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Climate over land—where humans live and the vast majority of food is produced—is chang-1

ing rapidly, driving severe impacts through extreme heat, wildfires, drought, and flooding.2

Our ability to monitor and model this changing climate is being transformed through new3

observational systems and increasingly complex Earth System Models (ESMs). But funda-4

mental understanding of the processes governing land climate has not kept pace, weakening5

our ability to interpret and utilise data from these advanced tools. Here we argue that for6

land-climate science to accelerate forward, an alternative approach is needed. We advocate7

for a parallel scientific effort, one emphasising robust theories, that aims to inspire current8

and future land-climate scientists to better comprehend the processes governing land climate,9

its variability and extremes, and its sensitivity to global warming. Such an effort, we believe,10

is essential to better understand the risks people face, where they live, in an era of climate11

change.12

Knowledge of some aspects of continental climate and their responses to global warming are13

well established. For example, we broadly understand why land warms more rapidly than oceans1
14

(Fig. 1), the intensification of extreme precipitation in a warmer atmosphere2, and how surface15

runoff is influenced by loss of snowpack3. However, knowledge of many other aspects of land cli-16

mate is underdeveloped. The “wet get wetter, dry get drier” paradigm predicts an amplification of17

wet/dry contrasts as climate warms4. But this paradigm does not generally apply to land regions5
18

nor does the poleward expansion of the Hadley cells6. Adding to this list is uncertainty over how19

evapotranspiration (ET) and soil moisture7, 8—both critical for humans and ecosystems—will be20

altered by a changing climate. Knowledge of numerous other facets of land climate is similarly un-21
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settled, from basic questions of what governs its mean state, variability, and extremes, to how these22

facets might change with warming. Why are simulated land temperature changes more uncertain23

and more diverse, across space and climate models, compared to ocean regions (Fig. 1a,b)? Why24

are the tropical rainbelts broader and more mobile over land9? And how will land humidity evolve25

as climate warms10? Longstanding challenges in simulating land climate—including the diurnal26

cycle of convection11—further highlight shortcomings in our basic understanding.27

The challenge of complexity28

The climate over land is a complex system shaped by an array of diverse factors, from local surface29

conditions including soil moisture and plants12, 13 to large-scale atmospheric circulations that con-30

nect continents to oceans through the transport of water, heat, and momentum14, 15. Many of the key31

processes influencing land climate are spatially heterogeneous, difficult to simulate, and/or poorly32

observed. For example, land surface models have longstanding problems in simulating turbulent33

fluxes of heat and water16, 17, for reasons that are not well understood18. Sparse and time-limited34

observational records of important land-climate variables, including root-zone soil moisture19 and35

near-surface humidity20, further impede efforts to advance knowledge of the land-climate system.36

The role of humanity presents another challenge, with large uncertainties in modelling the influ-37

ences of land use and management on fluxes of carbon, energy, and water in the past, present, and38

future21. Confronted with such a complex system it can appear a daunting task to develop a deep,39

mechanistic, conceptual understanding of the kind we would want to read in future textbooks on40

land climate. But as the field of climate science evolves, we argue that many of the most fascinating41
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and pressing questions relate to land.42

Given the complexity and importance of land climate, how can the research community ac-43

celerate progress? In the atmospheric and ocean sciences, notable advances are being made by in-44

creasing the spatial resolution of state-of-the-art ESMs22. But unlike in the atmosphere and oceans,45

where higher resolutions allow for explicit simulation of key processes including deep convection46

and mesoscale eddies, the case for transitioning to finer resolution models to drive new conceptual47

breakthroughs in land-climate science is less clear-cut23. Land climate is undoubtedly influenced48

by small-scale processes, so there are potential benefits to incorporating into models more sophis-49

ticated representations of, for example, hillslope hydrology24, groundwater processes25, and land50

management26. However, complexity does not equate to realism: absent a comprehensive under-51

standing of these processes and how to accurately represent them in models27, it is possible that52

such complexity obfuscates more than it clarifies16. Persistent and poorly constrained deficiencies53

in land surface models—highlighted by the PLUMBER project16–18—suggest that model develop-54

ment alone, though vital, is unlikely to answer the key questions about land climate highlighted55

above. Similarly, machine learning tools are increasingly being applied to climate science for de-56

veloping ESMs28, parameterising surface fluxes29, and constructing statistical emulators of land57

models30. Indeed recent successes highlight the potential of machine learning to build physical58

insight in the atmospheric and ocean sciences31, 32. But it remains to be seen whether the tools of59

machine learning are capable of transforming scientific understanding of land climate.60

