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Abstract
Ecologists have historically quantified fundamental biodiversity patterns, including 
species-area relationships (SARs) and beta diversity, using observed species counts. 
However, imperfect detection may often bias derived community metrics and subse-
quent community models. Although several statistical methods claim to correct for 
imperfect detection, their performance in species-area and β-diversity research re-
mains unproven. We examine inaccuracies in the estimation of SARs and β-diversity 
parameters that emerge from imperfect detection, and whether such errors can be 
mitigated using a non-parametric diversity estimator (iNEXT.3D) and Multi-Species 
Occupancy Models (MSOMs). We simulated 28,350 sampling regimes of 2835 frag-
mented communities, varying the mean and standard deviation of species detection 
probabilities, and the number of sampling repetitions. We then quantified the bias, 
accuracy, and precision of derived estimates of model coefficients for SARs and the 
effects of patch area on β-diversity (pairwise Sørensen similarity). Imperfect detec-
tion biased estimates of all evaluated parameters, particularly when mean detection 
probabilities were low, and there were few sampling repetitions. Observed counts 
consistently underestimated species richness and SAR z-values, and overestimated 
SAR c-values; iNEXT.3D and MSOMs only partially resolved these biases. iNEXT.3D 
provided the best estimates of SAR z-values, although MSOM estimates were gen-
erally comparable. All three methods accurately estimated pairwise Sørensen simi-
larity in most circumstances, but only MSOMs provided unbiased estimates of the 
coefficients of models examining covariate effects on β-diversity. Even when using 
iNEXT.3D or MSOMs, imperfect detection consistently caused biases in SAR co-
efficient estimates, calling into question the robustness of previous SAR studies. 
Furthermore, the inability of observed counts and iNEXT.3D to estimate β-diversity 
model coefficients resulted from a systematic, area-related bias in Sørensen similarity 
estimates. Importantly, MSOMs corrected for these biases in β-diversity assessments, 
even in suboptimal scenarios. Nonetheless, as estimator performance consistently im-
proved with increasing sampling repetitions, the importance of appropriate sampling 
effort cannot be understated.

https://doi.org/10.1002/ece3.70017
http://www.ecolevol.org
mailto:
https://orcid.org/0000-0002-3003-2789
http://creativecommons.org/licenses/by/4.0/
mailto:ciarnoble@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fece3.70017&domain=pdf&date_stamp=2024-07-10


2 of 15  |     NOBLE et al.

1  |  INTRODUC TION

A major aim in ecology centres on identifying relationships between 
the spatial configuration of habitat patches and their biotic assem-
blages (Ewers et al., 2010; MacArthur & Wilson, 1963). Researchers 
have typically addressed this issue via the use of species-area rela-
tionships (henceforth ‘SARs’), used to assess how local species rich-
ness declines with habitat patch area (MacArthur & Wilson, 1963), 
and analyses of species composition (beta-diversity), which provide 
additional insight into how species are distributed throughout dis-
turbed landscapes (Banks-Leite et  al., 2012; Socolar et  al.,  2016). 
Historically, estimates of both species richness and β-diversity in-
dices have been derived from observed species counts (Dorazio 
et al., 2010; MacKenzie & Royle, 2005). However, observed counts 
usually represent only a subset of the true community (Colwell 
et al., 2004), and failure to account for this can lead to significant 
biases in derived community metrics and subsequent community 
models (Gwinn et  al.,  2015; McNew & Handel,  2015). Correcting 
for imperfect detection is thus widely recognized as vital for mak-
ing robust conservation and management decisions within human-
modified landscapes (Banks-Leite et al., 2014; Zipkin et al., 2009). 
However, the importance of correcting for imperfect detection has 
received surprisingly little attention in studies aiming to quantify 
SARs and beta-diversity trends.

Estimating species richness has been a longstanding issue 
(Fisher et al., 1943; Gwinn et al., 2015), and many statistical meth-
ods exist to estimate true richness from observed species counts. 
For instance, the Chao family of non-parametric estimators, includ-
ing the iNEXT.3D programme (Chao et  al., 2021), are widely used 
to estimate asymptotic species richness based on rarefaction and/
or the frequency of rare species within a sample (e.g., Mendenhall 
et al., 2014; Palmeirim et al., 2021), and have also been expanded 
to estimate detection-corrected β-diversity indices (iNEXT.be-
ta3D; Chao et al., 2023). While addressing imperfect detection, the 
Chao/iNEXT.3D estimators do not consider the influence of covari-
ates on species occurrence or detection (MacKenzie et  al.,  2005). 
Hierarchical Multi-Species Occupancy Models (MSOMs; e.g., Jones 
et  al., 2021; Semper-Pascual et  al., 2021) offer an alternative ap-
proach that can explicitly model occurrence and detection probabil-
ities of both observed and unobserved species (Kéry & Royle, 2008; 
Zipkin et  al., 2009). Researchers may then derive asymptotic esti-
mates of species richness and β-diversity from the species-specific 
occurrence estimates (Broms et al., 2015), providing a directly com-
parable alternative to the Chao/iNEXT.3D estimators.

When analysing spatial patterns in biodiversity such as SARs and 
β-diversity relationships, researchers should seek to correct for im-
perfect detection using methods that accurately uncover true vari-
ation in assemblage structure (Iknayan et al., 2014). However, few 
studies have examined how effective currently available techniques 
are for this purpose. Accounting for imperfect detection can dramat-
ically alter insights. For example, Palmeirim et al. (2021) found that 
SAR slopes increased twofold when observed counts were replaced 
with iNEXT (the predecessor to iNEXT.3D; Hsieh et al., 2016) rich-
ness estimates in a community of Amazonian snakes, a group with 
infamously low detection probabilities (Durso et  al.,  2011; Fraga 
et al., 2014). However, statistical estimators, including Chao/iNEXT. 
3D and MSOMs, tend to perform poorly when sample sizes are small 
and species detection probabilities are low (McNew & Handel, 2015; 
Tingley et al., 2020), and it is thus possible that the dramatic changes 
in SAR slopes observed by Palmeirim et al. (2021) represents an ar-
tefact of estimation error (Type I Error), rather than underlying pat-
terns of species richness (Gwinn et al., 2015). Further investigation is 
thus required to determine how sampling effort influences the esti-
mation of biodiversity trends within fragmented landscapes, and the 
circumstances where statistical estimators may be able to reliably 
correct for deficiencies in sampling (Montgomery et al., 2021).

