼ J in the integrand. The integral is evaluated

using the numerical solution for J and several values of θM were taken to ensure numerical

consistency. A third method for calculating c, comes by comparing the computed value of J − Ĵ0
with c tanh θ sech2θ at θ = tanh−1(1/

√
3), the position of the maximum of tanh θ sech2θ . At t̃ = 5

all three methods give c = 0.0451 correct to 3 significant figures.

In Fig. 4 numerical results for t̃ = 0.5, 1, 2 are compared with the analytic results using the

computed value of c. It is seen that there is good agreement between numerical and analytic solutions

over the main part of the core, even for t̃ = 0.5. When t̃ = 2, results are indistinguishable over the

range −5 < θ < 5.

Looking now at the tail region, it was shown in section 3.2.2 that the solution J̃ can be written in

terms of a single universal functionφ(x), Themethod used to extract this function from the numerical

solution is to compare the derivative of the numerical solution and that of the analytic solution. From

(3.10),

J̃z = h ∗ Ai(z), h(z, t̃) = Tφ(Tz), T = (3t̃)
1
3 .

where z = (3t̃)−
1
3 (θ + 4t̃ + 1) from (3.13). Taking Fourier transforms with respect to z and using

the convolution theorem then gives
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16 D. GRUNDY AND P. W. HAMMERTON

Fig. 4 Plot of numerical results for J(θ, t̃) for t̃ = 0.5, 1.0 and 2.0 along with the analytic solution (3.6) with

c = 0.0451 (symbols).

h(z, t̃) = F
−1

(
F (̃Jz)

exp(ik3/3)

)
, (4.2)

since F (Ai) = exp(ik3/3) . To obtain a numerical approximation of h (and hence φ) we define

Q(z, t) to be the computed value of Jz for θ < θM and zero elsewhere, with h(z, t̃) then given by

F−1
(
F (Q)/ exp(ik3/3)

)
The exact value of the Fourier transform of the Airy function is used rather

than the discrete transform over the finite range of the numerical calculation. This proves a better

approach since the slow decay of Ai(z) accompanied by a shortening wavelength as z → −∞, leads

to inaccuracy in the large wavenumber components of the discrete transform of the Airy function

over a finite spatial range.

The function φ(x) extracted from the numerical solution at t̃ = 5 is shown in Fig. 5. Extraction

of φ(x) at t̃ = 10 produced indistinguishable results, or equivalently, at t̃ = 10 there is excellent

agreement in the tail region between numerical results and (3.12) using the value of φ extracted at

t̃ = 5. Thus the extracted value of φ can be used to give the solution in the tail region for all t̃ > 5.

Finally, the computed value of
∫∞
−∞ x2φ(x)dx = 0.153 which using (3.14) gives a value of

c = 0.0453, agreeing to within 0.5% of the value extracted from the core solution.
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INTERNAL STRUCTURE OF DECAYING SOLITARYWAVES 17

Fig. 5 Plot of φ(x) for t̃ = 5 (line) and t̃ = 10 (symbols), where φ(x) = h
(
x/(3t̃

) 1
3 )/(3t̃)

1
3 , with h extracted

from the numerical solution of J using (4.2).

4.3 Comparison of numerical results for BKdV and perturbation analysis

We now consider how the numerical solution of the full nonlinear equation (2.1) compares with the

perturbation expansion. Considering the perturbation form given by (2.3), we define

JN(θ, t) =
γ

ǫ

(
ηN

2γ 2
− sech2θ

)
, γ =

(
1 + 16

15ǫt
)− 1

2
, (4.3)

where the N subscript denotes the numerical solution and θ is given by (3.17). With ǫ ≪ 1, and

1 ≪ t ≪ ǫ−1, JN should agreewith the asymptotic result (3.12). For the core regionwhere θ = O(1),

in section 4.2 it was seen that as t increases the asymptotic solution J approaches the stationary form

Ĵ, with excellent agreement for t̃ > 2. In Fig. 6, JN is plotted as a function of θ at t = 1, 2, 4 for

ǫ = 0.1 and 0.01, and compared with the stationary core solution Ĵ(θ ). It is seen that as ǫ decreases,

there is better agreementwith Ĵ, but that as t increases the agreementwith the stationary core solution

worsens. This highlights the importance of the non-uniformity in the perturbation expansion as

τ = ǫt becomes O(1).