A renewed focus on theory61
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Figure 1: Simulated climate warming is larger and more uncertain over land. (a) Boxplots of

simulated warming averaged over land (left), ocean (centre), and globally (right) calculated using

pre-industrial control and abrupt 4xCO2 simulations performed by 45 climate models participating

in the Coupled Model Intercomparison Project Phase 633. Horizontal lines show the median model

values, boxes show the interquartile ranges, and whiskers show the full model ranges. Warming for

each model is computed as the time- and area-averaged near-surface temperature change between

the final 20 years of the pre-industrial control simulation and years 40-59 of the abrupt 4xCO2

simulation. Uncertainty across models is indicated by the red arrows and text, with the full model

range taken as a simple measure of uncertainty. (b) Multimodel-mean probability density functions

(PDFs) of area-weighted near-surface warming over land (red) and ocean (blue), normalised by the

global-mean warming in each model. The same models, simulations, and averaging periods are

used as in panel (a). The wider land PDF in panel (b) suggests larger differences in near-surface

warming, across space and models, relative to oceans.
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Here we argue that for land-climate science to move forward, we must step back and reassess our62

approach. Our philosophy—borne in an era of explosive growth in model complexity and demand-63

ing simulation timetables, and shaped by a 2022 workshop at the University of St Andrews—is to64

redouble efforts to build robust physical understanding of land climate through the development of65

powerful new theories and refinement of existing conceptual frameworks. Previous work exempli-66

fies this approach, notably the development of theories and simple ‘toy’ models to understand the67

land boundary layer34, land-atmosphere coupling35, and moist convection over land36. To anchor68

and inspire the next decade of research, we argue that now is the time to position this philosophy69

at the centre of land-climate science and re-balance our activities such that theory, model develop-70

ment, and observations are prioritised equally.71

Development of theory can, and should, proceed in parallel with the imperative to build72

progressively more sophisticated ESMs. Indeed the gap in climate science between theory and73

actionable information, particularly at regional scales, is typically filled by state-of-the-art mod-74

els, which are also invaluable tools for testing and refining the theories advocated for here. But75

theories that distill conceptual understanding need to be at the core of land-climate science, to en-76

able the research community to compare proposed mechanisms, understand the competing roles of77

different processes in a coupled system, and make predictions without running complex models.78

Advances in theory can have practical as well as conceptual benefits, for example making ET easier79

to estimate37, increasing confidence in model projections (for example of runoff38), and underpin-80

ning physically-based emergent constraints to narrow uncertainties in future climate change39.81
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So, what constitutes a successful theory in land-climate science? The answer depends on82

the problem being considered, but we believe a successful theory should: explain an emergent83

property of the climate system; be underpinned by robust process understanding; and provide84

clear mechanistic insights that hold across a hierarchy of numerical model complexity. Theories85

should also, where possible, be predictive and quantitative (i.e., formulated as an equation or set86

of equations). Finally, and crucially, a successful theory should be tested against and supported by87

observational data. Below we highlight three recent advances in land-climate science that showcase88

the power of theory, before outlining our view on how a renewed focus on theory is needed to89

accelerate progress in land-climate science:90

1. Land temperature and humidity changes constrained by tropical atmospheric dynam-91

ics: The role of convection and large-scale atmospheric dynamics in shaping tropical land92

temperature and humidity has been an important conceptual advance over recent decades1, 40, 41.93

This framework emerged from efforts to understand why, under climate change, warming is94

stronger over land; the so-called land-ocean warming contrast40. Early explanations of this95

phenomenon were based on the surface energy budget42. Radiative forcing at the surface96

