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Abstract: We develop an extension to the GARCHX model - named GARCHX-NL - that captures a
key stylized fact for stock market return data seen during the COVID-19 pandemic: an abrupt jump
in volatility at the onset of the crisis, followed by a gradual return to its precrisis level. We apply the
GARCHX-NL procedure to daily data on various major stock market indexes. The profile likelihood
method is used for estimation. The model decomposes the overall impact of the crisis into two measures:
the initial impact, and the “half-life” of the shock. We find a strong negative association between these
two measures. Moreover, countries with low initial impact but a long half-life tend to be emerging
markets, while those with high initial impact and short half-life tend to be developed economies with
well-established stock-markets. We attribute these differences to differences in investors’ sensitivity to
adverse news, and to differences in the preparedness of stock markets to absorb the effects of crises such
as the COVID-19 pandemic.
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1. Introduction

The COVID-19 pandemic has impacted economies in many different ways. One of these is the
impact on stock markets. Looking across countries, a common pattern is a sudden increase in stock
market volatility at the time when the pandemic took hold, followed by a gradual return to normal levels
of volatility. This paper is concerned with identification and measurement of this pattern for a selection
of major stock markets.
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The pattern differs between different stock markets in important ways. First, the timing of the onset
of the crisis appears to differ between stock markets; some experienced the volatility shock later than
others. Second, the initial volatility shock and the time taken to return to normal levels also appear to
differ between stock markets. This strongly suggests that some sets of investors are more sensitive than
others to adverse news, and that some stock markets are better prepared than others to absorb the impact
of crises such as the COVID-19 pandemic.

The purpose of this study is first to identify the date at which the pandemic took hold for each of the
selected stock markets, and second to estimate the magnitude of the volatility shock, along with the
“half-life” of the shock, for each stock market. This enables rankings to be drawn up according to the
sensitivity of investors and the preparedness of stock markets for crises. Estimation will be performed
using daily data on stock market index returns, in the framework of the Generalized Autoregressive
Conditional Heteroscedasticity (GARCH) model (Bollerslev, 1986). We develop a new variant of the
GARCH model that separately estimates the magnitude of the initial impact of the crisis and the speed
of recovery following the initial impact. We will refer to this variant as the GARCHX-NL model.* The
profile likelihood method is used for estimation.

Many studies of the modeling of volatility in financial markets have been conducted in the
framework of the GARCH model. An obvious way of allowing for the impact of a crisis such as
COVID on the volatility is to include a zero-one dummy variable, covering the period of the crisis, in
the conditional volatility equation of the GARCH model. When independent variables are introduced to
the conditional volatility equation, the model becomes the GARCHX model. The GARCHX framework
has been used in a variety of applications including the impact of market volatility on stock price
volatility (Hwang and Satchell, 2005), the impact of day-of-week on electricity-price volatility
(Sucarrat et al., 2016), and the impact of macroeconomic factors on food-price volatility (Apergis and
Rezitis, 2011).

Studies of the impact of the COVID-19 pandemic on stock markets have been surveyed by
Anggraini et al. (2022). Many researchers have already used the GARCHX approach to measure the
impact of the pandemic on stock market volatility. These include Onali (2020), Yousef (2020),
Kusumahadi and Permana (2021), Bora and Basistha (2021), Duttilo et al. (2021), Golder et al. (2022),
Adenomon et al. (2022), Curto and Serrasqueiro (2022), and Apergis and Apergis (2022). As expected,
many of these studies find that the COVID-19 pandemic had a positive impact on the volatility of stock
prices or stock price indexes. International comparisons of the impact of the COVID-19 pandemic on
stock markets have been made by Ledwani et al. (2021).