Previous studies have assessed the accuracy of MSOM and 
Chao/iNEXT.3D richness estimates using simulations and subsets 
of exhaustive empirical data, where the true values of community 
properties are known (McNew & Handel, 2015, Tingley et al., 2020). 
However, no previous study has examined the relative performance 
of MSOMs and Chao/iNEXT.3D for SAR estimation. This evaluation 
is urgently needed, as the richness estimates that underpin SARs 
are known to be highly sensitive to species' detection probabilities 
(McNew & Handel, 2015, Tingley et al., 2020), the underlying species 
abundance distribution (Gwinn et al., 2015; Rajakaruna et al., 2016), 
and sampling design (MacKenzie & Royle, 2005).

Imperfect detection has also been recognized as an issue 
in β-diversity analyses (Dorazio et  al.,  2010; Nilsson & Nilsson 
1982, 1983) and frequently used β-diversity indices have pre-
viously been shown to be sensitive to undersampling (Cardoso 
et al., 2009; Roden et al., 2018). Estimating β-diversity in the ab-
sence of complete species catalogues may be even more challeng-
ing than estimating species richness: while richness estimators 
need only estimate the number of species occurring within a single 
assemblage, the estimation of β-diversity requires estimating both 
the number and identity of species in two or more assemblages 
(Barwell et al., 2015; Cardoso et al., 2009). Indeed, via a case study 
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on a long-term butterfly monitoring dataset (Swiss Biodiversity 
Monitoring Program), Dorazio et al. (2010) demonstrated that ob-
served species counts tend to substantially underestimate pair-
wise Jaccard similarity compared to MSOMs. However, to our 
knowledge, there has been no assessment of the comparative 
performance of MSOMs and non-parametric β-diversity estima-
tors (the latter of which are more accessible to most ecologists), 
and there is a need to determine whether the findings of Dorazio 
et al. (2010) are generalizable to other settings, e.g., fragmentation 
ecology.

Here, we use simulations to explore the impacts of imperfect 
detection on typical field study designs for SAR and β-diversity es-
timation. We assess the comparative performance of observed spe-
cies counts, an abundance-based Chao estimator (iNEXT.3D/iNEXT.
beta3D; Chao et  al., 2021, 2023) and MSOMs to estimate patch-
level species richness, the slope and intercept of species-area rela-
tionships (SARs), pairwise β-diversity between each pair of patches, 
and the slope and intercept of the relationship between pairwise 
differences in patch area and pairwise β-diversity. We evaluate the 
sensitivity of estimators to variation in species detectabilities, and 
the sampling design used to assess communities. We then make rec-
ommendations on the relative effectiveness of each estimator and 
consider the circumstances in which it is preferable to use either iN-
EXT.3D, MSOMs, or observed species counts to assess patterns of 
species richness and/or β-diversity.

2  |  METHODS

2.1  |  Community parameters of interest

We defined a novel framework to simulate realistic communities and 
sampling designs that are typically applied in SAR and β-diversity 
research, focusing on biodiversity patterns across fragmented land-
scapes. While MSOMs can only incorporate data on species inci-
dence (i.e., detection/non-detection; Kéry & Royle, 2008), there are 
both incidence and abundance-based versions of iNEXT.3D (Chao 
et  al.,  2021, 2023). We therefore opted to simulate abundance-
based communities and sampling procedures, and then collapse the 
species counts into incidence data for occupancy modelling.

Using our simulated landscape communities, we assessed the 
extent to which imperfect detection causes inaccuracies/biases in 
estimates of a total of six community parameters (i.e., differences 
between the true parameter values and estimates derived from ob-
served species counts), and whether MSOMs and iNEXT.3D can cor-
rect for such errors. Here, we outline the formulae used to calculate 
the true values of each community parameter:

•	 Parameter 1: Patch-level species richness, defined as the number 
of species that occur within each habitat patch p:

where Np,i is a vector containing the true abundance of each spe-
cies i  in patch p.

•	 Parameters 2 and 3: The intercept (c-value) and slope (z-value) of a 
log–log (power) model of the relationship between patch-level spe-
cies richness Sp and patch area Areap (i.e., SAR; Rosenzweig, 1995):

•	 Parameter 4: Pairwise Sørensen similarity between the communi-
ties of each pair of patches:

where A and B are the true species occurrence records for 
patches a and b, respectively.

•	 Parameters 5 and 6: The intercept (�0) and slope (�1) of the rela-
tionship between pairwise Sørensen similarity and the logn(x + 1) 
transformed pairwise difference in patch area ΔAreaa,b:

As the Sørensen similarity index is constrained to values between 
0 and 1, we modelled pairwise β-diversity using a logit link.

As all incidence-based indices of overall compositional sim-
ilarity (e.g., Jaccard, Sørensen) are calculated as a function of 
the species richness of individual sites and the number of spe-
cies shared between sites (Baselga, 2010), estimation accuracy 
should not vary between indices derived from the same dataset. 
We therefore assessed the impact of imperfect detection on β-
diversity estimation using only the pairwise Sørensen similarity 
index (Sørensen, 1948).

