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Abstract

In this thesis we explore Diophantine equations and first order sentences of the

plactic monoids. We present explicit algebraic criteria for certain small equations

to have solutions in the plactic monoids. We also construct an interpretation of a

plactic monoid of arbitrary finite rank in Presburger arithmetic, which is known to

have decidable first order theory, thereby proving that a plactic monoid of any finite

rank will have decidable first order theory. This resolves other open decidability

problems about the finite rank plactic monoids, such as the Diophantine problem

and identity checking. The algorithm generating the interpretations is uniform,

which we use to explore the decidability of the Diophantine problem for the infinite

rank plactic monoid. We also prove that the interpretation of the plactic monoids

into Presburger Arithmetic is in fact a bi-interpretation, hence any two plactic

monoids of finite rank are bi-interpretable with one another.
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1

Introduction

In this thesis, we concern ourselves with a family of monoids called the plactic

monoids. This family, originally thought of as a single monoid, has its origin in

the work of Knuth [24], which developed the combinatorial algorithm of Schensted

[42] into a monoid multiplication operation. First studied in depth by Lascoux and

Schützenberger [27, 43, 44], who also gave it the name “le monöıde plaxique”, its

combinatorial properties were applied to the theory of symmetric polynomials to

prove the Littlewood-Richardson rule.

Due to its origins as a monoid of Young tableaux, it has proved useful in various

aspects of geometry and representation theory [15]. More recently, it has found

application in Kashiwara’s crystal basis theory [21], with analogous plactic

monoids being defined for different root systems associated to crystal bases [29,

30, 31, 32], and used to study Kostka-Foulkes polynomials [28]. Related,

plactic-like monoids have also been defined [1, 13, 17, 37], and used to study the

combinatorics and growth properties of the plactic monoid, which itself has some

interesting combinatorial structure.

For our focus, however, we concern ourselves with the algorithmic properties of

this monoid family. It is known that the plactic monoid has ‘nice’ algorithms for

several classic decision problems. Already, Schensted’s multiplication algorithm

can be used to decide the word problem for the plactic monoid in quadratic time.

Furthermore, it was shown in 1981 that the plactic monoid has decidable conjugacy

problem [27]. Cain, Gray, and Malheiro [6] have also shown that the plactic monoids



Chapter 1: Introduction 8

are biautomatic, as are related crystal monoids [5], and related plactic-like monoids

such as the Chinese, Hypoplactic, and Sylvester monoids [7]. Biautomaticity also

implies a word problem solvable in quadratic time.

A classic generalisation of both the word and conjugacy problems is the

Diophantine problem, which has received much attention for free groups [22, 35,

41, 45], where Makanin-Razborov diagrams were used independently by Sela [45]

and Kharlampovich and Myasnikov [23] to solve the Tarski problems on the first

order theory of free groups1. Closely related to Hilbert’s tenth problem, the

Diophantine problem for a group asks for an algorithm deciding whether a given

system of equations, with coefficients in the given group and a finite number of

unknowns, has a solution in the group. The problem for monoids is analogous,

and has been studied for free monoids [34, 46] and is gaining attention in the

study of other monoids [16, 38]. For the case of plactic monoids, the Diophantine

problem had remained open.

An active parallel area of research is the question of checking identities in the

plactic monoids and their monoid algebras. Progress has been made in the rank

3 case [25, 26], and the plactic monoid, bicyclic monoid, and related plactic-like

monoids have been shown to admit faithful representations in terms of matrices

over the tropical semiring [4, 8, 11, 19]. This implies that every plactic monoid

of finite rank satisfies a nontrivial semigroup identity. There is a natural decision

problem underpinning this field of study – is it decidable whether a given identity

is satisfied by a plactic monoid?

These two decision problems seem distinct from one another, and indeed they are.

But both identities and Diophantine equations2 are expressible as first order

sentences. This idea from logic allows us to systemically build a language of

sentences, to which we assign a truth value – either they are true or false.

Checking the veracity of a first order sentence is itself a decision problem, and a

significant generalisation of both the Diophantine and identity checking problems.

1For a survey of these results, see [14].
2These are often referred to as ‘word equations’ in the monoid world.
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Structures for which this decision problem is solvable are said to have decidable

first order theory.

The main result presented in this thesis is that every plactic monoid of finite rank

has decidable first order theory. We show this in Chapter 5 by constructing an

interpretation of a plactic monoid in Presburger arithmetic, which could open the

door to studying the theories of plactic-like classes of monoids via similar

interpretations. In Chapter 6, we show that this interpretation is in fact a

bi-interpretation, and that certain submonoids of the plactic monoid are

definable. This thesis also includes a more detailed exploration of the

Diophantine problem in Chapter 4, where we look at the conditions on certain

equations being solvable, and Chapter 7, where we discuss the Diophantine

problem in certain infinitely generated monoids generalising the plactic monoid.



2

General background

2.1 Monoids

A set M equipped with an associative binary operation ◦ : M ×M →M is called

a monoid if it has a distinguished identity element ε ∈ M . Explicitly, that is to

say that (M, ◦, ε) satisfies the following axioms:

• ∀a, b, c ∈M : a ◦ (b ◦ c) = (a ◦ b) ◦ c.

• ∀a ∈M : a ◦ ε = ε ◦ a = a.

In the same way that groups function as a model of symmetries (that is, invertible

maps), monoids function to model maps from an object to itself which need not

be invertible. On the other hand, if one views the multiplication operation as

concatenation, monoids function to model language – of both a human and non

human flavour.

2.1.1 Monoids as languages

Consider A a set of distinct elements, which we will call letters or symbols. This

set A is an alphabet, over which we may form words. A word w is a finite sequence

of letters of A, typically written without gaps or commas: a1a2 . . . an, with each

ai ∈ A.
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Example 2.1.1. Choosing A to be the standard Latin alphabet {a, b, . . . , z}, all

English words (for example: cat, cats, kitten) would be words over A, but so would

any other string of Latin letters (catcatcat, hgdsghdsbf).

Consider the set of words of any finite length over an alphabet A, with the unique

word of length 0 (the empty sequence) denoted by ε. This set is denoted A⋆. Any

subset of A∗ is a possible language over A.

We can define on A⋆ a concatenation operation · : A∗ ×A∗ → A∗, where

u · v = w ⇐⇒ u = a1 . . . an, v = b1 . . . bm, and w = a1 . . . anb1 . . . bm.

It is quick to see that this operation is associative, and hence A∗ is a monoid with

ε being the identity.

Definition 2.1.2 (Free Monoid). The set A∗ with concatenation is the free monoid

over the alphabet A.

Throughout the thesis, we will abuse notation to write multiplication in any monoid

as concatenation, i.e uv for u ◦ v or u · v.

Any subset of the free monoid will yield a language, but these various subsets will

have different properties to one another. Of most interest to us will be the subsets

that inherit a monoid structure, but notice here that this definition of language is

also consistent with the notion of a language in logic, which we will discuss later.

Note that the free monoid over any single letter alphabet will be isomorphic to

the natural numbers under addition, with a 0 element. Therefore, the set N will

contain 0 throughout this thesis.
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2.1.2 Presentations

Analogously to the case of groups, we wish to quotient free monoids by a relation

that will allow us to obtain various possible monoids. In this world, the correct

structure to choose is the semigroup congruence, and like in the groups world,

this will allow any monoid to be the quotient of a free monoid by a semigroup

congruence.

Definition 2.1.3. Given a monoid M , an equivalence relation ∼ ⊆M×M is called

a semigroup congruence if it is compatible with monoid multiplication. That is, if

x ∼ y and u ∼ v, then xu ∼ yv. Given any subset R ⊂ M ×M , the semigroup

congruence ∼R generated by R is the smallest semigroup congruence containing R.

Note that the intersection of two semigroup congruences is again a semigroup

congruence, so the notion of ‘smallest congruence’ is well defined.

Given any monoid M and ∼ a semigroup congruence on M , the set M/ ∼ of

equivalence classes under ∼ is a well-defined monoid where, given x the equivalence

class of x ∈ M , we define multiplication in M/ ∼ by x · y = xy. This is known as

the quotient monoid of M by ∼.

A monoid presentation is a way of describing a monoid using two pieces of data.

Specifically, a presentation is the pair A and R, where A is an alphabet and

R ⊂ A∗ × A∗. Typically a presentation is written ⟨A|R⟩. We say that a monoid

is presented by ⟨A|R⟩ if it is isomorphic to the quotient of A∗ by the congruence

generated by R. That is to say,

M = ⟨A|R⟩ =⇒ M ∼= A∗/ ∼R .

