Theory and the future of land-climate science

Michael P. Byrne^{1,2}, Gabriele C. Hegerl³, Jacob Scheff⁴, Ori Adam⁵, Alexis Berg⁶, Michela Biasutti⁷, Simona Bordoni⁸, Aiguo Dai⁹, Ruth Geen¹⁰, Matthew Henry¹¹, Spencer A. Hill^{12,7}, Cathy Hohenegger¹³, Vincent Humphrey¹⁴, Manoj Joshi¹⁵, Alexandra G. Konings¹⁶, Marysa M. Laguë¹⁷, F. Hugo Lambert¹¹, Flavio Lehner^{18,19,20}, Justin S. Mankin^{21,7}, Kaighin A. McColl^{22,23}, Karen A. McKinnon²⁴, Angeline G. Pendergrass^{18,19}, Marianne Pietschnig^{25,26}, Luca Schmidt¹³, Andrew P. Schurer³, E. Marian Scott²⁷, David Sexton²⁸, Steven C. Sherwood²⁹, Lucas Vargas Zeppetello³⁰ and Yi Zhang³¹

¹School of Earth & Environmental Sciences, University of St Andrews, UK

²Department of Physics, University of Oxford, UK

³School of Geosciences, University of Edinburgh, UK

⁴Department of Geography and Earth Sciences, University of North Carolina at Charlotte, USA

⁵ The Fredy and Nadine Herrmann Institute of Earth Sciences, The Hebrew University, Israel

⁶Department of Geography, Université de Montréal, Canada

⁷Lamont-Doherty Earth Observatory, Columbia University, USA

⁸Department of Civil, Environmental and Mechanical Engineering, University of Trento, Italy

⁹Department of Atmospheric and Environmental Sciences, University at Albany, SUNY, USA

¹⁰School of Geography, Earth and Environmental Sciences, University of Birmingham, UK

¹¹Department of Mathematics and Statistics, University of Exeter, UK

¹²Program in Atmospheric and Oceanic Sciences, Princeton University, USA

¹³*Max Planck Institute for Meteorology, Germany*

¹⁴Institute for Atmospheric and Climate Sciences, ETH Zürich, Switzerland

¹⁵Climatic Research Unit, School of Environmental Sciences, University of East Anglia, UK

¹⁶Department of Earth System Science, Stanford University, USA

¹⁷Department of Atmospheric Sciences, University of Utah, USA

¹⁸Cornell University, USA

¹⁹National Center for Atmospheric Research, USA

²⁰Polar Bears International, USA

²¹Department of Geography, Dartmouth College, USA

²²Department of Earth and Planetary Sciences, Harvard University, USA

²³School of Engineering and Applied Sciences, Harvard University, USA

²⁴Department of Statistics and Data Science, Department of Atmospheric and Oceanic Sciences,

and the Institute of the Environment and Sustainability, University of California Los Angeles, USA

²⁵Department of Geography, University of Exeter, UK

²⁶Global Systems Institute, University of Exeter, UK

²⁷School of Mathematics and Statistics, University of Glasgow, UK

²⁸Met Office, UK

²⁹Climate Change Research Centre, UNSW Sydney, Australia

³⁰Department of Environmental Science, Policy, and Management, University of California, Berkeley, USA

³¹Courant Institute of Mathematical Sciences, New York University, New York, USA

Climate over land—where humans live and the vast majority of food is produced—is chang-1 ing rapidly, driving severe impacts through extreme heat, wildfires, drought, and flooding. 2 Our ability to monitor and model this changing climate is being transformed through new 3 observational systems and increasingly complex Earth System Models (ESMs). But funda-4 mental understanding of the processes governing land climate has not kept pace, weakening 5 our ability to interpret and utilise data from these advanced tools. Here we argue that for 6 land-climate science to accelerate forward, an alternative approach is needed. We advocate 7 for a parallel scientific effort, one emphasising robust theories, that aims to inspire current 8 and future land-climate scientists to better comprehend the processes governing land climate, 9 its variability and extremes, and its sensitivity to global warming. Such an effort, we believe, 10 is essential to better understand the risks people face, where they live, in an era of climate 11 change. 12

Knowledge of some aspects of continental climate and their responses to global warming are 13 well established. For example, we broadly understand why land warms more rapidly than oceans¹ 14 (Fig. 1), the intensification of extreme precipitation in a warmer atmosphere², and how surface 15 runoff is influenced by loss of snowpack³. However, knowledge of many other aspects of land cli-16 mate is underdeveloped. The "wet get wetter, dry get drier" paradigm predicts an amplification of 17 wet/dry contrasts as climate warms⁴. But this paradigm does not generally apply to land regions⁵ 18 nor does the poleward expansion of the Hadley cells⁶. Adding to this list is uncertainty over how 19 evapotranspiration (ET) and soil moisture^{7,8}—both critical for humans and ecosystems—will be 20 altered by a changing climate. Knowledge of numerous other facets of land climate is similarly un-21

settled, from basic questions of what governs its mean state, variability, and extremes, to how these facets might change with warming. Why are simulated land temperature changes more uncertain and more diverse, across space and climate models, compared to ocean regions (Fig. 1a,b)? Why are the tropical rainbelts broader and more mobile over land⁹? And how will land humidity evolve as climate warms¹⁰? Longstanding challenges in simulating land climate—including the diurnal cycle of convection¹¹—further highlight shortcomings in our basic understanding.

28 The challenge of complexity

The climate over land is a complex system shaped by an array of diverse factors, from local surface 29 conditions including soil moisture and plants^{12,13} to large-scale atmospheric circulations that con-30 nect continents to oceans through the transport of water, heat, and momentum^{14,15}. Many of the key 31 processes influencing land climate are spatially heterogeneous, difficult to simulate, and/or poorly 32 observed. For example, land surface models have longstanding problems in simulating turbulent 33 fluxes of heat and water^{16,17}, for reasons that are not well understood¹⁸. Sparse and time-limited 34 observational records of important land-climate variables, including root-zone soil moisture¹⁹ and 35 near-surface humidity²⁰, further impede efforts to advance knowledge of the land-climate system. 36 The role of humanity presents another challenge, with large uncertainties in modelling the influ-37 ences of land use and management on fluxes of carbon, energy, and water in the past, present, and 38 future²¹. Confronted with such a complex system it can appear a daunting task to develop a deep, 39 mechanistic, conceptual understanding of the kind we would want to read in future textbooks on 40 land climate. But as the field of climate science evolves, we argue that many of the most fascinating 41

⁴² and pressing questions relate to land.