2.1.1  |  Simulating fragmented landscape 
communities

Each simulated landscape featured 25 habitat patches of varying 
area, with the smallest and largest patches pre-assigned areas of 25 
and 20,000 Ha, respectively. The areas of the remaining 23 patches 
were drawn from a four-parameter beta distribution:

Here, Areap is the area of patch p, � and � are the shape parameters of 
the four-parameter beta distribution, and min and max are the small-
est and largest possible patch areas, respectively. These parameters 
generated a negative power law relationship between frequency and 
area, as is typical of real-world fragmented tropical forest landscapes 
(Taubert et al., 2018). The generated patch areas also covered ~3.15 
orders of magnitude, encompassing the range typically sampled in 
habitat fragmentation studies (mean ± SD = 2.75 ± 0.08; Watling & 
Donnely, 2006).Sp =

∑[
Np,i > 0

]

logn
(
Sp
)
= c + z × logn

(
Areap

)

Søra,b =
2 |A ∩ B|
|A| + |B|

Logit
(
Søra,b

)
= �0 + �1 × logn

(
ΔAreaa,b + 1

)

Areap ∼ Beta4(� = 1, � = 4,min = 25,max = 20,000)
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We then generated the landscape metacommunity according to 
a log-normal species abundance distribution (mean = 650, SD = 3), 
implemented using the ‘sim_sad’ function of the ‘mobsim’ R package 
(May et al., 2018; R Core Team, 2023). This enabled us to control: 
(1) the number of species and (2) the number of individuals. We set 
the number of simulated species within each landscape to 200. To 
ensure a minimum viable landscape-level population size of each 
species, we first set the number of individuals to equal the total area 
(Ha) of all patches in the landscape, and subsequently multiplied the 
resultant species abundances by 500 to give the final metacommu-
nity. Therefore, the minimum number of individuals of each species 
within a landscape was 500, and overall population density was 500 
individuals per Ha. We assumed population density to be consistent 
throughout each landscape, and the carrying capacity K of each 
patch p was thus:

Next, we generated area responses for each species (�Area,i) using 
draws from species-specific four-parameter beta distributions:

Here, �i is a species-specific value of the first shape parameter �, � 
is the second shape parameter (consistent across species), and min 
and max are the lowest and highest possible values of �Area,i, respec-
tively. For each simulated community, we sequentially generated �i 
for each species across the range 0.1 to �max, in inverse proportion 
to the species' simulated abundances. This meant that species with 
lower landscape-level abundance tended to have area responses of 
greater magnitude, as is apparent in real-world fragmented commu-
nities (Franzén et al., 2012; Keinath et al., 2017). To simulate natural 
variation in the area-related structuring of fragmented communities, 
we varied �max between simulated communities (�max = 4, 8 or 12), 
with greater �max values yielding communities with greater SAR z-
values (i.e., steeper slope). Furthermore, as patch area responses are 
rarely uniformly positive (Jones et al., 2021; Noble et al., 2023), we 
randomly selected 1/8th of the species in each community and mul-
tiplied their area response by −1, thereby yielding a negative area 
response.

Using the generated species area responses, we then determined 
the probability of an individual of each species i  being assigned to 
each patch p, using the functions:

where Wp,i is the assignment weight and �p,i is the assignment proba-
bility (i.e., Wp,i scaled to sum to one). We iteratively assigned species in-
dividuals to patches according to the species' assignment probabilities 
(i.e., weighted random sampling). To ensure a minimum ‘viable’ patch-
level population of each species, individuals were assigned to groups 

of 100. When the population carrying capacity Kp of a patch was 
reached, the patch was removed from the potential assignment pool. 
This yielded communities with realistic power model (log–log) SARs 
(Rosenzweig, 1995; see Figure 1), with the z-values ranging between 
0.137 and 0.345, roughly encompassing the range typically observed 
in real-world landscapes (Matthews et al., 2016).

2.1.2  |  Simulating sampling procedures

To simulate imperfect sampling, we drew individual-level detection 
probabilities for each species �i from community-level hyperparam-
eter distributions:

where � is the mean and � the standard deviation of the detection 
probability hyperparameter for a given landscape community. To in-
vestigate the influence of variation in detection probabilities on SAR 
and β-diversity estimation, we varied � and � among simulated com-
munities (see Table 1).

Fragmentation ecologists usually sample only a spatial subset 
of each habitat patch, and scale sampling effort with patch area 
(Azovsky, 2011, Rybicki & Hanski, 2013). To emulate this, we simu-
lated sampling from a set of 500 m transects within each patch, each 
with a 50-m search radius (i.e., one transect = 5.93 ha). We varied the 
number of transects placed according to patch area so that the total 
area of each patch sampled �p increased roughly proportionally to 
patch size (Appendix S1: Table S1). Then, we calculated the number 
of individuals of each species in each patch that were available for 
sampling np,i as the proportion of all individuals in the patch Np,i pres-
ent within �p, assuming constant within-patch densities and round-
ing to the nearest integer:

Next, we simulated replicate surveys of each patch as a series of 
binomial trials, where the number of individuals X of species s ob-
served in patch p on visit v was determined by their species-specific 
detection probabilities. Thus:

As previous studies have shown that the accuracy of both MSOMs 
and Chao estimators is correlated with sample size (McNew & 
Handel,  2015; Tingley et  al.,  2020), we varied the total number 
of replicate surveys V at each site among simulated communities 
(Table 1).

2.1.3  |  Simulation repetitions

We simulated 10 communities using each possible combination 
of μ (0.005, 0.05, 0.2), σ (0.25, 1.0, 3.0), �max (4, 8, 12), and V (3, 

Kp = Areap × 500

�Area,i ∼Beta4
(
�=�i , � =5,min=0,max=5

)

Wp,i =exp
(
�Area,i× logn

(
Areap

))

�p,i =
Wp,i

∑25

p=1
Wp,i

Logit
(
�i
)
∼N(Logit(�), �)

np,i = Round
(
Np,i × �p

)

Xp,i,v ∼Binomial
(
np,i , �i

)
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    |  5 of 15NOBLE et al.

6, 12) (total possible combinations = 81). To determine the extent 
to which stochastic variation in sampling may affect estimator 
performance (Walther & Moore,  2005), we generated 10 sepa-
rate sampled datasets for each simulated landscape community, 
using the same parameters but different seed values. Therefore, 
we simulated a total of 2835 communities and 28,350 sampled 
datasets (Table 1).