Every monoid admits a monoid presentation1. A given monoid M is called finitely

1Since a monoid presentation describes the monoid elements as equivalence classes, there is a
subtle difference between two words in the generators being equal as words, versus them being
equal as elements of the monoid. In this thesis, we will use the symbol = for both sorts of equality,
as there is never a case where the distinction between the two is particularly meaningful to the
argument of the proofs.
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presented if one can find A and R both finite such that M = ⟨A|R⟩.

In the case of the plactic monoids, we will define them both via the multiplication

action on tableaux and via presentations. A useful alternative formulation of

monoid presentations, based on the book [3], follows.

Definition 2.1.4. Given an alphabet A:

1. A string rewriting system (henceforth rewriting system) on A∗ is a set R ⊂

A∗ ×A∗ of elements (ℓ, r), usually written ℓ→ r, called rewrite rules.

2. For two elements u, v ∈ A∗, write u→R v if u = xℓz, v = xrz, and (ℓ, r) ∈ R.

The transitive and reflexive closure of →R, written →∗
R, is called the reduction

relation of R.

The symmetric closure of →∗
R is a semigroup congruence, and is in fact the same as

∼R
2. Therefore, every monoid with presentation ⟨A|R⟩ also admits the rewriting

system associated to R, which is written as (A,R).

Definition 2.1.5 (Complete Rewriting Systems). A rewriting system is called

Noetherian if it has no infinite descending chain. That is, there is no sequence

u1, u2, . . . ∈ A∗ such that ui →R ui+1 for all i ∈ N. A rewriting system is called

confluent if it has the property that, whenever u ∈ A∗ is such that u →∗
R u′ and

u →∗
R u′′, there exists a v such that u′ →∗

R v and u′′ →∗
R v. A complete rewriting

system is one which is both confluent and Noetherian.

Call u ∈ (A,R) a reduced word if there is no subword ℓ of u that forms the left

hand side of a rewrite rule in R. By theorem 1.1.12 of [3], if (A,R) is a complete

rewriting system, then for every u ∈ A∗ there is a unique, reduced v ∈ A∗ such

that u→∗
R v. This v is called a normal form for u, and forms a cross-section of the

monoid ⟨A|R⟩, in the sense that every element of the monoid is equal to exactly one

reduced word. We may therefore identify a monoid admitting a complete rewriting

system with its set of normal forms, and the multiplication being concatenation

followed by reducing to normal form.

2See [3] for a proof of this result.
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2.2 A quick review of first order logic

We will refrain from philosophical discussions here, and consider first order logic as

simply the study of first order formulas. For a more detailed introduction to logic,

and especially model theory, see [18] or [36]. We will be following the conventions

of [36].

The definition of a formula is built up recursively from terms:

• We begin with a set of symbols {x1, x2, . . . } of a certain cardinality. These

will be called our variables. Typically in this document we will use lowercase

Latin letters to denote them.

• Next we define a signature σ. This will determine which first order language

we work in, and will depend on our structure. A signature will have three

types of symbols in it: constants, functions, and predicates. Functions and

predicates may take arguments, while constants do not.

An example signature (which will be useful later) is the signature of an

ordered monoid. Here, σ = {ε, ·,≤}, where ε is a constant, · is a function

symbol, and ≤ is a predicate symbol. The number of arguments function

and predicate symbols take is called the symbol’s arity. In our example, ·

and ≤ both have arity 2.

• A term will then be any variable, constant, or string of the form f(x1, . . . , xn),

where f ∈ σ is a function symbol of arity n, and all xi are terms. For example,

in the language of monoids, ε, a, a · b are all terms.

From terms, we will build formulas as follows:

• For any terms x and y, the string x = y is a formula.

• Given a predicate symbol θ ∈ σ of arity n, and terms x1, . . . , xn, the string

θ(x1, . . . , xn) is a formula.
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The two above types of formula are called atomic formulas.

• Now, if ϕ is a formula, then so is ¬ϕ (not ϕ).

• If ϕ, ψ are formulas, then so is ϕ =⇒ ψ.

• If ϕ is a formula in which a variable x appears, then ∀x : ϕ and ∃x : ϕ are

formulas.

• If ϕ, ψ are formulas, then so are ϕ ∧ ψ (ϕ and ψ) and ϕ ∨ ψ (ϕ or ψ).

The set L of all first order formulas for a given signature is the first order language

of that signature.

If a variable appears in a formula, but does not appear as the argument of a

universal or existential quantifier, then it is called a free variable. A formula with

no free variables is called a sentence.

Example 2.2.1. The following are all formulas for the signature σ = {ε, ·,≤}:

1. ∀x∃y : x · y = ε ∧ y · x = ε.

2. ∀x : m · x = x ·m.

3. ∃x : x · x = x ∧ x ≤ ε.

4. a · b = b · a =⇒ ¬(a · b · a · b = ε).

Of these, formulas 1 and 3 are sentences, while formulas 2 and 4 are not.

Sentences are the only formulas that may be give a truth value. In theory, the

assignment of ‘true’ or ‘false’ to each sentence is arbitrary. For our purposes, we

will care about assignments that arise from structures.

Definition 2.2.2 (Structure). Given L a language of a signature σ, an L-Structure

is some set S equipped with:

• For each constant c ∈ σ an element cS ∈ S.
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• For each function f ∈ σ of arity n, a function fS : Sn → S.

• For each predicate θ ∈ σ of arity m, a set θS ⊂ Sm.

We will abuse notation and write c ∈ S, f : Sn → S, and θ ⊂ Sm.

Definition 2.2.3 (First Order Theory). Let L be the language of a given signature.

Then the first order theory of an L-structure M is the set of all sentences in L that

are true in M.

The question of deciding a first order theory asks for an algorithm which, given a

first order sentence ϕ, determines whether ϕ is true or false in M in finite time. If

such an algorithm exists, then we call the first order theory of M decidable.

Less formally, when we say a sentence is true or holds in M, we mean that the

sentence is either some defining axiom of our structure, or a logical consequence of

it. For example, in an abelian group the sentences

∀x∀y∀z : (xy)z = x(yz)

∀x∀y : xy = yx

are axiomatic. Meanwhile, the formula

∀x∀y∀z : (yx)z = x(yz)

is a logical consequence. All three sentences would be in the first order theory of

an abelian group.

We will use the shorthand FOTh(M) to denote the first order theory of M. We

will also write M |= ϕ if ϕ is in the first order theory of M.

The language of interest for us is the language of monoids, whose signature is (◦, ε).

To speak of the first order theory of a given monoid, one classically allows atomic

formulas of the form u = v for each u, v ∈ M. In the finitely generated case

(with generating set A = {a1, . . . , an}, say) this is equivalent to adding constants
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a1, . . . , an to the signature, and considering the first order theory with constants

of (M, ◦, ε, a1, . . . , an).

2.3 Presburger Arithmetic

In 1929, Mojżesz Presburger was tasked with studying the decidability of the

integers under addition. In his master’s thesis [39], he used quantifier elimination

and reasoning about arithmetic congruences to prove that the first order theory

of (N, 0, 1,+) is complete3 and decidable. Note that we can add a comparison

symbol ≤ to the signature of Presburger arithmetic without trouble, since x ≤ y

is equivalent to the statement ∃z : y = x+ z.4 This yields the following lemma:

Lemma 2.3.1. FOTh(N, 0, 1,+,≤) is decidable.

For an English translation of Presburger’s work, see [40] or [47].

2.4 Interpretations

Since the main work of the thesis is the construction of an interpretation, we will

now define an interpretation, using the conventions of section 1.3 of [36].

Throughout this section, L, L1, and L2 will be arbitrary first-order languages.

Definition 2.4.1 (Definable sets). Let M be an L-structure. A set S ⊆ Mn is

called definable in M if there is a first order formula

ϕ(x1, . . . , xn, y1, . . . , ym) ∈ L

with free variables x1, . . . , ym such that there exists (w1, . . . , wm) ∈ Mm with the

property that ϕ(x1, . . . , xn, w1, . . . , wm) holds if and only if (x1, . . . , xn) ∈ S. i.e.

3i.e. for every ϕ in the first order language of signature (0, 1,+), either ϕ or ¬ϕ is in the first
order theory of (N, 0, 1,+), but not both.