The most direct check of the validity of the asymptotic predictions presented in section 3 is by

considering themaximum in thewaveformand its location, and comparing numerical results with the

asymptotic results summarised in section 3.4. In Fig. 7, the asymptotic prediction of the maximum

amplitude of the disturbance is compared with the numerical results for ǫ = 0.1. For t ≪ 1, there is

good agreement with the small t prediction of (3.18a). For larger values of t, the numerical results

are compared with the two asymptotic predictions

ηM1 = 2

1 + β

(
1 − 2

15ǫ
)
, ηM2 = 2

1 + β

(
1 +

(
2
9 (1 + β)

1
2 − 16

45 (1 + β)−1
)
ǫ
)
. (4.4)

where β = 16
15ǫt as previously defined.
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18 D. GRUNDY AND P. W. HAMMERTON

Fig. 6 Comparison of the computed value of JN (θ, t) from (4.3) at times t = 1, 2, 4 (solid line, dashed line,

line and symbols) for (a) ǫ = 0.1 and (b) ǫ = 0.01 with the steady core solution Ĵ(θ) (symbols) from (3.6) with

c = 0.0451.
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INTERNAL STRUCTURE OF DECAYING SOLITARYWAVES 19

Fig. 7 Comparison of the maximum value of η as a function of t obtained numerically (solid line) for ǫ = 0.1

and the asymptotic predictions ηM and ηM1 given by (4.4). For small t the asymptotic prediction (3.18a) is also

plotted.

As noted earlier, the term 2/(1 + β) remains valid as a leading order approximation of the

amplitude across the whole range of time studied, though the first correction term becomes

comparable with the leading order term when t = O(ǫ−3), at which point the wave amplitude is

O(ǫ2). Finally we validate the asymptotic prediction of the x-position of the maximum. Rather than

directly comparing xM obtained from the numerical solution with the asymptotic prediction (3.19c)

valid when t = O(ǫ−1), to illustrate the accuracy of the perturbation analysis we choose to subtract

off the leading order behaviour and hence in Fig. 8 we plot the numerical and asymptotic values of

xM − 4t, and excellent agreement is seen over a large time range.

5. Conclusions

The combination of asymptotic results and numerical results presented in section 3 and section 4

respectively provides the solution of the Burgers–Kortweg–de Vries (BKdV) equation upto t ≫
O(ǫ−1) by which time the solution is very small O((ǫt)−1). We now compare the results of the

current paper with earlier analysis of equations of the general form (1.3).

Asymptotic analysis of (1.3) began with (7, 8) essentially following the method of section 3.3, but

focussing only on the leading order term for the amplitude variation over long timescales. Applying

the solvability condition at leading order yields the result

d

dt

∫ ∞

−∞

1

2
f 2dx = −ǫ

∫ ∞

−∞
fR(f )dx.
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20 D. GRUNDY AND P. W. HAMMERTON

Fig. 8 Comparison of the position x̃M = xM(t)−4t of themaximum value of η obtained numerically (symbols)

for ǫ = 0.1 and the asymptotic prediction (solid line) given by (3.19c).

The amplitude function arises as the solution of a first order ODE in the slow time τ with its initial

value fixed by the initial condition η∗ at t = 0. While this analysis is not valid for t ≪ 1, at leading

order the amplitude variation is correct. In (8) results for the amplitude variation are presented for

four different dissipation processes, including the case of magnetosonic waves being damped by

electron-ion collisions which is described by the BKdV equation. Their results for this case agree

with (3.18b) of the present analysis as ǫ → 0. The analysis of Ott & Sudan was continued to higher

order in (13), again for the general case with dissipationR(f ). Here the focus is on the higher order

perturbation of the wave speed rather than the wave amplitude, though the amplitude can be readily

deduced from this analysis. However when applying their general analysis to the BKdV equation

an algebraic error is made. While their general result (2.20a) is valid, when this is applied to the

specific case of BKdV their equation (3.8) should read

∂

∂T

(
c1

γ 4

)
= − 88ν

45γ
.