2.2  |  Estimating richness and β -diversity

2.2.1  |  Observed species counts

To quantify the effects of imperfect detection on species richness 
and estimates, we first calculated patch-level species richness and 
pairwise Sørensen similarity based on the observed species counts 

F I G U R E  1 Examples of species-area relationships (SARs) constructed using the true richness values (True) and richness estimates from 
observed species counts (Observed), the abundance-based iNEXT.3D estimator (iNEXT.3D), and Multi-Species Occupancy models (MSOM). 
The results from a single sampling process within a single simulated landscape are shown for each of the nine possible detection scenarios. 
In each depicted instance, six repeat sampling visits were simulated within each patch (V = 6) and the maximum α parameter of the species-
specific area response distributions was set to eight (�max= 8). Scenarios are presented in order of increasing mean (μ; top to bottom) and 
standard deviation (σ; left to right) of the detection probability hyperparameter.
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6 of 15  |     NOBLE et al.

pooled across all sampling repetitions (i.e., using Xp,i in place of the 
true abundance values in the formulae outlined in Section 2.1).

2.2.2  |  iNEXT.3D/ iNEXT.3betaD

We generated iNEXT.3D estimates of patch-level species richness 
and Sørensen similarity using the ‘iNEXT.3D’ and ‘iNEXT.beta3D’ R 
packages, respectively (Chao et al., 2021, 2023, R Core Team, 2023). 
We used the abundance-based versions of iNEXT.3D and iNEXT.
beta3D, and applied these to the observed species counts pooled 
across all sampling repetitions. We took the mean estimated val-
ues as point estimates of richness and Sørensen similarity and used 
these for all further analyses.

2.2.3  | MSOMs

To fit MSOMs, we generated an incidence matrix Yp,i, indicating the 
number of sampling occasions where each species i  was detected in 
each patch p. We augmented the incidence matrix with double the 
number of unobserved species (i.e., all 0 observation records) as ob-
served species (Kéry & Royle, 2008), for a total number of possible 
species M. The model likelihood took the form:

Here, �m is a latent variable indicating whether each species m in the 
augmented dataset was truly present in the overall community; Ω is 
the probability of a species being present in the overall community; 
zp,m is a binary variable indicating whether species m truly occurred 
in patch p; �p,m and �p,m are the estimated occurrence and detection 
probabilities of species m in patch p, respectively; �0,m and �0,m are the 
species-specific occurrence and detection model intercepts, respec-
tively; and �1,m is the species-specific effect of patch area on occur-
rence probability.

We specified a joint-bivariate normal prior for the occurrence 
�0,m and detection �0,m model intercepts (Zipkin et  al.,  2009) and 
drew all species-level parameters from community-level hyperpa-
rameter distributions (Dorazio et al., 2006). We used beta priors (1,1) 
for intercept hyperparameter means, normal priors (0,1) for slope 
hyperparameter means, uniform priors (0,5) for hyperparameter 
variance components, and an approximation of Link's scale prior for 
the community inclusion parameter Ω (Link, 2013).

We fitted MSOMs using the ‘nimble’ R package (de Valpine 
et al., 2017; R Core Team, 2023). Inference was made from 4 chains 
of 50,000 Markov Chain Monte Carlo (MCMC) iterations, each with 
a burn-in of 10,000 and a thinning factor of 20, resulting in a total 
of 8000 MCMC iterations being retained from each model. These 
MCMC parameters were sufficient to achieve acceptable chain con-
vergence in preliminary testing, assessed according to the Gelman-
Rubin Diagnostic, where values of <1.05 were taken to indicate 
proper convergence (Gelman & Rubin, 1992). Full model specifica-
tion is available in Appendix S2.

Using the species occurrence estimates zp,m from each model it-
eration, we then estimated species richness for each patch p:

And Sørensen similarity between each pair of patches (a and b):

We then calculated the posterior mean values of patch-level species 
richness and pairwise Sørensen similarity across all iterations and used 
these as point estimates for all further analyses.

2.3  |  Estimating SARs and effects of area on 
β -diversity

For each simulated dataset, we constructed log–log (power model) 
SARs (Rosenzweig, 1995) using the richness estimates derived from 
observed species counts, and iNEXT.3D and MSOM (i.e., substi-
tuted the richness estimates into the SAR formula in Section 2.1). 
To model the effect of patch area on pairwise β-diversity, we con-
structed a pairwise environmental distance matrix containing the 

�m∼Bernoulli(Ω)

zp,m∼Bernoulli
(
�m×�p,m

)

yp,m∼Binomial
(
V , zp,m×�p,m

)

Logit
(
�p,m

)
=�0,m+�1,m×Areap

Logit
(
�p,m

)
=�0,m

Ŝp =
∑

zp,1:M

Ŝøra,b =
2||za,1:M ∩ zb,1:M

||
||za,1:M|| + ||zb,1:M||

TA B L E  1 The nine detection scenarios were simulated, varying 
the mean (μ) and standard deviation (σ) of the detection probability 
hyperparameter of the sampled communities, from which 
individual-level species detection probabilities were drawn.

Scenario ID
Mean detection 
probability (μ)

Standard deviation of 
detection probability (σ)

S1 0.005 0.25

S2 0.005 1.0

S3 0.005 3.0

S4 0.05 0.25

S5 0.05 1.0

S6 0.05 3.0

S7 0.2 0.25

S8 0.2 1.0

S9 0.2 3.0

Note: We simulated 35 landscape communities and 350 sampled 
datasets (i.e., 10 sampling processes were simulated for each landscape 
community) using every possible combination of detection probability μ 
and σ, three levels of repeat sampling visits to each site (V: 3, 6, or 12), 
and three values for the species-specific area response distributions 
(�max: 4, 8, or 12). There were thus 81 possible parameter combinations, 
resulting in a total of 2,835 simulated landscape communities and 
28,350 simulated sampling datasets.
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    |  7 of 15NOBLE et al.

absolute difference in area between each pair of patches. We then 
modelled the effect of the log-transformed distance matrix values 
(logn(x + 1)) on the Sørensen similarities derived from observed 
species counts, and iNEXT.3D and MSOMs using a generalized 
linear model with a logit link (i.e., substituted the Sørensen similar-
ity estimates into the formula in Section 2.1). In all instances, the 
coefficients of SARs (c-value and z-value) and β-diversity models 
(intercept and slope) were estimated using Maximum Likelihood 
Estimation, and we used the mean coefficient estimates (point es-
timates) for all further analysis.

