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Figure 1: We present a method for generating gestures from speech using LLAMAZ2 features derived from text as the primary input, producing
temporally aligned and contextually accurate gesture animation. This sequence generated from our method shows a speaker mimicking the
use of a fork with their right hand while describing eating crab.

Abstract

Co-speech gesturing is an important modality in conversation, providing context and social cues. In character animation,
appropriate and synchronised gestures add realism, and can make interactive agents more engaging. Historically, methods for
automatically generating gestures were predominantly audio-driven, exploiting the prosodic and speech-related content that is
encoded in the audio signal. In this paper we instead experiment with using Large-Language Model (LLM) features for gesture
generation that are extracted from text using LLAMA2. We compare against audio features, and explore combining the two
modalities in both objective tests and a user study. Surprisingly, our results show that LLAMA?2 features on their own perform
significantly better than audio features and that including both modalities yields no significant difference to using LLAMA2
features in isolation. We demonstrate that the LLAMAZ2 based model can generate both beat and semantic gestures without any
audio input, suggesting LLMs can provide rich encodings that are well suited for gesture generation.

CCS Concepts

e Computing methodologies — Machine learning algorithms; Animation;

1. Introduction

Co-speech gesturing plays a crucial role in communication, as ges-
tures effectively convey emotions and emphasis and enhance in-
teractions by introducing social and contextual cues. These cues
contribute to increased understanding, improved turn-taking, and
enhanced listener feedback [Ken94,McN85,SK94,DRBD12]. Ges-
tures have been found to influence w hat a listener h e ars [BP21],
emphasising the importance of accurately depicting body motion
during speech in applications such as video production, video
games, avatars, virtual agents, and robotics. The ability to automat-
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ically produce realistic gestures from speech has broad applications
in these areas.

There is a co-dependency between speech and gesture, where
gesture production is a complex function of the speech content, se-
mantics and prosody. For instance, beat gestures synchronise with
the timing of the speech audio dynamics, while iconic gestures con-
vey the shape of the discussed topic [BP21]. Current research often
focuses on speech-to-gesture generation using audio features as the
primary modality. While audio features are effective in encoding
prosody, they may not capture semantics as well. Conversely, text
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features capture the content, but may lack prosodic information. It
becomes apparent that a combination of features may yield optimal
results.

Large-Language Models (LLMs) are exposed to large natu-
ral language corpora, making them exceptional in language and
content understanding. In this paper we explore the integration
of LLM embeddings into a gesture generation model to improve
the semantic accuracy of co-speech gestures. We experiment with
methodologies for combining LLM embeddings with audio fea-
tures, and report the objective and perceptual performance to de-
termine the contribution of each feature. Surprisingly, our results
show that LLM features on their own perform significantly bet-
ter than audio features, and no significant difference is recorded
when these two modalities are used in combination. Our ap-
proach, called LLAniMAtion, utilises LLAMA2 language embed-
dings [TMS*23] and optionally combines them with Problem Ag-
nostic Speech Encoding (PASE+) audio features [RZP*20] in a
Transformer-XL architecture [WMMT23]. We show that our LLM-
based LLAniMAtion produces gestures that exhibit varied motions,
capturing both beat and semantic gestures. Our key contributions
can be summarised as follows:

e We are one of the first to integrate LLM features into a gesture
animation model.

e We evaluate the performance impact of using LLAMA?2 features
in combination with audio features and in isolation.

e We demonstrate that LLM features contribute more to the per-
ceived quality of the resulting gesture animations than audio fea-
tures.

2. Related Work

Deep learning approaches to speech-driven gesture generation have
historically relied on audio features as their primary input. While
text-based features have gained momentum in recent research, the
utilisation of LLM features remains limited. We review features
used in gesture generation and on LLM models used in gesture and
related fields.

2.1. Speech Features for Gesture Generation

Gesture generation systems widely adopt audio-based features. In
the review by Nyatsanga et al. [NKA*23] out of 40 methods re-
viewed, 35 used audio as an input feature. In contrast, only 17
methods involved text as an input. Audio features can be embed-
ded using various methods. Perhaps most common is the use of
Mel-frequency Cepstral Coefficient (MFCC) [HKS* 18, AHKB20,
QTZ*21,HES*22, PKJS20, ANBH23], sometimes combined with
other prosodic features such as pitch (F0) and energy [KHH*19].
Other latent representations such as Wav2Vec 2.0 [BZMA20] and
PASE+ [RZP*20] have grown in popularity as these can also ef-
fectively encode important speech-related information as well as
prosodic features [WGT22, WMMT23,NRB*24], while improving
speaker independence of the representation. Audio features are ad-
vantageous with regard to beat gesture performance as these have a
close relationship to prosodic activity, such as acoustic energy and
pitch [WTGM22, PHEGD20].