4We then talk about the first order theory of N as a given ordered monoid. i.e. we add the
generating set {1} to the signature of an ordered monoid (0,+,≤).
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S is the set

{x ∈ Mn| M |= ϕ(x,w1, . . . , wm)}.

Example 2.4.2. In a monoid M , the set of elements that commutes with a given

m ∈M is definable by the formula xm = mx. The centre of M is definable by the

formula

∀m : xm = mx.

If M is finitely generated by {m1, . . .mk}, then the formula

xm1 = m1x ∧ xm2 = m2x ∧ · · · ∧ xmk = mkx

also defines the centre of M . This has the property of being a positive existential

formula, which is useful in the study of Diophantine equations5 .

Definition 2.4.3 (Definable functions). A function f : Mm → Mn is definable in

M if its graph6 is definable as a subset of Mm+n.

Note that the composition of definable functions is definable.

Definition 2.4.4 (Interpretability). Let M be an L1-structure, and N be an L2-

structure. Then we call N interpretable in M if there exist some n ∈ N, some set

S ⊆ Mn, and a bijection ϕ : S → N such that

1. S is definable in M.

2. For every constant, function, and predicate r in the signature of L2, including

the equality relation, the preimage by ϕ of the graph of r is definable in M.

We will use the notation ϕ−1(r) for the preimage of the graph of r.

Note that in the above definition we insisted the map ϕ be a bijection, as in

section 1.3 of [36]. However, the most general theory of interpretations works with

surjections from S onto N . See section 5 of [18] for more details on this.

5See, for example, [10].
6The graph of a function f is the set of elements {(x, f(x)) | x ∈ Mm} ⊂ Mm+n.
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Example 2.4.5. Consider the set Z, with signature (0, 1,+,−,≤). We can

interpret this structure in our Presburger arithmetic (N, 0, 1,+,≤) using the set

S = {(a, b) | a = 0 ∨ b = 0} ⊂ N2

and the bijective map ϕ : S → Z sending (a, b) to a− b.

Proof. We can see that this map is a bijection, which makes straightforward the

definability of the preimages of 0, 1, and equality. The preimage of subtraction,

which is a unary function sending x to −x, is the set

ϕ−1(−) = {((a, b), (c, d)) ∈ N4 | ϕ(a, b) = −ϕ(c, d)}.

This is also straightforward to define, since ϕ(a, b) = −ϕ(c, d) holds precisely when

(c, d) = (b, a). Thus the preimage of subtraction is defined by the formula

(a = 0 ∨ b = 0) ∧ (c = 0 ∨ d = 0) ∧ a = d ∧ b = c.

For ϕ−1(≤), if x, y ∈ Z and x ≤ y, then if ϕ(a, b) = x and ϕ(c, d) = y we must have

that a+ d ≤ c+ b, which is clearly definable.

Now for addition, we are considering the set

ϕ−1(+) = {((a, b), (c, d), (e, f)) ∈ N6 | ϕ(a, b) + ϕ(c, d) = ϕ(e, f)}.

In other words, we consider elements of N6 satisfying a− b+ c− d = e− f . We can

rearrange this expression to get a formula of Presburger arithmetic: a + c + f =

e + b + d. Since we also have the condition that one of e or f must be zero, this

formula will uniquely determine e and f in terms of a, b, c, and d. Therefore, this

formula will define the graph of the preimage of addition, which finishes the proof

that ϕ is an interpretation.
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Next we strengthen the notion of interpretability to bi-interpretability. By the

definition of interpretations, it is straightforward to see that interpretations are

transitive: if M1 is interpretable in M2, and M2 is interpretable in M3, then M1 is

interpretable in M3. This implies that if two structures are mutually interpretable,

i.e. M1 and M2 are each interpretable in the other, then we obtain an interpretation

of M1 in itself, and likewise an interpretation of M2 in itself.

Definition 2.4.6 (Bi-interpretability). Given M1 an L1-structure, and M2 an

L2-structure, we say M1 and M2 are bi-interpretable if M1 and M2 are mutually

interpretable, and the map ϕi interpreting Mi in itself is definable in Mi, for i = 1, 2.

Returning to our above example, the set N ⊂ Z is definable in (Z, 0, 1,+,−,≤)

by the formula 0 ≤ x. The identity map ψ on N is then an interpretation of

(N, 0, 1,+,≤) in (Z, 0, 1,+,−,≤). Composing the map ψ and the map ϕ from

example 2.4.5, we get:

1. A map ψϕ : T → N, where T = {(a, b) ∈ N2| b = 0} ⊂ S ⊂ N2 is definable

and ψϕ(a, 0) = a. This map is clearly definable.

2. A map ϕ ◦ (ψ × ψ) : U → Z, where

U = {(a, b) ∈ Z2| 0 ≤ a ∧ 0 ≤ b ∧ (a = 0 ∨ b = 0)} ⊂ N2 ⊂ Z2

is a definable set, and ψ × ψ is the map sending (a, b) to (ψ(a), ψ(b)). Then

we get that ϕ ◦ (ψ × ψ)(a, b) = a− b, which is also clearly definable.

So we have proved that (N, 0, 1,+,≤) and (Z, 0, 1,+,−,≤) are bi-interpretable.

Indeed, both of these models are referred to as Presburger arithmetic, and we will

use the two notions interchangeably, specifying the set if necessary.

The algorithmic reason to care about interpretations is that they allow us to reduce

certain decision problems to known results. A reduction of a decision problem D1

to another decision problem D2 is a Turing machine which, given finitely many

queries to an oracle for D2, will yield an algorithm for deciding D1. Importantly,
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this means that decidability of D2 will imply decidability of D1
7, as such an oracle

machine will exist and halt in finite time on each query.

The following result will prove fundamental, and is a consequence of theorem 5.3.2

and its remarks in [18]:

Proposition 2.4.7. Given M1 an L1-structure, and M2 an L2-structure, if M1

is interpretable in M2, then the problem of deciding FOTh(M1) is reducible to the

problem of deciding FOTh(M2).

This namely means that if we build an interpretation of a plactic monoid in

Presburger arithmetic, then by lemma 2.3.1 we would prove that the plactic

monoids have decidable first order theory.

Let us now move on to introducing the plactic monoid.

7And conversely, undecidability of D1 will imply undecidability of D2.
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The plactic monoid: background

Originally, plactic monoids were defined in the process of associating Young

tableaux to sequences. Young tableaux and Young diagrams are very commonly

used in representation theory and combinatorics. Though we will mostly think of

the plactic monoids in terms of their presentations, the original algorithmic

procedure on tableaux still often proves useful, so let’s start there.

3.1 Young tableaux and Schensted’s algorithm

We follow the French conventions of Young diagrams having longer rows underneath

shorter ones.

Definition 3.1.1. A Young diagram is a pictorial representation of a partition of

n ∈ N. It is composed of n boxes, arranged into some number of rows, with row

length weakly increasing as you go down the page.

Example 3.1.2. and are Young diagrams, and is

not a Young diagram.

Definition 3.1.3. A Semistandard Young Tableau (henceforth simply a tableau)

is a Young diagram where each box is labelled with a number n ≥ 0 such that:

• The labels in each row weakly increase left to right.
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• The labels in each column strongly decrease top to bottom.

A standard Young tableau (henceforth standard tableau) is a Semistandard Young

tableau satisfying the additional condition that no label repeats and the set of all

labels is {1, . . . , n}.

Example 3.1.4.

3 3 3

1 2 2
is a tableau.

3 4

2 3 3

1 1 2 4 4
is a tableau.

6

4 5

1 2 3
is a standard tableau.

Each tableau t will have some minimal n ∈ N such that each label of t is less than

or equal to n. This allows us to define the content of t to be the list of numbers

c(t) ∈ Nn, where ci(t) is the number of times i appears as a label of a box in t. This

is also sometimes written in the literature as |t|i. Note that a standard tableau t

will have ci(t) = 1 for each i ∈ {1, . . . , n}.

Conversely, we may also fix some n ∈ N, and consider the set of all tableaux with

labels from A = {1, . . . , n}. Let t be such a tableau, whose labels are all in A. We

associate to t a row reading in A∗. Suppose t is a tableau of m rows, labelled top to

bottom as r1, . . . , rm. The labels of the boxes in each row are a weakly increasing

sequence, which can be viewed as a word ri ∈ A∗. The row reading of t is then

w = r1r2 . . . rm ∈ A∗.

We similarly associate a column reading to t. Denote the columns of t from left to

right by c1, . . . , cm. Each such column corresponds to a strictly decreasing sequence

ci ∈ A∗. The column reading of t is then w = c1 . . . cm ∈ A∗.