2.4  |  Assessing estimator performance

We assessed the performance of observed species counts, MSOMs 
and iNEXT.3D, as estimators of each of the six community param-
eters using three criteria (Walther & Moore,  2005). In all cases, 
the criteria were calculated using the parameter estimates derived 
based on the difference between the true parameter values (see 
Section 2.1) and the corresponding parameter estimates from each 
of the 10 replicate datasets from each simulated landscape:

1.	 Bias – The mean of the signed differences between the point 
estimates and true values. For site-level richness, we divided 
bias values by the true richness, to quantify percentage dif-
ferences (i.e., scaled mean error).

2.	 Accuracy – The mean of the absolute differences between the 
point estimates and true values, multiplied by −1. As with bias, 
we divided accuracy values of site-level richness estimates by the 
true richness.

3.	 Precision – The standard deviation of the point estimates divided 
by the absolute mean of the point estimates (i.e., coefficient of 
variation), multiplied by −1.

3  |  RESULTS

3.1  |  Species richness and SARs

MSOMs and iNEXT.3D always provided more accurate and less biased 
estimates of species richness than observed species counts. MSOMs 
consistently provided the least biased and most accurate richness 
estimates, though all three methods tended to underestimate spe-
cies richness to some degree (Figure 2a; Appendix S1: Figure S1). In 
all simulated scenarios, iNEXT.3D richness estimates were consider-
ably less precise than estimates from MSOMs and observed counts, 
among which precision was comparable. The accuracy, precision, and 
bias of richness estimates improved with increased sampling effort 
(i.e., number of repeat samples) in all cases, though MSOM estimates 
showed the lowest sensitivity to sampling effort (Appendix S1: Figure 
S1). Similarly, MSOMs were the least sensitive of the three methods 
to variation in the mean and standard deviation of species detection 
probabilities (Figure 2a; Appendix S1: Figure S1).

All three methods consistently underestimated SAR z-values in 
the presence of imperfect detection (Figures 1 and 2b; Appendix S1: 
Figure S2). iNEXT.3D provided slightly less biased and more accu-
rate z-value estimates than the other methods when mean detec-
tion probabilities were lowest (μ = 0.005). At higher mean detection 
probabilities (μ = 0.05 or 0.2), the bias and accuracy of MSOM and 
iNEXT.3D z-value estimates were largely comparable, on average. 
Both MSOMs and iNEXT.3D tended to provide more accurate and 
less biased estimates of SAR z-values than observed species counts, 
apart from when the standard deviation of species detection prob-
abilities was highest (σ = 3.0), in which case accuracy and bias were 
comparable among the three methods (Appendix S1: Figure S2). All 
three estimators also tended to overestimate SAR c-values (Figures 1 
and 2c, Appendix S1: Figure S3). However, observed counts provided 
largely unbiased c-value estimates when mean detection probability 
was lowest (μ = 0.005) and the standard deviation highest (σ = 3.0; 
Appendix S1: Figure S3).

Estimates of both SAR coefficients tended to become more ac-
curate and less biased as mean detection probabilities increased, 
regardless of the estimator used. This effect was most apparent in 
MSOM c-value estimates, which were considerably more biased than 
estimates from observed counts and iNEXT.3D when the mean detec-
tion probability was low (μ = 0.005), but often outperformed the other 
estimators when mean detection probability across the community 
was high (μ = 0.2), except for cases in which the standard deviation of 
detection probabilities was also high (σ = 3.0; Appendix S1: Figure S3). 
Greater variability in detection probabilities consistently resulted in 
reduced bias and increased accuracy for estimates of both SAR coeffi-
cients derived from observed counts, iNEXT.3D and, to a lesser extent, 
MSOMs (Appendix S1: Figures S2, S3). However, at higher mean de-
tection probabilities, increases in the standard deviation of detection 
probabilities led MSOM estimates of both SAR coefficients to become 
more biased and less accurate (Appendix S1: Figures S2, S3).

Precision was generally highest for SAR coefficient estimates 
derived from observed counts. iNEXT.3D consistently provided the 
least precise estimates of SAR z-values (Figure 2b,c; Appendix S1: 
Figures S2, S3) and the least precise estimates of SAR c-values at all 
but the highest mean detection probability (μ = 0.2), where MSOM 
c-value estimates tended to be slightly less precise. The precision of 
estimates of both SAR coefficients increased with increasing mean 
detection probability regardless of the method used, although the 
magnitude of this variation was greatest for iNEXT.3D.

3.1.1  |  Pairwise β-diversity

All three methods estimated pairwise Sørensen similarity with rea-
sonable accuracy and bias in most scenarios, though MSOMs pro-
vided the most accurate, least biased, and most precise estimates 
in most scenarios. Interestingly, iNEXT.3D estimates tended to be 
more biased, less accurate, and less precise than Sørensen estimates 
derived from observed counts in almost all scenarios (Figure  3a; 
Appendix S1: Figure S4).
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8 of 15  |     NOBLE et al.

In scenarios where community mean detection probability was 
lowest (μ = 0.005), all methods underestimated Sørensen similar-
ity, though estimates became less biased and more accurate with 
increases in sampling repetitions and detection probability stan-
dard deviations (Appendix S1: Figure S4). However, at higher mean 

detection probabilities, variation in sampling repetitions and the 
standard deviation of detection probabilities had negligible impacts 
on Sørensen estimate accuracy. The precision of Sørensen estimates 
increased with the mean of detection probabilities and the number 
of sampling repetitions, regardless of the method used. However, 

F I G U R E  2 Estimator performance for (a) site-level species richness, (b) the slope (z-value) of species-area relationships (SAR), and (c) 
the intercept (c-value) of SARs, from representative scenarios where the standard deviation of the detection probability was set to the 
intermediate value (i.e., σ = 1.0) and six repeat sampling visits were simulated for each site. Estimates were derived from observed species 
counts (Obs), the abundance-based iNEXT.3D estimator (iNEXT.3D) and Multi-Species Occupancy models (MSOM), presented in order of 
increasing mean detection probability (μ). Bias and accuracy of site-level richness estimates are presented in units of percentage difference 
from the true richness. Results from other simulated scenarios are shown in Appendix S1.
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    |  9 of 15NOBLE et al.

the magnitude of sensitivity to sampling and detection variation was 
considerably greater for iNEXT.3D estimates than for observed spe-
cies counts and MSOMs, the latter being relatively robust to varia-
tion in sampling and detection variation in terms of bias, accuracy, 
and precision (Appendix S1: Figure S4).