Numerous approaches leverage a combination of both audio and

text features, with different methods for incorporating textual in-
formation. Word rhythm was used by [ZBC22] where words are
encoded in a binary fashion, taking the value 1 if a word is spo-
ken and O if not. Other works, such as those by Windle et al.
[WGT22, WMMT23] and Yoon et al. [YCL*20] integrate Fast-
Text embeddings and [BGIM17] which extend the Word2Vec ap-
proach [worl3] exploiting sub-word information. BERT [DCLT 18]
features have been successfully used in conjunction with audio
in the work of Ao et al. [AGL*22]. BERT, originally designed
for language modelling and next-sentence prediction, is composed
of transformer encoder layers. Kucherenko et al. [KNN*21] also
found that it is possible to predict gesture properties related to se-
mantic gesture meaning from FastText embeddings alone, but not
from prosodic audio features alone. On the other hand, rhythm-
related gesture properties are better predicted from audio features
than text.

Using text as the exclusive input for gesture generation is in-
frequent, and performance is often limited when used. Yoon et al.
[YKJ*19] and Bhattacharya et al. [BRB*21] employ GloVe word
embedding vectors [PSM14] to facilitate gesture generation.

Despite the recognised advantages of text-based features, to the
best of our knowledge, LLMs have not been used in the context
of gesture generation, whether in isolation or in combination with
audio inputs. This highlights a gap in the current research landscape
that we aim to explore in this paper.

2.2. Large Language Models

Given the close relationship between language and gesture, the re-
cent advances in LLM performance present a promising avenue for
advancing gesture generation. We provide a brief overview of LLM
approaches and refer the reader to Yang et al. [YJT*23] for a com-
prehensive review.

LLM approaches fall into two categories: Encoder-Decoder/ En-
coder only and Decoder only, often referred to as Bidirectional
Encoder Representations from Transformers (BERT) [DCLT18]
and Generative Pre-trained Transformer (GPT) style, respectively.
These models typically exhibit a task-agnostic architecture. Our
primary focus in this work is on GPT-style models, which currently
stand as leaders in LLM performance. GPT models typically con-
sist of multiple Transformer [VSP*17] layers followed by a linear
layer, which is referred to as the head layer. The transformer lay-
ers effectively encode a sequence into a latent embedding and the
linear head is trained to perform a specific task, such as sequence
generation or classification, using these latent values.

Numerous GPT-style models have been introduced, and among
them, GPT-4 from Open Al [OA*23] has emerged as a top per-
former across various language-based tasks. However, GPT-4 is
a closed-source solution. The leading open-source alternative is
currently LLAMA2 [TMS*23], which surpasses other open-source
LLMs in tasks related to commonsense reasoning, world knowl-
edge, and reading comprehension.

LLMs have begun to garner attention in gesture-based tasks. For
instance, Hensel et al. [HYT*23] uses ChatGPT [OA*23] for the
selection and analysis of gestures, while Zeng et al. [ZWZ*23] uses
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ChatGPT to analyse and comprehend performed gestures. To the
best of our knowledge, there are no established methods for gener-
ating gestures directly from LLMs.

3. Method

In our exploration of using LLMs as a primary feature
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for co-speech gesture generation, we introduce LLAniMAtion.
LLAniMAtion utilises LLAMA?2 text embeddings, which can be
used as an independent feature or in conjunction with PASE+
[RZP*20] audio features. We are one of the first to integrate
a LLM in this way. The generative model is based on the
adapted Transformer-XL. architecture proposed by Windle et al.
[WMMT?23].

3.1. Speech Features

Our method can leverage both audio and text-based features. Each
modality has differing sample rates, with audio sample values up-
dating at a faster pace than text tokens. We extract features at their
original sample rates and align them to fit the timing of a motion
frame at 30fps. We use N to represent the number of ~33ms mo-
tion frames in an input sequence. The PASE+ and LLAMA2 model
weights are frozen and not updated during training.