Given the complexity and importance of land climate, how can the research community ac-43 celerate progress? In the atmospheric and ocean sciences, notable advances are being made by in-44 creasing the spatial resolution of state-of-the-art ESMs²². But unlike in the atmosphere and oceans, 45 where higher resolutions allow for explicit simulation of key processes including deep convection 46 and mesoscale eddies, the case for transitioning to finer resolution models to drive new conceptual 47 breakthroughs in land-climate science is less clear-cut²³. Land climate is undoubtedly influenced 48 by small-scale processes, so there are potential benefits to incorporating into models more sophis-49 ticated representations of, for example, hillslope hydrology²⁴, groundwater processes²⁵, and land 50 management²⁶. However, complexity does not equate to realism: absent a comprehensive under-51 standing of these processes and how to accurately represent them in models²⁷, it is possible that 52 such complexity obfuscates more than it clarifies¹⁶. Persistent and poorly constrained deficiencies 53 in land surface models-highlighted by the PLUMBER project¹⁶⁻¹⁸-suggest that model develop-54 ment alone, though vital, is unlikely to answer the key questions about land climate highlighted 55 above. Similarly, machine learning tools are increasingly being applied to climate science for de-56 veloping ESMs²⁸, parameterising surface fluxes²⁹, and constructing statistical emulators of land 57 models³⁰. Indeed recent successes highlight the potential of machine learning to build physical 58 insight in the atmospheric and ocean sciences^{31,32}. But it remains to be seen whether the tools of 59 machine learning are capable of transforming scientific understanding of land climate. 60

61 A renewed focus on theory

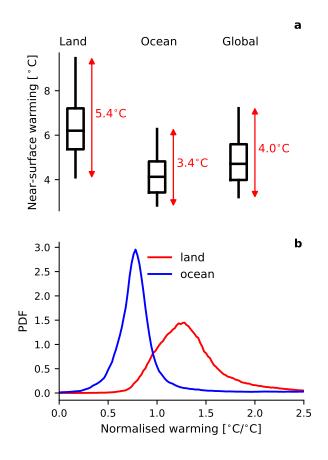


Figure 1: Simulated climate warming is larger and more uncertain over land. (a) Boxplots of simulated warming averaged over land (left), ocean (centre), and globally (right) calculated using pre-industrial control and abrupt $4xCO_2$ simulations performed by 45 climate models participating in the Coupled Model Intercomparison Project Phase 6^{33} . Horizontal lines show the median model values, boxes show the interquartile ranges, and whiskers show the full model ranges. Warming for each model is computed as the time- and area-averaged near-surface temperature change between the final 20 years of the pre-industrial control simulation and years 40-59 of the abrupt $4xCO_2$ simulation. Uncertainty across models is indicated by the red arrows and text, with the full model range taken as a simple measure of uncertainty. (b) Multimodel-mean probability density functions (PDFs) of area-weighted near-surface warming over land (red) and ocean (blue), normalised by the global-mean warming in each model. The samé models, simulations, and averaging periods are used as in panel (a). The wider land PDF in panel (b) suggests larger differences in near-surface warming, across space and models, relative to oceans.

Here we argue that for land-climate science to move forward, we must step back and reassess our 62 approach. Our philosophy—borne in an era of explosive growth in model complexity and demand-63 ing simulation timetables, and shaped by a 2022 workshop at the University of St Andrews—is to 64 redouble efforts to build robust physical understanding of land climate through the development of 65 powerful new theories and refinement of existing conceptual frameworks. Previous work exempli-66 fies this approach, notably the development of theories and simple 'toy' models to understand the 67 land boundary layer³⁴, land-atmosphere coupling³⁵, and moist convection over land³⁶. To anchor 68 and inspire the next decade of research, we argue that now is the time to position this philosophy 69 at the centre of land-climate science and re-balance our activities such that theory, model develop-70 ment, and observations are prioritised equally. 71

Development of theory can, and should, proceed in parallel with the imperative to build 72 progressively more sophisticated ESMs. Indeed the gap in climate science between theory and 73 actionable information, particularly at regional scales, is typically filled by state-of-the-art mod-74 els, which are also invaluable tools for testing and refining the theories advocated for here. But 75 theories that distill conceptual understanding need to be at the core of land-climate science, to en-76 able the research community to compare proposed mechanisms, understand the competing roles of 77 different processes in a coupled system, and make predictions without running complex models. 78 Advances in theory can have practical as well as conceptual benefits, for example making ET easier 79 to estimate³⁷, increasing confidence in model projections (for example of runoff³⁸), and underpin-80 ning physically-based emergent constraints to narrow uncertainties in future climate change³⁹. 81

So, what constitutes a successful theory in land-climate science? The answer depends on 82 the problem being considered, but we believe a successful theory should: explain an emergent 83 property of the climate system; be underpinned by robust process understanding; and provide 84 clear mechanistic insights that hold across a hierarchy of numerical model complexity. Theories 85 should also, where possible, be predictive and quantitative (i.e., formulated as an equation or set 86 of equations). Finally, and crucially, a successful theory should be tested against and supported by 87 observational data. Below we highlight three recent advances in land-climate science that showcase 88 the power of theory, before outlining our view on how a renewed focus on theory is needed to 89 accelerate progress in land-climate science: 90

1. Land temperature and humidity changes constrained by tropical atmospheric dynam-91 ics: The role of convection and large-scale atmospheric dynamics in shaping tropical land 92 temperature and humidity has been an important conceptual advance over recent decades^{1,40,41}. 93 This framework emerged from efforts to understand why, under climate change, warming is 94 stronger over land; the so-called land-ocean warming contrast⁴⁰. Early explanations of this 95 phenomenon were based on the surface energy budget⁴². Radiative forcing at the surface 96 (e.g., due to increases in atmospheric CO_2) are largely balanced in ocean regions by in-97 creases in evaporation, resulting in a relatively small increase in surface temperature. In 98 land regions, however, which are often water-limited, radiative forcing is primarily balanced 99 through increases in sensible heat and longwave fluxes, requiring a larger increase in tem-100 perature relative to oceans. Though physically intuitive, using this argument to construct 101 a quantitative theory for land temperature change is challenging because surface fluxes de-102

104

pend on multiple factors aside from temperature, including windspeed, soil moisture, and the air-surface temperature disequilibrium.

