
ICTAM2024, August 25-30, 2024, Daegu, Korea

RECEPTIVITY OF A FLAT PLATE WITH ROUNDED LEADING EDGE
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Summary A generalized theory for investigating the effect of leading-edge body geometry on boundary-layer receptivity is ana-
lyzed for bodies with rounded noses which tend to a flat, finite-thickness, airfoil downstream. The theory utilizes far-downstream
asymptotic expansions of the induced eigenmodes in the large Reynolds number regime, together with numerical results, in order
to determine the leading edge receptivity coefficient. The generalized theory is applied to a Rankine body and it is found that
the receptivity level of instability waves induced in the boundary layer decreases rapidly as a function of increasing nose radius.
The decrease observed is more rapid than for a parabolic nosed body, and this appears to be due to the adverse pressure gradient
generated along the majority of the Rankine body.

BACKGROUND

When an aerodynamic body is placed in a mean flow containing unsteady perturbations, the position on the body
where the boundary-layer transitions from a laminar to turbulent flow is strongly influenced by the free-stream per-
turbation. The mechanism by which the free-stream perturbation induces instability waves in the boundary layer is
known as receptivity. The unsteady perturbation typically has a long wavelength and as it interacts with the boundary
layer it transfers its energy to Tollmien-Schlichting instability waves (T-S waves) in the boundary layer, which have a
much shorter wavelength. This transfer of energy and wavelength shortening process is usually a result of non-parallel
mean flow effects. The Receptivity Coefficient characterises the amplitude of the T-S mode which after decaying,
begins to grow exponentially in magnitude downstream of the lower branch point leading eventually to transition.

Motivated by experimental results [1], in this paper we focus on receptivity in the region of the leading edge,
specifically for a body consisting of a flat plate of thickness 2d with a rounded leading edge with radius of curvature
rn. In this case, far downstream the inviscid, free-stream slip velocity at the edge of the boundary layer takes the
non-dimensional form

Uf (x) ∼ 1 +
α

x
+O

(
x−2

)
, (1)

where x is a streamwise coordinate and α is a constant.
We consider the incoming flow to be parallel to the flat plate with constant magnitude U but superimposed with a

small oscillation of frequency ω. It is assumed that the Reynolds number based on the acoustic length is large. Starting
from the non-dimensional vorticity equation, its form within the boundary layer is rewritten in terms of coordinates
tangential and normal to the surface of the body, with the additional assumption that the non-dimensional nose radius
Rn = ωrn/U is O(1) or smaller. Using the assumption that the time-dependent component is small, the governing
equation is decomposed into a steady equation and a linearised equation for the unsteady perturbation.

The general structure of the solution for the body considered is similar to that on a flat plate [2]. The leading-
order solution of the Linearised Unsteady Boundary-Layer Equation (LUBLE) develops a two-layer structure and
the scaled streamfunction consists of the sum of a Stokes solution (forced by the local unsteady slip velocity) and a
set of eigensolutions, φ = φSt +

∑
i Ciψi. The wavelength of the disturbance shortens with distance downstream,

leading to terms previously ignored being significant and the appearance of a Triple-Deck structure with development
of Tollmien-Schlicting (T-S) waves. The first eigensolution of the LUBLE region matches on to the T-S wave which
eventually grows, and hence C1 is termed the Receptivity Coefficient and characterises the effect of the unsteady free-
stream disturbance on the point of transition. The present paper focuses on how the the Receptivity Coefficient can be
obtained for the body introduced earlier, using a novel combination of analytic and numeric techniques.