3.1.1. Audio

Audio features are extracted using the PASE+ model as these have
been proven effective for gesture generation [WTGM22, WGT?22,
WMMT23]. PASE+ was trained by solving 12 regression tasks to
learn important speech characteristics using a multi-task learning
approach. These tasks include estimating MFCCs, FBANKs and
other speech-related information, including prosody and speech
content. Using this model, we extract audio feature embeddings
of size 768 for each 33ms audio window to align with the 30fps
motion. Consequently, audio feature vectors, A, with a shape of
(N,768) are generated for each audio clip.

3.1.2. Text

Word-level features are extracted using the pre-trained, 7-billion
parameter LLAMA2 model [TMS*23]. LLAMA?2 adopts a Trans-
former architecture and has been trained on a corpus of 2 trillion
tokens sourced from publicly available materials.

For each speech sequence, a transcript of the audio clip is to-
kenised and processed by the LLAMA2 model. We extract a se-
quence of embeddings using the transformer layers of the LLAMA2
model. The tokenised input is fed to the model and passed for-
ward through all transformer layers but is not fed through any task-
specific linear head. Therefore, an associated latent vector is ex-
tracted from the output of the last transformer layer for each word
in the utterance and these are used as our text embedding. We per-
form a frame-wise alignment to ensure each embedding synchro-
nises with its corresponding motion frame timing at 30fps. The
process generates text-embedding vectors T of shape (N,4096).

Alignment is achieved by repeating text embeddings as needed
to synchronise with the audio timing. This is an automated process
using the transcript timings provided in the dataset; however, these
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Figure 2: Extracting text features using LLAMAZ2. The text is BPE-
tokenised, and a LLAMAZ2 embedding is computed for each token.
These embeddings are aligned with audio at 30fps by repeating
frames as necessary.

timings could be extracted using automatic speech-to-text tran-
script methods such as OpenAl Whisper [RKX*23]. In instances
where a word spans multiple frames, the vector is duplicated for
the corresponding number of frames, and a zero-value vector is
employed when no word is spoken at a specific frame. Figure 2
provides an overview of the alignment process.

The input utterance is tokenised using a Byte-Pair Encoding
(BPE) method, meaning a single word may be broken into mul-
tiple constituent parts. For example, the word “thinking” will be
divided into two tokens, “think” and “ing”. In such cases, only the
embedding for the last token is retained, and the embeddings for
the preceding parts are discarded. For example, the embedding as-
sociated with “ing” is used rather than “think”. This is common
practice when using LLMs as the final embedding is expected to
encapsulate information about preceding tokens.

3.1.3. Speaker style

For each utterance, a speaker label is additionally provided as input.
This is a unique ID per speaker which is passed through a learned
embedding layer. The trainable weights of this layer ensure that
speakers with similar gesture styles are positioned closely in the la-
tent embedding space, while speakers with distinct gesturing styles
are situated further apart. We use an 8-dimensional embedding to
generate speaker vectors S with a shape of (N, 8).

3.2. Body Pose Representation

The body pose at time 7 is defined as:

Yn = [x”hynvznarjd,rh "'7rj,6.N] (D

where x, y, z denote the global skeleton position and r; .6, form ro-
tations for each joint j in the 6D rotation representation presented
by Zhou et al. [ZBL*19]. These values are standardised by sub-
tracting the mean and dividing by the standard deviation computed
from the training data.

3.3. Model Architecture

In this study, our primary objective is to evaluate the impact of
LLM features on the animation of co-speech gestures. To accu-
rately measure this effect, we employ an established model and
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training method. Specifically, we adopt a model based on the
Cross-Attentive Transformer-XL, which demonstrated effective-
ness in the Generation and Evaluation of Non-verbal Behaviour
for Embodied Agent (GENEA) challenge 2023 [WMMT23].
This approach is built on the Transformer-XL model architecture
[DYY™19] which uses segment-level recurrence with state reuse
and a learned positional encoding scheme to ensure temporally co-
hesive boundaries between segments. Windle et al. extend this ar-
chitecture using cross-attention to incorporate the second speaker’s
speech into the prediction when used in a dyadic setting. Notably,
this architecture delivers high-quality results without the need for
more involved training techniques such as diffusion.