An alternative framework, inspired by Joshi et al¹, cuts through the complexity of land sur-105 faces to reveal a strong constraint on the response of tropical land to climate change. This 106 framework has transformed understanding of the tropical land-ocean warming contrast and 107 has led to broader insights into large-scale atmospheric controls on near-surface temperature 108 and humidity. In the tropical atmosphere, strong vertical coupling by convection between the 109 boundary layer and free troposphere described by convective quasi-equilibrium⁴³-together 110 with horizontal coupling by gravity waves above the boundary layer, resulting in weak 111 free-tropospheric temperature gradients⁴⁴—imply that climatic changes in adiabatically con-112 served quantities such as moist static energy, a function of temperature and specific humidity 113 near the surface, are tightly coupled between different regions and therefore approximately 114 uniform on large scales⁴⁵⁻⁴⁷ (Fig. 2). This mechanism, a form of 'downward control' ex-115 erted by the overlying atmosphere on near-surface tropical climate, has important implica-116 tions: Though temperature and specific humidity individually may respond differently to 117 climate change in different regions, for example in tropical savannas versus in rainforests, 118 the combined change (encoded in the moist static energy) is more spatially homogeneous. 119 Local processes, including soil moisture and aridity^{46,48}, are crucial for controlling how tem-120 perature versus humidity changes contribute to the change in moist static energy imposed 121 by the atmosphere. This physical theory underpins advances in understanding the land-122 ocean warming contrast^{1,49}, aridity and land relative humidity in a changing climate^{41,46,50}, 123

and extreme heat^{47,51,52}, and establishes a simple yet quantitative framework for interpreting
 models, observations, and the roles of local versus large-scale processes in shaping tropical
 land climate.

2. Evapotranspiration predicted by simple theory: ET is central to regulating the water, en-127 ergy, and carbon budgets of land regions⁵³, and affects societies and ecosystems through its 128 influence on hydrology and temperature variability⁵⁴. But ET is directly measured only at a 129 limited number of sites⁵⁵, necessitating models of various kinds to estimate ET elsewhere. 130 These models are typically complex, requiring numerous poorly constrained land-surface 131 parameters as inputs, and are imperfect at replicating direct measurements⁵⁶. However, a 132 new theory to predict present-day ET in inland continental regions using minimal input data 133 provides a conceptual advance in understanding and presents an opportunity to greatly ex-134 pand the database of ET measurements across space and time³⁷. The theory is based on the 135 concept of 'surface flux equilibrium' (SFE), which assumes an approximate balance between 136 the surface moistening and heating effects on near-surface relative humidity⁵⁷. This strong 137 coupling between the land surface and overlying atmosphere imprints, in the air properties, 138 information about the land-surface fluxes (i.e., the Bowen ratio) at daily to longer timescales, 139 and appears to dominate alternative atmospheric mechanisms that also contribute to deter-140 mining the near-surface atmospheric state (e.g., wind-driven moisture and heat convergence). 141 Specifically, the SFE theory permits relatively accurate estimates of ET knowing only the net 142 radiative flux into the surface and the near-surface temperature and specific humidity^{37,58}, 143 the latter two which reflect the Bowen ratio (Fig. 3). Importantly, these quantities are more 144

146

widely available from weather stations than direct ET measurements. The theory reveals an emergent simplicity in ET³⁷, despite the heterogeneity and complexity of land surfaces.

3. Leaf physiology incorporated into classical runoff theories: Runoff from land supplies 147 almost all the water used by humans. In contrast to the time-varying ET estimated by SFE 148 and described above, long-term mean runoff and ET fluxes have long been predicted and 149 understood using the simple theory of Budyko⁵⁹, in which the fraction of precipitation that 150 becomes runoff decreases as the ratio of atmospheric evaporative demand to precipitation 151 increases. Budyko quantified evaporative demand using surface net radiation only, but more 152 comprehensive evaporative theories⁶⁰ generally also include a well-understood positive tem-153 perature dependence⁶¹. When these more modern methods are used in the Budyko theory, 154 they predict substantial increases in evaporative demand with global warming and systematic 155 decreases in natural runoff⁶² (i.e., the component of runoff controlled by natural processes 156 rather than by human activities), which would imply water shortages. Yet such widespread 157 runoff declines are neither observed⁶³ nor simulated by more comprehensive models⁶², lead-158 ing to the impression of a theoretical deficiency. Yang et al⁶⁴ recently resolved this tension 159 by incorporating the ET-reducing closure of leaf stomata by CO₂ into a revised theoreti-160 cal framework (Fig. 4). The inclusion of this important and well-studied process brought 161 the Budyko-predicted trends in natural runoff much closer to observations and state-of-the-162 art ESMs, and clarified our understanding of the drivers of runoff in a changing climate. 163 Looking forward, incorporating human activities (e.g., water management) and the effects 164 of wildfire into runoff theories is a priority for future work. 165

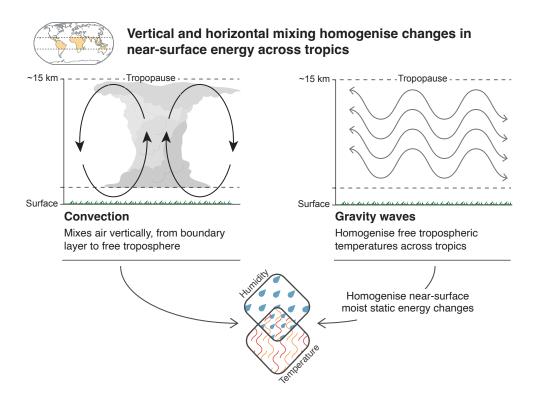


Figure 2: **Atmospheric dynamics constrain changes in tropical land climate.** Schematic illustrating how convection and gravity waves in the tropical atmosphere spatially homogenise climatic changes in near-surface moist static energy. The development of this large-scale atmospheric constraint on tropical land climate has been an important conceptual advance over recent years. Here and in Figures 3 and 4, the title maps highlight where the mechanism is broadly expected to be applicable.