Example 3.1.5. The tableau t =

3

2 3

1 1 2 2 2
has row reading

32311222 = 3 23 11222
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and column reading

32131222 = 321 31 2 2 2.

We now describe Schensted’s algorithm. Consider A = {1, . . . , n} a totally ordered

alphabet, and w ∈ A∗. We may view w as a finite sequence of numbers. Schensted’s

algorithm is used to study the longest increasing and decreasing subsequences of

w. The algorithm associates a tableau to w with the property that the number of

columns of w is the length of the longest increasing sequence, and the number of

rows is the length of the longest strictly decreasing sequence. See [42] or [33] for

more details on this combinatorial structure.

Definition 3.1.6 (Schensted’s algorithm). We define P : A∗ → A∗ to be the map

sending a word w to the row reading of a tableau recursively as follows:

Firstly, P (ε) = ε. Then suppose w = x1 . . . xℓ ∈ A∗ and P (x1 . . . xℓ−1) = r1 . . . rm,

for some rows ri that form the row reading of a tableau. Then we have:

1. If rmxℓ is a row, then we set P (r1 . . . rmxℓ) = r1 . . . rmxℓ.

2. If not, then we can write rm = rαyrβ, with y being the leftmost letter such

that xℓ < y. Such a y must exist, since otherwise rmxℓ would be a row. But

then rαxℓrβ will be a row. So we set

P (r1 . . . rmxℓ) = P (r1 . . . rm−1y)rαxℓrβ.

We call the process in point (2) ‘bumping the letter y’. If t has row reading r1 . . . rm

and column reading c1 . . . ck, then it is straightforward to show that

P (r1 . . . rm) = P (c1 . . . ck) = r1 . . . rm.

Proposition 3.1.7. The relation ∼ on A∗ given by

u ∼ v ⇐⇒ P (u) = P (v)
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is a semigroup congruence.

A proof is given in [33]. This result means that we can consider the monoid

A∗/ ∼, whose elements are in bijection with tableaux. Indeed, since each ∼-class

corresponds to a distinct row reading, we can associate a tableau to each element

of A∗/ ∼. On the other hand, since each row reading is a word in A∗, every tableau

corresponds to at least one element of A∗/ ∼, yielding a bijection.

This tableau monoid is our subject of interest.

Definition 3.1.8 (The plactic monoid). Given A = {1, . . . , n}, the plactic

monoid of rank n, denoted Pn, is the tableau monoid A∗/ ∼ defined above, with

multiplication given by u · v = P (uv).

There is a useful notion in [27] and [33] of the standardisation of a word w ∈ A∗.

The standardisation map Q : A∗ → A∗ associates a standard tableau to each

w ∈ A∗ related to P (w). The tableau Q(w) is a Young diagram with the same

shape as P (w), but is filled by numbers {1, . . . |P (w)|} which denote the order in

which the boxes appear in the Young diagram whilst running P .

Example 3.1.9. Suppose w = 32112322. Then running P yields the following

sequence of tableaux:

3
,

3

2
,

3

2

1
,

3

2

1 1
,

3

2

1 1 2
,

3

2

1 1 2 3
,

3

2 3

1 1 2 2
,

3

2 3

1 1 2 2 2
.

Thus we have that Q(w) will be the standard tableau

3

2 7

1 4 5 6 8

It is shown in Theorem 2.18 of [27] that the map w → (P (w), Q(w)) is a bijection

from the free monoid A∗.
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3.2 Presentations of the plactic monoid

In 1970, Knuth [24] exhibited a set of defining relations K for the plactic monoids

of the form xzy = zxy and yxz = yzx for x < y < z, x, y, z ∈ A and xyx = yxx

and yyx = yxy for x < y, x, y ∈ A. That is, we have

K = {xzy = zxy, x ≤ y < z} ∪ {yxz = yzx, x < y ≤ z}

with Pn = ⟨A|K⟩. For each finite rank, it follows that Pn will be finitely presented.

Note that the Knuth relations are equivalent to running Schensted’s algorithm on

all words of length 3.

The Knuth relations are homogeneous: for each (ℓ, r) ∈ K, |ℓ| = |r|. This namely

means that the plactic monoid is multi-homogeneous1, and the content of an

element in Pn is well defined and additive: for each u, v ∈ Pn, c(uv) = c(u) + c(v).

It was shown by Cain, Gray, and Malheiro in [6] that the plactic monoid admits a

finite complete rewriting system, which we describe here.

We consider two columns α, β as words in A∗. We say that α and β are compatible,

written α ⪰ β, if αβ is the column reading of a tableau. Then each pair α, β

with α ⪰̸ β yields a rewrite rule. Consider the tableau associated to P (αβ). Since

the number of columns in P (αβ) is the length of the longest increasing sequence,

and α, β are columns, it follows that P (αβ) will be a tableau with at most two

columns. Therefore this tableau will have column reading γδ, for some columns

γ, δ with γ ⪰ δ, and potentially δ = ε.

Now consider C = {cα | α ∈ A∗, α is a column} to be a set of symbols corresponding

to columns in A∗. Since A is finite and columns are strictly decreasing sequences,

C is also finite. Then define R to be the set of all rewrite rules detailed above

R = {cαcβ → cγcδ| α, β ∈ A∗ α ⪰̸ β}.
1i.e. that each of its relations is homogeneous.
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It is shown in [6] that

Lemma 3.2.1. (C, R) is a complete rewriting system for Pn.

It follows from this that Pn admits normal forms as reduced words in C∗. By the

definition of ⪰, this normal form will be in the form of column readings cα1 . . . cαm

with each αi ⪰ αi+1.

Note that if α = αm . . . α1 and β = βn . . . β1, αi, βi ∈ A, are columns appearing in

the column reading of the same tableau (not necessarily adjacent) with α further

left than β, then α ⪰ β. Indeed, since α and β are columns of the same tableau,

then by the structure of a tableau we have that m ≥ n. Furthermore, each pair

αi, βi will be in the same row of the tableau, with αi appearing earlier than βi.

This will imply that αi ≤ βi. But these two conditions imply that α ⪰ β. Thus ⪰

is a partial order on C.

We introduce a length-decreasing-lexicographic order on C extending ⪰. For

cα, cβ ∈ C, define:

cα ⊑ cβ ⇐⇒ (|α| > |β|) ∨ (|α| = |β| ∧ (∃j : i < j =⇒ αi = βi ∧ αj < βj))

With j taken as n+1 when cα = cβ. Note that cα ⪰ cβ =⇒ cα ⊑ cβ. Furthermore,

this is clearly a total order. We can therefore enumerate the set C as {c1, . . . ck},

with k = |C| = 2n − 1, such that i ≤ j =⇒ ci ⊑ cj . Then, since cα ⪰ cβ =⇒

cα ⊑ cβ, we have that the normal forms of Pn will have the form

cw1
1 . . . cwk

k

with wi ∈ N for each i, and for any pair ci, cj with i < j ∧ ci ⪰̸ cj , either wi = 0 or

wj = 0. Call two columns ci and cj incompatible if i < j ∧ ci ⪰̸ cj .
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Example 3.2.2. P3 has seven columns:

3

2

1
,

2

1
,

3

1
,

3

2
,

1
,

2
,

3

listed here in length-decreasing-lexicographic order. This list corresponds to

symbols c1, . . . , c7 ∈ C. Note that c4 and c5 are incompatible. P3 is the lowest

rank plactic monoid with an incompatible pair.

Example 3.2.3. In P3, the element c31c2c
2
4 ∈ C∗ is in normal form and corresponds

to the following tableau:

3 3 3

2 2 2 2 3 3

1 1 1 1 2 2
.
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An exploration of small equations

4.1 Conjugacy

The conjugacy problem is a classic decision problem in group theory. Given two

elements u, v of a group G, the question of whether some g ∈ G conjugates u to v,

that is, gug−1 = v, is a very natural and important question. For monoids however,

the absence of inverse elements means that there is no straightforward way to ask

an analogous problem. Several variants of conjugacy for monoids and semigroups

exist. A paper of Araújo, Kinyon, Konieczny, and Malheiro [2] gives an overview

of some of them. In particular, this paper gives an overview of the notions used to

study conjugacy in the plactic monoid.