Either a single modality or a combination of features are used to
form the input feature vectors X € {X4,X;,X+,Xx }. Please refer
to Section 4.2 for more details on the construction of this matrix.
We train our model on dyadic conversation between a main-agent
and interlocutor. Specifically, we predict the main-agent’s gestur-
ing conditioned on both main-agent and interlocutor speech. Con-
sequently, we compute a set of input features for each speaker, X"
and X", and a set of target poses for the main-agent, Y. These ex-
tracted features are segmented into non-overlapping segments of
length W frames.

Given an input feature vector X of length W, the Transformer-
XL predicts ¥ of length W using a sliding window technique with
no overlap. Consequently, for a speech sequence of length N, our
model is invoked [%] times. Figure 3 shows an overview of this
approach.

3.4. Training Procedure

We follow the same training methodology as in Windle et al.
[WMMT23] and include the same geometric and temporal con-
straints in the loss function. The loss function L. comprises mul-
tiple terms including a L; loss on the rotations (L), positions (Lp),
velocity (Ly), acceleration (L) and kinetic energy (L,2) of each
joint.

All training parameters were kept the same as in Windle et al.
However, an additional two self-attention layers were included in
the Cross Attentive Transformer-XL. These additional layers were
chosen based on validation loss values and the quality of the pre-
dicted validation sequences, as observed by our team. We train our
models for 1300 epochs using the AdamW optimiser [LH17].

3.5. Smoothing

The raw model output can contain low levels of high-frequency
noise. Following other work on motion synthesis [ZJGL23,
ZBC22], we apply a Savitzky-Golay Smoothing filter to mitigate
this. We use a window length of 9 and polynomial order of 2. The
small window size and low polynomial means this filter provides a
very small amount of localised smoothing while retaining accurate
beat gestures.

4. Experimental Setup

Four distinct models are trained, each with a different set of
features: 1) PASE+: An audio-only model, 2) LLAniMAtion: A

Main-Agent Speech Interlocutor Speech

"l am thinking of" Speaker ID w " Speaker ID w
| | | | | L
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Figure 3: Overview of LLAniMAtion method. Our model takes
LLAMA?Z features as input, along with a speaker embedding and
optional PASE+ features that encode the speech of a main-agent
and an interlocutor. The features are combined and processed
through a cross-attentive Transformer-XL model that produces ges-
ture animation for the main-agent.

LLAMA2 text-only model, 3) LLAniMAtion-+: A LLAMA2 and
PASE+ concatenated model and 4) LLAniMAtion-x: A LLAMA2
and PASE+ cross-attention model. In this section we describe our
data and details on the model configurations.

4.1. Data

The data used in this study is from the GENEA challenge 2023
[KNY*23]. This dataset is derived from the Talking With Hands
dataset [LDM™19], containing dyadic conversations between a
main-agent and interlocutor. It comprises high-quality 30fps mo-
tion capture data in Biovision Hierarchical (BVH) format. The
dataset includes both speech audio and text transcripts derived from
both speakers in the conversations.

The dataset is divided into three splits: 1) train, 2) validation,
and 3) test. The validation set is employed for model tuning and
refinement, while the test set is exclusively reserved for evaluation.

4.2. Feature Combinations

Our experiments use audio and text modalities in isolation and ad-
ditionally investigate two approaches for combining the two modal-
ities: 1) post-extraction concatenation and 2) cross-attention, re-
spectively referred to as LLAniMAtion-+ and LLAniMAtion- X.
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4.2.1. Single Modalities

To use each modality individually, we concatenate the speaker §
matrices with the audio A or text T along the feature dimension
to form X, and X;, respectively. The concatenated matrix is then
passed through a linear layer, giving:

Xa=Wa(A,S) +bg

(2)
X =Wi(T,S) "

+ by

where Wy, Wr, bs and by are learned parameters. X, and X; are used
as inputs for training the single modality audio and text-based mod-
els respectively.

4.2.2. Concatenation

To combine modalities we concatenate A, 7 and S matrices along
the feature dimension. The concatenated matrix is then passed
through a linear layer, giving:

Xy =W(A,T,S)" +b 3)

where W and b are learned parameters. This results in X+ which
are the concatenated audio and text features and serve as the input
to LLAniMAtion-+-.

