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A B S T R A C T

We present a Hamiltonian formulation of two-dimensional hydroelastic waves propagating at
the free surface of a stratified rotational ideal fluid of finite depth, covered by a thin ice sheet.
The flows considered exhibit a discontinuous stratification and piecewise constant vorticity,
accommodating the presence of interfaces and of linearly sheared currents.

. Introduction

The recent years have seen a tremendous development in the field of hydroelasticity, that is, the study of the deformations of
lastic bodies responding to hydrodynamic excitations and simultaneously the modification of these excitations owing to the body
eformation (see [1] for a review). Within this huge field, most mathematically analyzed seem to be the hydroelastic waves in the
resence of an ice cover. Hydroelastic waves are of utmost importance in those cold regions where water is frozen in winter and
here deep ice cover can be transformed into roads or aircraft runways, and where air-cushioned vehicles are used to break the

ce, cf. [2].
In the polar regions the water under the floating ice plates is often stratified, due to difference in salinity and temperature [3,4].

nternal waves can be generated by tides in parts of the Arctic Ocean, and they are an important factor in the upper-layer mixing and
ransfer of nutrients in the surface layer [5]. During the summer months, when there is no ice cover, SAR observations have detected
nternal waves in various parts of the Arctic Ocean. A hotspot of internal waves is on the Kara Strait which connects Kara Sea and
he Barents Sea in northern Russia, where the currents are also very strong [4]. The depth around the strait varies between 50 m
nd 200 m, the average current speed is between 6 cm∕s and 26 cm∕s and a back-flow of water near the bottom was also detected.
he wavelenghts of the observed internal waves varies between 400 − 800 m for the short-internal waves to few kilometers [4].
nother place where a large number of internal solitary waves have been observed using SAR observations is the Laptev Sea [6],

n the eastern part of the Arctic Ocean. The depth of Laptev Sea where these waves have been observed is between 50 m and 300 m
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and the typical wavelength of the solitary waves is between 1 km and 2 km, being observed to travel for hundreds of kilometers.
n these regions the tidal current speed can be as high as 50cm∕s and a vertical velocity shear was observed.

In winter the ice cover will suppress small-scale surface wave noise such as wave turbulence, and the signature of internal
waves can be detected easier. There are many observation in the Arctic of internal waves interacting with the hydroelastic waves
ropagating along the floating ice plates [7,8]. Furthermore, recent experimental results [9] suggest that interactions between

internal waves and sea ice may be an important mechanism for dissipation of internal wave energy in the Arctic Ocean.
The previously mentioned examples suggest the existence of a wide range of physically relevant regimes. For the rigorous and

thorough treatment of these regimes from the perspective of analytical investigations and numerical simulations it is imperative
to surpass the limitations inherent to a case-by-case analysis. The alternative that we offer here is the Hamiltonian formulation
of the nonlinear governing equations (and of their boundary conditions). The Hamiltonian approach offers multiple benefits.
Firstly, it elegantly reduces the number of variables, leading to significant simplifications. Secondly, identifying a system as
Hamiltonian immediately grants access to conservation laws linked to the system’s symmetry groups, such as changes to moving
coordinate frames, spatial rotations, time translations, and scale changes, offering a deeper understanding of its dynamics. Lastly,
the Hamiltonian viewpoint is particularly advantageous in perturbation theory, ensuring that, as long as the symmetries are retained
during approximation, the conservation properties of the exact system are also preserved in the approximations. The latter aspect
is illustrated by the recent work by Guyenne, Kairzhan & Sulem [10] where a Hamiltonian Dysthe equation is derived for nonlinear
surface waves in the presence of constant vorticity (an aspect that is relevant to our scenario). In addition to preserving energy,
the Hamiltonian model in [10] was found to be simpler and more accurate than the classical non-Hamiltonian version obtained by
sing the method of multiple scales.

From a historical perspective, the Hamiltonian formulation of the governing equations for two dimensional gravity water flows
as pioneered in [11] for irrotational flows, and was extended to rotational flows with constant vorticity in [12–14]. The case with

variable bottom was treated in [15–17]. The Hamiltonian formulation for two-dimensional irrotational two-layer gravity water
flows with a free surface was developed in [18], and the rotational counterpart with constant vorticity and constant density in each
ayer was obtained in [19] for the case of periodic flows. Further studies on Hamiltonian methods in two- and multi-layer flows

with piecewise constant vorticity were carried out in [20–22]. For flows that represent localized perturbations of an underlying
ure current we refer the reader to [23] where also Coriolis effects in the equatorial 𝑓 -plane approximation were included in the

analysis. In line with the previous setting of geophysical effects, we would like to mention that, recently, a hamiltonian formalism
or inertial waves in rotating fluid was derived in [24]. A multi-layer model based on the Green–Naghdi approximation has been

proposed in [25].
While until recently most theoretical works in this subject used linear models, describing waves of small amplitude [26,27], recent

nonlinear studies [28], although treating issues like stratification, did not allow for the presence of vorticity. Towards remedying
this inconvenience we propose, as method of work a variational formulation of Hamiltonian type. More specifically, we derive the
Hamiltonian formulation of the nonlinear governing equations modeling the propagation of hydroelastic waves admitting linearly
sheared currents and stratification of discontinuous type. The derivation of approximate weakly-nonlinear models in a wide range
of physical regimes is postponed to a future investigation since this endeavour requires extensive geophysical considerations. After
presenting the governing equations in Section 2 we prove in Section 3 that they can be (equivalently) reformulated as an infinite-
imensional Hamiltonian system. The Hamiltonian formulation (in conjunction with the Dirichlet–Neumann operators) is then used
o obtain the (linearized) dispersion relation which generalizes the dispersion relation for interfacial solitary waves propagating
nder an elastic sheet derived in the irrotational setting by Wang et al. [28]. We conclude in Section 4 by hinting to potential

further perspectives on the subject.

2. The presentation of the problem

We examine here a two-dimensional periodic rotational stratified water flow, acted upon by gravity (in the bulk of the fluid)
nd by the flexural elasticity of a continuous (deformable) ice sheet that represents the free surface of the water flow whose vertical
eformation is denoted by 𝑦 = ℎ1 + 𝜂1(𝑥, 𝑡). Here, ℎ1 > 0 is a constant, 𝑡 stands for time and 𝑥 → 𝜂1(𝑥, 𝑡) is a periodic function in the
ariable 𝑥, of principal period 𝐿, with mean zero, that is, ∫ 𝐿0 𝜂1(𝑥, 𝑡) 𝑑 𝑥 = 0 for all 𝑡 ≥ 0. The free surface wave propagates in the
ositive 𝑥-direction, while the 𝑦 axis points vertically upwards. Moreover, the bottom boundary of the fluid domain is written as
= −ℎ, with ℎ > 0 being a constant.

The stratification of the fluid is as follows: we assume that, neighboring the flat bed 𝑦 = −ℎ, the water domain consists of a layer

𝛺∗ ∶= {(𝑥, 𝑦, 𝑡) ∶ 𝑥 ∈ R, 𝑡 ≥ 0,−ℎ < 𝑦 < 𝜂(𝑥, 𝑡)},
of constant density 𝜌, separated by the interface 𝑦 = 𝜂(𝑥, 𝑡) from the free-surface adjacent layer

𝛺∗
1 ∶= {(𝑥, 𝑦, 𝑡) ∶ 𝑥 ∈ R, 𝑡 ≥ 0, 𝜂(𝑥, 𝑡) < 𝑦 < ℎ1 + 𝜂1(𝑥, 𝑡)},

of constant density 𝜌1 < 𝜌. The interface 𝑥 → 𝜂(𝑥, 𝑡) is, at any fixed time 𝑡, an 𝐿 periodic function with zero mean.
We assume the water flow to be incompressible and inviscid. The latter assumption is justified, since, as emphasized by daSilva

nd Peregrine [29], inviscid theory is suitable for the study of water waves that are not near breaking. Indeed, according to [29]
the most appreciable effects of viscosity in the open sea are to produce wave-amplitude reduction, and diffusion of the deeper
motions, over time scales and length scales that are far larger than those of the dynamical surface-processes. For results concerning

ave-attenuation due to viscosity effects we refer the reader to [30–34].
2 
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Remark 2.1. A consequence of the presence of the interface 𝑧 = 𝜂(𝑥, 𝑡) is that some physical variables may present discontinuities
long it. To draw attention to this aspect, we use the subscript 1 for quantities pertaining to the upper layer. Whenever we refer to
he overall physical variable without specification of the layer, we shall use the boldface writing style (as an example the density
unction 𝝆 takes the value 𝜌 in the lower layer and the value 𝜌1 in the upper layer).

In line with the previous remark we denote with (𝒖(𝑥, 𝑦, 𝑡), 𝒗(𝑥, 𝑦, 𝑡)) the velocity field and with 𝑷 = 𝑷 (𝑥, 𝑦, 𝑡) the pressure. Then,
the equations governing the fluid motion, are Euler’s equations

{

𝒖𝑡 + 𝒖𝒖𝑥 + 𝒗𝒖𝑦 = − 𝟏
𝝆𝑃𝑥,

𝒗𝑡 + 𝒖𝒗𝑥 + 𝒗𝒗𝑦 = − 𝟏
𝝆𝑃𝑦 − 𝑔 ,

in 𝛺∗ ∪𝛺∗
1 (2.1)

together with the equation of mass conservation

𝒖𝑥 + 𝒗𝑦 = 0 in 𝛺∗ ∪𝛺∗
1 . (2.2)

To select the water wave problem from a multitude of hydrodynamical ones we impose appropriate boundary and interface
conditions. As such, at the free surface we have cf. [35,36] the elasticity condition

𝑃 (𝑥, ℎ1 + 𝜂1(𝑥, 𝑡)) = 
(

kss +
1
2
k3

)

, (2.3)

where  = 𝐸 𝑑3
12(1−𝜈2) is a constant representing the coefficient of the flexural rigidity of the ice sheet, 𝑑 is the ice thickness, 𝐸 denotes

oung’s modulus, 𝜈 is the Poisson’s ratio for ice. k is the curvature of the fluid-ice interface, and s is the arclength along this
nterface. More precisely, the right-hand side of Eq. (2.3) is the force arising under a deformation of a shell which has bending

rigidity, see e.g. [37]. As in previous works we will neglect the stretching of the elastic shell and consider here only the effect of
ending.