A simple way to reinterpret conjugation in the monoid world is by rearranging

the equation so that there are no inverse elements. This allows us to define left

and right conjugacy: given u, v elements of some monoid M , we call these

elements left conjugate, written u ∼ℓ v, if for some X ∈ M we have that

uX = Xv, and right conjugate, written u ∼r v, if for some X ∈ M we have that

Xu = vX. These notions are related, since u ∼ℓ v if and only if v ∼r u. But

neither relation is necessarily symmetric. By considering both simultaneously, we

obtain o−conjugacy, which is precisely when u and v are both left and right

conjugate. This turns conjugacy into an equivalence relation, and it is named

after Friedrich Otto.

An alternative formulation of conjugacy, called primary conjugacy, says that two
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elements a and b in M are conjugate, written a ∼p b, if the following holds:

a ∼p b ⇐⇒ ∃u, v : a = uv ∧ b = vu.

This relation is not transitive, so we again wish to turn p-conjugacy into an

equivalence relation. This time, we will take the transitive closure, which we call

⋆p-conjugacy:

a ∼⋆
p b ⇐⇒ ∃u1, u2, . . . , un : a ∼p u1 ∧ u1 ∼p u2 ∧ · · · ∧ un ∼p b.

This notion is stronger than o-conjugacy: if two elements are ⋆p-conjugate then

they also must be o-conjugate. Indeed, if a and b are p-conjugate, then there is u, v

such that a = uv and b = vu. Namely, this also means that au = uvu = ub and

va = vuv = bv, so a and b are o-conjugate. Since o-conjugacy is an equivalence

relation, we then also get that if a and b are ⋆p-conjugate, they most be o-conjugate

by transitivity of o-conjugacy.

One can present a conjugacy problem for any of these notions, by asking about the

existence of an agorithm that would check the given type of conjugacy between two

elements. For the plactic monoid, one can already see that if two elements u, v ∈ Pn

are left conjugate, then they must have the same content: c(u) = c(v), since content

is additive under multiplication. So there is a necessary content condition on any

pair in the plactic monoid which is conjugate in any of the above ways.

In section 4 of their 1981 paper le monöıde plaxique [27], Lascoux and

Schützenberger explored, among other things, the ⋆p-conjugacy relation on Pn.

They showed that two elements having the same content is in fact a sufficient

condition for ⋆p-conjugacy. This namely implies the decidability of the conjugacy

problem, since the problem is reduced to simply checking the content of two finite

strings.

The result in their paper, which is also presented in more detail in chapter 5 of [33],
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is far from the main focus, and so is reached in a roundabout way. The idea of their

proof is to define the cyclage map C : Pn → Pn which sends an element w ∈ Pn,

written as w = x1 . . . xk in row form with each xi ∈ A, to C(w) = P (x2 . . . xkx1),

where P is the application of Schensted’s algorithm. By this construction, it is

clear that w ∼p C(w). It is then shown that by repeatedly applying this map C to

any element w ∈ Pn, you eventually reach the unique content row of w – that is,

the unique row r with c(r) = c(w). The proof of this fact is obtained by considering

the cocharge of a tableau – a natural number statistic that can be associated to any

tableau. This statistic is shown to be well defined using an action of the symmetric

group on n elements acting on tableaux, which is said to be acting by so-called

“automorphisms on Pn”.

All of these ideas are useful when studying the plactic monoid in the context

of crystal basis theory, and have as a consequence the sufficiency of content for

conjugacy. It turns out, however, that a direct approach will prove the conjugacy

result in a simpler, entirely constructive way. What follows is an original approach

which will yield a significantly simpler proof of the decidability of conjugacy in the

plactic monoid1.

4.1.1 Deciding when two elements are conjugate

Let w ∈ Pn be a tableau. Write w = tb, with b the bottom row of w.

Lemma 4.1.1. All occurrences of the letter 1 in w are in b.

Proof. By definition, columns must be strictly decreasing. So if a letter k is in a

certain row, then a letter k − 1 must appear in the row below it. But 0 is not a

letter, so 1 must be in the bottom row of any tableau word.

Now, consider the sequence w1, w2, . . . , wn of elements of Pn, where w1 = w and,

1It was discussed in the viva of this thesis that a similar method to the one presented below was
used in [9] to show the same result – that two elements in Pn are conjugate when their contents are
equal. This is Theorem 17 of their paper. The methods below were developed without knowledge
of this result.
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given wi, we write wi = tibi, with bi the bottom row of wi, and set wi+1 = P (biti).

In this case, t1 = t and b1 = b.

Lemma 4.1.2. All occurrences of the letters {1, . . . , i} in wi are in the bottom row

bi.

Proof. By induction, with base case w1 = w, suppose all occurrences of the letters

{1, . . . , i− 1} are in bi−1. Then in wi = P (bi−1ti−1), any time the letter i appears,

it cannot be followed by any x < i, since bi−1 is a row, and ti−1 has no occurrences

of any letters in {1, . . . , i − 1}. Thus no letters i can be bumped in Schensted’s

algorithm, which means all i’s in wi will be in the bottom row bi. Furthermore, no

letters in ti−1 are able to bump any letters in bi−1, so all letters {1, . . . , i− 1} will

also remain on the bottom row bi.

We know that tibi ∼p biti as words in the free monoid A∗, so wi ∼p wi+1 in Pn.

Therefore, we have that w ∼⋆
p wn. Furthermore, since wn has all occurrences of

{1, . . . , n} appearing in its bottom row, then we know that wn is a row with the

same content as w. So every w ∈ Pn is ⋆p-conjugate to the unique row with the

same content as w.

Theorem 1. If u and v have the same content, then u ∼⋆
p v.

Proof. Let un and vn be the unique rows with the same content as u and v

respectively. Then u ∼⋆
p un and v ∼⋆

p vn. When u and v have the same content,

we have un = vn, yielding u ∼⋆
p v.

4.1.2 Constructing a solution when one exists

The above proof yields a natural algorithm for finding a conjugator – that is, given

a pair u, v ∈ Pn, an element X such that uX = Xv.

Firstly, we associate to u and v sequences u1, . . . , un and v1, . . . , vn, as in Lemma

4.1.2. Write each ui as tuibui and each vi as tvibvi , with bui and bvi being the
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respective bottom rows of the tableaux.

Let Yi = bvi . Then we have that

Yivi = vi+1Yi

for each i ∈ {1, . . . n− 1}. Note that the transitivity of left conjugacy implies that

aX = Xb, bY = Y c =⇒ aXY = XbY = XY c

so it follows that taking Y = Yn−1Yn−2 . . . Y2Y1, we have that Y v = Y v1 = vnY .

Let also Xi = tui as defined above. Then we have that

uiXi = Xiui+1

for each i ∈ {1, . . . , n − 1}. So, analogously to before, take X = X1X2 . . . Xn−1.

Then we have that uX = u1X = Xun. Combining these two equalities, we get that

uXY = XunY = XvnY = XY v.

Note that the solution given by this algorithm is not necessarily the only conjugator

that exists, nor is it length minimising.

Example 4.1.3. Let Let u = 3211123 and v = 2231113. Then for u:

• u = 32 11123, so X0 = 32,

• u′ = 1112332 = 3 111223, so X1 = 3,

• u′′ = 1112233 which is a content row.

So X = X0X1 = 323.

Now for v:
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• v = 223 1113, so Y0 = 1113,

• v′ = 1113223 = 3 111223, so Y1 = 111223,

• v′′ = 1112233 which is a content row.

So Y = Y1Y0 = 1112231113 = 223 1111113.

Now, the solution given by the above algorithm will be

Z = XY = 3232231111113 = 33 2223 1111113.

Indeed:

uZ = 3211123 3322231111113 = 3333 222223 1111111113.

Zv = 3322231111113 2231113 = 3333 222223 1111111113.

Example 4.1.4. Consider u = 32211 and v = 32112. Let’s use our algorithm to

solve uZ = Zv.

First we calculate X:

• u = 322 11 so X0 = 322,

• u′ = 11322 = 3 1122 so X1 = 3,

• u′′ = 11223 which is a content row.

So X = 3223.

Now we calculate Y :

• v = 32 112 so Y0 = 112,

• v′ = 11232 = 3 1122 so Y1 = 1122,

• v′′ = 11223 which is a content row .
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So Y = 1122112 = 2211112.

So a solution here would be XY = 32232211112 = 33 2222 11112. Indeed:

uXY = 333 222222 1111112 = XY v.

4.2 The right equation

Given a pair of words u, v ∈ Pn, we ask whether there exists an X such that

uX = vX.