With the exception of Onali (2020) and Apergis and Apergis (2022), who both use number of
COVID cases and number of COVID deaths as explanatory variables in the conditional volatility
equation, all of the studies cited in the last paragraph simply use a dummy variable to capture the crisis,
and hence they make an implicit assumption that the impact of the crisis is constant over the period of
the crisis. The empirical evidence presented in Section 2 below appears to contradict this assumption,
and it is for this reason that we develop a model that assumes an initial impact followed by a gradual

*The NL suffix represents the nonlinearity of the volatility equation in the GARCHX model. See Section 2.2.2.
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decay. Note that our model nests the dummy variable model, so the importance of our generalization
can be easily tested.

A further advantage of the GARCHX-NL model that we propose is that it provides a deterministic
prediction of the time path of volatility following a crisis. This is likely to be of practical use to finance
professionals since the predicted volatilities may be used as inputs in portfolio management and option
pricing (Poon and Granger, 2003).

The paper is organized as follows. Section 2 presents the data used in the analysis, with the objective
of conveying the key stylized facts, and then describes the GARCHX-NL model that is used in
estimation. Section 3 presents results from estimation of the GARCHX-NL model on the data described
in Section 2. Section 4 draws conclusions, in particular by linking the econometric results to theoretical
predictions appearing in previous literature.

2. Materials and method

2.1. Data

We consider stock market indexes for 20 major economies (see Table 1 below). We have taken care
to include emerging as well as developing economies. In Figure 1a, we present time series plots of the
daily returns for each of the stock market indexes, from 11 June 2015 to 10 June 2021.† The reason for
choosing the start date in 2015 is to ensure that the data set contains a reasonably long stretch of
pre-pandemic data, which is useful for identifying the “baseline” volatility process.

The key stylized fact in which we are most interested is the sudden boost in volatility seen for the
majority of the indexes in early 2020. Importantly, this sudden boost appears to occur on different dates
for different indexes, and the first part of the econometric exercise will be to identify the most likely
date for each index. We are interpreting this date as the time at which the COVID-19 pandemic started
to have an impact on the financial market of the economy in question. Another important feature of
most of the plots is that following the sudden boost, the volatility remains higher than it was before the
pandemic, but appears to fall steadily toward the pre-pandemic volatility level. This feature is made
even clearer in Figure 1b, in which we plot volatility over time, with volatility measured as a 20-day
rolling standard deviation of returns. Our econometric model will also incorporate this feature.

Another feature of Figure 1 that informs the econometric modeling is that some of the graphs do not
appear to exhibit an episode of higher volatility in 2020. One notable example is the Shanghai (A)
Index, as already noted by Ledwani et al. (2021). This is interesting because it suggests that the impact
of the pandemic on these financial markets was negligible.

†Time series plots of the indexes themselves are presented in Figure A1 of the Appendix.
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(a) Daily returns of 20 different stock market indexes; 11 June 2015 to 10 June 2021.

(b) Volatility over time of the 20 stock market indexes shown in in (a), measured as 20-day rolling standard
deviation of return.

Figure 1
Data Science in Finance and Economics Volume 4, Issue 4, 531–547.
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2.2. Econometric methodology

2.2.1. Sup-Wald test for identifying onset of COVID period

The first task is to establish the date at which the COVID-19 pandemic started to have an impact
on each stock market. For this purpose we apply a structural break test to the following version of the
ARCH(1) model:

r2
t = γ0 + γ1r2

t−1 + ϵt (1)

where rt is the daily return on a stock market index, defined as rt = ln(Pt) − ln(Pt−1), with Pt being the
stock market index on day t. Equation (1) is estimated by OLS, and this is a very basic method of
estimating the ARCH(1) model (see Gujarati and Porter (2009)).

The objective here is simply to identify the most likely break-point in the ARCH(1) process. Since
the ARCH equation (1) has been estimated by OLS, we may follow Bai (1994) by applying a standard
structural break test at every possible break-point, and then choosing the break-point giving the most
significant test result. Since we use a Wald-test for structural stability testing, we refer to this procedure
as the Sup-Wald test.