(e.g., due to increases in atmospheric CO2) are largely balanced in ocean regions by in-97

creases in evaporation, resulting in a relatively small increase in surface temperature. In98

land regions, however, which are often water-limited, radiative forcing is primarily balanced99

through increases in sensible heat and longwave fluxes, requiring a larger increase in tem-100

perature relative to oceans. Though physically intuitive, using this argument to construct101

a quantitative theory for land temperature change is challenging because surface fluxes de-102
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pend on multiple factors aside from temperature, including windspeed, soil moisture, and103

the air-surface temperature disequilibrium.104

An alternative framework, inspired by Joshi et al1, cuts through the complexity of land sur-105

faces to reveal a strong constraint on the response of tropical land to climate change. This106

framework has transformed understanding of the tropical land-ocean warming contrast and107

has led to broader insights into large-scale atmospheric controls on near-surface temperature108

and humidity. In the tropical atmosphere, strong vertical coupling by convection between the109

boundary layer and free troposphere described by convective quasi-equilibrium43—together110

with horizontal coupling by gravity waves above the boundary layer, resulting in weak111

free-tropospheric temperature gradients44—imply that climatic changes in adiabatically con-112

served quantities such as moist static energy, a function of temperature and specific humidity113

near the surface, are tightly coupled between different regions and therefore approximately114

uniform on large scales45–47 (Fig. 2). This mechanism, a form of ‘downward control’ ex-115

erted by the overlying atmosphere on near-surface tropical climate, has important implica-116

tions: Though temperature and specific humidity individually may respond differently to117

climate change in different regions, for example in tropical savannas versus in rainforests,118

the combined change (encoded in the moist static energy) is more spatially homogeneous.119

Local processes, including soil moisture and aridity46, 48, are crucial for controlling how tem-120

perature versus humidity changes contribute to the change in moist static energy imposed121

by the atmosphere. This physical theory underpins advances in understanding the land-122

ocean warming contrast1, 49, aridity and land relative humidity in a changing climate41, 46, 50,123
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and extreme heat47, 51, 52, and establishes a simple yet quantitative framework for interpreting124

models, observations, and the roles of local versus large-scale processes in shaping tropical125

land climate.126

2. Evapotranspiration predicted by simple theory: ET is central to regulating the water, en-127

ergy, and carbon budgets of land regions53, and affects societies and ecosystems through its128

influence on hydrology and temperature variability54. But ET is directly measured only at a129

limited number of sites55, necessitating models of various kinds to estimate ET elsewhere.130

These models are typically complex, requiring numerous poorly constrained land-surface131

parameters as inputs, and are imperfect at replicating direct measurements56. However, a132

new theory to predict present-day ET in inland continental regions using minimal input data133

provides a conceptual advance in understanding and presents an opportunity to greatly ex-134

pand the database of ET measurements across space and time37. The theory is based on the135

concept of ‘surface flux equilibrium’ (SFE), which assumes an approximate balance between136

the surface moistening and heating effects on near-surface relative humidity57. This strong137

coupling between the land surface and overlying atmosphere imprints, in the air properties,138

information about the land-surface fluxes (i.e., the Bowen ratio) at daily to longer timescales,139

and appears to dominate alternative atmospheric mechanisms that also contribute to deter-140

mining the near-surface atmospheric state (e.g., wind-driven moisture and heat convergence).141

Specifically, the SFE theory permits relatively accurate estimates of ET knowing only the net142

radiative flux into the surface and the near-surface temperature and specific humidity37, 58,143

the latter two which reflect the Bowen ratio (Fig. 3). Importantly, these quantities are more144
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widely available from weather stations than direct ET measurements. The theory reveals an145

emergent simplicity in ET37, despite the heterogeneity and complexity of land surfaces.146