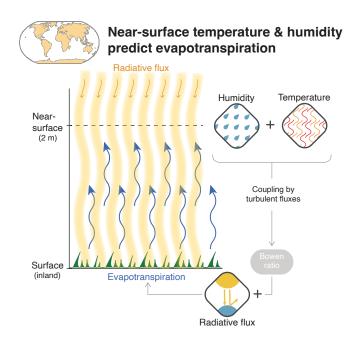


Figure 3: **Evapotranspiration inferred from temperature and humidity measurements.** Schematic highlighting how, following recent theoretical developments, inland ET can be predicted as a simple function of near-surface temperature and humidity along with the net radiative flux into the surface. Note that the grey arrows represent the series of inferences used by the SFEbased theory to make estimates of ET³⁷, whereas the blue and orange arrows denote, respectively, the turbulent fluxes of heat and water coupling the surface to the near-surface air and the radiative energy fluxes.

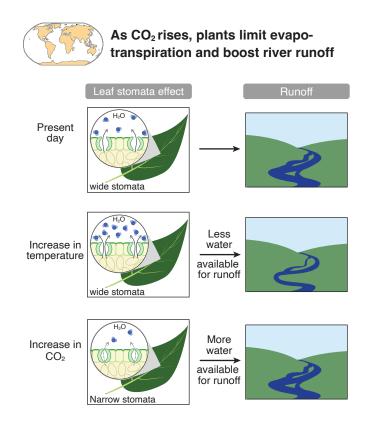


Figure 4: Stomatal response to increasing CO_2 boosts river runoff. Schematic depicting the competing effects of temperature versus CO_2 on ET from leaves and on river runoff. The recent incorporation of the CO_2 effect into classical theories has clarified understanding of runoff in a changing climate.

166 Opportunities for progress

A greater emphasis on developing theories for land climate and its changes is essential for building confidence in future projections, identifying directions for model improvement, validating *in situ* and remote sensing data, and interpreting the dynamics of key processes as new models and observational systems come online. The examples highlighted above demonstrate the potential for theory to further fundamental understanding of land climate. But the next set of advances is now needed. Below we present three areas of land-climate science primed for theory to provide new insights:

1. Atmospheric circulation and land: The atmospheric circulation strongly shapes the land 174 climate, from extreme temperatures⁶⁵ to the regional water cycle⁶⁶. However, much of our 175 understanding of the atmospheric circulation and its sensitivity to climate change has been 176 developed using aquaplanet models without land surfaces^{67,68}. Over recent years, focus has 177 begun to shift towards incorporating land into conceptual frameworks for the atmospheric 178 state and circulation^{69–71}. But numerous basic questions persist, including: Why is the tropi-179 cal rainbelt wider over continents⁹? How can ingredients of the land surface be incorporated 180 into modern theories for monsoons⁷²? Why is the poleward expansion of the atmospheric 181 circulation under global warming much weaker over land⁶? How will blocks, often the cause 182 of extreme weather over land, change with warming⁷³? And what processes control updraft 183 velocities—and hence influence extreme precipitation—over land ²? These important ques-184 tions are ready to be tackled with novel theories. 185

2. Water and land: Beyond a broad tendency for mean relative humidity over land to decrease 186 with warming^{41,50,74}, basic properties of the land water cycle and its response to climate 187 change remain unexplained. For example, what are the mechanisms determining the spatial 188 and temporal distribution of soil moisture in the current climate⁷⁵? Why do climate mod-189 els project drier surface soils in most regions⁸? And why do future trajectories for surface 190 and column soil moisture differ⁷⁶? Detailed understanding of near-surface humidity over 191 land is another priority¹⁰, given the strong coupling to trends in extreme temperatures^{52,77}, 192 extreme precipitation⁷⁸, and runoff⁷⁹. The coupling between plants and water has major 193 implications for drought and terrestrial ecosystems, yet its response to climate change is 194 highly uncertain⁸⁰. For example, the effects of plant changes on runoff beyond the simple 195 CO₂-stomatal dependence⁶⁴ are likely very large⁸¹ but poorly understood. Finally the phe-196 nomenon of 'flash droughts', whose dynamics and predictability are only beginning to be 197 explored⁸², is an emerging topic where creative new theories are needed. 198

3. Carbon and land: Carbon uptake and release by terrestrial ecosystems both affects and re-199 sponds to climate variability and long-term change. The field of carbon-water-climate feed-200 backs is already rich with examples of simple concepts, theories, and emergent constraints^{83–85}, 201 providing a way to synthesise or contrast the behaviours emerging from complex ESMs⁸⁶. 202 The carbon-concentration and carbon-climate feedback parameters, for example, encapsu-203 late the overall response of land carbon stocks to changes in atmospheric CO₂ and to global 204 warming, respectively⁸⁷. This global-scale conceptual framework can be used to diagnose 205 and compare complex simulations⁸⁸, but is also transferable to climate emulators or models 206

of reduced complexity⁸⁹. However, similarly simple and adaptable concepts are lacking in 207 other areas of carbon cycle research. There is, for instance, large uncertainty on the extent to 208 which tipping points at regional scales could impact some of the world's largest carbon pools, 209 like permafrost carbon, the Amazon rainforest ecosystem, and global forests^{90–93}. To some 210 extent this is because we lack theories, metrics, and frameworks to explain and reconcile the 211 contradicting results obtained from different models and approaches. However, the existing 212 literature on dynamical systems theory is rich with concepts that may be transferable to un-213 derstand potential tipping points in the carbon cycle if they can be adequately constrained by 214 observations, similar to what has been done to study transitions between stable system states 215 or attractors in ecology and population dynamics^{94,95}. 216