Figure 2. The Sup-Wald test. Structural break test statistic measured on vertical axis.
Horizontal line drawn at (size-adjusted) 5% critical value. Break-point identified by highest
point (above size-adjusted critical value) attained by test statistic.

Data Science in Finance and Economics Volume 4, Issue 4, 531–547.
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Figure 2 shows the Sup-Wald test applied to each return series. We see that, for nearly all of the
indexes, a single break-point is clearly identified in early 2020. We will refer to this point as tCOVID,
since this point will be taken to represent the time of onset of the crisis. For one index, Shanghai (A),
the test statistic is never above the (size-adjusted) critical value, indicating that there is no evidence that
the crisis had any impact on volatility in this stock market.

2.2.2. GARCHX-NL model

A popular way of measuring the impact of independent variables on volatility is to estimate the
GARCH(1,1) model (Bollerslev, 1986) with multiplicative heteroscedasticity.‡ Such a model is referred
to as the GARCHX model. A feature of this model is that the determinants of volatility enter the model
linearly. Most of the studies cited in the fifth paragraph of Section 1 use this approach, with the
independent variable in the conditional volatility equation simply being a dummy variable indicating
the period of the COVID crisis.

A complication faced here is that the specification required in the conditional volatility equation is
nonlinear, and hence the model will be referred to as the GARCHX-NL model. The GARCHX-NL
model is defined as follows:

rt = γ0 + γ1rt−1 + ϵt

ht ≡ V (ϵt|ϵt−1) = exp
[
θ0 + θ1 exp(−θ2τt)I(τt ≥ 0)

]
+ αϵ2t−1 + βht−1 (2)

where τt ≡ (t − tCOVID)/260 is the lapse of time, measured in years, since the structural break (tCOVID)
identified using the procedure outlined in Section 2.2.1, and I(.) is the indicator function.
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Figure 3. The impact of the COVID crisis on the time-path of stock market volatility,
according to the GARCHX-NL model defined in (2). θ0 represents the baseline (pre-COVID)
volatility; θ1 represents the initial impact of the crisis on volatility; τh is the “half-life” of the
shock, defined in (6) below.

‡See Judge (1985) for a full explanation of multiplicative heteroscedasticity.
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The parameters α and β in model (2) are respectively the ARCH and GARCH parameters,
representing the volatility structure prevailing at normal times. The parameters of central interest are θ1
and θ2: θ1 represents the initial impact of the crisis on volatility; θ2 represents the speed at which the
market returns to pre-pandemic levels of volatility.

The time-path of the exponent of leading term of the conditional volatility equation (2) is illustrated
in Figure 3. This graph makes it clear that (conditional on the prevailing GARCH process) the
parameter θ0 represents “baseline” (i.e. pre-COVID) volatility, and that at time tCOVID, volatility jumps
suddenly by an amount represented by θ1. Thereafter, volatility returns gradually toward the baseline
level represented by θ0.

Certain special cases are of interest. First, if θ1 > 0 and θ2 = 0 in (2), this implies that the impact of
the pandemic is permanent and constant, and the model is equivalent to one that simply includes, in the
conditional volatility equation, a “COVID dummy” I(τt > 0), taking the value 1 after the onset of the
crisis and never reverting to 0. Second, if θ1 > 0 and θ2 = ∞ in (2), this implies that the impact of
COVID is only felt on day tCOVID and has no effect thereafter. This model is similar to an “event study”
model in which the impact of COVID on volatility is captured by the presence of a dummy variable
taking the value 1 on day tCOVID only. Third, if θ1 = 0 in (2), this implies that the pandemic has no
effect whatsoever on volatility. Note that in this case, the parameter θ2 is not identified and is therefore
not estimated.

2.2.3. Estimation of the GARCHX-NL model using the profile likelihood method

Estimation of the GARCHX-NL model specified in (2) is not completely straightforward. This is
because, while GARCH estimation routines in some econometric software packages do include features
that allow the volatility to depend on independent variables, the equation in which these variables are
introduced is assumed to be linear in parameters.§ The exponent of the leading term in the conditional
volatility equation in (2) is clearly nonlinear, and hence (2) cannot be estimated directly using these routines.