3.1.2  |  β-Diversity model coefficients

Under all scenarios, MSOMs provided substantially more accurate 
and less biased estimates of the slope and intercept of models for 
area effects on pairwise Sørensen similarity, relative to observed 

F I G U R E  3 Estimator performance for β-diversity metrics, measured as (a) pairwise Sørensen similarity, (b) the slope of models relating 
pairwise Sørensen similarity to patch area, and (c) the intercept of pairwise Sørensen similarity models, shown for representative scenarios 
with intermediate standards deviations of the detection probability (σ = 1.0) and six repeat sampling visits for each site. Estimates were 
derived from observed species counts (Obs), the abundance-based iNEXT.beta3D estimator (iNEXT.3D) and Multi-Species Occupancy 
models (MSOM). Bias and accuracy are presented in their native units. Simulation scenarios are presented in order of increasing mean 
detection probability (μ), from top to bottom. For results from all simulated scenarios, see Appendix S1.
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10 of 15  |     NOBLE et al.

counts and iNEXT.3D (Figure  3b,c; Appendix S1: Figures  S5, S6). 
Indeed, MSOMs consistently provided unbiased estimates in all 
simulated scenarios (mean bias values ≈0). MSOM accuracy varied 
minimally with increases in the number of sampling repetitions, 
and while MSOM coefficient estimates tended to be more accurate 
when the mean and standard deviation of detection probability were 
higher, the magnitude of this variation was only slight (Appendix S1: 
Figures S5, S6).

In contrast, estimates of Sørensen model coefficients derived 
from observed counts and iNEXT.3D tended to become substan-
tially less accurate and more biased with fewer sampling rep-
etitions and lower mean detection probabilities and were never 
comparable to MSOM estimates. Variation in the standard de-
viation of species detection probabilities had minimal impact on 
the bias and accuracy of coefficient estimates derived from ob-
served counts and iNEXT.3D. In all scenarios, iNEXT.3D provided 
the least precise estimates of both β-diversity model coefficients. 
Precision tended to increase with mean detection probability and 
the number of sampling repetitions, regardless of the method 
used. However, this variation was most marked for iNEXT.3D 
coefficient estimates and least apparent for MSOM estimates 
(Appendix S1: Figures S5, S6).

4  |  DISCUSSION

We show that imperfect detection substantially biases estimates 
of SAR parameters, pairwise β-diversity (Sørensen similarity), and 
β-diversity model coefficients. Importantly, we found that SAR 
z-values were consistently underestimated, and SAR c-values 
overestimated, even when statistical approaches were used to 
account for imperfect detection (i.e., iNEXT.3D or MSOMs). This 
highlights an important limitation in SAR research, potentially call-
ing into question the accuracy of assessments of the impacts of 
habitat fragmentation on species richness. In empirical settings, 
a systematic negative bias in SAR z-value estimates would result 
in underestimates of the number of local species extinctions that 
result from increasing habitat fragmentation, potentially leading 
to recommendations of minimum habitat patch sizes below those 
required for the persistence of species with large area require-
ments (Cam et al., 2002; Montgomery et al., 2021). Furthermore, 
although observed species counts were generally able to provide 
accurate pairwise Sørensen similarity estimates, this did not trans-
late into accurate estimates of β-diversity model coefficients, 
and such inaccuracies were only worsened by the application of 
iNEXT.3D. Encouragingly, MSOMs consistently provided accurate 
and unbiased estimates of pairwise Sørensen similarity, and both 
β-diversity model coefficients, even when detection probabilities, 
were low. The superior performance of MSOMs relative to the 
other methods highlights how failure to account for covariate ef-
fects (e.g., patch area) on species occupancy can substantially bias 
assessments of pairwise β-diversity trends (Dorazio et al., 2010; 
Iknayan et al., 2014).

4.1  |  Richness and SARs

Rarely are all species in a community detected by sampling 
(Longino et al., 2002), and species richness estimates derived from 
observed counts are thus expected to be negatively biased (Kéry 
& Royle,  2008; McNew & Handel,  2015). However, our results 
suggest that iNEXT.3D and MSOMs still routinely underestimate 
species richness under sampling designs typically applied in frag-
mentation ecology research and consequently struggle to gener-
ate accurate estimates of SAR parameters. In a previous study 
focussing on richness estimation, McNew and Handel  (2015) 
found that the asymptotic Chao estimator (Chao, 1984) consist-
ently overestimated richness, while MSOM richness estimates 
were generally unbiased. Discrepancies between these findings 
and our own likely result from the simulated sampling designs: 
McNew and Handel (2015) simulated spatially complete sampling 
of their target areas, whereas we only simulated sampling of a spa-
tial subset of each habitat patch.

Spatially exhaustive sampling is rarely feasible in empirical eco-
logical research, particularly fragmentation ecology (Eigenbrod 
et al., 2011; Pasher et al., 2013), and previous research has high-
lighted that the portion of a habitat patch that is sampled may 
often be of insufficient size to encounter the first individual of 
species with low abundance and/or spatially aggregated distri-
butions (Cam et al., 2002; He & Hubbell, 2011). We deliberately 
sought to emulate this in our simulation framework, calculating 
the number of species individuals that were available for sampling 
within each patch as a function of the proportional area sampled 
(see Section 2.1.2). Therefore, species with low patch-level abun-
dance would often be unavailable for sampling, as their abundance 
within the target area would be rounded to zero. In this way, our 
simulation framework adds an additional source of imperfect 
detection compared to previous, similar studies that have simu-
lated complete spatial sampling (e.g., Guillera-Arroita et al., 2019; 
McNew & Handel,  2015; Tingley et  al.,  2020). Importantly, our 
findings suggest that neither observed species counts, MSOMs or 
iNEXT.3D, can fully account for this incomplete spatial sampling, 
as they routinely underestimated species richness. Furthermore, 
inspecting the relationship between patch area and bias in rich-
ness estimates showed that while iNEXT.3D and observed counts 
typically provided relatively unbiased estimates for small habitat 
patches, where the proportion of each patch sampled was high-
est, richness estimates derived from all three methods exhibited 
considerable negative biases as patch size increased, and the pro-
portion of each patch sampled decreased (Appendix S1: Table S1, 
Figure S7). This is perhaps unsurprising, given that the proportion 
of individuals captured will tend to increase with the proportional 
area of a patch that is sampled, and that previous research has 
shown that Chao and MSOM richness estimates improve with 
increases in other aspects of sampling effort (Chao et al., 2009; 
McNew & Handel,  2015; Tingley et  al., 2020). Further research 
seeking to determine the minimum proportion of a target area 
that must be sampled to accurately estimate species richness, 
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    |  11 of 15NOBLE et al.