217 Outlook

To discover, test, and refine the powerful theories for land climate advocated for in this perspective, 218 and to maximise benefits for the wider climate community, technical tools and scientific talent are 219 needed. On the tools side, we have at our disposal a range of models spanning idealised⁹⁶ to state-220 of-the-art ESMs³³, alongside the emerging generation of 'global storm resolving' models²² and 221 flexible, process-based hydrologic models⁹⁷. This model hierarchy is well positioned for building 222 new understanding of land climate. However, a lack of observations presents a major challenge⁹⁸: 223 Despite recent progress, for example in remote sensing of surface soil moisture⁹⁹, we simply do 224 not have long-term datasets with wide spatial coverage for many important land-climate quantities, 225 including root-zone soil moisture and ET. Thus, to parallel the development of models and efforts 226

to construct theories for land climate, new instrumental observations of essential land surface fluxes 227 and reservoirs are required. Opportunities to further leverage existing observational datasets, with 228 the goal of improving models and testing theories, should also be exploited. Beyond observational 229 uncertainty, whenever we ground new theory in observations we also have to contend with the 230 complicating influence of internal climate variability. Separating the forced response from internal 231 variability at regional scales is still challenging and can harbour surprises that can influence our 232 theories¹⁰⁰. Empirical-statistical methods to isolate the forced response, and new theory on internal 233 variability itself, will thus need to accompany our endeavour to refine understanding of land climate 234 and its changes with warming. 235

On the talent side, to tackle the important questions in land-climate science we need to con-236 tinually inspire, recruit, and resource diverse cohorts of researchers from a range of primary disci-237 plines spanning atmospheric science, hydrology, ecology, physics, mathematics, computer science, 238 and beyond. Engaging scientists from the broader climate community-those working primar-239 ily on atmospheric dynamics, for example—also has the potential to bring new ideas and drive 240 progress in land-climate science. Through this perspective, alongside a series of workshops and 24 summer schools we aim to coordinate over coming years, our goal is to engage these current and 242 future generations of researchers-as well as major funding bodies and established land-focused 243 research initiatives—in our vision to place theory at the core of land-climate science. 244

State-of-the-art models, observational systems, and machine learning are transforming our
 ability to simulate, monitor, and emulate many aspects of land climate. But our scientific under-

standing has not kept pace, and we now lack robust theories to comprehend the rich complexity
being revealed by these advanced tools. Now is the time to change course and underpin models,
observations, and machine-learning techniques with new theories so that we maintain and advance
the deep, mechanistic understanding of land climate needed to meet the challenges of an uncertain
future.

252	1.	Joshi, M. M., Gregory, J. M., Webb, M. J., Sexton, D. M. H. & Johns, T. C. Mechanisms for
254		the land/sea warming contrast exhibited by simulations of climate change. Climate Dynamics
255		30 , 455–465 (2008).
256	2.	Pfahl, S., O'Gorman, P. A. & Fischer, E. M. Understanding the regional pattern of projected
257		future changes in extreme precipitation. Nature Climate Change 7, 423–427 (2017).
258	3.	Milly, P. C. & Dunne, K. A. Colorado river flow dwindles as warming-driven loss of reflective
259		snow energizes evaporation. Science 367, 1252–1255 (2020).
	1	Held I M & Soden B I Pobust responses of the hydrological cycle to global warming

- 4. Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming.
 Journal of Climate 19, 5686–5699 (2006).
- ²⁶² 5. Greve, P. *et al.* Global assessment of trends in wetting and drying over land. *Nature Geo-* ²⁶³ science 7, 716–721 (2014).
- 6. Schmidt, D. F. & Grise, K. M. The response of local precipitation and sea level pressure to
 Hadley cell expansion. *Geophysical Research Letters* 44, 10,573–10,582 (2017).

266	7.	Berg, A. & Sheffield, J. Evapotranspiration partitioning in CMIP5 models: uncertainties and
267		future projections. Journal of Climate 32, 2653–2671 (2019).
268	8.	Cook, B. I. et al. Twenty-first century drought projections in the CMIP6 forcing scenarios.
269		Earth's Future 8 (2020). E2019EF001461.
270	9.	Hohenegger, C. & Stevens, B. Tropical continents rainier than expected from geometrical
271		constraints. AGU Advances 3 (2022). E2021AV000636.
272	10.	Simpson, I. R. et al. Observed humidity trends in dry regions contradict climate models.
273		Proceedings of the National Academy of Sciences 121, e2302480120 (2024).
274	11.	Lee, YC. & Wang, YC. Evaluating diurnal rainfall signal performance from CMIP5 to
275		CMIP6. Journal of Climate 34, 7607–7623 (2021).
276	12.	Seneviratne, S. I. et al. Impact of soil moisture-climate feedbacks on CMIP5 projections:
277		First results from the GLACE-CMIP5 experiment. Geophysical Research Letters 40, 5212-
278		5217 (2013).
279	13.	Swann, A. L. S. Plants and drought in a changing climate. Current Climate Change Reports
280		4 , 192–201 (2018).
281	14.	Lambert, F. H. & Chiang, J. C. H. Control of land-ocean temperature contrast by ocean heat
282		uptake. Geophysical Research Letters 34 (2007). L13704.

283	15.	Teng, H., Leung, R., Branstator, G., Lu, J. & Ding, Q. Warming pattern over the northern
284		hemisphere midlatitudes in boreal summer 1979–2020. Journal of Climate 35, 3479–3494
285		(2022).
286	16.	Best, M. J. et al. The plumbing of land surface models: benchmarking model performance.
287		Journal of Hydrometeorology 16, 1425–1442 (2015).
288	17.	Haughton, N. et al. The plumbing of land surface models: Is poor performance a result of
289		methodology or data quality? Journal of Hydrometeorology 17, 1705–1723 (2016).
290	18.	Haughton, N., Abramowitz, G. & Pitman, A. J. On the predictability of land surface fluxes
291		from meteorological variables. Geoscientific Model Development 11, 195–212 (2018).
292	19.	Li, ZL. et al. Soil moisture retrieval from remote sensing measurements: Current knowledge
293		and directions for the future. Earth-Science Reviews 218, 103673 (2021).
294	20.	Willett, K. et al. HadISDH land surface multi-variable humidity and temperature record for
295		climate monitoring. Climate of the Past 10, 1983–2006 (2014).
296	21.	Pongratz, J. et al. Land use effects on climate: current state, recent progress, and emerging
297		topics. Current Climate Change Reports 7, 99–120 (2021).
298	22.	Hohenegger, C. et al. ICON-Sapphire: simulating the components of the Earth system and
299		their interactions at kilometer and subkilometer scales. Geoscientific Model Development 16,
300		779–811 (2023).