Remark. It is worth noting that if the effect of the tension force created by the stretching of the plate due to bending is not
neglected, it will introduce a term of the form

−𝑁
{

∫

𝐿

0
(
√

1 + 𝜂21𝑥 − 1)𝑑 𝑥
}

k

on the right-hand side of Eq. (2.3), where 𝑁 = 𝐸 𝑑∕𝐿 (see the second term of equation (2.1) in [38] for a linearized form of this
term, or the third term of equation (1.1g’’) in [39] when choosing their parameter 𝛽 = 2).

Another category of conditions ensure that a particle, once on one of the two boundaries, or on the interface, will remain there.
They are called the kinematic boundary conditions and read as

𝑣1 = 𝜂1,𝑡 + 𝑢1𝜂1,𝑥 on 𝑦 = 𝜂1(𝑥, 𝑡) + ℎ1, (2.4)

𝑣1 = 𝜂𝑡 + 𝑢1𝜂𝑥 and 𝑣 = 𝜂𝑡 + 𝑢𝜂𝑥 on 𝑦 = 𝜂(𝑥, 𝑡), (2.5)

𝑣 = 0 on 𝑦 = −ℎ. (2.6)

Moreover, the balance of forces at the interface 𝑦 = 𝜂(𝑥, 𝑡) is expressed by the continuity of the pressure along this internal boundary,
hat is,

𝑃 = 𝑃1 on 𝑦 = 𝜂(𝑥, 𝑡). (2.7)

To capture the underlying currents and to keep track of the wave–current interactions the inclusion of the vorticity in the flow
s needed. The vorticity is defined through

𝜸 ∶= 𝒖𝑦 − 𝒗𝑥, (2.8)

and measures local rotation. In our setting the vorticity is constant throughout each layer, but discontinuous across the interface.
herefore, it takes the form

𝜸 =
{

𝛾 in 𝛺∗,
𝛾1 in 𝛺∗

1 ,

where 𝛾 , 𝛾1 ∈ R are constants with 𝛾 ≠ 𝛾1.

2.1. The mathematical reformulation

The two-layer fluid occupies at a fixed time 𝑡 the domain consisting of

𝛺 = 𝛺(𝑡) ∶= {(𝑥, 𝑦) ∶ 𝑥 ∈ (0, 𝐿),−ℎ < 𝑦 < 𝜂(𝑥, 𝑡)},
and
𝛺1 = 𝛺1(𝑡) ∶= {(𝑥, 𝑦) ∶ 𝑥 ∈ (0, 𝐿), 𝜂(𝑥, 𝑡) < 𝑦 < ℎ1 + 𝜂1(𝑥, 𝑡)},

3 
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respectively.
Due to (2.8) we are able to introduce (up to functions that depend only on time) in each layer a (generalized) velocity potential,

denoted 𝜑 in 𝛺 and 𝜑1 in 𝛺1, respectively, through the formulas

𝜑(𝑥, 𝑦, 𝑡) = ∫

𝑥

0
(𝑢(𝑙 ,−ℎ, 𝑡) + 𝛾 ℎ) 𝑑 𝑙 + ∫

𝑦

−ℎ
𝑣(𝑥, 𝑙 , 𝑡) 𝑑 𝑙 , f or (𝑥, 𝑦) ∈ 𝛺 , (2.9)

and

𝜑1(𝑥, 𝑦, 𝑡) =∫

𝑥

0

[

𝑢1(𝑙 , 𝜂(𝑙 , 𝑡), 𝑡) − 𝛾1𝜂(𝑙 , 𝑡) + 𝑣1(𝑙 , 𝜂(𝑙 , 𝑡))𝜂𝑥(𝑙 , 𝑡)
]

𝑑 𝑙

+ ∫

𝑦

𝜂(𝑥,𝑡)
𝑣1(𝑥, 𝑙 , 𝑡) 𝑑 𝑙 , f or (𝑥, 𝑦) ∈ 𝛺1. (2.10)

The generalized velocity potentials satisfy
{

𝑢 = 𝜑𝑥 + 𝛾 𝑦
𝑣 = 𝜑𝑦,

in 𝛺 , (2.11)

and
{

𝑢1 = 𝜑1,𝑥 + 𝛾1𝑦
𝑣1 = 𝜑1,𝑦

in 𝛺1. (2.12)

Moreover,

𝜑(𝑥 + 𝐿, 𝑦, 𝑡) − 𝜑(𝑥, 𝑦, 𝑡) = 𝜅 𝐿, (2.13)

𝜑1(𝑥 + 𝐿, 𝑦, 𝑡) − 𝜑1(𝑥, 𝑦, 𝑡) = 𝜅1𝐿, (2.14)

where

𝜅 ∶= 1
𝐿 ∫

𝐿

0
[𝑢(𝑥,−ℎ, 𝑡) + 𝛾 ℎ] 𝑑 𝑥,

and

𝜅1 ∶=
1
𝐿 ∫

𝐿

0
[𝑢1(𝑥, 𝜂(𝑥, 𝑡), 𝑡) + 𝑣1(𝑥, 𝜂(𝑥, 𝑡), 𝑡)𝜂𝑥(𝑥, 𝑡)] 𝑑 𝑥. (2.15)

are averaged currents on the bed and on the interface 𝑦 = 𝜂(𝑥, 𝑡), respectively, that are time-independent, cf. [19].
Another consequence of the previous formulas is that the functions

(𝑥, 𝑦) → 𝜑̃(𝑥, 𝑦) ∶= 𝜑(𝑥, 𝑦) − 𝜅 𝑥
and

(𝑥, 𝑦) → 𝜑̃1(𝑥, 𝑦) ∶= 𝜑1(𝑥, 𝑦) − 𝜅1𝑥,
are periodic in the 𝑥-variable, of period 𝐿. The latter calls up for a splitting of the velocity into an underlying steady current
omponent and a periodic harmonic wave velocity field as

{

𝑢 = 𝜑̃𝑥 + 𝛾 𝑦 + 𝜅
𝑣 = 𝜑̃𝑦,

in 𝛺 (2.16)

and
{

𝑢1 = 𝜑̃1,𝑥 + 𝛾1𝑦 + 𝜅1
𝑣1 = 𝜑̃1,𝑦

in 𝛺1. (2.17)

Also the kinematic boundary conditions (2.4) and (2.5) can be written in terms of the traces of the velocity potentials at the
interface and the free surface, as

𝜂1,𝑡 = (𝜑̃1,𝑦)𝑠1 − 𝜂1,𝑥[(𝜑̃1,𝑥)𝑠1 + 𝛾1(ℎ1 + 𝜂1) + 𝜅1] (2.18)

and

𝜂𝑡 = (𝜑̃1,𝑦)𝑠 − 𝜂𝑥[(𝜑̃1,𝑥)𝑠 + 𝛾1𝜂 + 𝜅1] = (𝜑̃𝑦)𝑠 − 𝜂𝑥[(𝜑̃𝑥)𝑠 + 𝛾 𝜂 + 𝜅], (2.19)

respectively; the subscripts 𝑠 and 𝑠1 stand for traces on the interface 𝑦 = 𝜂(𝑥, 𝑡) and on the free surface 𝑦 = ℎ1 + 𝜂1(𝑥, 𝑡), respectively.
The equation of mass conservation (2.2) entails the existence of two stream functions denoted 𝜓 in 𝛺, and 𝜓1 in 𝛺1, satisfying

{

𝑢 = 𝜓𝑦
𝑣 = −𝜓𝑥

in 𝛺 , (2.20)

and
{

𝑢1 = 𝜓1,𝑦 in 𝛺1. (2.21)

𝑣1 = −𝜓1,𝑥

4 
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Arguing as in [19] is it possible to prove the existence of 𝝍 ∈ 𝐶(𝛺 ∪𝛺1) with

𝝍 =

{

𝜓 in 𝛺 ,
𝜓1 in 𝛺1,

which implies the righteousness of the notation

𝜒(𝑥, 𝑡) ∶= 𝜓(𝑥, 𝜂(𝑥, 𝑡), 𝑡) − 𝜓(0, 𝜂(0, 𝑡), 𝑡) = 𝜓1(𝑥, 𝜂(𝑥, 𝑡), 𝑡) − 𝜓1(0, 𝜂(0, 𝑡), 𝑡). (2.22)

The kinematic boundary conditions (2.4) and (2.5) can be written also with the help of the stream functions as
𝜒(𝑥, 𝑡) = − ∫ 𝑥0 𝜂𝑡(𝑥′, 𝑡)𝑑 𝑥′,

𝜒1(𝑥, 𝑡) = − ∫ 𝑥0 𝜂1,𝑡(𝑥′, 𝑡)𝑑 𝑥′,
(2.23)

where

𝜒1(𝑥, 𝑡) ∶= 𝜓1(𝑥, ℎ1 + 𝜂1(𝑥, 𝑡), 𝑡) − 𝜓1(0, ℎ1 + 𝜂1(0, 𝑡), 𝑡). (2.24)

The previous discussion about the (generalized) velocity potentials and the stream functions enable us to rewrite the Euler’s equations
as

∇
[

𝝋̃𝑡 +
1
2
|∇𝝍|2 + 𝑷

𝜌
− 𝜸 𝝍 + 𝑔 𝑦

]