both when using observed species counts and statistical richness 
estimators, should thus constitute a vital next step in optimizing 
ecological study design (Cam et al., 2002; He & Hubbell, 2011).

Interestingly, MSOMs tended to overestimate richness of the 
smallest habitat patches and underestimate richness of the largest 
habitat patches, with the magnitude of these biases being compa-
rable (Appendix S1: Figure S7), in turn explaining why MSOMs still 
performed relatively poorly as estimators of SAR c-values. This may, 
in part, be explained by the fact that MSOMs draw species-level co-
variate responses (slopes) from community-level hyperparameters, 
and for unobserved species these slopes thus tend toward the hy-
perparameter mean, in a process termed shrinkage (Everitt, 2002). 
Given that we simulated species with both negative and positive 
area responses, MSOM area response estimates for unobserved 
species tended toward zero in most instances. This would lead the 
estimated probability of occurrence of many unobserved species to 
be comparable among the smallest and largest patches, thus leading 
to underestimates of the number of species exhibiting preference 
for large habitat patches and overestimates of the number of species 
capable of inhabiting small patches.

Overall, observed species counts tended to provide the best 
estimates of SAR c-values. However, both iNEXT.3D and MSOMs 
were able to provide comparable SAR c-value estimates in certain 
conditions (Appendix S1: Figure S3). Furthermore, iNEXT.3D and 
MSOMs almost always provided less biased SAR z-value estimates 
than observed counts, which tend to be of greater ecological in-
terest than SAR c-values. For instance, in their assessment of SARs 
across biogeographical realms, Matthews et  al.  (2016) only com-
pared SAR z-values, while many empirical habitat fragmentation 
analyses do not even report c-values (e.g., Litza & Diekmann, 2020; 
Palmeirim et al., 2021). Based on our results, it thus seems prefera-
ble to use MSOMs or iNEXT.3D for estimating species richness and 
SARs, compared to observed species counts. Ecologists must, how-
ever, recognize the potential for inaccuracy in SAR estimation (and 
particularly underestimated z-values) regardless of the estimator 
used. Most importantly, our results indicate that researchers should 
always seek to maximize sampling effort to limit biases in SARs, par-
ticularly for larger patches, even when using statistical estimators to 
correct for imperfect detection.

4.2  |  Beta-diversity estimates

Observed species counts provided accurate estimates of pairwise 
Sørensen similarity in almost all simulated scenarios, suggesting that 
incidence-based β-diversity is less sensitive to imperfect detection 
than species richness. Indeed, previous research suggests β-diversity 
estimates can be fairly accurate if the most common species in each 
assemblage are detected (Cardoso et al., 2009; Roden et al., 2018), 
though accuracy is also known to improve roughly linearly with 
sampling completeness (Beck et al., 2013). Our results support this, 
and we found that observed counts often substantially underesti-
mate Sørensen similarity when mean detection probabilities are 

low (Appendix  S1: Figure S4). Importantly, we show that MSOMs 
consistently provided improved Sørensen estimate performance 
over observed counts, and highly accurate Sørensen estimates even 
when mean detection probabilities were very low.

Furthermore, both observed counts and iNEXT.3D consistently 
failed to provide accurate estimates of the effects of patch area on 
β-diversity (i.e., Sørensen model coefficients), suggesting there were 
area-related biases in the associated pairwise Sørensen estimates. 
Indeed, both observed counts and iNEXT.3D considerably underes-
timated Sørensen similarity when differences in patch area were low 
(Appendix S1: Figure S8), leading to the observed underestimates of 
the intercept, and overestimates of the slope, of β-diversity mod-
els. This suggests that iNEXT.3D provides no advantage over ob-
served counts when investigating covariate effects on β-diversity. 
However, MSOMs were able to provide unbiased Sørensen similar-
ity estimates across the full spectrum of differences in patch area, 
which translated into highly accurate estimates of β-diversity model 
coefficients (Appendix S1: Figures S5, S6, S8). We thus recommend 
that, wherever possible, MSOMs should be used in assessments of 
covariate effects on pairwise β-diversity.

4.3  |  Sensitivity to detection probability and 
sampling design

Unsurprisingly, estimates of all investigated parameters tended 
to improve with increases in mean species detection probability. 
Greater variability in detection probabilities across a community 
also tended to improve estimator performance when mean detec-
tion probability was low but had the opposite effect at high mean 
detection probability. This roughly translates to declines in estimator 
performance with increases in the proportion of cryptic or rare spe-
cies, in line with previous research on richness estimators (McNew & 
Handel, 2015; Poulin, 1998; Tingley et al., 2020). In almost all cases, 
MSOMs were more robust to variation in the mean and standard 
deviation of detection probabilities than other estimators.

iNEXT.3D consistently provided the least precise estimates 
of all parameters apart from SAR intercepts, while the precision 
of MSOM estimates was almost always comparable to, or better 
than, observed species counts. Our findings thus support previ-
ous work showing that Chao estimators may yield highly variable 
diversity estimates depending on the observed data, especially 
when a substantial proportion of species in a community are rare 
or hard to detect (McNew & Handel, 2015, Poulin, 1998, Tingley 
et  al.,  2020), as is common in real-world communities (Fisher 
et al., 1943; Novotný & Basset, 2003). Given that ecologists rarely 
have a priori knowledge of the mean and standard deviation of 
species detection probabilities within empirical communities, di-
versity estimators should ideally provide reliable estimates, or at 
least estimates with a predictable level of error, across the full 
spectrum of detection probabilities (Iknayan et al., 2014; Kéry & 
Royle, 2008). Considering that MSOMs consistently provided the 
most accurate estimates of richness and all β-diversity parameters 
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12 of 15  |     NOBLE et al.

and provided estimates of SAR z-values that were comparable to 
iNEXT.3D in terms of bias and accuracy, but more precise, our re-
sults suggest that MSOMs may be preferable for most empirical 
applications.