4.2.3. Cross-attention

Additionally, we experiment with using cross-attention for combin-
ing audio and text features. Cross-attention has been shown to be
an effective method of combining modalities, as evidenced in Ng et
al. [NRB*24]. In this approach, we first concatenate the style em-
bedding to both audio and text features. We then linearly project the
two concatenated matrices into the same feature dimension size, d,
following Equation 2. We perform cross-attention on the feature
dimension, such that the projected audio features, X4, serve as the
query, while the projected text features, X; are set as the key and
value [VSP*17]:

XaX,"
Xy = softmax( =L)X, “)

Vd

giving the cross attention combined audio and text features X
which are used as input for training LLAniMAtion- x.

5. Evaluation

We present an evaluation into the efficacy of LLAMA2 features
for gesture generation, in isolation and in combination with audio
PASE+ features. We present our observations and report the asso-
ciated performance metrics. Finally, we describe a user study that
measures the differences in perceived quality.

5.1. Observations

We observe noticeable differences between the animation pro-
duced by the PASE+-based model and the LLAniMAtion method.
The PASE+ version primarily generates beat gestures, whereas the
LLAniMAtion model exhibits more varied motions, encompassing
both beat and semantic gestures. The animation from LLAniMAtion
appears to be more expansive and confident. Video examples and
comparisons showing this effect can be seen in the supplementary
material.

© 2024 The Author(s).
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5.1.1. Beat Gestures

Beat gestures are characterised by simple and fast movements
of the hands, serving to emphasise prominent aspects of the
speech [BP21]. These gestures have a close relationship with the
timing of prosodic activity, such as acoustic energy and pitch
[WTGM22, PHEGD20]. Given that these prosodic features can be
directly derived from the audio signal, an audio-based model can
be very effective at generating beat gestures. A beat gesture is not
necessarily expected for every audio beat, but when performed, it
is likely to be well-timed with the audio beats.

Using the motion and audio beat extraction method defined in
the beat align score calculation proposed by Liu et al. [LZI*22],
we can visualise the onset of audio beats and motion gestures over
time. Remarkably, we observed that LLAniMAtion with LLAMA2
and no audio features consistently executes beat gestures in syn-
chronisation with audio beats, despite lacking explicit energy or
pitch information. Figure 4 shows a 1.5-second clip with the left
wrist motion onsets in green and audio beat onsets in red. A speaker
can be seen swiftly moving their left hand from left to right in time
with audio beats and returning close to their original pose.

Although we temporally align the LLAMA?2 embeddings provid-
ing the model with awareness of word timings, there is no explicit
knowledge of syllable-level timing. Further investigation is needed;
however, it is plausible that training with LLAMA2 embeddings
may effectively encode information regarding the presence of lexi-
cally stressed syllables in context within words.

5.1.2. Semantic gestures

Semantic gestures are often directly linked to speech content, such
as mimicking an action or nodding the head in agreement. In our
observations, the LLAniMAtion method demonstrated superior per-
formance compared to the audio PASE+-based model in generating
these types of gestures.

In a test sequence where a speaker is describing the act of eat-
ing a crab, the LLAniMAtion gestures exhibit more activity com-
pared to the PASE+ version, particularly when the speaker uses
their hands to illustrate actions. This is exemplified when the hands
mimicked sticking a fork in a crab for consumption in time with the
verbal description. This sequence can be seen in Figure 1 and the
supplementary video.

LLAniMAtion demonstrates the capacity to adequately encode
agreeableness. For example, Figure 5 shows a predicted test se-
quence where the speaker can be seen nodding along with the word
yes.

5.1.3. Laughter

During the transcription process of the GENEA dataset, laughter
without speech was denoted using “###”. This representation was
directly input to the LLAMA2 model for feature extraction. Al-
though the generated embedding would not encode any semantic
meaning, our model learns to associate these tokens to laughter. The
LLAniMAtion method captures moments of laughter as illustrated
in Figure 6, where the character partially creases over. This specific
behaviour is not observed in the gesture animation produced by the
PASE+-based model .
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—— Onset strength —— Audio onsets ~—— Motion onsets

Figure 4: Generated gestures for given audio beats using
LLAniMAtion method. Using a 1.5s audio clip from the test dataset,
we show the audio spectrogram, as well as aligned audio beat on-
sets and their corresponding onset strengths, as well as motion ges-
ture onset detection of the left wrist using the method of beat detec-
tion defined in Liu et al. [LZI*22]. The speaker moves their left
hand from right to left and back again as the syllables are stressed.