301	23.	Beven, K. J. & Cloke, H. L. Comment on: "Hyperresolution global land surface modeling:			
302		Meeting a grand challenge for monitoring Earth's terrestrial water" by Eric F. Wood et al.			
303		Water Resources Research 48 (2012). W01801.			
304	24.	Fan, Y. et al. Hillslope hydrology in global change research and Earth system modeling.			
305		Water Resources Research 55, 1737–1772 (2019).			
306	25.	Barlage, M., Chen, F., Rasmussen, R., Zhang, Z. & Miguez-Macho, G. The importance			
307		of scale-dependent groundwater processes in land-atmosphere interactions over the central			
308		United States. Geophysical Research Letters 48 (2021). E2020GL092171.			
309	26.	Pongratz, J. et al. Models meet data: Challenges and opportunities in implementing land			
310		management in Earth system models. Global Change Biology 24, 1470–1487 (2018).			
311	27.	Clark, M. P. et al. The evolution of process-based hydrologic models: historical challenges			
312		and the collective quest for physical realism. Hydrology and Earth System Sciences 21,			
313		3427–3440 (2017).			
314	28.	Schneider, T., Lan, S., Stuart, A. & Teixeira, J. Earth system modeling 2.0: A blueprint for			
315		models that learn from observations and targeted high-resolution simulations. Geophysical			
316		Research Letters 44, 12–396 (2017).			
317	29.	Wulfmeyer, V. et al. Estimation of the surface fluxes for heat and momentum in unstable			
318		conditions with machine learning and similarity approaches for the LAFE data set. Boundary-			
319		<i>Layer Meteorology</i> 186 , 337–371 (2023).			

320	30.	Dagon, K., Sanderson, B. M., Fisher, R. A. & Lawrence, D. M. A machine learning approach
321		to emulation and biophysical parameter estimation with the Community Land Model, version
322		5. Advances in Statistical Climatology, Meteorology and Oceanography 6, 223–244 (2020).
323	31.	Yuval, J. & O'Gorman, P. A. Stable machine-learning parameterization of subgrid processes
324		for climate modeling at a range of resolutions. <i>Nature Communications</i> 11 (2020).
325	32.	Zanna, L. & Bolton, T. Data-driven equation discovery of ocean mesoscale closures. Geo-
326		physical Research Letters 47 (2020). E2020GL088376.
327	33.	Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6)
328		experimental design and organization. Geoscientific Model Development 9, 1937-1958
329		(2016).
330	34.	Betts, A. K. Idealized model for equilibrium boundary layer over land. Journal of Hydrom-
331		eteorology 1, 507–523 (2000).
332	35.	Brubaker, K. L. & Entekhabi, D. An analytic approach to modeling land-atmosphere in-
333		teraction: 1. Construct and equilibrium behavior. Water Resources Research 31, 619-632
334		(1995).
335	36.	Findell, K. L. & Eltahir, E. A. Atmospheric controls on soil moisture-boundary layer inter-
336		actions. Part I: Framework development. Journal of Hydrometeorology 4, 552–569 (2003).
337	37.	McColl, K. A. & Rigden, A. J. Emergent simplicity of continental evapotranspiration. Geo-
338		physical Research Letters 47 (2020). E2020GL087101.

339	38.	Scheff, J., Coats, S. & Laguë, M. M. Why do the global warming responses of land-surface		
340		models and climatic dryness metrics disagree? <i>Earth's Future</i> 10 (2022). E2022EF002814.		
341	39.	Klein, S. A. & Hall, A. Emergent constraints for cloud feedbacks. Current Climate Change		
342		Reports 1, 276–287 (2015).		
343	40.	Byrne, M. P. & O'Gorman, P. A. Land–ocean warming contrast over a wide range of climates:		
344		Convective quasi-equilibrium theory and idealized simulations. Journal of Climate 26, 4000–		
345		4016 (2013).		
346	41.	Sherwood, S. & Fu, Q. A drier future? Science 343, 737–739 (2014).		
347	42.	Manabe, S., Stouffer, R. J., Spelman, M. J. & Bryan, K. Transient responses of a coupled		
348		ocean-atmosphere model to gradual changes of atmospheric CO2. Part I. Annual mean re-		
349		sponse. Journal of Climate 4, 785–818 (1991).		
350	43.	Arakawa, A. & Schubert, W. H. Interaction of a cumulus cloud ensemble with the large-scale		
351		environment, Part I. Journal of the Atmospheric Sciences 31, 674–701 (1974).		
352	44.	Sobel, A. H. & Bretherton, C. S. Modeling tropical precipitation in a single column. Journal		
353		of Climate 13, 4378–4392 (2000).		
354	45.	Byrne, M. P. & O'Gorman, P. A. Link between land-ocean warming contrast and surface rel-		
355		ative humidities in simulations with coupled climate models. Geophysical Research Letters		
356		40 , 5223–5227 (2013).		
		24		

357	46. Berg, A. et al. Land-atmosphere feedbacks amplify aridity increase over land under global
358	warming. Nature Climate Change 6, 869–874 (2016).

- 47. Zhang, Y., Held, I. & Fueglistaler, S. Projections of tropical heat stress constrained by atmo spheric dynamics. *Nature Geoscience* 14, 133–137 (2021).
- 48. Duan, S. Q., Findell, K. L. & Fueglistaler, S. A. Coherent mechanistic patterns of tropical
 land hydroclimate changes. *Geophysical Research Letters* 50, e2022GL102285 (2023).