Like in the case of conjugacy, a necessary condition on u and v for this equation

to have a solution is that the contents match: c(u) = c(v). We will show that this

condition is also sufficient.

Proposition 4.2.1. For X a variable, and u, v ∈ Pn, the equation uX = vX has

a solution in Pn if and only if u and v have the same content.

Proof. First, let us consider the case of P2. Here, we will have u = 2u11u22u3 and

v = 2v11v22v3 . The necessary content condition will imply that u1 + u3 = v1 + v3,

and u2 = v2. Consider k ∈ N greater than both u3 and v3. Then by Schensted’s

algorithm we will have that

u1k = 2u1+u31u2+k = 2v1+v31v2+k = v1k,

so the necessary content condition is also sufficient.

We will continue by induction on the rank of the plactic monoid. Given u, v ∈ Pn,

write u = u1u2 . . . uk and v = v1v2 . . . vj in their row readings. Suppose u and

v have equal content. Recall by lemma 4.1.1 that the number 1 can only appear

in the bottom row of any tableau, so we must have that u = u1 . . . uk−11
xũk and
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v = v1 . . . vj−11
xṽj , where x = c1(u) = c1(v) and ũk, ṽj have no occurrences of the

number 1.

Let k ∈ N be greater than the length of both ũk and ṽj . Then

u1k = u1u2 . . . uk−1ũk1x+k

and

v1k = v1v2 . . . vj−1ṽj1
x+k.

This means that we have ũ = u1 . . . uk−1ũk and ṽ = v1 . . . vj−1ṽj , which are

elements of a plactic monoid over the alphabet {2, . . . , n} and have equal content.

Since this plactic monoid has rank n − 1, by our induction hypothesis there is

some Y ∈ {2, . . . , n}∗ such that ũY = ṽY.

Now, let ℓ ∈ N be greater than the length of Y . Then we have that

u1kY 1ℓ = ũ1x+kY 1ℓ = ũY 1x+k+ℓ

and

v1kY 1ℓ = ṽ1x+kY 1ℓ = ṽY 1x+k+ℓ

since the ℓ occurrences of 1 will bump the letters of Y above the lowermost row of

1’s. But since ũY = ṽY this solves the right equation with X = 1xY 1ℓ.

From a more constructive viewpoint, the way Schensted’s insertion algorithm is

defined, when we multiply an element u on the right, all the letters of u will either

stay in the row they originally appear, or get bumped to a ‘higher’ row, in the

sense of being further up the page in the tableau. By multiplying both u and v

repeatedly by the element 1, we bump all letters except for 1 to a higher row. We

repeat this process, bumping all letters that are not 1 or 2 from the bottom two
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rows, then all letters that are not 1, 2, or 3 from the bottom three rows, and so

on, until each occurrence of a letter k is on the k-th row from the bottom in the

tableau. This will constructively yield a solution for any pair of words with the

same content.

Example 4.2.2. Let u = 123 and v = 321.

u = 123 v = 3 2 1

u2 = 3 122 v2 = 3 2 12

u211 = 3 22 111 v211 = 3 22 111

So X = 211 will solve the equation uX = vX.

Example 4.2.3. Let’s see a bigger example. Let u = 3211123 and v = 2231113

u = 3 2 11123 v = 223 1113

u2 = 3 23 11122 v2 = 2233 1112

u211 = 33 222 11111 v211 = 3 2223 11111

u21121 = 33 2222 111111 v21121 = 33 2222 111111

So X = 21121 = 22 111 will solve the equation uX = vX.

4.3 The left equation

Analogously to the previous section, we now consider, for a pair of words u, v ∈ Pn,

whether there exists some X such that

Xu = Xv.

As before, the necessary content condition is c(u) = c(v), and we will again show

that this condition is also sufficient.
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Proposition 4.3.1. Let u, v ∈ Pn. Then there exists X ∈ Pn such that Xu = Xv

if and only if c(u) = c(v).

Proof. In analysing this equation, it will be helpful to consider Pn with respect

to its column generators C = {c1, . . . , ck}. Specifically, define for each i ∈ A the

column fi ∈ C corresponding to the decreasing sequence of all the letters n down

to i:

fi =

n

n−1
...

i

and consider X of the form X = fx1
1 fx2

2 . . . fxn
n . When we multiply X on the right

by some i ∈ A, we get that

Xi = fx1
1 . . . fxi

i f
xi+1

i+1 i . . . f
xn
n

= fx1
1 . . . fxi+1

i f
xi+1−1
i+1 . . . fxn

n

because fi+1i = fi, and Schensted’s algorithm insists that i bump the leftmost

letter in the row that it can.

Now, consider u ∈ Pn where the number of instances of i in u is less than xi+1

for each i ∈ A \ {n}. That is, ci(u) ≤ xi+1 for each i ∈ A \ {n}. Notice that, in

the product Xu, the bottom row of X has at most as many letters i + 1 as u has

letters i, so in the Schensted insertion algorithm, each i from u will bump an i+ 1

from the bottom row of X, regardless of which order the letters are inserted. So

we obtain a formula for the product in this case

Xu = f
x1+c1(u)
1 . . . f

xi−ci−1(u)+ci(u)
i . . . fxn−cn−1(u)+cn(u)

n .
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Notice that this means that all letters that appeared in u will remain in the bottom

row of Xu. But that means that, so long as both ci(u) ≤ xi+1 and ci(v) ≤ xi+1 for

all i ∈ A \ {n}, we only get Xu ̸= Xv when c(u) ̸= c(v).

Namely, for any u, v ∈ Pn with c(u) = c(v), we can take some X = fx1
1 . . . fxn

n with

x1 = 0 and xi ≥ ci−1(u) = ci−1(v) for each i ∈ {2, . . . , n}. Then we will be exactly

in the above case, and so we must have Xu = Xv.

Let’s see this process applied to the same examples as in the right equation. In

the following examples, elements of Pn written as words in A∗ will be in column

reading.

Example 4.3.2. Let u = 123 and v = 321. Then if we take x2 ≥ 1 and x3 ≥ 1 we

will obtain a solution. So take, for example,

X = f2f3 =

3

2 3
,

then we see that

Xu = 323123 = 321 32 1 = f1f2f3.

Xv = 323321 = 321 32 1 = f1f2f3.

Example 4.3.3. Let u = 3211123 and v = 2121313. Then we need to take x2 ≥ 3

and x3 ≥ 2 to obtain a solution. So take, for example

X = f32 f
2
3 =

3 3 3

2 2 2 3 3
,

and we see that

Xu = 323232333211123 = 321 321 321 32 32 3 3 = f31 f
2
2 f

2
3 .

Xv = 323232332121313 = 321 321 321 32 32 3 3 = f31 f
2
2 f

2
3 .
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4.4 Intersections of principal ideals

The left and right equations described above are linked to the question of when

principal ideals have nonempty intersection.

Definition 4.4.1. Given a monoid M and an element a ∈ M , the right principal

ideal generated by a, written aM , is the set {ax | x ∈ M} ⊆ M . Analogously, the

left principal ideal generated by a, written Ma, is the set {xa | x ∈M} ⊆M .

Given two principal right ideals aM, bM , the question of having nonempty

intersection is equivalent to seeking a solution to the equation

aX = bY

for X,Y variables taking values in M . Analogously, whether two principal left

ideals Ma, Mb intersect is equivalent to seeking a solution to the equation

Xa = Y b.

In the plactic monoids, we obtain the following result.

Proposition 4.4.2. Any two right (respectively left) principal ideals in the plactic

monoid of any finite rank intersect.

Proof. Given u, v ∈ Pn any pair of elements, we can find α, β ∈ Pn such that

c(uα) = c(αu) = c(βv) = c(vβ).

Now, using Proposition 4.2.1 we know that there is some X ∈ Pn such that

uαX = vβX,

hence the right principal ideals of u and v intersect. Likewise, using Proposition
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4.3.1, we know that there is some Y ∈ Pn such that

Y αu = Y βV,

hence the left principal ideals of u and v intersect.

We can further show the following nice corollary.

Corollary 4.4.3. In the infinite rank plactic monoid P (N), any two right

(respectively left) principal ideals intersect.

Where P (N) is the monoid of all Semistandard Young Tableaux, obtained as a

union of finite rank plactic monoids

P (N) =
⋃
n∈N

Pn.

Proof. Given a pair u, v ∈ P (N), there must be some n ∈ N such that

u, v ∈ Pn ⊂ P (N).