Figure 5: Example nod motion temporally aligned with the word
“ves” being spoken. from a test sequence generated using the
LLAniMAtion

5.2. Performance Metrics

Evaluating the objective performance of gesture generation poses
a challenging research question, primarily due to the many-to-
many ambiguous relationship between speech and gesture. No sin-
gle metric has been developed that correlates with human per-
ception. However a combination of metrics can be used as a
means to somewhat evaluate the quality of generated gesture.
Frechet Gesture Distance (FGD) [YCL*20, BCRM21, NRB*24],
Fréchet Kinetic Distance (FD;) [NRB*24] and Beat Alignment
(BA) [LYRK21, LZI*22] are useful metrics for this task. These
metrics are indicative of static and dynamic appropriateness, and
the alignment of motion to speech [ANBH23, LZI*22, YCL*20].
Frechet Gesture Distance is a measure based on the Frechet In-
ception Distance (FID) [HRU*17], which is commonly used for
evaluating generative models. A pre-trained autoencoder extracts
domain-specific latent features from both ground truth and pre-

Figure 6: Example laughter sequence generated using the
LLAniMAtion method

Model | FGD| FDy| BA?t
PASE+ 7990 3437 0.871
LLAniMAtion 61.86 2423  0.855

LLAniMAtion-+ 47.56 23.79 0.869
LLAniMAtion-x 66.87 2570  0.865

Table 1: Frechet Gesture Distance (FGD) , Frechet Kinetic Dis-
tance (FDy) and Beat Alignment (BA) scores for each system cal-
culated with respect to the ground truth test dataset.

dicted motion. The FGD score is a Fréchet distance between the
two multivariate Gaussian distributions of these features in latent
space. This measures similarity between the generated and ground
truth poses but does not necessarily indicate how well the generated
examples temporally align with the audio.

Frechet Kinetic Distance is similar, however, there is no auto-
encoding process. Instead, the first derivative of each joint is used
to determine the distribution of velocities for both the ground truth
and predicted motion. FD; is the Frechet Distance between these
two distributions.

Beat Alignment has been adapted from music synthesis
[LYRK21] to work with gesture generation [LZI*22]. Using a
chamfer distance between audio and gesture beats, this gives a syn-
chrony measure between the two. Beats are detected using the root
mean square onset of the audio and a motion beat is identified by
the local minimums of the velocity.

5.2.1. Results

The measures presented in Table 1 indicate that the FGD and FD;,
scores are consistently lower for all LLAMA2-based models than
for the model trained on PASE+ features. This suggests that the mo-
tion generated by LLAniMAtion may be closer to ground truth, with
LLAniMAtion-+ showing the most realistic motion. The BA score
suggests that the audio features are the most timely, however, the
differences between this and the LLAniMAtion methods are mini-
mal. Notably, the method with no audio features is competitive in
FGD and BA scores.

© 2024 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.
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5.3. User Study

We present a user study to further evaluate perceived human like-
ness and appropriateness of the animations from the PASE+-based
model compared with the LLAMA2-based LLAniMAtion method.
Participants were hired through the Prolific platform with 50 par-
ticipants in each experiment after removing any participants that
failed attention checks. Participants were filtered to be fluent in En-
glish. For this study, we used a similar methodology to Alexander-
son et al. [ANBH23] and the GENEA Challenge 2023 [KNY *23].

All test sequences for each method were rendered on the same
virtual avatar released by Kucherenko et al. [KNY*23], as shown
in Figure 1. We use the exact clip timings from the GENEA Chal-
lenge, comprising 41 clips with an average duration of 10 seconds
each. During evaluation, users exclusively heard the audio of the
main-agent being animated.

In our pairwise system comparison, participants were presented
with two side-by-side videos generated for the same audio but with
different systems. To mitigate bias, we randomise the question or-
der and randomly swap the side of the screen that each condition is
shown.

The question for all studies was posed as “Which character’s mo-
tion do you prefer, taking into account both how natural-looking
the motion is and how well it matches the speech rhythm and in-
tonation?”. The participants were asked to choose from the options
{Clear preference for left, Slight preference for left, No Prefer-
ence, Slight preference for right and Clear preference for right}.
The scoring methodology uses a merit system [PHS05] where an
answer is given a value of 2, 1 or 0 for clear preference, slight pref-
erence and no preference, respectively. Preference testing allows
a win rate calculation where a win is assigned when there is an
identified preference for a system, not including ties. A one-way
ANOVA test with a post-hoc Tukey test was subsequently used for
significance testing.