= 0 in 𝛺 ∪𝛺1, (2.25)

and therefore

𝜑̃𝑡 +
1
2
|∇𝜓|2 − 𝛾 𝜓 + 𝑃

𝜌
+ 𝑔 𝑦 = 𝑓 (𝑡) in 𝛺 , (2.26)

and

𝜑̃1,𝑡 +
1
2
|∇𝜓1|

2 − 𝛾1𝜓1 +
𝑃1
𝜌1

+ 𝑔 𝑦 = 𝑓1(𝑡) in 𝛺1, (2.27)

for some arbitrary time-dependent functions 𝑓 and 𝑓1. Choosing

𝑓1(𝑡) = −𝛾1𝜓1(0, ℎ1 + 𝜂1(0, 𝑡), 𝑡), (2.28)

and using the boundary condition (2.3) we obtain from (2.27) that the equation

𝜑̃1,𝑡 +
1
2
|∇𝜓1|

2 − 𝛾1𝜓1 +

𝜌1

(

kss +
1
2
k3

)

+ 𝑔(ℎ1 + 𝜂1) = −𝛾1𝜓1(0, ℎ1 + 𝜂1(0, 𝑡), 𝑡), (2.29)

holds on 𝑦 = ℎ1 + 𝜂1(𝑥, 𝑡). The useful form of (2.29) that we shall need further is
𝜑̃1,𝑡 +

1
2
|∇𝜓1|

2 − 𝛾1𝜒1 +

𝜌1

(

kss +
1
2
k3

)

+ 𝑔(ℎ1 + 𝜂1) = 0 on 𝑦 = ℎ1 + 𝜂1(𝑥, 𝑡). (2.30)

Moreover, the continuity of the pressure along the interface 𝑦 = 𝜂(𝑥, 𝑡) together with (2.26)–(2.27) and the choice

𝑓 (𝑡) = 𝜌1
𝜌
(𝑓1(𝑡) + 𝛾1𝜓1(0, 𝜂(0, 𝑡), 𝑡)) − 𝛾 𝜓(0, 𝜂(0, 𝑡), 𝑡), (2.31)

yield

𝜌
(

𝜑̃𝑡 +
1
2
|∇𝜓|2𝑠 − 𝛾 𝜒 + 𝑔 𝜂

)

= 𝜌1
(

𝜑̃1,𝑡 +
1
2
|∇𝜓1|

2
𝑠 − 𝛾1𝜒 + 𝑔 𝜂

)

. (2.32)

3. The reformulation of the water wave problem

We provide here a choice of new dependent and independent variables that permits an equivalent reformulation of the water
ave problem (2.1)–(2.7). In this new reformulation the equations assume a simpler form that mitigates the difficulties brought about

by the rich structure of the nonlinear water wave problem. We start by indicating the choice for the Hamiltonian functional which
consists of the kinetic and potential energy, respectively, and a suitable term that accounts for the hydrolelastic effects introduced
by the condition (2.3). Another subtle aspect is the choice of suitable dynamical variables. We show here that the choice [40] (see
3.4) below) of dynamical variables for the Hamiltonian formulation of interfacial irrotational waves with a rigid lid is also relevant
or our scenario which allows for piecewise constant vorticity, stratification, a free surface, and an interface.

3.1. The nearly Hamiltonian formulation

The candidate for the Hamiltonian functional is, see e.g. [11,36,41], the total energy of the flow

𝐻 = ∫ ∫𝛺∪𝛺
𝝆
{

𝒖2 + 𝒗2
2

+ 𝑔 𝑦
}

𝑑 𝑦𝑑 𝑥 + 
2 ∫

𝐿

0

𝜂21,𝑥𝑥
2 5

𝑑 𝑥, (3.1)

1 (1 + 𝜂1,𝑥) 2

5 
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which, after taking into account the stratification of the fluid and the decomposition of the velocity field (2.16), (2.17), can be
recast as

𝐻 =
𝜌
2 ∫

𝐿

0 ∫

𝜂

−ℎ
|∇𝜑̃|2 𝑑 𝑦𝑑 𝑥 + 𝜌𝛾 ∫

𝐿

0 ∫

𝜂

−ℎ
𝑦 ̃𝜑𝑥 𝑑 𝑦𝑑 𝑥 + 𝜌

𝛾2

6 ∫

𝐿

0
(𝜂3 + ℎ3) 𝑑 𝑥

+ 𝜌𝜅 ∫

𝐿

0 ∫

𝜂

−ℎ
𝜑̃𝑥 𝑑 𝑦𝑑 𝑥 +

𝜌𝛾 𝜅
2 ∫

𝐿

0
(𝜂2 − ℎ2) 𝑑 𝑥 + 𝜌𝑘2

2 ∫

𝐿

0
(𝜂 + ℎ) 𝑑 𝑥

+
𝜌1
2 ∫

𝐿

0 ∫

ℎ1+𝜂1

𝜂
|∇𝜑̃1|

2 𝑑 𝑦𝑑 𝑥 + 𝜌1𝛾1 ∫
𝐿

0 ∫

ℎ1+𝜂1

𝜂
𝑦 ̃𝜑1,𝑥 𝑑 𝑦𝑑 𝑥

+ 𝜌1
𝛾21
2 ∫

𝐿

0

(ℎ1 + 𝜂1)3 − 𝜂3

3
𝑑 𝑥

+ 𝜌1𝜅1 ∫

𝐿

0 ∫

ℎ1+𝜂1

𝜂
𝜑̃1,𝑥 𝑑 𝑦𝑑 𝑥 +

𝜌1𝛾1𝜅1
2 ∫

𝐿

0
((ℎ1 + 𝜂1)2 − 𝜂2) 𝑑 𝑥

+
𝜌1𝑘21
2 ∫

𝐿

0
(ℎ1 + 𝜂1 − 𝜂) 𝑑 𝑥

+
𝜌𝑔
2 ∫

𝐿

0
(𝜂2 − ℎ2) 𝑑 𝑥 + 𝜌1𝑔

2 ∫

𝐿

0

(

(ℎ1 + 𝜂1)2 − 𝜂2
)

𝑑 𝑥

+ 
2 ∫

𝐿

0

𝜂21,𝑥𝑥

(1 + 𝜂21,𝑥)
5
2

𝑑 𝑥.

(3.2)

Remark. While, as mentioned before, we consider in this paper only the effect of bending and we neglect the stretching of the
elastic plate, it is worth noting that the energy due to bending-induced stretching of the plate can be considered in future works by
including a term of the form

+𝑁
2

(

∫

𝐿

0
(
√

1 + 𝜂21𝑥 − 1)𝑑 𝑥
)2

,

in Eq. (3.1) as in Burton & Toland [39], equation (1.2c).
In the sequel we will compute the variations of 𝐻 with respect 𝜂, 𝜂1 and the new dynamical variables proposed by Benjamin &

ridges [40,42] (utilized also by Craig et al. [18])

𝜉 ∶= 𝜌𝛷 − 𝜌1𝛷1, 𝜉1 ∶= 𝜌1𝛷2, (3.3)

where
⎧

⎪

⎨

⎪

⎩

𝛷(𝑥, 𝑡) ∶ = 𝜑̃(𝑥, 𝜂(𝑥, 𝑡), 𝑡),
𝛷1(𝑥, 𝑡) ∶ = 𝜑̃1(𝑥, 𝜂(𝑥, 𝑡), 𝑡),
𝛷2(𝑥, 𝑡) ∶ = 𝜑̃1(𝑥, ℎ1 + 𝜂1(𝑥, 𝑡), 𝑡).

(3.4)

The Hamiltonian formulation hinges upon the possibility to write the Hamiltonian functional (3.2) in the form

𝐻 = ∫

𝐿

0
 𝑑 𝑥, (3.5)

where  is a Hamiltonian density function which depends only on 𝜂 , 𝜂1, 𝜉 , 𝜉1 and their spatial derivatives. To establish the validity
of formula (3.5) we will appeal to the Dirichlet–Neumann operators which we define now.

Definition 3.1. For smooth, 𝐿-periodic, real functions 𝛷 , 𝜂 with 𝜂(𝑥) > −ℎ for all 𝑥 ∈ [0, 𝐿], we denote with 𝜙̃ the unique 𝐿-periodic
olution of the boundary value problem

⎧

⎪

⎨

⎪

⎩

𝛥 ̃𝜑 = 0 in 𝛺∗(𝜂),

𝜑̃ = 𝛷 on 𝑦 = 𝜂(𝑥),

𝜑̃𝑦 = 0 on 𝑦 = −ℎ.
(3.6)

Then, the Dirichlet–Neumann operator 𝐺 = 𝐺(𝜂) associated to the lower layer 𝛺∗(𝜂) of the fluid domain is defined by setting

𝐺 𝛷 ∶=
√

1 + 𝜂2𝑥
𝜕 ̃𝜑
𝜕𝐧

|

|

|𝑦=𝜂(𝑥)
, (3.7)

where 𝐧 denotes the outward pointing unit normal vector along 𝑦 = 𝜂(𝑥), cf. Fig. 1. Similarly, for the upper layer, given smooth,
𝐿-periodic functions 𝜂 , 𝜂1, 𝛷 , 𝛷1, satisfying 𝜂(𝑥) < ℎ1 + 𝜂1(𝑥) for all 𝑥 ∈ [0, 𝐿], we denote with 𝜑̃1 the unique solution of the Dirichlet
boundary value problem

⎧

⎪

⎨

⎪

𝛥 ̃𝜑1 = 0 in 𝛺∗
1(𝜂 , 𝜂1),

𝜑̃1 = 𝛷1 on 𝑦 = 𝜂(𝑥), (3.8)
⎩
𝜑̃1 = 𝛷2 on 𝑦 = ℎ1 + 𝜂1(𝑥).

6 
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Fig. 1. Depiction of a periodicity cell connected to the definition of the Dirichlet–Neumann operators corresponding to the layer adjacent to the bottom, and
to the layer adjacent to the surface, respectively.