So, by Proposition 4.4.2, there is some pair X,Y ∈ Pn ⊂ P (N) such that

uX = vY,

so the right ideals intersect in P (N) as well. The argument for left ideals is

analogous.

This result is likely known to researchers in the field, but to the author’s knowledge

it has not been published before.
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4.5 Simultaneous equations

The above discussion of the left and right equation yields the same necessary and

sufficient condition to satisfy both equations. A natural question to ask therefore

is whether these can be solved simultaneously: does there exist some X ∈ Pn such

that uX = vX and Xu = Xv? We will see that the answer is yes.

Suppose that u, v ∈ Pn have the same content. Then there exists some X such

that uX = vX and some Y such that Y u = Y v. Now, consider Z = XY . Then

we see that

uZ = uXY = vXY = vZ,

Zu = XY u = XY v = ZV,

by applying the right equation to uX and the left equation to Y u. Thus we see

that Z solves both equations simultaneously. So, as long as the contents of u and

v match, we can solve the left and right equations simultaneously.

Example 4.5.1. Let’s see this for the case of P2, the plactic monoid generated by

A = {1, 2}.

In the left equation, by our algorithm we will get that X has the form fx2
2 , where

f2 is the column 2 . So X will be an element 2x, with x greater than the number

of 1’s in the content of u and v.

In the right equation, our procedure reduces to bumping all 2’s from the bottom

rows of u and v. This can be done by some 1ℓ for ℓ sufficiently large. So we can

take Y = 1ℓ to solve the right equation. Now, taking Z = Y X = 1ℓ2x, we will see

that uZ = vZ and Zu = Zv.

As an explicit example, take u = 241525 and v = 221527. Then Y = 17 and X = 25
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solve the right and left equations respectively, and for Z = Y X = 1725, we get

uZ = 241525 × 1725 = 2911225,

vZ = 221527 × 1725 = 2911225.

Zu = 1725 × 241525 = 2511229,

Zv = 1725 × 221527 = 2511229.

4.6 Conjugacy in P2

4.6.1 Structure of sets of conjugators

Continuing our consideration of the plactic monoid over A = {1, 2}, let us consider

the case of left conjugacy uX = Xv and right conjugacy Xu = vX. We will seek

to describe the set of all X ∈ P2 solving either left or right conjugacy for a given

pair u, v.

Here, we will benefit from considering P2 as being generated by the set {1, 2, t},

where t = 21 generates the centre of P2. This is exactly the column presentation

of P2, in the sense of [6]. The reduced words will then have the form ta1b2c, for

some (a, b, c) ∈ N3. We also get a formula for the multiplication of u = tu11u22u3

and v = tv11v22v3 , by considering the fact that t is central, so we can move powers

of t to the left:

tu11u22u3tv11v22v3 = tu1+v11u22u31v22v3

= tu1+v11u22max(0,u3−v2)tmin(u3,v2)1max(0,v2−u3)2v3

= tu1+v1+min(u3,v2)1max(u2,u2+v2−u3)2max(v3,v3+u3−v2).

We will revisit the pair of equations uX = Xv and Xu = vX. Supposing these

equations have solutions for a given pair of words, there will be sets Cℓ and Cr of
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all left (respectively right) conjugators:

Cℓ = {X ∈ Pn | uX = Xv}

Cr = {X ∈ Pn | Xu = vX}.

We seek a description of the elements of these two sets.

Suppose u = tu11u22u3 and v = tv11v22v3 are conjugate. Then they must have the

same content, so u1 + u2 = v1 + v2 and u1 + u3 = v1 + v3. Suppose that u1 ≥ v1.

Then we can write u = ta1b2c and v = ta−k1b+k2c+k, for some k ∈ N.

Let us first consider left conjugacy: Suppose X = tx1y2z solves uX = Xv. Then

the following equations are satisfied

ta1b2ctx1y2z = tx1y2zta−k1b+k2c+k

ta1b2ctx1y2z = ta+x+min(c,y)1max(b,b+y−c)2max(z,z+c−y)

tx1y2zta−k1b+k2c+k = tx+a−k+min(z,b+k)1max(y,y+b+k−z)2max(c+k,c+k+z−b−k)

Which yields the following system of equations satisfied by x, y, and z

a+ x+ min(c, y) = x+ a− k + min(z, b+ k) (4.6.1)

max(b, b+ y − c) = max(y, y + b+ k − z) (4.6.2)

max(z, z + c− y) = max(c+ k, c+ k + z − b− k) (4.6.3)

From equation (4.6.1), it follows that x can be any number. The restrictions on y

and z then split into four cases

1. y ≤ c and z ≤ b+ k: then the equations above reduce to

a+ y = a− k + z

b = y + b+ k − z

z + c− y = c+ k,
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yielding z = y + k. This also implies that y ≤ b, but does not place any

further restrictions on y, so we obtain a solution family of the form tx1y2y+k

for each 0 ≤ y ≤ min(b, c) and any x ∈ N

2. y ≤ c and z ≥ b+ k: the equations above reduce to

a+ y = a− k + b+ k

b = y

z + c− y = c+ k + z − b− k.

These equations yield the sole restriction that y = b, which works if and only

if b ≤ c. So when b ≤ c we get a solution family tx1b2b+k+z, for any pair

(x, z) ∈ N2. When b > c we get no solutions of this form.

3. y ≥ c and z ≤ b+ k: the equations above reduce to

a+ c = a− k + z

b+ y − c = y + b+ k − z

z = c+ k.

Here we get the restriction z = c+k, which works if and only if c ≤ b. This is

the converse to case 2 above: when b ≥ c we get a solution family tx1c+y2c+k,

for (x, y) ∈ N2, and when b < c we get no solutions of this form.

4. y ≥ c and z ≥ b+ k: the equations above reduce to

a+ c = a− k + b+ k

b+ y − c = y

z = c+ k + z − b− k,

all three of which reduce to b = c. If this equation – which is a condition on

u and v – is not satisfied, there are no solutions in this case. Otherwise, as

long as y ≥ c and z ≥ b+ k, any tx1y2z will be a solution.
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Using the above cases, we can split the set of conjugators into two parts. For each

pair u and v, we may consider Cℓ as the union of the set of conjugators obtained

in case 1, and another set of conjugators obtained from one of cases 2, 3, and 4.

This is because which of the cases 2, 3, and 4 yield any solutions depends on the

pair u, v we chose. If b < c we will have solutions from case 2 only; if b > c we will

have solutions from case 3 only; if b = c then we will have solutions from case 42.

Thus, we may write the set of conjugators as Cℓ = Bℓ ∪ Uℓ, with

Bℓ =
{
X = tx1y2y+k ∈ Pn | y ≤ min(b, c) ∧ x ∈ N

}

Uℓ =



{
X = tx1c+y2c+k ∈ Pn | (x, y) ∈ N2

}
, b > c{

X = tx1b2b+k+z ∈ Pn | (x, z) ∈ N2
}
, b < c{

X = tx1b+y2b+k+z ∈ Pn | (x, y, z) ∈ N3
}
, b = c.

Let’s now consider right conjugacy. Plugging X = tx1y2z into the right conjugacy

equation yields the following system of equations satisfied by x, y, z:

x+ a+ min(z, b) = a− k + x+ min(c+ k, y) (4.6.4)

max(y, y + b− z) = max(b+ k, b+ k + y − c− k) (4.6.5)

max(c, c+ z − b) = max(z, z + c+ k − y) (4.6.6)

but notice that this is the same system of equations as in the case of left conjugacy,

up to a relabelling of variables. Swapping b with c and y with z will yield the same

equations as in the left conjugacy case.

As such, the set Cr will have the same structure as Cℓ, though with slightly modified

solution families due to the coordinate relabelling in the equations. Explicitly, we

2Note that the solutions obtained in case 2 and 3 would also be obtained from case 4.
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will obtain a decomposition Cr = Br ∪ Ur, with

Br =
{
X = tx1z+k2z ∈ Pn | z ≤ min(b, c) ∧ x ∈ N

}

Ur =



{
X = tx1c+k+y2c ∈ Pn | (x, y) ∈ N2

}
, b > c{

X = tx1b+k2b+z ∈ Pn | (x, z) ∈ N2
}
, b < c{

X = tx1b+k+y2b+z ∈ Pn | (x, y, z) ∈ N3
}
, b = c

.