3. Leaf physiology incorporated into classical runoff theories: Runoff from land supplies147

almost all the water used by humans. In contrast to the time-varying ET estimated by SFE148

and described above, long-term mean runoff and ET fluxes have long been predicted and149

understood using the simple theory of Budyko59, in which the fraction of precipitation that150

becomes runoff decreases as the ratio of atmospheric evaporative demand to precipitation151

increases. Budyko quantified evaporative demand using surface net radiation only, but more152

comprehensive evaporative theories60 generally also include a well-understood positive tem-153

perature dependence61. When these more modern methods are used in the Budyko theory,154

they predict substantial increases in evaporative demand with global warming and systematic155

decreases in natural runoff62 (i.e., the component of runoff controlled by natural processes156

rather than by human activities), which would imply water shortages. Yet such widespread157

runoff declines are neither observed63 nor simulated by more comprehensive models62, lead-158

ing to the impression of a theoretical deficiency. Yang et al64 recently resolved this tension159

by incorporating the ET-reducing closure of leaf stomata by CO2 into a revised theoreti-160

cal framework (Fig. 4). The inclusion of this important and well-studied process brought161

the Budyko-predicted trends in natural runoff much closer to observations and state-of-the-162

art ESMs, and clarified our understanding of the drivers of runoff in a changing climate.163

Looking forward, incorporating human activities (e.g., water management) and the effects164

of wildfire into runoff theories is a priority for future work.165
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Figure 2: Atmospheric dynamics constrain changes in tropical land climate. Schematic illus-

trating how convection and gravity waves in the tropical atmosphere spatially homogenise climatic

changes in near-surface moist static energy. The development of this large-scale atmospheric con-

straint on tropical land climate has been an important conceptual advance over recent years. Here

and in Figures 3 and 4, the title maps highlight where the mechanism is broadly expected to be

applicable.
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Figure 3: Evapotranspiration inferred from temperature and humidity measurements.

Schematic highlighting how, following recent theoretical developments, inland ET can be pre-

dicted as a simple function of near-surface temperature and humidity along with the net radiative

flux into the surface. Note that the grey arrows represent the series of inferences used by the SFE-

based theory to make estimates of ET37, whereas the blue and orange arrows denote, respectively,

the turbulent fluxes of heat and water coupling the surface to the near-surface air and the radiative

energy fluxes.
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Figure 4: Stomatal response to increasing CO2 boosts river runoff. Schematic depicting the

competing effects of temperature versus CO2 on ET from leaves and on river runoff. The recent

incorporation of the CO2 effect into classical theories has clarified understanding of runoff in a

changing climate.
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Opportunities for progress166

A greater emphasis on developing theories for land climate and its changes is essential for build-167

ing confidence in future projections, identifying directions for model improvement, validating in168

situ and remote sensing data, and interpreting the dynamics of key processes as new models and169

observational systems come online. The examples highlighted above demonstrate the potential for170

theory to further fundamental understanding of land climate. But the next set of advances is now171

needed. Below we present three areas of land-climate science primed for theory to provide new172

insights:173

1. Atmospheric circulation and land: The atmospheric circulation strongly shapes the land174

climate, from extreme temperatures65 to the regional water cycle66. However, much of our175

understanding of the atmospheric circulation and its sensitivity to climate change has been176

developed using aquaplanet models without land surfaces67, 68. Over recent years, focus has177

begun to shift towards incorporating land into conceptual frameworks for the atmospheric178

state and circulation69–71. But numerous basic questions persist, including: Why is the tropi-179

cal rainbelt wider over continents9? How can ingredients of the land surface be incorporated180

into modern theories for monsoons72? Why is the poleward expansion of the atmospheric181

circulation under global warming much weaker over land6? How will blocks, often the cause182

of extreme weather over land, change with warming73? And what processes control updraft183

velocities—and hence influence extreme precipitation—over land 2? These important ques-184

tions are ready to be tackled with novel theories.185
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2. Water and land: Beyond a broad tendency for mean relative humidity over land to decrease186

with warming41, 50, 74, basic properties of the land water cycle and its response to climate187

change remain unexplained. For example, what are the mechanisms determining the spatial188

and temporal distribution of soil moisture in the current climate75? Why do climate mod-189

els project drier surface soils in most regions8? And why do future trajectories for surface190

and column soil moisture differ76? Detailed understanding of near-surface humidity over191

land is another priority10, given the strong coupling to trends in extreme temperatures52, 77,192

extreme precipitation78, and runoff79. The coupling between plants and water has major193

implications for drought and terrestrial ecosystems, yet its response to climate change is194

highly uncertain80. For example, the effects of plant changes on runoff beyond the simple195