With this correction, the results agree with the present treatment, which has been validated by

comparison with numerical results. However the key point to note is that the analysis of (13) does

not fully determine the propagation speed as the initial value of c1 remains undetermined. This has

been calculated in the present paper.
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INTERNAL STRUCTURE OF DECAYING SOLITARYWAVES 21

We now turn our attention to the solutions of BKdV using inverse scattering, focussing in

particular on the results of Karpman (19). The governing equation (5.1) of (19) (which we denote

as (K5.1)) is identical with (2.1) if u = −η, κ = γ and R(u) = uxx. The unperturbed solution is

us = −2κ2 sech2z and so R[us] = −2κ4( sech2z)zz. Hence (K5.9) gives the variation of

wavenumber as
dκ

dt
= ǫκ3

2

∫ ∞

−∞
( sech2z)zz sech

2z dz = −8ǫκ3

15

which agrees with (3.7). Looking now at the amplitude of the shelf part of the tail, ws, (K5.14) and

(K5.45) gives

wSh = ǫ

4κ

∫ ∞

−∞
( sech2z)zz tanh

2 z dz = 4ǫ

15κ
,

in agreement with the tail solution described in section 3.2. Similarly the speed of propagation given

by (K5.52)

dξK

dt
= 4κ2 + ǫκ

2

∫ ∞

−∞
( sech2z)zz(z sech

2z+ tanh z+ tanh2 z) dz. = 4κ2 + 8ǫκ

15
.

agrees with the result obtained in section 3.2.

Finally, looking at the expression for the core, (K5.53) should agree with the present analysis.

However comparing (K5.53) with equation(3.1) of (18) there is an inconsistency in the coefficient

of p1(z) in J(z, z
′). After much algebraic manipulation, applying the result from (18) to KdVB gives

the same result as our result for J in (3.6) with

c =
1

10

(
1 −

π2

18

)
.

This agrees to three significant figures with the numerical value of c obtained in section 4.2. Thus

the results of inverse scattering theory agree exactly with the 1 ≪ t ≪ ǫ−1 asymptotic results of

section 3.2, at least for the core region, and indeed supplements the present analysis as c is determined

exactly. However identification of the breakdown of the solution as time increases from the inverse

scattering analysis is unclear. In theory the exact structure of the tail should also be available from

the inverse scattering analysis, though this is not discussed in (18, 19).

In summary the present paper has produced a description of the evolution of a weakly damped

soliton governed by the Burgers–Kortweg–deVries equation, covering three different time regimes,

t = o(1), t = O(1) and t = O(ǫ−1). Comparison is made with other analyses applicable to the

different time regimes and all asymptotic results have been validated by careful comparison with

numerical results. Of particular note is novel analysis of the tail region, leading to a description

of the tail as a convolution of the Airy function and a characteristic function specific to the BKdV

equation. The form of this functionwas extracted from the numerical solution, and while other forms

of perturbed KdV will have different characteristic functions describing the tail region, exactly the

same methods as described here can be used to determine this function.

Supplementary data

Supplementary data is available at Quarterly Journal of Mechanics and Applied Mathematics

online.
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APPENDICES

A. Integral constraints on perturbation equation

In determining the solution of the linear perturbation equation, three integral constraints (3.3) are used. These

constraints are derived in this appendix. For R(F) and L(J) defined by (2.4) and F = sech2θ , it can readily be

shown that when J and its derivatives tend to zero as θ → ±∞ then

∫∞
−∞ R(F) dθ = 2µ

∫∞
−∞ L(J) dθ = 0

∫∞
−∞ FR(F) dθ = 2µ− 16

15

∫∞
−∞ FL(J) dθ = 0

∫∞
−∞ θR(F) dθ = 2µ1,

∫∞
−∞ θL(J) dθ =

∫∞
−∞(12FJ − 4J) dθ.

Integrating (3.1) with respect to θ and the product of (3.1) with F(θ) then gives

d

dt̃

(∫ ∞

−∞
J dθ

)
= 2µ,

d

dt̃

(∫ ∞

−∞
FJ dθ

)
= 2

(
µ− 8

15

)
.