The Dirichlet–Neumann operator 𝐺1 = 𝐺1(𝜂 , 𝜂1) associated to the upper layer 𝛺∗
1(𝜂 , 𝜂1) of the fluid domain is defined to be the matrix

operator

𝐺1(𝛷1, 𝛷2) ∶=
⎛

⎜

⎜

⎝

−
√

1 + 𝜂2𝑥
𝜕 ̃𝜑1
𝜕𝐧

|

|

|𝑦=𝜂(𝑥)
√

1 + 𝜂21,𝑥
𝜕 ̃𝜑1
𝜕𝐧1

|

|

|𝑦=ℎ1+𝜂1(𝑥)

⎞

⎟

⎟

⎠

, (3.9)

where 𝐧1 is the outward pointing unit normal vector along the upper boundary 𝑦 = ℎ1 + 𝜂1(𝑥); see Fig. 1.

Let us denote with 𝐺𝑖𝑗 , 𝑖, 𝑗 = 1, 2 the entries of the matrix operator 𝐺1(𝜂 , 𝜂1), that is
𝐺1 =

(

𝐺11 𝐺12
𝐺21 𝐺22

)

. (3.10)

More details on the operators 𝐺 and 𝐺1 emerging from Definition 3.1 are listed in the following Remark.

Remark 3.2. Detailing in the definition of 𝐺 from (3.7), we find (using also (2.19)) that

𝐺 𝛷 = 𝜂𝑡 + (𝛾 𝜂 + 𝜅)𝜂𝑥. (3.11)

It also turns out from the definition of 𝐺1 that
𝐺11𝛷1 + 𝐺12𝛷2 = −(𝜂𝑡 + 𝛾1𝜂 𝜂𝑥) − 𝜅1𝜂𝑥,
𝐺21𝛷1 + 𝐺22𝛷2 = 𝜂1,𝑡 + [𝛾1(ℎ1 + 𝜂1) + 𝜅1]𝜂1,𝑥.

(3.12)

Toward proving the claim (3.5) we set for the kinetic part of the Hamiltonian expansion (3.2) the notation

𝐾1 ∶ =
𝜌
2 ∫

𝐿

0 ∫

𝜂

−ℎ
|∇𝜑̃|2 𝑑 𝑦𝑑 𝑥 + 𝜌1

2 ∫

𝐿

0 ∫

ℎ1+𝜂1

𝜂
|∇𝜑̃1|

2 𝑑 𝑦𝑑 𝑥,

𝐾2 ∶ = 𝜌𝛾 ∫

𝐿

0 ∫

𝜂

−ℎ
𝑦 ̃𝜑𝑥 𝑑 𝑦𝑑 𝑥 + 𝜌1𝛾1 ∫

𝐿

0 ∫

ℎ1+𝜂1

𝜂
𝑦 ̃𝜑1,𝑥 𝑑 𝑦𝑑 𝑥,

𝐿 𝜂 𝐿 ℎ1+𝜂1

(3.13)
𝐾3 ∶ = 𝜌𝜅 ∫0 ∫−ℎ
𝜑̃𝑥 𝑑 𝑦𝑑 𝑥 + 𝜌1𝜅1 ∫0 ∫𝜂

𝜑̃1,𝑥 𝑑 𝑦𝑑 𝑥.
7 
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Utilizing the definitions of the Dirichlet–Neumann operators (3.7),(3.10), Green’s second identity and (3.11)–(3.12) we obtain

𝐾1 +𝐾2 +𝐾3 =
1
2 ∫

𝐿

0

(

𝜉
𝜉1

)𝑇 (

−𝐺11 −𝐺12
𝐺21 𝐺22

) (
𝛷1
𝛷2

)

𝑑 𝑥

− 1
2 ∫

𝐿

0

[

(𝜌𝛾 𝛷 − 𝜌1𝛾1𝛷1)𝜂 + 𝜌𝜅 𝛷 − 𝜌1𝜅1𝛷1
]

𝜂𝑥 𝑑 𝑥

− ∫

𝐿

0
[𝛾1(ℎ1 + 𝜂1) + 𝜅1]𝜉1𝜂1,𝑥 𝑑 𝑥

− 1
2 ∫

𝐿

0
(𝛾1𝜂 + 𝜅1)𝜉 𝜂𝑥 𝑑 𝑥,

(3.14)

which can be further transformed to

𝐾1 +𝐾2 +𝐾3 =
1
2 ∫

𝐿

0

(

𝜉
𝜉1

)𝑇 (

𝐺11𝐵−1𝐺 −𝐺 𝐵−1𝐺12
−𝐺21𝐵−1𝐺 − 𝜌

𝜌1
𝐺21𝐵−1𝐺12 +

1
𝜌1
𝐺22

)

(

𝜉
𝜉1

)

𝑑 𝑥

+ ∫

𝐿

0
𝜇 𝐵−1(𝜌1𝐺 𝜉 + 𝜌𝐺12𝜉1) 𝑑 𝑥 −

𝜌𝜌1
2 ∫

𝐿

0
𝜇 𝐵−1𝜇 𝑑 𝑥

− ∫

𝐿

0
(𝛾 𝜂 + 𝜅)𝜉 𝜂𝑥 𝑑 𝑥 − ∫

𝐿

0
[𝛾1(ℎ1 + 𝜂1) + 𝜅1]𝜉1𝜂1,𝑥 𝑑 𝑥,

(3.15)

where

𝜇 = 𝜇(𝜂) ∶= [(𝛾 − 𝛾1)𝜂 + 𝜅 − 𝜅1]𝜂𝑥 and 𝐵 = 𝐵(𝜂 , 𝜂1) ∶= 𝜌1𝐺 + 𝜌𝐺11.

The previous considerations together with the assumption of zero mean for the free surface- and the interface defining functions,
𝜂1 and 𝜂, respectively, prove the claim (3.5) about the functional dependence of the Hamiltonian 𝐻 . More precisely, we have

 =0 + 𝜇 𝐵−1(𝜌1𝐺 𝜉 + 𝜌𝐺12𝜉1) −
𝜌𝜌1
2
𝜇 𝐵−1𝜇

− (𝛾 𝜂 + 𝜅)𝜉 𝜂𝑥 − [𝛾1(ℎ1 + 𝜂1) + 𝜅1]𝜉1𝜂1,𝑥

+
𝜌𝛾2(ℎ3 + 𝜂3) + 𝜌1𝛾21

(

(ℎ1 + 𝜂1)3 − 𝜂3
)

6

+
𝜌𝜅 𝛾(𝜂2 − ℎ2) + 𝜌1𝜅1𝛾1

(

(ℎ1 + 𝜂1)2 − 𝜂2
)

2
+
𝜌𝜅2ℎ + 𝜌1𝜅21ℎ1

2

+
𝜂21,𝑥𝑥

2(1 + 𝜂21,𝑥)
5
2

,

(3.16)

where

0 =
1
2

(

𝜉
𝜉1

)𝑇 (

𝐺11𝐵−1𝐺 −𝐺 𝐵−1𝐺12
−𝐺21𝐵−1𝐺 − 𝜌

𝜌1
𝐺21𝐵−1𝐺12 +

1
𝜌1
𝐺22

)

(

𝜉
𝜉1

)

+
𝜌𝑔(𝜂2 − ℎ2) + 𝜌1𝑔

(

(ℎ1 + 𝜂1)2 − 𝜂2
)

2

(3.17)

denotes the contribution from the irrotational component of the flow. With the previous preparations we can now state the following
reliminary result.

Theorem 3.3. The governing equations admit the following nearly-Hamiltonian formulation
⎧

⎪

⎨

⎪

⎩

𝜉𝑡 = − 𝛿 𝐻
𝛿 𝜂 + (𝜌𝛾 − 𝜌1𝛾1)𝜒 , 𝜂𝑡 =

𝛿 𝐻
𝛿 𝜉 ,

𝜉1,𝑡 = − 𝛿 𝐻
𝛿 𝜂1 + 𝜌1𝛾1𝜒1, 𝜂1,𝑡 =

𝛿 𝐻
𝛿 𝜉1 .

(3.18)

Proof. Collecting all the variations with respect to 𝜂 as obtained in Appendix we obtain
𝛿 𝐻
𝛿 𝜂 =𝜌(𝜑̃𝑦 − 𝜑̃𝑥𝜂𝑥 − 𝛾 𝜂 𝜂𝑥)𝑠 ⋅ (−𝜑̃𝑦)𝑠 + 𝜌

(

1
2
|∇𝜑̃|2𝑠 + 𝛾 𝜂(𝜑̃𝑥)𝑠 +

𝛾2

2
𝜂2 + 𝑔 𝜂

)

+ 𝜌1(𝜂𝑥𝜑̃1,𝑥 − 𝜑̃1,𝑦 + 𝛾1𝜂 𝜂𝑥)𝑠 ⋅ (−𝜑̃1,𝑦)𝑠

− 𝜌1

(

1
2
|∇𝜑̃1|

2
𝑠 + 𝛾1𝜂(𝜑̃1,𝑥)𝑠 +

𝛾21
2
𝜂2 + 𝑔 𝜂

)

+ 𝜌𝜅
[

(𝜑̃𝑥)𝑠 + 𝜂𝑥(𝜑̃𝑦)𝑠
]

− 𝜌1𝜅1
[

(𝜑̃1,𝑥)𝑠 + 𝜂𝑥(𝜑̃1,𝑦)𝑠
]

𝜌𝜅2 𝜌1𝜅21

(3.19)
+ 𝜂(𝜌𝜅 𝛾 − 𝜌1𝜅1𝛾1) + 2
−

2
.