5.3.1. Results

Table 2 summarises the results of the user study. These findings val-
idate the objective measure scores in that all LLAniMAtion-based
models outperform the PASE+ audio-only method. According to
the merit score, all LLAniMAtion methods were significantly pre-
ferred over the PASE+ approach (p < 0.001). Win and tie rates
show that LLAniMAtion methods win or are tied with PASE+ most
of the time. Surprisingly, the highest win rate is recorded by the
LLAniMAtion method with no PASE+ features included, suggest-
ing that using text as a sole input is sufficient to generate plausible
speech gesturing, and that audio features are somewhat redundant
in our model

Between each LLAniMAtion method, there is no statistically sig-
nificant difference in merit scores. We examine the win and tie rates
against LLAniMAtion to determine if adding PASE+ features will
provide additional preference. We can see from these rates that
the choice between LLAniMAtion settings is almost tied to wins
and losses. LLAniMAtion-+ wins 1.9% less than LLAniMAtion-
x; however, the tie rate is higher and therefore loses less than
LLAniMAtion-X.

This initial study concludes that LLAMA?2 features are powerful

© 2024 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

at encoding information useful to gesture generation and can pro-
duce more realistic-looking gestures than a model trained on audio
input. Combining modalities also does not make a significant dif-
ference, although the concatenation of features performs slightly
better than the cross-attention regarding merit scores and win/tie
rates.

6. Comparison Against Other Systems

Our previous study has shown that we achieve a significant per-
formance improvement achieved by integrating LLM features
into gesture-generation models. We now perform additional ex-
periments to compare our best performing LLAniMAtion and
LLAniMAtion-+ approaches against both ground truth and the cur-
rent state-of-the-art method. This broader evaluation aims to assess
performance across the field.

We compare against the state-of-the-art Contrastive Speech and
Motion Pretraining Diffusion (CSMP-Diff) method [DMAB23],
which achieved the highest human-likeness and speech appropri-
ateness rating among the entries to the 2023 GENEA challenge.

Objective performance metrics are shown in Table 4. CSMP-Diff
performs better in FGD and FD;, scores. We find minimal differ-
ences to the BA score, with LLAniMAtion marginally outperform-
ing CSMP-Dift.

We repeated the user study following the protocol as described
Section 5.3, and the results are summarised in Table 3. In terms
of merit score, the ground truth was perceived as significantly
better than any other method (p < 0.001), underscoring the cur-
rent challenge in consistently generating human-realistic gesturing.
CSMP-Diff was considered superior to both LLAniMAtion methods
(p < 0.001). Despite this difference, when examining the win rates
against CSMP-Diff, we find that the LLAniMAtion method wins
31.4% of the time and ties 16.1%. Meanwhile, our LLAniMAtion-
+ method won 35.6% of the time and ties 14.4%. In each case,
LLAniMAtion and LLAniMAtion-+ are rated as good or better than
CSMP-Diff 47.5% and 50% of the time, respectively.

CSMP-Diff incorporates both diffusion and contrastive speech
and motion pre-training, representing two advanced and complex
techniques. Despite these sophisticated methods, our evidence indi-
cates that LLAniMAtion, even in the absence of any audio input, can
perform as well as or better than CSMP-Diff nearly half the time.
This suggests that LLAMA?2 features serve as incredibly valuable
feature encodings for gesture animation. Simpler models that use
more descriptive features may be beneficial, even if performance
does not exceed the state-of-the-art but remains competitive. Train-
ing and inference times may be reduced, and the computational
resources required may be lower when compared to more compli-
cated methods like diffusion. While computational efficiency is not
an aim of this paper, it is worth considering that using valuable,
descriptive features such as LLAMA2 may benefit future efficiency
savings.