We address this problem using the profile likelihood method. This method consists of a grid search
on the parameter θ2. A grid of values of θ2 is chosen including θ2 = 0. For each value of θ2 in the grid,
the variable exp(−θ2τt)I(τt ≥ 0) is generated, and enters the conditional volatility equation of the
GARCHX model. The MLE of θ2 is the value in the grid at which the maximized log-likelihood, from
estimation of the GARCHX model, is highest. Let us denote the MLE as θ̂2.

Of course, we would also like to make inferences about the parameter θ2. Let the maximized
log-likelihood obtained assuming a given value of θ2 be l(θ2). Consider the likelihood ratio (LR) test for
testing the null hypothesis θ2 = 0. This test statistic is given by:

LR = 2
[
l(θ̂2) − l(0)

]
(3)

The LR test statistic (3) has a χ2(1) distribution (asymptotically) under the null hypothesis θ2 = 0.
Acceptance of this null implies that the impact of the pandemic is constant and persists indefinitely,

§For example, the arch command in STATA has a het(.) option, in which one or more independent variables may be introduced.
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while rejection implies that the impact of the pandemic decays over time.

An alternative test of the null hypothesis θ2 = 0 is the Wald test, carried out using the statistic:

W =
[
θ̂2

ase(θ̂2)

]2
(4)

It is well-known that the two test statistics (3) and (4) are asymptotically equivalent (Buse, 1982).
This asymptotic equivalence may be exploited in order to obtain an expression for the asymptotic
standard error of the MLE of θ2 in terms of the LR test statistic given in (3):

ase(θ̂2) =
θ̂2
√

LR
(5)

Another quantity that may be deduced from the model estimates is the “half-life” of the shock, τh.
By this, we mean the time taken (in years) for the initial shock to halve in magnitude, as illustrated in
Figure 3 above. This quantity is obtained using:

exp(−θ̂2τh) = 0.5 =⇒ τh =
ln(2)
θ̂2
. (6)

2.3. Illustration of estimation of GARCHX-NL model

Here, we illustrate the estimation procedure described in Section 2.2.3 using data on the returns of a
selection of the indexes presented in Figure 1a above.

Figure 4. Profile log-likelihood against θ2 for selected Indexes
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Figure 4 shows the profile likelihood, obtained using the procedure outlined in Section 2.2.3, for
four of the indexes. For both the FTSE100 and the Dow-Jones, we see that the profile likelihood has an
interior maximum, giving estimates of θ2 of 2.00 and 2.40 respectively. For India’s BSE30 index, we
see that the profile log-likelihood has a maximum at zero, meaning that the estimate of θ2 is zero,
implying that volatility does not recover at all after the initial onset. For Taiwan’s TAIEX index, we see
that the profile log-likelihood has a maximum at a large value (possibly∞), meaning that the estimate
of θ2 is∞, implying that volatility returns to normal levels immediately after the onset of the crisis.

Estimates of the parameters of central interest are presented, for all indexes, in the next section.

3. Results

Complete sets of results from all GARCHX-NL estimations are presented in Tables A1 and A2 in
the Supplementary section. Only the key results for each index are presented here in Table 1. The
indexes are ordered by the date of onset, which is estimated separately for each index using the method
outlined in Section 2.2.1. It is notable that these dates are spread over the period of exactly one month,
from 24 February 2020 to 24 March 2020. Also shown in Table 1 are estimates of the key parameters θ1
and θ2, along with asymptotic standard errors. The asymptotic standard error for θ2 has been obtained
using (5).

The next column of Table 1 contains the LR test statistic, obtained using (3), for testing H0 : θ2 = 0
against H1 : θ2 > 0 for each index. An accompanying p-value is also shown. Note that a rejection of H0

by this LR test amounts to evidence that the GARCHX-NL model (2) is statistically superior to a
GARCHX model containing only a COVID dummy. This is the case for 12 of the 19 indexes. In nearly
all of these 12 cases, the evidence is strong.