Noting that J(θ, 0) = 0 the first two integral constraints are obtained,

∫ ∞

−∞
J dθ = 2µt̃,

∫ ∞

−∞
FJ dθ = 2

(
µ− 8

15

)
t̃.

Similarly,

d

dt̃

(∫ ∞

−∞
θJ dθ

)
= 12

∫ ∞

−∞
FJ dθ − 4

∫ ∞

−∞
J dθ − µ1

∫ ∞

−∞
F dθ,

= 24
(
µ− 8

15

)
t̃ − 8µt̃ − 2µ1.

Integrating with respect to the transformed time variable t̃ then gives the final integral constraint required.

B. Useful integral results

In the main body of the paper, a number of integrals involving hyperbolic functions are used. All the integrals

can be evaluated using standard techniques, their values are given together in this appendix for convenience.
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Using the shorthand notation T = tanh θ and S = sechθ ,

∫∞
−∞ S2 dθ = 2,

∫∞
−∞ S4 dθ = 4

3
,

∫∞
−∞ S6 dθ = 16

15
,

∫∞
−∞ θ3S2T dθ = 1

4
π2,

∫∞
−∞ θ2S2 dθ = 1

6
π2,

∫∞
−∞ θS2T dθ = 1,

∫∞
−∞ θS4T dθ = 1

3
,

∫∞
−θM (1 − T) dθ = 2θM,

∫∞
−θM θ(1 − T) dθ = 1

12
π2 − θM

2.

C. Convolution Integrals involving Airy functions

Defining the convolution R = f ∗ Ai and

J(z) =
∫ z

−∞
R(z′) dz′, I1(z) =

∫ z

−∞
J(z′) dz′, I2(z) =

∫ z

−∞
z′J(z′) dz′,

it is postulated that as long as f (x) decays sufficiently rapidly as |x| → ∞ so that C0 =
∫∞
−∞ f (x) dx,

C1 =
∫∞
−∞ xf (x) dx, C2 =

∫∞
−∞ x2f (x) dx, then

J ∼ C0, I1(z) ∼ C0z− C1, I2(z) ∼ 1
2

(
C0z

2 − C2

)
, (C.1)

as z → ∞. This corresponds to (3.11) with appropriate change of variables. Here it is verified that the result is

true when f (x) = 1 for a < x < b and zero elsewhere. Since all the results are linear in f (x), this then validates

the result for all piecewise constant functions with compact support.

We begin by defining the function IA =
∫∞
−∞ Ai(z′) dz′ from which it follows that

q(z) =
∫ z

−∞
IA(z

′)dz′ = zIA − Ai′

r(z) =
∫ z

−∞
q(z′)dz′ = 1

2
(z2IA − zAi′ − Ai)

s(z) =
∫ z

−∞
z′q(z′)dz′ = 1

3
(z3IA − z2Ai′ − zAi + IA).

Taking the limit as z → ∞, and using the asymptotic forms (28) for Airy functions gives IA ∼ 1, q ∼ z, r ∼ 1
2
z2

and s ∼ 1
3
(z3 + 1). Hence

R(z) =
∫ b

a
Ai(z− y)dy = IA(z− a) − IA(z− b) and so J(z) = q(z− a) − q(z− b).

Thus J ∼ b− a and similarly, after some algebra,

I1 ∼ (b− a)z− 1
2
(b2 − a2), I2 ∼ 1

2
(b− a)z2 − 1

6
(b3 − a3).

Finally, substituting for f (x) in the expressions for Ci,

C0 = b− a C1 = 1
2
(b2 − a2) C2 = 1

3
(b3 − a3),

and the results (C.1) are validated.

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

am
/article/78/1/hbae014/7951151 by 93000 user on 13 January 2025


	Internal Structure of Decaying Solitary Waves: Comparison of Analytic and Numerical Results
	1 Introduction
	2 Formulation
	3 Analytic solutions of the linear perturbation equation
	4 Numerical results
	5 Conclusions
	A Integral constraints on perturbation equation
	B Useful integral results
	C Convolution Integrals involving Airy functions