8 
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In order to simplify the formula above we make use of formula (2.19) and of the identities
1
2
|∇𝜑̃|2𝑠 +

𝛾2𝜂2

2
+ 𝛾 𝜂(𝜑̃𝑥)𝑠 = 1

2
|∇𝜓|2𝑠 −

𝜅2

2
− 𝜅(𝜑̃𝑥)𝑠 − 𝜅 𝛾 𝜂 , (3.20)

1
2
|∇𝜑̃1|

2
𝑠 +

𝛾21 𝜂
2

2
+ 𝛾1𝜂(𝜑̃1,𝑥)𝑠 =

1
2
|∇𝜓1|

2
𝑠 −

𝜅21
2

− 𝜅1(𝜑̃1,𝑥)𝑠 − 𝜅1𝛾1𝜂 , (3.21)

and obtain that𝛿 𝐻
𝛿 𝜂 = − 𝜌(𝜂𝑡 + 𝜅 𝜂𝑥)(𝜑̃𝑦)𝑠 + 𝜌1(𝜂𝑡 + 𝜅1𝜂𝑥)(𝜑̃1,𝑦)𝑠

+ 𝜌
(

1
2
|∇𝜓|2𝑠 −

𝜅2

2
− 𝜅(𝜑̃𝑥)𝑠 − 𝜅 𝛾 𝜂 + 𝑔 𝜂

)

− 𝜌1

(

1
2
|∇𝜓1|

2
𝑠 −

𝜅21
2

− 𝜅1(𝜑̃1,𝑥)𝑠 − 𝜅1𝛾1𝜂 + 𝑔 𝜂
)

+ 𝜌𝜅
[

(𝜑̃𝑥)𝑠 + 𝜂𝑥(𝜑̃𝑦)𝑠
]

− 𝜌1𝜅1
[

(𝜑̃1,𝑥)𝑠 + 𝜂𝑥(𝜑̃1,𝑦)𝑠
]

+ 𝜂(𝜌𝜅 𝛾 − 𝜌1𝜅1𝛾1) +
𝜌𝜅2

2
−
𝜌1𝜅21
2

.

(3.22)

Cancellations in the formula above and (2.32) lead further to𝛿 𝐻
𝛿 𝜂 = − 𝜌𝜂𝑡(𝜑̃𝑦)𝑠 + 𝜌1𝜂𝑡(𝜑̃1,𝑦)𝑠

+ 𝜌

(

|∇𝜓|2𝑠
2

+ 𝑔 𝜂
)

− 𝜌1

(

|∇𝜓1|
2
𝑠

2
+ 𝑔 𝜂

)

= − 𝜌 [𝜂𝑡(𝜑̃𝑦)𝑠 + (𝜑̃𝑡)𝑠]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

= 𝛷𝑡 by (3.4)

+𝜌1 [𝜂𝑡(𝜑̃1,𝑦)𝑠 + (𝜑̃1,𝑡))𝑠]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

= 𝛷1,𝑡 by (3.4)

+𝜌𝛾 𝜒 − 𝜌1𝛾1𝜒 ,

= − 𝜉𝑡 + (𝜌𝛾 − 𝜌1𝛾1)𝜒

(3.23)

We also have𝛿 𝐻
𝛿 𝜂1

= 𝜌1(−𝜑̃1,𝑦)𝑠1 [(𝜑̃1,𝑦)𝑠1 − 𝜂1,𝑥(𝜑̃1,𝑥)𝑠1 − 𝛾1(ℎ1 + 𝜂1)𝜂1,𝑥]

+
𝜌1
2
|∇𝜑̃1|

2
𝑠1
+ 𝜌1𝛾1(ℎ1 + 𝜂1)(𝜑̃1,𝑥)𝑠1

+
𝜌1𝛾21
2

(ℎ1 + 𝜂1)2 + 𝑔 𝜌1(ℎ1 + 𝜂1)

+ 𝜌1𝜅1
[

(𝜑̃1,𝑥)𝑠1 + 𝜂1,𝑥(𝜑̃1,𝑦)𝑠1
]

+ 𝜌1𝜅1𝛾1(ℎ1 + 𝜂1) +
𝜌1𝜅21
2

+ 
(

kss +
1
2
k3

)

(3.24)

Using the kinematic boundary condition at the interface (2.18) and the formula
1
2
|∇𝜑̃1|

2
𝑠1
+
𝛾21 (𝜂1 + ℎ1)

2

2
+𝛾1(𝜂1 + ℎ1)(𝜑̃1,𝑥)𝑠1

= 1
2
|∇𝜓1|

2
𝑠1
−
𝜅21
2

− 𝜅1(𝜑̃1,𝑥)𝑠1 − 𝜅1𝛾1(𝜂1 + ℎ1),

(3.25)

obtained from (2.17), we see that𝛿 𝐻
𝛿 𝜂1

= − 𝜌1(𝜑̃1,𝑦)𝑠1 (𝜂1,𝑡 + 𝜅1𝜂1,𝑥)

+ 𝜌1

(

1
2
|∇𝜓1|

2
𝑠1
−
𝜅21
2

− 𝜅1(𝜑̃1,𝑥)𝑠1 + (𝑔 − 𝜅1𝛾1)(ℎ1 + 𝜂1)
)

+ 𝜌1𝜅1
[

(𝜑̃1,𝑥)𝑠1 + 𝜂1,𝑥(𝜑̃1,𝑦)𝑠1
]

+ 𝜌1𝜅1𝛾1(ℎ1 + 𝜂1)

+
𝜌1𝜅21
2

+
(

kss +
1
2
k3

)

= − 𝜌1(𝜑̃1,𝑦)𝑠1𝜂1,𝑡 +
𝜌1
2
|∇𝜓1|

2
𝑠1
+

(

kss +
1
2
k3

)

+ 𝜌1𝑔(ℎ1 + 𝜂1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

= 𝜌1𝛾1𝜒1 − 𝜌1(𝜑̃1,𝑡)𝑠1 by formula (2.30)

(3.26)
= − 𝜌1[(𝜑̃1,𝑦)𝑠1𝜂1,𝑡 + (𝜑̃1,𝑡)𝑠1 ] + 𝜌1𝛾1𝜒1
= − 𝜉1,𝑡 + 𝜌1𝛾1𝜒1. 9 
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Collecting now all the factors of 𝛿 𝛷 and 𝛿 𝛷1 from (A.1)–(A.6) and using (2.19) and that 𝜉 = 𝜌𝛷 − 𝜌1𝛷1 we have
𝛿 𝐻
𝛿 𝜉 = (𝜑̃𝑦)𝑠 − 𝜂𝑥(𝜑̃𝑥)𝑠 − 𝛾 𝜂 𝜂𝑥 − 𝜅 𝜂𝑥 = (𝜑̃1,𝑦)𝑠 − 𝜂𝑥(𝜑̃1,𝑥)𝑠 − 𝛾1𝜂 𝜂𝑥 − 𝜅1𝜂𝑥 = 𝜂𝑡. (3.27)

Similarly, from (A.2), (A.4), (A.6) and using 𝜉1 = 𝜌1𝛷2 we obtain that
𝛿 𝐻
𝛿 𝜉1

= (𝜑̃1,𝑦)𝑠1 − 𝜂1,𝑥
[

(𝜑̃1,𝑥)𝑠1 + 𝛾1(ℎ1 + 𝜂1) + 𝜅1
]

= 𝜂1,𝑡, (3.28)

the last equality being in fact the formula (2.18).
The previous computations can be summarized as follows

𝛿 𝐻 = ∫

𝐿

0

{

𝜂𝑡𝛿 𝜉 + 𝜂1,𝑡𝛿 𝜉1 + [−𝜉𝑡 + (𝜌𝛾 − 𝜌1𝛾1)𝜒]𝛿 𝜂 + [−𝜉1,𝑡 + 𝜌1𝛾1𝜒1]𝛿 𝜂1
}

, (3.29)

relation, which together with the definition of the variational derivative with respect to the inner product in the space 2[0, 𝐿] of
square integrable functions, enforces (3.18). □

After having proven the result in (3.18) a few remarks are in order.

(i) The two (constant) vorticities 𝛾 and 𝛾1 represent the extent by which the governing Eqs. (2.1)–(2.6) fail to be representable
as a Hamiltonian system

𝜔𝑡 = 𝐽 𝛿 𝐻
𝛿 𝜔 .

Here 𝑡 ↦ 𝜔(𝑡) is a path in a Hilbert space H equipped with an inner product, the associated Hamiltonian functional
𝐻 ∶ D ⊂ H → R is defined on the dense subset D of H, and 𝐽 is a skew-adjoint (pseudo)-differential operator, cf. [43].

(ii) We would like to remark that the system (3.18) is automatically Hamiltonian in the absence of shear: that is, setting 𝛾 = 𝛾1 = 0
we have that

⎧

⎪

⎨

⎪

⎩

𝜉𝑡 = − 𝛿 𝐻
𝛿 𝜂 , 𝜂𝑡 =

𝛿 𝐻
𝛿 𝜉 ,

𝜉1,𝑡 = − 𝛿 𝐻
𝛿 𝜂1 , 𝜂1,𝑡 =

𝛿 𝐻
𝛿 𝜉1 ,

(3.30)

recovering the result by Craig, Guyenne and Kalisch [18].
(iii) Setting now 𝛾 = 𝛾1 and 𝜌 = 𝜌1, we have 𝛷 = 𝛷1 and we are now in the situation of a single layer flow with a free surface

and obtain the reduced system
⎧

⎪

⎨

⎪

⎩

𝜂1,𝑡 =
𝛿 𝐻
𝛿 𝜉1 ,

𝜉1,𝑡 = − 𝛿 𝐻
𝛿 𝜂1 + 𝜌1𝛾1𝜒1,

representing the (nearly)-Hamiltonian formulation of the governing equations in the single layer −ℎ < 𝑦 < ℎ1 + 𝜂1(𝑥, 𝑡),
obtained by Constantin, Ivanov & Prodanov, cf. [12]. Further, setting 𝛾1 = 0 above we recover the finite depth analogue of
Zakharov’s seminal Hamiltonian formulation for irrotational waves on infinitely deep fluids [11].

3.2. The Hamiltonian formulation

This section is devoted to showing that the (nearly)-Hamiltonian formulation (3.18) becomes Hamiltonian by a suitable change
of variables.