FORMULATION & RESULTS FOR A RANKINE BODY

The steady and unsteady boundary layer equations are re-written in terms of scaled tangential and normal coordi-
nates, ξ =

∫ x
0
Uf (x′) dx′ and N = Ufy(2ξ)−1/2 and take the form

φ1NNN + φ1φ1NN = β(ξ) (φ1N − 1) + 2ξ (φ1Nφ1Nξ − φ1NNφ1ξ) , L(φ2) = iΩ(ξ)− 2β(ξ), (2)

where φ1 and φ2 are the steady and unsteady streamfunctions, L is a linear differential operator involving φ1 and the
slip velocity (dependent on the geometry of the body) enters through the functions β = 2ξU ′f/Uf and Ω = 2ξ/U2

f .
In order to calculate the Receptivity Coefficient, first the steady and unsteady PDEs (??) must be solved numerically.
The solution at ξ = 0 is found by solving the ODEs using a fourth-order Runge-Kutta method. This solution is then
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marched downstream using a Keller Box scheme where a variable grid is used in both the ξ and N directions. The
grid points are concentrated close to the body and close to the leading edge.

Next the asymptotic form of the eigenfunctions ψi must be found, which depends on the form of the slip velocity
given by (??). The large-ξ forms of ψi have previously been derived for a parabolic body [2]. For a parabola the slip
velocity also has the form (??), and hence the results can be used to obtain ψi for the present body, though involving
parameters which must be extracted from the numerical solution of φ1. The results for ψi are not included in this
extended abstract, however it should be noted that for real ξ the eigenfunctions are inversely ordered and that far
downstream they are exponentially small compared with the Stokes solution.

Finally the unsteady shear stress on the body obtained from the numeric solution is compared with that from the
asymptotic form φ = φSt +

∑
i Ciψi. in order to extract the Receptivity Coefficient C1. However, as previously noted

for real ξ the eigenfunctions are exponentially small which means that the coefficients are very difficult to extract. For
the case of a flat plate or a parabola where Uf (ξ) is known explicitly, this problem is circumvented by extending the
path of integration into the complex plane since if arg(ξ) ∈ (−π/6,−5π/6), the eigenfunctions grow exponentially
and φ ∼ C1ψ1. For more general bodies, extending into the complex plane poses more challenges.

We now consider the flow with non-dimensional complex potential w = z + A log z, where z = xc + iyc. It can
easily be shown that this corresponds to flow past a flat plate of half-thickness D = Aπ and nose radius Rn = 3

2A.
Setting θ = yc/A with θ ∈ [0, π], the slip velocity is given by

Uf =

(
1 +

sin2 θ

θ2
− sin 2θ

θ

)1/2

∼ 1 +
A

x
+
A2

x2
+O(x−3), . (3)

and so comparing this with (??) we find α = A. In theory we can then extend θ into the complex plane defining a
path linking θ = 0 to θ = π in such a way that arg(ξ) ∈ (−π/6,−5π/6) so that the Receptivity Coefficient can be
extracted. In practice, more care is required. On the real axis, the numerical solution breaksdown if the steady wall
shear approaches zero. Physically this would correspond to boundary layer separation. While this does not occur for
the Rankine body considered, once the path of integration is extended into the complex plane it is found that the real
part of the steady wall shear does approach zero, leading to numerical problems and so the path of integration must
be carefully chosen. This is accomplished by taking the path of integration along the real axis until past the position
of minimum wall shear then shifting into the complex plane so that it lies in the sector arg(ξ) ∈ (−π/6,−5π/6) for
large |ξ|. An important check of this technique is that choosing different integration paths (subject to the restrictions
described previously) should give the same value of Receptivity Coefficient and this was shown to be true.

CONCLUSIONS

Plotting the results for the absolute value of the Receptivity
Coefficient it is seen that there is a rapid decrease in |C1| as
the nose radius increases, but with a small secondary local
maximum at A ≈ 0.035. This can be compare with the
results for a parabolic body [2] when |C1| is maximum at
a non-zero nose radius, followed by a slower decay in |C1|
with increasing nose radius.

Just as stability is affected by adverse and favourable
pressure gradients, it has been suggested that receptivity is
similarly sensitive to mean pressure gradients [3, 4]. For
the Rankine body, a favourable pressure gradient is fol-
lowed by an adverse pressure gradient along the majority
of the body, whereas the parabolic body has a favourable
pressure gradient along the whole body. The present for-
mulation provides the opportunity to investigate this rela-
tionship more carefully by considering other leading edge
geometries.
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Figure 1. |C1| as a function of A
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