CO2-stomatal dependence64 are likely very large81 but poorly understood. Finally the phe-196

nomenon of ‘flash droughts’, whose dynamics and predictability are only beginning to be197

explored82, is an emerging topic where creative new theories are needed.198

3. Carbon and land: Carbon uptake and release by terrestrial ecosystems both affects and re-199

sponds to climate variability and long-term change. The field of carbon-water-climate feed-200

backs is already rich with examples of simple concepts, theories, and emergent constraints83–85,201

providing a way to synthesise or contrast the behaviours emerging from complex ESMs86.202

The carbon-concentration and carbon-climate feedback parameters, for example, encapsu-203

late the overall response of land carbon stocks to changes in atmospheric CO2 and to global204

warming, respectively87. This global-scale conceptual framework can be used to diagnose205

and compare complex simulations88, but is also transferable to climate emulators or models206
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of reduced complexity89. However, similarly simple and adaptable concepts are lacking in207

other areas of carbon cycle research. There is, for instance, large uncertainty on the extent to208

which tipping points at regional scales could impact some of the world’s largest carbon pools,209

like permafrost carbon, the Amazon rainforest ecosystem, and global forests90–93. To some210

extent this is because we lack theories, metrics, and frameworks to explain and reconcile the211

contradicting results obtained from different models and approaches. However, the existing212

literature on dynamical systems theory is rich with concepts that may be transferable to un-213

derstand potential tipping points in the carbon cycle if they can be adequately constrained by214

observations, similar to what has been done to study transitions between stable system states215

or attractors in ecology and population dynamics94, 95.216

Outlook217

To discover, test, and refine the powerful theories for land climate advocated for in this perspective,218

and to maximise benefits for the wider climate community, technical tools and scientific talent are219

needed. On the tools side, we have at our disposal a range of models spanning idealised96 to state-220

of-the-art ESMs33, alongside the emerging generation of ‘global storm resolving’ models22 and221

flexible, process-based hydrologic models97. This model hierarchy is well positioned for building222

new understanding of land climate. However, a lack of observations presents a major challenge98:223

Despite recent progress, for example in remote sensing of surface soil moisture99, we simply do224

not have long-term datasets with wide spatial coverage for many important land-climate quantities,225

including root-zone soil moisture and ET. Thus, to parallel the development of models and efforts226
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to construct theories for land climate, new instrumental observations of essential land surface fluxes227

and reservoirs are required. Opportunities to further leverage existing observational datasets, with228

the goal of improving models and testing theories, should also be exploited. Beyond observational229

uncertainty, whenever we ground new theory in observations we also have to contend with the230

complicating influence of internal climate variability. Separating the forced response from internal231

variability at regional scales is still challenging and can harbour surprises that can influence our232

theories100. Empirical-statistical methods to isolate the forced response, and new theory on internal233

variability itself, will thus need to accompany our endeavour to refine understanding of land climate234

and its changes with warming.235

On the talent side, to tackle the important questions in land-climate science we need to con-236

tinually inspire, recruit, and resource diverse cohorts of researchers from a range of primary disci-237

plines spanning atmospheric science, hydrology, ecology, physics, mathematics, computer science,238

and beyond. Engaging scientists from the broader climate community—those working primar-239

ily on atmospheric dynamics, for example—also has the potential to bring new ideas and drive240

progress in land-climate science. Through this perspective, alongside a series of workshops and241

summer schools we aim to coordinate over coming years, our goal is to engage these current and242

future generations of researchers—as well as major funding bodies and established land-focused243

research initiatives—in our vision to place theory at the core of land-climate science.244

State-of-the-art models, observational systems, and machine learning are transforming our245

ability to simulate, monitor, and emulate many aspects of land climate. But our scientific under-246
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standing has not kept pace, and we now lack robust theories to comprehend the rich complexity247

being revealed by these advanced tools. Now is the time to change course and underpin models,248

observations, and machine-learning techniques with new theories so that we maintain and advance249

the deep, mechanistic understanding of land climate needed to meet the challenges of an uncertain250

future.251
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