³⁶³ 49. Byrne, M. P. & O'Gorman, P. A. Trends in continental temperature and humidity directly
 ³⁶⁴ linked to ocean warming. *Proceedings of the National Academy of Sciences* 115, 4863–4868
 ³⁶⁵ (2018).

- ³⁶⁶ 50. Byrne, M. P. & O'Gorman, P. A. Understanding decreases in land relative humidity with
 ³⁶⁷ global warming: Conceptual model and gcm simulations. *Journal of Climate* 29, 9045–9061
 ³⁶⁸ (2016).
- ³⁶⁹ 51. Buzan, J. R. & Huber, M. Moist heat stress on a hotter Earth. *Annual Review of Earth and* ³⁷⁰ *Planetary Sciences* 48, 623–655 (2020).

53. Teuling, A. *et al.* A regional perspective on trends in continental evaporation. *Geophysical Research Letters* 36 (2009). L02404.

^{52.} Byrne, M. P. Amplified warming of extreme temperatures over tropical land. *Nature Geoscience* **14**, 837–841 (2021).

375	54.	Seneviratne, S. I., Lüthi, D., Litschi, M. & Schär, C. Land-atmosphere coupling and climate
376		change in Europe. Nature 443, 205–209 (2006).
377	55.	Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for
378		eddy covariance data. Scientific Data 7, 1–27 (2020).
379	56.	Mueller, B. & Seneviratne, S. I. Systematic land climate and evapotranspiration biases in
380		cmip5 simulations. Geophysical Research Letters 41, 128–134 (2014).
381	57.	McColl, K. A., Salvucci, G. D. & Gentine, P. Surface flux equilibrium theory explains an em-
382		pirical estimate of water-limited daily evapotranspiration. Journal of Advances in Modeling
383		Earth Systems 11, 2036–2049 (2019).
384	58.	Chen, S., McColl, K. A., Berg, A. & Huang, Y. Surface flux equilibrium estimates of evapo-
385		transpiration at large spatial scales. Journal of Hydrometeorology 22, 765–779 (2021).
386	59.	Budyko, M. I. Climate and Life (Academic Press, 1974).
387	60.	Monteith, J. L. Evaporation and surface temperature. Quarterly Journal of the Royal Meteo-
388		rological Society 107 , 1–27 (1981).
389	61.	Scheff, J. & Frierson, D. M. W. Scaling potential evapotranspiration with greenhouse warm-
390		ing. Journal of Climate 27, 1539–1558 (2014).
391	62.	Milly, P. C. D. & Dunne, K. A. Potential evapotranspiration and continental drying. Nature
392		<i>Climate Change</i> 6 , 946–949 (2016).

393	63.	Dai, A. Historical and future changes in streamflow and continental runoff: A review. In			
394		Tang, Q. & Oki, T. (eds.) Terrestrial Water Cycle and Climate Change: Natural and Human-			
395		Induced Impacts, vol. 221 of Geophysical Monograph Series, 17–37 (2016).			
396	64.	Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R. & Donohue, R. J. Hydrologic implica-			
397		tions of vegetation response to elevated CO ₂ in climate projections. <i>Nature Climate Change</i>			
398		9, 44–48 (2019).			
399	65.	Wehrli, K., Guillod, B. P., Hauser, M., Leclair, M. & Seneviratne, S. I. Identifying key driving			
400		processes of major recent heat waves. Journal of Geophysical Research: Atmospheres 124,			
401		11746–11765 (2019).			
402	66.	Seager, R. et al. Dynamical and thermodynamical causes of large-scale changes in the hy-			
403		drological cycle over North America in response to global warming. Journal of Climate 27,			
404		7921–7948 (2014).			
405	67.	Kang, S. M., Held, I. M., Frierson, D. M. & Zhao, M. The response of the ITCZ to extrat-			
406		ropical thermal forcing: Idealized slab-ocean experiments with a GCM. Journal of Climate			
407		21 , 3521–3532 (2008).			
408	68.	Bordoni, S. & Schneider, T. Monsoons as eddy-mediated regime transitions of the tropical			
409		overturning circulation. Nature Geoscience 1, 515–519 (2008).			
410	69.	Hohenegger, C. & Stevens, B. The role of the permanent wilting point in controlling the			
411		spatial distribution of precipitation. Proceedings of the National Academy of Sciences 115,			
412		5692–5697 (2018).			
		27			

- ⁴¹³ 70. Zhou, W. & Xie, S.-P. A hierarchy of idealized monsoons in an intermediate GCM. *Journal*⁴¹⁴ *of Climate* **31**, 9021–9036 (2018).
- 71. Biasutti, M., Russotto, R. D., Voigt, A. & Blackmon-Luca, C. C. The effect of an equatorial
 continent on the tropical rain belt. Part I: Annual mean changes in the ITCZ. *Journal of Climate* 34, 5813–5828 (2021).
- 418 72. Geen, R., Bordoni, S., Battisti, D. S. & Hui, K. Monsoons, ITCZs, and the concept of the
 global monsoon. *Reviews of Geophysics* 58, e2020RG000700 (2020).
- 420 73. Woollings, T. *et al.* Blocking and its response to climate change. *Current Climate Change* 421 *Reports* 4, 287–300 (2018).
- 74. Simmons, A. J., Willett, K. M., Jones, P. D., Thorne, P. W. & Dee, D. P. Low-frequency
 variations in surface atmospheric humidity, temperature, and precipitation: Inferences from
 reanalyses and monthly gridded observational data sets. *Journal of Geophysical Research: Atmospheres* 115 (2010).
- ⁴²⁶ 75. Vargas Zeppetello, L. R., Trevino, A. M. & Huybers, P. Disentangling contributions to past
 ⁴²⁷ and future trends in US surface soil moisture. *Nature Water* 1–12 (2024).
- ⁴²⁸ 76. Berg, A., Sheffield, J. & Milly, P. C. Divergent surface and total soil moisture projections
 ⁴²⁹ under global warming. *Geophysical Research Letters* 44, 236–244 (2017).
- 430 77. Zhang, Y. & Boos, W. R. An upper bound for extreme temperatures over midlatitude land.
- ⁴³¹ *Proceedings of the National Academy of Sciences* **120** (2023). E2215278120.