Estimates of SAR coefficients also consistently improved with 
increases in the number of sampling repetitions, although MSOMs 
were able to provide accurate estimates of all β-diversity parame-
ters even when sampling repetitions were low. Nonetheless, given 
the importance of quantifying both alpha-  and beta-diversity ac-
curately (Socolar et  al.,  2016), our findings suggest that diversity 
estimators should serve to complement, rather than substitute, a 
sufficiently appropriate sampling effort (Banks-Leite et  al., 2014). 
Of course, it would be naïve to ignore the logistical and funding 
constraints often imposed on empirical field studies, which limit 
the feasible number of sampling repetitions (Eigenbrod et al., 2011; 
Pasher et al., 2013), thus limiting the potential to implement MSOMs 
(Dorazio et al., 2006). However, occupancy models may be applied 
to spatial, rather than temporal, sampling replicates, lessening asso-
ciated logistical demands (Dorazio et al., 2011; Noble et al., 2023).

4.4  |  Limitations and further research

Although we used simulation parameter values typical of empirical 
studies of real landscapes (Taubert et  al., 2018) and communities 
(Matthews et al., 2016), there is the possibility that the evaluated es-
timators may perform differently when applied to empirical data. For 
instance, Tingley et al. (2020) found that MSOMs tended to overesti-
mate gamma richness in simulated communities, but underestimated 
gamma richness in empirical datasets. To conclusively evaluate the 
influence of imperfect detection on SARs and β-diversity trends, and 
the ability of diversity estimators to correct for this, further research 
should apply estimators to exhaustively sampled real-world com-
munities. The use of richness estimators in conjunction with SAR 
models that incorporate the effects of sampling effort (e.g., sam-
pling effort species-area relationships; Azovsky, 2011, de la Sancha 
& Boyle, 2019) may also help overcome the biases in SAR coefficient 
estimates observed here.

We also only analysed the performance of estimators of 
incidence-based alpha-  and beta-diversity indices in this study. 
However, much ecological research focuses on patterns of species 
evenness, which can only be assessed using abundance-based diver-
sity indices (Barwell et al., 2015). It may thus also be of interest to in-
vestigate the relative performance of methods such as iNEXT.3D and 
Multi-Species Abundance Models (the abundance-based equivalent 
of MSOMs; Mimnagh et al., 2022; Madsen & Royle, 2023), as esti-
mators of trends in abundance-based alpha- and β-diversity indices. 
To date, MSAMs have received relatively limited use within fragmen-
tation ecology compared to MSOMs (but see Fogarty et al., 2022). 
Therefore, to maximize the wider applicability of our findings, we 
opted to focus our study on MSOMs, and their relative performance 
compared to observed species counts and iNEXT.3D. Nonetheless, 
given that MSOMs routinely provided biased estimates of richness 

and SAR coefficients under our simulation framework, further re-
search may also seek to assess whether MSAMs may perform better 
than MSOMs as estimators of species richness and SARs, as well as 
incidence-based β-diversity indices and models.

Finally, given the relative paucity of research on the impacts of 
imperfect detection and covariate-related biases in β-diversity es-
timation, it would be of value to explore estimator performance in 
different ecological contexts, particularly concerning other drivers 
of biogeographic variation in species composition, where β-diversity 
indices are frequently used (Socolar et al., 2016). A topic of particular 
interest may be the ability to account for spatial autocorrelation in 
species identities, and thus community (dis)similarity. We opted not 
to incorporate spatial autocorrelation in species occurrence within 
our simulation framework, instead assuming that variation in habi-
tat patch area was the major factor driving variation in community 
structure among patches. Nonetheless, recent simulation studies 
suggest that spatial autocorrelation in species occurrence can influ-
ence trends in community structure within fragmented landscapes 
(Ciccheto et al., 2024; Tardanico & Hovestadt, 2023). Furthermore, 
at larger spatial scales (e.g., across multiple biomes or ecoregions) 
spatial autocorrelation is likely to be one of, if not the, major contrib-
utors to variation in community structure. Given that there are now 
several spatially explicit estimators of richness and beta-diversity, 
including spatial MSOMs (Doser et al., 2022; Johnson et al., 2013), 
evaluating the combined impacts of spatial autocorrelation and im-
perfect detection on estimates of β-diversity trends, and the ability 
of diversity estimators to correct for these influences, should be a 
focus of future research (Guelat & Kery, 2018).

5  |  CONCLUSIONS

Although our simulations focused on the area-related structuring of 
fragmented communities, our findings reflect widely used sampling 
approaches and therefore can be generalized to many contexts. 
Importantly, we show that statistical diversity estimators seldom 
fully account for biases resulting from imperfect detection and in-
complete spatial sampling. The impacts of spatial subsampling have 
long been recognized as a potential cause of inaccuracies in biodiver-
sity assessments, but in practice, this issue has often been ignored 
(Azovsky, 2011; Eigenbrod et  al., 2011). This study serves to reit-
erate the need to consider the relative coverage of sampling effort 
when drawing inference on richness-covariate relationships (Banks-
Leite et al., 2014). Nonetheless, we show that both iNEXT.3D and 
MSOMs constitute useful tools for better estimation of the slopes 
of SARs and other richness models. Furthermore, for the first time, 
we demonstrate that MSOMs can provide accurate estimates of 
pairwise β-diversity model coefficients, even in the most suboptimal 
scenarios. Nevertheless, given that both alpha-  and beta-diversity 
should be combined to fully characterize biotic assemblages (Socolar 
et al., 2016), and that richness estimates improved substantially with 
increased sampling repetitions, regardless of the method used, the 
value of increased sampling effort cannot be understated.
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