Theorem 3.4. The change of variables
𝑧 = 𝜉 + 𝜌𝛾−𝜌1𝛾1

2 ∫ 𝑥0 𝜂(𝑥′, 𝑡) 𝑑 𝑥′

𝑧1 = 𝜉1 +
𝜌1𝛾1
2 ∫ 𝑥0 𝜂1(𝑥′, 𝑡) 𝑑 𝑥′.

(3.31)

transforms the nearly-Hamiltonian system (3.18) in the Hamiltonian system
⎧

⎪

⎨

⎪

⎩

𝑧𝑡 = − 𝛿 𝐻
𝛿 𝜂 , 𝜂𝑡 =

𝛿 𝐻
𝛿 𝑧 ,

𝑧1,𝑡 = − 𝛿 𝐻
𝛿 𝜂1 , 𝜂1,𝑡 =

𝛿 𝐻
𝛿 𝑧1 ,

(3.32)

which is a re-formulation of the governing equations.
10 
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Proof. Setting 𝛼 ∶= 𝜌𝛾 − 𝜌1𝛾1 and 𝛽 ∶= 𝜌1𝛾1 in (3.29), we obtain by means of (3.31)

𝛿 𝐻 =∫

𝐿

0

[

−𝑧𝑡 +
𝛼
2 ∫

𝑥

0
𝜂𝑡(𝑥′, 𝑡) 𝑑 𝑥′ + 𝛼 𝜒

]

𝛿 𝜂 𝑑 𝑥

+ ∫

𝐿

0
𝜂𝑡

[

𝛿 𝑧 − 𝛼
2 ∫

𝑥

0
𝛿 𝜂(𝑥′, 𝑡)𝑑 𝑥′

]

𝑑 𝑥

+ ∫

𝐿

0

[

−𝑧1,𝑡 +
𝛽
2 ∫

𝑥

0
𝜂1,𝑡(𝑥′, 𝑡) 𝑑 𝑥′ + 𝛽 𝜒1

]

𝛿 𝜂1 𝑑 𝑥

+ ∫

𝐿

0
𝜂1,𝑡

[

𝛿 𝑧1 −
𝛽
2 ∫

𝑥

0
𝛿 𝜂1(𝑥′, 𝑡)𝑑 𝑥′

]

𝑑 𝑥.

(3.33)

Note now that, due to (2.23) and since ∫ 𝐿0 𝜂(𝑥, 𝑡)𝑑 𝑥 = 0, we have

∫

𝐿

0
𝜂𝑡

(

∫

𝑥

0
𝛿 𝜂(𝑥′, 𝑡)𝑑 𝑥′

)

𝑑 𝑥 = ∫

𝐿

0

𝑑
𝑑 𝑥

(

∫

𝑥

0
𝜂𝑡(𝑥′′, 𝑡) 𝑑 𝑥′′

) (
∫

𝑥

0
𝛿 𝜂(𝑥′, 𝑡)𝑑 𝑥′

)

𝑑 𝑥

= −∫

𝐿

0

(

∫

𝑥

0
𝜂𝑡(𝑥′′, 𝑡) 𝑑 𝑥′′

)

(𝛿 𝜂)(𝑥, 𝑡) 𝑑 𝑥

= ∫

𝐿

0
𝜒 𝛿 𝜂 𝑑 𝑥,

(3.34)

and, similarly

∫

𝐿

0
𝜂1,𝑡

(

∫

𝑥

0
𝛿 𝜂1(𝑥′, 𝑡)𝑑 𝑥′

)

𝑑 𝑥 = ∫

𝐿

0

𝑑
𝑑 𝑥

(

∫

𝑥

0
𝜂1,𝑡(𝑥′′, 𝑡) 𝑑 𝑥′′

) (
∫

𝑥

0
𝛿 𝜂1(𝑥′, 𝑡)𝑑 𝑥′

)

𝑑 𝑥

= −∫

𝐿

0

(

∫

𝑥

0
𝜂1,𝑡(𝑥′′, 𝑡) 𝑑 𝑥′′

)

(𝛿 𝜂1)(𝑥, 𝑡) 𝑑 𝑥

= ∫

𝐿

0
𝜒1𝛿 𝜂1 𝑑 𝑥.

(3.35)

With the help of the previous two relations we can rewrite (3.33) as

𝛿 𝐻 = ∫

𝐿

0
(−𝑧𝑡)𝛿 𝜂 𝑑 𝑥 + ∫

𝐿

0
𝜂𝑡𝛿 𝑧 𝑑 𝑥 + ∫

𝐿

0
(−𝑧1,𝑡)𝛿 𝜂1 𝑑 𝑥 + ∫

𝐿

0
𝜂1,𝑡𝛿 𝑧1 𝑑 𝑥, (3.36)

from which our claim emerges. □

Remark 3.5. In terms of the variables 𝜂 , 𝜂1 and of the new variables 𝑧1 we can write the Hamiltonian density as

 =1
2

(

𝑧
𝑧1

)𝑇


(

𝑧
𝑧1

)

− 1
2

(

𝑧
𝑧1

)𝑇


(

𝛤 ∫ 𝑥0 𝜂(𝑙 , 𝑡) 𝑑 𝑙
𝛤1 ∫

𝑥
0 𝜂1(𝑙 , 𝑡) 𝑑 𝑙

)

− 1
2

(

𝛤 ∫ 𝑥0 𝜂(𝑙 , 𝑡) 𝑑 𝑙
𝛤1 ∫

𝑥
0 𝜂1(𝑙 , 𝑡) 𝑑 𝑙

)𝑇


(

𝑧
𝑧1

)

+ 1
2

(

𝛤 ∫ 𝑥0 𝜂(𝑙 , 𝑡) 𝑑 𝑙
𝛤1 ∫

𝑥
0 𝜂1(𝑙 , 𝑡) 𝑑 𝑙

)𝑇


(

𝛤 ∫ 𝑥0 𝜂(𝑙 , 𝑡) 𝑑 𝑙
𝛤1 ∫

𝑥
0 𝜂1(𝑙 , 𝑡) 𝑑 𝑙

)

+
𝜌𝑔(𝜂2 − ℎ2) + 𝜌1𝑔

(

(ℎ1 + 𝜂1)2 − 𝜂2
)

2
−
𝜌𝜌1
2
𝜇 𝐵−1𝜇

+ 𝜇 𝐵−1(𝜌1𝐺 𝑧 + 𝜌𝐺12𝑧1) − 𝜇 𝐵−1
(

𝛤 𝜌1𝐺 ∫

𝑥

0
𝜂(𝑙 , 𝑡) 𝑑 𝑙 + 𝛤1𝜌𝐺12 ∫

𝑥

0
𝜂1(𝑙 , 𝑡) 𝑑 𝑙

)

+
(

𝛾 𝜂2
2

+ 𝜅 𝜂
)

(𝑧𝑥 − 𝛤 𝜂) +
(

𝛾1𝜂21
2

+ (𝛾1ℎ1 + 𝜅1)𝜂1
)

(𝑧1,𝑥 − 𝛤1𝜂1)

+
𝜌𝛾2(ℎ3 + 𝜂3) + 𝜌1𝛾21

(

(ℎ1 + 𝜂1)3 − 𝜂3
)

6

+
𝜌𝜅 𝛾(𝜂2 − ℎ2) + 𝜌1𝜅1𝛾1

(

(ℎ1 + 𝜂1)2 − 𝜂2
)

2
+
𝜌𝜅2ℎ + 𝜌1𝜅21ℎ1

2

+
𝜂21,𝑥𝑥

2(1 + 𝜂21,𝑥)
5
2

,

(3.37)

where

 =

(

𝐺11𝐵−1𝐺 −𝐺 𝐵−1𝐺12
−𝐺21𝐵−1𝐺 − 𝜌

𝜌1
𝐺21𝐵−1𝐺12 +

1
𝜌1
𝐺22

)

,

and 𝛤 = 𝜌𝛾 − 𝜌1𝛾1, 𝛤1 = 𝜌1𝛾1.
11 
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3.3. The linear dispersion relation

We illustrate in this section the usefulness of Hamiltonian methods which in conjunction with the Dirichlet–Neumann operators
llow the derivation of the dispersion relation. In connection with the latter aspect, we would like to remark that the understanding
f many relevant aspects of the evolution of water waves begins with the investigation of the linearized equations about a trivial
olution. In this case such a trivial solution is the state of rest, which entails that the free surface and the interface are given as
𝜂 = 𝜂1 = 0 and, moreover 𝜉 = 𝜉1 = 0. The derivation of the linearized equations of motion is done by truncating the Taylor expansion
f the Hamiltonian density  at its quadratic term, which we denote with (2). To make the presentation more straightforward,
e are omitting the currents 𝜅 and 𝜅1 from the context. To obtain (2) we note that the Dirichlet–Neumann operators 𝐺(𝜂) and
1(𝜂 , 𝜂1) are analytic with respect to the dependence on 𝜂 abd (𝜂 , 𝜂1), respectively [18,44], and have convergent Taylor expansions

𝐺(𝜂) =
∞
∑

𝑝=0
𝐺(𝑝)(𝜂), (3.38)

𝐺1(𝜂 , 𝜂1) =
∞
∑

𝑝0 ,𝑝1=0

(

𝐺(𝑝0𝑝1)
11 (𝜂 , 𝜂1) 𝐺(𝑝0𝑝1)

12 (𝜂 , 𝜂1)
𝐺(𝑝0𝑝1)
21 (𝜂 , 𝜂1) 𝐺(𝑝0𝑝1)

22 (𝜂 , 𝜂1)

)

, (3.39)

where each linear operator 𝐺(𝑝)(𝜂) is homogeneous of degree 𝑝 in 𝜂 and each linear operator 𝐺(𝑝0𝑝1)
𝑖𝑗 (𝜂 , 𝜂1), (𝑖, 𝑗 = 1, 2), is homogeneous

of degree 𝑝0 in 𝜂 and of degree 𝑝1 in 𝜂1, cf. [18,44]. Each of the operators 𝐺(𝑝)(𝜂) and 𝐺(𝑝0𝑝1)
𝑖𝑖 (𝜂 , 𝜂1), 𝑖 = 1, 2, is self-adjoint, while

𝐺(𝑝0𝑝1)
12 (𝜂 , 𝜂1)

)∗ = 𝐺(𝑝0𝑝1)
21 (𝜂 , 𝜂1).