432	78.	Williams, A. I. & O'Gorman, P. A. Summer-winter contrast in the response of precipitation
433		extremes to climate change over northern hemisphere land. Geophysical Research Letters 49
434		(2022). E2021GL096531.
435	79.	Byrne, M. P. & O'Gorman, P. A. The response of precipitation minus evapotranspiration to
436		climate warming: Why the "wet-get-wetter, dry-get-drier" scaling does not hold over land.
437		Journal of Climate 28, 8078–8092 (2015).
438	80.	Dai, A., Zhao, T. & Chen, J. Climate change and drought: a precipitation and evaporation
439		perspective. Current Climate Change Reports 4, 301–312 (2018).
440	81.	Mankin, J. S., Seager, R., Smerdon, J. E., Cook, B. I. & Williams, A. P. Mid-latitude fresh-
441		water availability reduced by projected vegetation responses to climate change. Nature Geo-
442		science 12 , 983–988 (2019).
443	82.	Pendergrass, A. G. et al. Flash droughts present a new challenge for subseasonal-to-seasonal
444		prediction. Nature Climate Change 10, 191–199 (2020).
445	83.	Prentice, I. C., Dong, N., Gleason, S. M., Maire, V. & Wright, I. J. Balancing the costs of
446		carbon gain and water transport: testing a new theoretical framework for plant functional
447		ecology. Ecology Letters 17, 82–91 (2014).
448	84.	Anderegg, W. R. et al. Woody plants optimise stomatal behaviour relative to hydraulic risk.
449		Ecology Letters 21, 968–977 (2018).

450	85.	Wenzel, S., Cox, P. M., Eyring, V. & Friedlingstein, P. Emergent constraints on climate-		
451		carbon cycle feedbacks in the cmip5 earth system models. Journal of Geophysical Research:		
452		Biogeosciences 119, 794–807 (2014).		
453	86.	Gregory, J. M., Jones, C. D., Cadule, P. & Friedlingstein, P. Quantifying carbon cycle feed-		
454		backs. Journal of Climate 22, 5232–5250 (2009).		
455	87.	Friedlingstein, P. et al. Climate-carbon cycle feedback analysis: Results from the C4MIP		
456		model intercomparison. Journal of Climate 19, 3337-3353 (2006).		
457	88.	Arora, V. K. et al. Carbon-concentration and carbon-climate feedbacks in CMIP5 Earth		
458		system models. Journal of Climate 26, 5289–5314 (2013).		
459	89.	Meinshausen, M., Raper, S. C. B. & Wigley, T. M. L. Emulating coupled atmosphere-ocean		
460		and carbon cycle models with a simpler model, MAGICC6 – Part 1: Model description and		
461		calibration. Atmospheric Chemistry and Physics 11, 1417–1456 (2011).		
462	90.	Anderegg, W. R. et al. A climate risk analysis of Earth's forests in the 21st century. Science		
463		377 , 1099–1103 (2022).		
464	91.	Lenton, T. M. et al. Climate tipping points — too risky to bet against. Nature 575, 592–595		
465		(2019).		
466	92.	K Braghiere, R. et al. Tipping point in North American Arctic-Boreal carbon sink persists		
467		in new generation earth system models despite reduced uncertainty. Environmental Research		
468		Letters 18 (2023). 025008.		

469	93.	Malhi, Y. et al. Exploring the	he likelihood and mechanism of a climate-change-induced dieback
470		of the Amazon rainforest.	Proceedings of the National Academy of Sciences 106, 20610-
471		20615 (2009).	

⁴⁷² 94. Pisarchik, A. N. & Feudel, U. Control of multistability. *Physics Reports* 540, 167–218
⁴⁷³ (2014).

- 474 95. van Nes, E. H., Hirota, M., Holmgren, M. & Scheffer, M. Tipping points in tropical tree
 475 cover: linking theory to data. *Global Change Biology* 20, 1016–1021 (2014).
- 476 96. Vallis, G. K. et al. Isca, v1. 0: A framework for the global modelling of the atmospheres of
- Earth and other planets at varying levels of complexity. *Geoscientific Model Development*11, 843–859 (2018).
- ⁴⁷⁹ 97. Clark, M. P. *et al.* A unified approach for process-based hydrologic modeling: 2. Model
 ⁴⁸⁰ implementation and case studies. *Water resources research* 51, 2515–2542 (2015).
- 98. Santanello Jr, J. A. *et al.* Land–atmosphere interactions: The LoCo perspective. *Bulletin of*
- the American Meteorological Society **99**, 1253–1272 (2018).
- ⁴⁸³ 99. Entekhabi, D. *et al.* The soil moisture active passive (SMAP) mission. *Proceedings of the*⁴⁸⁴ *IEEE* 98, 704–716 (2010).
- ⁴⁸⁵ 100. Lehner, F. & Deser, C. Origin, importance, and predictive limits of internal climate variabil-
- ity. Environmental Research: Climate 2 (2023). 023001.
- 487 Acknowledgements We thank the Carnegie Trust for the Universities of Scotland for generously funding

a workshop on land-climate science at the University of St Andrews (June 6-8th, 2022) which inspired this
perspective. We also thank Melissa Gomis for graphical assistance with Figures 2-4. MPB was supported
by the UKRI Frontier Research Guarantee scheme [grant number EP/Y027868/1] and SAH was funded by
NSF award #2123327.

492 **Competing Interests** The authors declare no competing interests.

493 **Corresponding Author** Correspondence should be addressed to the lead author (email: mpb20@st-andrews.ac.uk).

Author Contributions MPB, GCH, and JS wrote the initial draft; all authors contributed to editing and revising the manuscript.

⁴⁹⁶ **Data Availability** The model data used to produce Figure 1 are provided by the World Climate Research

⁴⁹⁷ Programme's Working Group on Coupled Modelling and can be accessed at https://esgf-node.llnl.gov/search/cmip6/.

498 **Code Availability** The code used to produce Figure 1 is available from the corresponding author on re-499 quest.