7. Conclusion

We have explored the use of LLAMA2 features for speech-to-
gesture generation in our proposed LLAniMAtion method. With the
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vs PASE+ vs LLAniMAtion vs LLAniMAtion-+ vs LLAniMAtion-x
Merit Score | Win Rate  Tie Rate | Win Rate  Tie Rate | Win Rate  Tie Rate | Win Rate  Tie Rate
PASE+ 0.3740.05 - - 25.4% 11.4% 24.6% 14.8% 28.4% 14.8%
LLAniMAtion 0.68+0.06 63.3% 11.4% - 38.6% 22.3% 44.3% 14.8%

LLAniMAtion-+
LLAniMAtion- X

0.69+0.06 61.0% 14.8% 39.0%
0.64£0.06 56.8% 14.8% 40.9%

22.3% - - 43.2% 20.8%
14.8% 36.0% 20.8% - -

Table 2: User study results comparing modality inclusion. Merit scores [PHS05] with 95% confidence intervals, win and tie rates for each

comparison.
vs GT vs LLAniMAtion vs LLAniMAtion-+ vs CSMP-Diff
Merit Score | Win Rate  Tie Rate | Win Rate  Tie Rate | Win Rate  Tie Rate | Win Rate  Tie Rate
GT 1.16+0.05 - - 78.6% 8.9% 74.8% 8.9% 68.9% 11.1%
" LLAniMAtion | 0.34+0.04 | 125%  89% | - ST 342% T 33.6% | 314% 0 16.1%
LLAniMAtion-+ | 0.36+0.04 16.4% 8.9% 32.2% 33.6% - - 35.6% 14.4%
CSMP-Diff 0.58+0.05 20% 11.1% 52.5% 16.1% 50.0% 14.4% - -

Table 3: User study results comparing LLAniMAtion against CSMP-Diff and Ground Truth. Merit scores [PHS05] with 95% confidence

intervals, win and tie rates for each comparison.

Model | FGD| FD,] BAtT

LLAniMAtion 61.86 24.23 0.855
LLAniMAtion-+ | 47.56 2379  0.869
CSMP-Diff 30.620 12.61 0.866

Table 4: Fréchet Gesture Distance (FGD) [YCL*20], Fréchet Ki-
netic Distance (FDy) and Beat Alignment (BA) [LZI" 22] scores for
each system calculated with respect to the ground truth test dataset.

use of LLAMA?2 features we were able to generate well timed and
contextually rich gestures even without the inclusion of any au-
dio feature embedding. We explored the use of combining both au-
dio and text modalities through concatenation and cross-attention
and found that there was no significant difference in the inclusion
of PASE+ features when compared to using LLAMA?2 features in
isolation. We have demonstrated the performance improvements
when incorporating the LLAMA?2 features into a gesture-generation
model through both objective and subjective measures. Given this
finding, we believe that human speech related gesture animation
is heavily related to the semantic encoding that is present in the
LLAMA2 embeddings, and that these embeddings additionally cap-
ture a notion of prosody from the language context. This is a some-
what surprising finding, and a result we think can have great prac-
tical impact on future content-aware animation systems.

We additionally compared our LLAniMAtion approach to ground
truth as well as the state-of-the-art CSMP-Diff approach. The eval-
vation revealed that both LLAniMAtion and CSMP-Diff have ar-
eas where improvement is possible as they are unmatched against
ground truth. While CSMP-Diff remains state-of-the-art, it is a
complex model and our simpler alternative was rated as good or
better than it 50% of the time. We predict that integrating LLM
features into state-of-the-art systems will be a step towards bridg-
ing the gap between machine-generated and natural gesturing.

7.1. Future Work

While we show that the use of LLM features can be powerful for
generating contextually and semantically correct gestures, more
work is required to get performance closer to the ground truth. We
use the 7-billion parameter release of LLAMA?2 in this work due
to hardware constraints. With more resources, the larger 70-billion
parameter could be utilised, which may produce more nuanced and
varied gesturing. We do not fine-tune the LLAMA2 model for our
domain. LLMs are known to perform well with prompting and in-
context learning [YJT*23] to fine-tune the model. We therefore
foresee many opportunities for further performance gain.

This experiment explores speech during a natural, dyadic con-
versation. This is not scripted or acted for a particular affective
state where the emotion of the speech may alter how the speaker
moves. Human communication has nuance regarding the tone of
someone’s voice, influencing how an utterance should be inter-
preted, which may also affect the speaker’s movements. The dataset
used here does not include particular affective state labelling or
an exceptionally diverse set of affective states; however, more
work could be done to explore how well LLM features may han-
dle these nuanced moments where speaker tone may modify the
meaning of a phrase. We predict this may be where including
both prosodic and semantic features may be the optimal solu-
tion.
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