Remark 3.6. In order to give more insights into the asymptotic structures (3.38) and (3.39) we need additional notation, definitions
and the observation that the Dirichlet–Neumann can be understood as certain pseudodifferential operators. More precisely, let 𝑚 be
a complex-valued function of one real variable whose derivatives of any order have polynomial growth and setting 𝐷 ∶= −𝑖𝜕𝑥 we
define

(𝑚(𝐷)𝑓 )(𝑥) ∶= 1
2𝜋 ∬ 𝑒𝑖𝑘(𝑥−𝑦)𝑚(𝑘)𝑓 (𝑦)𝑑 𝑦 𝑑 𝑘. (3.40)

The operator 𝑚(𝐷) is called a Fourier multiplier operator and maps (R) into (R). Furthermore,

1. 𝑚(𝐷) extends to a self-adjoint operator in 𝐿2(R) if and only if 𝑚 is real valued, cf. [45].
2. 𝑚(𝐷) is bounded if and only if 𝑚 ∈ 𝐿∞(R).

Then, the leading order terms of the DN operators are given (cf. [18,44]) by means of Fourier multipliers as

𝐺(0)(𝜂) = 𝐷 t anh(ℎ𝐷), (3.41)

(

𝐺(00)
11 (𝜂 , 𝜂1) 𝐺(00)

12 (𝜂 , 𝜂1)
𝐺(00)
21 (𝜂 , 𝜂1) 𝐺(00)

22 (𝜂 , 𝜂1)

)

=
(

𝐷 cot h(ℎ1𝐷) −𝐷csch(ℎ1𝐷)
−𝐷csch(ℎ1𝐷) 𝐷 cot h(ℎ1𝐷)

)

. (3.42)

Utilizing also that the homogeneous part of order 0 of 𝐵 is 𝐵(0) ∶= 𝜌1𝐺(0)(𝜂) + 𝜌𝐺(00)
11 (𝜂 , 𝜂1) we obtain that the quadratic part of the

amiltonian density (3.16) is

(2) =1
2
𝜉

𝐷 t anh(ℎ𝐷) cot h(ℎ1𝐷)
𝜌 cot h(ℎ1𝐷) + 𝜌1 t anh(ℎ𝐷)

𝜉 + 𝜉
𝐷 t anh(ℎ𝐷)csch(ℎ1𝐷)

𝜌 cot h(ℎ1𝐷) + 𝜌1 t anh(ℎ𝐷)
𝜉1

+ 1
2
𝜉1
𝐷
(

t anh(ℎ𝐷) cot h(ℎ1𝐷) + 𝜌
𝜌1

)

𝜌 cot h(ℎ1𝐷) + 𝜌1 t anh(ℎ𝐷)
𝜉1

+ 1
2
(

𝑔(𝜌 − 𝜌1)𝜂2 + 𝜌1(𝛾21ℎ1 + 𝑔)𝜂
2
1
)

− 𝛾1ℎ1𝜉1𝜂1,𝑥 +

2
𝜂21,𝑥𝑥.

(3.43)

Denoting with 𝐻 (2) the quadratic part of the Hamiltonian 𝐻 , the linearized equations of motion are

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

𝜂𝑡 =
𝛿 𝐻 (2)

𝛿 𝜉 ,

𝜂1,𝑡 =
𝛿 𝐻 (2)

𝛿 𝜉1
,

𝜉𝑡 = − 𝛿 𝐻
(2)

𝛿 𝜂 + (𝜌1𝛾1 − 𝜌𝛾)∫
𝑥

0
𝜂𝑡(𝑙 , 𝑡) 𝑑 𝑙 ,

𝛿 𝐻 (2) 𝑥

(3.44)
⎩

𝜉1,𝑡 = −
𝛿 𝜂1

− 𝜌1𝛾1 ∫0
𝜂1,𝑡(𝑙 , 𝑡) 𝑑 𝑙 ,

12 
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which can be detailed as
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝜂𝑡 =
𝐷 t anh(ℎ𝐷) cot h(ℎ1𝐷)

𝜌 cot h(ℎ1𝐷) + 𝜌1 t anh(ℎ𝐷)
𝜉 +

𝐷 t anh(ℎ𝐷)csch(ℎ1𝐷)
𝜌 cot h(ℎ1𝐷) + 𝜌1 t anh(ℎ𝐷)

𝜉1,

𝜂1,𝑡 =
𝐷 t anh(ℎ𝐷)csch(ℎ1𝐷)

𝜌 cot h(ℎ1𝐷) + 𝜌1 t anh(ℎ𝐷)
𝜉 +

𝐷
(

t anh(ℎ𝐷) cot h(ℎ1𝐷) + 𝜌
𝜌1

)

𝜌 cot h(ℎ1𝐷) + 𝜌1 t anh(ℎ𝐷)
𝜉1 − 𝛾1ℎ1𝜂1,𝑥,

𝜉𝑡 = −𝑔(𝜌 − 𝜌1)𝜂 + (𝜌1𝛾1 − 𝜌𝛾)∫
𝑥

0
𝜂𝑡(𝑙 , 𝑡) 𝑑 𝑙 ,

𝜉1,𝑡 = −𝛾1ℎ1𝜉1,𝑥 − 𝜌1(𝛾21ℎ1 + 𝑔)𝜂1 − 𝜌1𝛾1 ∫
𝑥

0
𝜂1,𝑡(𝑙 , 𝑡) 𝑑 𝑙 −𝜂1,𝑥𝑥𝑥𝑥.

(3.45)

To derive the dispersion relation we will investigate monochromatic solutions of the leading order linear Eqs. (3.45), thus all
components of the solutions (𝜂 , 𝜂1, 𝜉 , 𝜉1) are taken to be proportional to 𝑒𝑖(𝑘𝑥−𝜔(𝑘)𝑡) where 𝑘 denotes the wave number, and 𝜔(𝑘) = 𝑘𝑐(𝑘)
represents the frequency, with 𝑐(𝑘) being the wave speed. Therefore, with the ansatz

𝜂 = 𝛼(𝑘)𝑒𝑖(𝑘𝑥−𝜔(𝑘)𝑡), 𝜂1(𝑡) = 𝛼1(𝑘)𝑒𝑖(𝑘𝑥−𝜔(𝑘)𝑡), (3.46)

(for some coefficients 𝛼(𝑘), 𝛼1(𝑘)) we obtain from (3.45) the (linear) dispersion relation
𝐺2(𝑘)
𝑘2

[

𝛤
𝜌

−
𝑔̃
𝑐

] [
𝛤1
𝜌

+ 1
𝑐 − 𝛾1ℎ1

(

𝜃 − 𝑘4
𝜌

)]

=
[

𝑐 +
𝐹 (𝑘)
𝑘

(

𝛤
𝜌

−
𝑔̃
𝑐

)] [
𝑐 − 𝛾1ℎ1 +

𝐻(𝑘)
𝑘

(

𝛤1
𝜌

+ 1
𝑐 − 𝛾1ℎ1

(

𝜃 − 𝑘4
𝜌

))]

,
(3.47)

where

𝐹 (𝑘) = 𝜌 t anh(𝑘ℎ) cot h(𝑘ℎ1)
𝜌1 t anh(𝑘ℎ) + 𝜌 cot h(𝑘ℎ1)

,

𝐺(𝑘) = 𝜌 t anh(𝑘ℎ)csch(𝑘ℎ1)
𝜌1 t anh(𝑘ℎ) + 𝜌 cot h(𝑘ℎ1)

,

𝐻(𝑘) =
𝜌
(

t anh(𝑘ℎ) cot h(𝑘ℎ1) + 𝜌
𝜌1

)

𝜌1 t anh(𝑘ℎ) + 𝜌 cot h(𝑘ℎ1)
,

𝜃 =
𝛾1ℎ1𝛤1 − 𝜌1(𝛾21ℎ1 + 𝑔)

𝜌
,

𝑔̃ =
𝑔(𝜌 − 𝜌1)

𝜌
.

(3.48)

We conclude this section with two particular cases of the dispersion relation (3.47).

Remark 3.7. Setting 𝛾 = 𝛾1 = 0 in (3.47) we obtain that the wave speed 𝑐 satisfies the equation

𝑐4 −
[(

𝑔 𝜌1 +𝑘4

𝜌

)

𝐻(𝑘)
𝑘

+ 𝑔̃
𝐹 (𝑘)
𝑘

]

𝑐2 + 𝑔̃
(

𝑔 𝜌1 +𝑘4

𝜌

)

𝐹 (𝑘)𝐻(𝑘) − 𝐺2(𝑘)
𝑘2

= 0, (3.49)

which, seen as a second degree equation in 𝑐2, has the discriminant equal to

𝛥 =
[(

𝑔 𝜌1 +𝑘4

𝜌

)

𝐻(𝑘)
𝑘

− 𝑔̃
𝐹 (𝑘)
𝑘

]2

+ 4𝑔̃
(

𝑔 𝜌1 +𝑘4

𝜌

)

𝐺2(𝑘)
𝑘2

> 0. (3.50)

Since 𝐹 (𝑘)𝐻(𝑘) − 𝐺2(𝑘) = 𝜌2 t anh(𝑘ℎ)
𝜌1
(

𝜌1 t anh(𝑘ℎ)+𝜌 cot h(𝑘ℎ1)
) > 0 we see that (3.49) has two positive solutions, representing 𝑐2, that is

𝑐2± =
𝐵(𝑘) ±

√

𝐵2(𝑘) − 4𝑔̃
(

𝑔 𝜌1+𝑘4
𝜌

)

𝐹 (𝑘)𝐻(𝑘)−𝐺2(𝑘)
𝑘2

2
, (3.51)

with

𝐵(𝑘) =
(

𝑔 𝜌1 +𝑘4

𝜌

)

𝐻(𝑘)
𝑘

+ 𝑔̃
𝐹 (𝑘)
𝑘

,

=
𝑔 𝜌(t anh(𝑘ℎ) + t anh(𝑘ℎ1)

)

+𝑘4
(

𝜌
𝜌1

t anh(𝑘ℎ1) + t anh(𝑘ℎ)
)

𝑘(𝜌1 t anh(𝑘ℎ) t anh(𝑘ℎ1) + 𝜌)
.