The final column of Table 1 contains the estimate of the half-life of the shock for each index,
obtained using (6). Markets for which θ2 is estimated to be zero are (arbitrarily) assigned a half-life of
one year.

We may now consider differences in impacts between stock markets. Figure 5 shows a scatterplot of
initial impact (θ1) against date of onset (tCOVID). It appears that later dates of onset are associated with
smaller initial impacts. Figure 6 shows a scatterplot of half-life against initial impact (θ1). Here we see
a very clear negative relationship: markets with higher initial impacts tend to have shorter half-lives.

It is natural to ask which types of market appear in different regions of these plots. In Figure 6 we
see that markets with low initial impact and long half-life tend to be emerging markets such as Vietnam,
India, and Thailand. In contrast, markets with high initial impact and short half-life tend to be
well-established stock markets in developed countries, such as Germany, Singapore, and Japan.

Data Science in Finance and Economics Volume 4, Issue 4, 531–547.
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Table 1. Key results from estimation of GARCHX-NL model (2), using profile likelihood
method, applied to all indexes. Indexes ordered by date of onset. Date of onset estimated
using procedure outlined in Section 2.2.1. Estimates of θ1 and θ2 shown with asymptotic
standard errors (a.s.e.). a.s.e for θ2 obtained using (5). LR test stat (with p-value) shown
for testing H0 : θ2 = 0 against H1 : θ2 > 0. LR test stat computed using (3). Final column
contains estimate of half-life, obtained using (6). Maximum half-life set (arbitrarily) to 1 year.

REGION INDEX onset date
θ1

(a.s.e.)
θ2

(a.s.e.)
LR

(p-value)
half-life

Australia SP/ASX 24-Feb-20 4.77 4.60 36.59 0.15
(0.485) (0.76) (0.00)

Germany DAX 30 24-Feb-20 5.75 14.80 38.02 0.05
(0.376) (2.40) (0.00)

Italy FTSE MIB 24-Feb-20 4.88 8.00 38.78 0.09
(0.366) (1.28) (0.00)

Brazil BRAZIL(IBX) 26-Feb-20 5.01 12.00 58.40 0.06
(0.479) (1.57) (0.00)

Indonesia IDX 26-Feb-20 3.63 4.00 15.64 0.17
(0.383) (1.01) (0.00)

Bahrain MSCI BAHRAIN 2-Mar-20 3.74 4.40 148.69 0.16
(0.152) (0.36) (0.00)

Hong Kong HANG SENG 9-Mar-20 5.04 30.00 14.42 0.02
(0.514) (7.90 ) (0.00)

UK FTSE100 10-Mar-20 2.80 2.00 8.07 0.35
(0.377) (0.7) (0.00)

Japan NIKKEI 225 11-Mar-20 4.53 28.00 5.86 0.02
(0.956) (11.57) (0.02)

Korea KOSPI 11-Mar-20 1.88 1.80 5.50 0.39
(0.336) (0.77) (0.02)

Taiwan TAIEX 11-Mar-20 4.52 30.00 8.95 0.02
(0.976) (10.03) (0.00)

UAE DFM 11-Mar-20 0.44 0.80 0.26 0.87
(0.220) (1.56) (0.61)

Canada SP/TSX 17-Mar-20 1.93 1.40 1.91 0.50
(0.464) (1.01) (0.17)

Malaysia FBMKLCI 17-Mar-20 1.23 0.80 0.23 0.87
(0.835) (1.66) (0.63)

USA DOW JONES 17-Mar-20 2.79 2.40 6.06 0.29
(0.507) (0.98) (0.01)

Singapore STI 19-Mar-20 5.21 29.80 3.29 0.02
(1.427) (16.43) (0.07)

Vietnam MSCI VIETNAM 19-Mar-20 0.49 0.00 0.00 1.00
(0.157) - (1.00)

Thailand BANGKOK S.E.T 20-Mar-20 1.22 0.00 0.00 1.00
(0.286) - (1.00)

India SP BSE 24-Mar-20 0.75 0.00 0.00 1.00
(0.196) - (1.00)

China SHANGHAI (A) No evidence of structural break
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Figure 5. Initial impact (θ1) against date of onset. Regression R2 = 0.47.