(3.52)

Since

𝐹 (𝑘)𝐻(𝑘) − 𝐺2(𝑘) = 𝜌 t anh(𝑘ℎ) t anh(𝑘ℎ1)
𝜌1(1 + 𝑅 t anh(𝑘ℎ) t anh(𝑘ℎ1))

,

with 𝑅 = 𝜌1
𝜌 , we see that formula (3.51) coincides with the dispersion relation found by Wang et al. [28], cf. formulas (2.9)-(2.12)

therein, in the setting of interfacial solitary waves propagating under an elastic sheet in irrotational flows.
13 



C.-I. Martin and E.I. Părău

s
p
D

m

n

o

l
d

t
‘
G
1
E

Wave Motion 133 (2025) 103454 
Remark 3.8. Setting now 𝛾 = 𝛾1 = 0 and  = 0 in (3.47) we obtain that the frequency 𝜔(𝑘) = 𝑘𝑐(𝑘) satisfies the equation

𝜔4 − 𝑔 𝜌𝑘 1 + t anh(𝑘ℎ) cot h(𝑘ℎ1)
𝜌1 t anh(𝑘ℎ) + 𝜌 cot h(𝑘ℎ1)

𝜔2 + 𝑔2(𝜌 − 𝜌1)𝑘2
t anh 𝑘ℎ

𝜌1 t anh(𝑘ℎ) + 𝜌 cot h(𝑘ℎ1)
= 0, (3.53)

which coincides with the dispersion relation found by Craig et al. [18], in the setting of linear free surfaces and interfaces in
irrotational flows.

4. Conclusions and further perspectives

We have derived here a Hamiltonian formulation for the nonlinear equations governing the motion of two-dimensional
hydroelastic waves propagating at the surface of a stratified rotational two-layer ideal fluid of finite depth, covered by a thin ice
heet. The setting we considered includes the combined effects of (discontinuous) stratification and of piecewise constant vorticity,
ermitting thus the presence of interfaces (playing the role of internal waves) and of linearly sheared currents. Appealing to the
irichlet–Neumann operators we have derived linearized equations of motion for the free surface, the interface and for the traces

of the (generalized) velocity potentials on the two surfaces. The analysis of the latter equations was concluded by the derivation of
the (linear dispersion) relation.

Since the Hamiltonian variables (𝜂 , 𝜂1, 𝜉 , 𝜉1) give the boundary values of the (generalized) velocity potential, which extends
analytically to the interior of the fluid domain, it follows that the Hamiltonian approach developed here has the potential to lead to
future thorough investigations concerning the flow beneath pertaining to the velocity field, the pressure and the particle trajectories,
cf. e.g. [46–48]. Moreover, a detailed analysis of the Dirichlet–Neumann operators makes it plausible that certain weakly-nonlinear

odels for various propagation regimes will be derived from the nonlinear governing equations. We would like to emphasize the
importance of the Dirichlet–Neumann operators by noticing that the recent years have witnessed a significant increase in the study
of both the full nonlinear water wave problem and of various approximate nonlinear water wave models. This advancement is
propelled by a combination of methods centered on the Dirichlet–Neumann operators and Hamiltonian systems, cf. [23,49–55], as
well as numerical computation techniques for quantities expressed by the Dirichlet–Neumann operators [56–58], building on the
pioneering work [59].

Due to the fact that we start from the full nonlinear equations we expect a nonlinear Schrödinger equation (in some weakly-
onlinear regimes), which is different from the model based on a modification of the multi-layer Green–Naghdi equations [25]. The

quantitative geophysical characteristics of the regions of the Arctic Ocean where internal waves have been observed (e.g. [4,6])
will help in deriving weakly-nonlinear equations from the Hamiltonian formulation in useful settings, which then can be used to
predict and calculate properties of internal waves and compare them with field results. This is especially useful as the observations
f internal waves cannot be performed during the winter months, when the sea is covered by ice.

Of further interest are investigations about the dispersion relation for waves at the elastic interface between fluids in multi-
ayered domains cf. [60,61]. Moreover, while inclusion of viscous effects would impede a Hamiltonian formulation by means of the
ynamical variables defined in (3.3), of high relevance are future investigations concerning viscoelastic wave-ice interactions by

means of computational methods, cf. [62–64].
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Appendix

We recall in this section a few formulas regarding the variations of the functional 𝐻 with respect to 𝜂 , 𝜂1, 𝜉 and 𝜉1 as obtained
n [19]. We start first with the kinetic terms from the representation of 𝐻 . For the kinetic term corresponding to the lower layer

we have

𝛿
(

∫

𝐿

0 ∫

𝜂

−ℎ
|∇𝜑̃|2 𝑑 𝑦𝑑 𝑥

)

=2∫

𝐿

0
[𝜑̃𝑦 − 𝜂𝑥𝜑̃𝑥]𝑠[𝛿 𝛷 − (𝜑̃𝑦)𝑠𝛿 𝜂] 𝑑 𝑥

+ ∫

𝐿

0
|∇𝜑̃|2𝑠𝛿 𝜂 𝑑 𝑥.

(A.1)

Analogously, for the kinetic term corresponding to the upper layer it holds that

𝛿
(

∫

𝐿

0 ∫

ℎ1+𝜂1

𝜂
|∇𝜑̃1|

2 𝑑 𝑦𝑑 𝑥
)

=2∫

𝐿

0
[𝜂𝑥𝜑̃1,𝑥 − 𝜑̃1,𝑦]𝑠[𝛿 𝛷1 − (𝜑̃1,𝑦)𝑠𝛿 𝜂] 𝑑 𝑥

+ 2∫
𝐿

0
[𝜑̃1,𝑦 − 𝜂1,𝑥𝜑̃1,𝑥]𝑠1 ⋅ [𝛿 𝛷2 − (𝜑̃1,𝑦)𝑠1𝛿 𝜂1] 𝑑 𝑥

+ ∫

𝐿

0
|∇𝜑̃1|

2
𝑠1
𝛿 𝜂1 𝑑 𝑥 − ∫

𝐿

0
|∇𝜑̃1|

2
𝑠𝛿 𝜂 𝑑 𝑥.

(A.2)

We also have that

𝛿
(

∫

𝐿

0 ∫

𝜂

−ℎ
𝑦 ̃𝜑𝑥 𝑑 𝑦𝑑 𝑥

)

= −∫

𝐿

0
[𝛿 𝛷 − (𝜑̃𝑦)𝑠𝛿 𝜂]𝜂 𝜂𝑥 + ∫

𝐿

0
𝜂(𝜑̃𝑥)𝑠𝛿 𝜂 𝑑 𝑥,

(A.3)

as well as

𝛿
(

∫

𝐿

0 ∫

ℎ1+𝜂1

𝜂
𝑦 ̃𝜑1,𝑥 𝑑 𝑦𝑑 𝑥

)

= − ∫

𝐿

0
(ℎ1 + 𝜂1)[𝛿 𝛷2 − (𝜑̃1,𝑦)𝑠1𝛿 𝜂1]𝜂1,𝑥 𝑑 𝑥 + ∫

𝐿

0
𝜂[𝛿 𝛷1 − (𝜑̃1,𝑦)𝑠𝛿 𝜂]𝜂𝑥 𝑑 𝑥

+ ∫

𝐿

0
(ℎ1 + 𝜂1)(𝜑̃1,𝑥)𝑠1𝛿 𝜂1 𝑑 𝑥 − ∫

𝐿

0
𝜂(𝜑̃1,𝑥)𝑠𝛿 𝜂 𝑑 𝑥.

(A.4)

The variation of the kinetic terms is concluded by noting that

𝛿
(

∫

𝐿

0 ∫

𝜂

−ℎ
𝜑̃𝑥 𝑑 𝑦𝑑 𝑥

)

= ∫

𝐿

0
(𝜑̃𝑥)𝑠𝛿 𝜂 𝑑 𝑥 − ∫

𝐿

0
(𝛿 𝛷 − (𝜑̃𝑦)𝑠𝛿 𝜂)𝜂𝑥 𝑑 𝑥, (A.5)

and

𝛿
(

∫

𝐿

0 ∫

ℎ1+𝜂1

𝜂
𝜑̃1,𝑥 𝑑 𝑦𝑑 𝑥

)

=∫

𝐿

0
(𝜑̃1,𝑥)𝑠1𝛿 𝜂1 𝑑 𝑥 − ∫

𝐿

0
(𝛿 𝛷2 − (𝜑̃1,𝑦)𝑠1𝛿 𝜂1)𝜂1,𝑥 𝑑 𝑥

+ ∫

𝐿

0
(𝛿 𝛷1 − (𝜑̃1,𝑦)𝑠𝛿 𝜂)𝜂𝑥 𝑑 𝑥 − ∫

𝐿

0
(𝜑̃1,𝑥)𝑠𝛿 𝜂 𝑑 𝑥.

(A.6)

By the periodicity of 𝜂1 and the chain rule for variational derivatives, we obtain

𝛿
𝛿 𝜂1

⎛

⎜

⎜

⎝

∫

𝐿

0

𝜂21,𝑥𝑥

2(1 + 𝜂2𝑥)
5
2

𝑑 𝑥
⎞

⎟

⎟

⎠

= kss +
1
2
k3. (A.7)
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