Figure 6. Half-life (years) against initial impact (θ1). Half-life set (arbitrarily) to 1 year for
indexes for which θ2 is estimated to be zero. Regression R2 = 0.88.
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4. Discussion

This study builds on the recent literature that tests the impact of the COVID-19 pandemic on
financial market volatility. Most of the previous literature uses a dummy variable to capture the COVID
period, in the context of the GARCHX model. Our model (GARCHX-NL) adds a layer to the
GARCHX model, whereby the conditional volatility is assumed to jump suddenly at the onset of the
crisis, and then to decay gradually toward its previous levels. To the best of our knowledge, this is the
first study that decomposes the impact into two separate measures in this way. The specification of the
model requires the use of the method of profile likelihood for estimation.

The first step in the estimation procedure has been to identify the date of onset of the crisis, and this
was done using a structural stability testing procedure. Note that if the crisis is modeled using a single
0/1 dummy variable, an end-date for the crisis must also be assumed, but the end-date is much less
clearly identifiable than the date of onset. A clear advantage of the modeling approach adopted in this
paper is that there is no need to identify an end-date, since it is instead assumed that the impact of the
crisis diminishes exponentially toward zero.

Another advantage of the approach adopted in this study is that the GARCHX-NL model (2) nests
the more conventional GARCHX model in which the crisis is represented by a 0/1 dummy variable. A
straightforward LR test has been used to test the statistical superiority of GARCHX-NL over GARCHX,
and this superiority has been established for the majority of the indexes considered.

As mentioned at the outset, a yet further advantage of the proposed approach is that it leads to a
deterministic prediction of the time path of volatility in the period following a crisis. This is made clear
by Figure 3 above, which illustrates a typical deterministic time path of volatility. The problem of
predicting volatility into the future is central to areas of finance such as portfolio management and
option pricing (Poon and Granger, 2003). Having a deterministic prediction of the future path of
volatility is likely to be highly useful in such applications.

We have found striking differences between the responses to the crisis in different stock markets.
First, we have found that stock markets which responded to the crisis earliest, tended to have higher
initial impacts. Second, we have found that markets whose initial impacts were higher tended to recover
more quickly, and therefore displayed shorter “half-lives”. Furthermore, stock markets with low initial
impacts and long half-lives tend to be emerging markets, while those with high initial impacts and short
half-lives tend to be developed economies with well-established stock-markets. These findings may be
seen as building on the extant literature which explains cross-country differences in stock market
volatility using variables such as the education level of investors (Xing, 2004).

Our new findings can also be linked to theories of investment. The early days of the COVID-19
pandemic was undoubtedly a period of abnomally high uncertainty. According to the theoretical model
of Veronesi (1999), investors become more sensitive to news during such periods, hence increasing
financial market volatility. This theory suggests that the reason why well-developed stock-markets
exhibited higher initial impacts is because investors in these markets are more sensitive to news. The

Data Science in Finance and Economics Volume 4, Issue 4, 531–547.
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strong relationship between news stories relating to COVID and stock-market volatility in the USA has
been quantified using text-based methods by Baker et al. (2020). However, the reason why the
well-developed stock markets also appeared to recover faster is likely to be because these markets are
better able to absorb the longer-term effects of a crisis. This is confirmed by the recent empirical
evidence of Uddin et al. (2021), who found key country-level mitigation factors to be capitalism
score, governance score, productivity score, quality of health system, and development of financial
institutions index.
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