Note that in the above arguments we assumed that u1 ≥ v1. So our descriptions of

Cℓ and Cr are specifically associated to a pair (u, v) with u1 ≥ v1. Call these C
(u,v)
ℓ

and C
(u,v)
r . If for a pair of words w, t ∈ P2 we have w1 < t1, then we can rearrange

wX = Xt to Xt = wX and Xw = tX to tX = Xw. Thus, by considering the pair

(t, w) we see that C
(t,w)
ℓ is the set of right conjugators for the pair (w, t), and C

(t,w)
r

is the set of left conjugators for the pair (w, t). So the description of the two sets

of conjugators swaps.

4.6.2 Power conjugacy

A generalisation of left (respectively right) conjugacy would be considering

equations of the form uXn = Xnv (respectively Xnu = vXn) for some n ∈ N. We

will call this ‘power conjugacy’.

Clearly, a necessary condition to be power conjugate is for u and v to be conjugate

in the first place, but it is not obvious that this should be a sufficient condition, as

there is not a known general formula for calculating roots in the plactic monoid.

But in the case of P2, we can use our classification of conjugators to show this

condition is sufficient.

Proposition 4.6.1. Suppose u and v are conjugate in P2. Then there exists a

solution to uXn = Xnv for each n ∈ N.

Proof. First, suppose that u, v are such that u1 ≥ v1. By the discussion above,
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there will be at least one family of the form 1α2β+z or 1α+y2β in Uℓ of u and v,

for some fixed α, β, and y, z arbitrary natural numbers. In the case that this is

1α2β+z, fix some z1 > α and let X = 1α2β+z1 Then

X2 = tα1α2β+z2

with z2 = 2z1 − α + β > z1 > α. This is again a conjugator in Uℓ. Then, by

induction, if Xn−1 ∈ Uℓ, and zn−1 > α, we get that

Xn = t(n−1)α1α2β+zn

with zn = 2zn−1 − α + β > zn−1 > α. So for any n ∈ N we pick, we see that

Xn ∈ Uℓ.

In the case of 1α+y2β, fix some y1 > β and let X = 1α+y12β. An analogous

argument shows that

Xn = t(n−1)β1α+yn2β

with yn > yn−1 > · · · > y1 > β, and hence Xn ∈ Uℓ for all n ∈ N.

Now, suppose u1 < v1. Then the set of left conjugators corresponding to u and v

will be the set C
(v,u)
r . But here again there will be at least one family of the form

1α2β+z or 1α+y2β in the Ur corresponding to (v, u), for fixed α, β, and y, z ∈ N

allowed to vary. So by an analogous argument, we will see that Xn will be in Ur

for any n ∈ N.

Note that by swapping u and v in the left power conjugacy equation, we get the

same argument showing the result for right power conjugacy Xnu = vXn.

4.7 Further questions on generalisation

There are still more questions that can be explored in the world of small

equations over plactic monoids. A natural question from the previous section
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would be to explore the set of conjugators for plactic monoids on more than 2

generators. Furthermore, does a conjugate pair u, v ∈ Pn have solutions to power

conjugacy in any other plactic monoids? If so, what would these solutions look

like? One could also consider whether these sets of conjugators have any

grammatical structure, in the sense of formal languages.

One can also further this exploration by considering larger Diophantine equations

in one variable. Suppose we wish to find an X ∈ Pn that satisfies an arbitrary

equation

u1Xu2X . . . unXun+1 = v1X . . . vmXvm+1

where all ui, vi are members of Pn. What sort of condition is sufficient for such an

equation to have a solution, and what would the set of solutions look like?

We do have some necessary conditions on the content of our coefficients:

• if n = m, then we must have

n+1∑
i=1

cj(ui) =
n+1∑
i=1

cj(vi)

for each j ∈ A

• if without loss of generality n > m, then we must have

n+1∑
i=1

cj(ui) ≤
n+1∑
i=1

cj(vi)

for each j ∈ A

but neither condition is sufficient, in general.

Example 4.7.1. 1X = 21 has no solution. Indeed, content arguments show that

X must be 2. But 12 ̸= 21.

Example 4.7.2. 1X2 = 21X has no solution. Here, we will examine the bottom

row of each side of the equation. Suppose X = r1 . . . rm as a row reading. Then
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the bottom row of 21X will be 1rm, which will always be a row. On the other

hand, the bottom row of 1X2 will be the bottom row of 1rm2. If this is itself a

row, then |1rm2| > |1rm| so they cannot be equal. If this is not a row, then by

Schensted’s algorithm we have rm = rαxrβ, with x > 2, and rα ∈ P2. Then we

get that 1rm = 1rαxrβ, and the bottom row of 1rm2 is 1rα2rβ. Then since x ̸= 2,

these two rows cannot be equal.

Of course, since any single variable Diophantine equation is a first order formula,

the next section will show that the question of whether it has solutions is decidable.

What this means is that an algorithmic exploration of this question is entirely

feasible, should we wish to undertake it.



5

On the first order theory of plactic

monoids

In this chapter, our key result is that Pn is interpretable in Presburger arithmetic

for any n ∈ N, and hence will have decidable first order theory. An important

corollary of this is that the Diophantine problem is decidable (since Diophantine

equations are positive existential first order sentences) and so is the problem of

checking semigroup identities (since these correspond to positive universal first

order sentences). Our proof will work by induction, with our base case being the

plactic monoid on two letters P2.

5.1 Interpreting P2 in Presburger Arithmetic

First, we will explicitly treat the case n = 2 of tableaux on two letters. As before,

we will consider the tableaux to be generated by columns C = {t, 1, 2}, and our

rewriting system becomes:

R = {21 → t , 2t→ t2 , 1t→ t1}.

By the two commutativity rules, and the fact that any factor 21 would not appear

in a reduced word, each reduced word w ∈ (C, R) is in the form tw11w22w3 . Thus,

by completeness of the rewriting system, each element of P2 corresponds to a triple

(w1, w2, w3) ∈ N3, associated to a normal form tw11w22w3 . Likewise, each such
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triple corresponds to a tableau, hence an element of P2.

We will take the Z version of Presburger arithmetic, to make use of subtraction.

Consider the map ϕ : S → P2, where S = N3 ⊂ Z3 is definable by the formula

(0 ≤ x1) ∧ (0 ≤ x2) ∧ (0 ≤ x3)

and ϕ(x1, x2, x3) = tx11x22x3 . This is a bijection from a definable set in

(Z, 0, 1,+,−,≤), and the inverse graph of equality will be

ϕ−1(=) =
{

(a1, a2, a3, b1, b2, b3) ∈ N6 | ta11a22a3 = tb11b22b3
}

=
{

(a1, a2, a3, b1, b2, b3) ∈ N6 | a1 = b1, a2 = b2, a3 = b3
}
⊂ Z6

which is definable by the formula (a ∈ S) ∧ (b ∈ S) ∧
∧

i∈{1,2,3}
(ai = bi).

next we check the preimage of the graph of multiplication

ϕ−1(◦) =
{

(a, b, c) ∈ S3 | ta11a22a3tb11b22b3 = tc11c22c3
}
.

Using the multiplication formula from the previous chapter, we get that

ta11a22a3tb11b22b3 = ta1+b11a22a31b22b3

=


ta1+b1+a31a2+b2−a32b3 , a3 ≤ b2

ta1+b1+b21a22b3+a3−b2 , b2 ≤ a3

thus obtaining the following formula for ϕ−1(◦)

(a ∈ S) ∧ (b ∈ S) ∧ (c ∈ S)∧[(a3 ≤ b2 ∧ c1 = a1 + b1 + a3 ∧ c2 = a2 + b2 − a3 ∧ c3 = b3)

∨(b2 ≤ a3 ∧ c1 = a1 + b1 + b2 ∧ c2 = a2 ∧ c3 = b3 + a3 − b2)]

where a ∈ S is a shorthand for(a ≤ x1)∧ (0 ≤ a2)∧ (0 ≤ a3). It follows then that ϕ

is an interpretation of P2 in Presburger arithmetic. This yields the following result.
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Theorem 2. P2 has decidable first order theory.

Proof. Since ϕ above is an interpretation of P2 in (Z, 0, 1,+,−,≤), every first order

formula of P2 is interpreted as a first order formula of Presburger arithmetic, which

is decidable by 2.3.1.

Note that this argument is closely related to the proof that the bicyclic monoid

B = ⟨a, b | ba = ε⟩ has decidable first order theory (see section 2.4 of [12]). Indeed,

the map ψ : P2 → B sending 1 to a, 2 to b, and t to ε is a monoid homomorphism,

and ψ ◦ ϕ : S → B is an interpretation of the bicyclic monoid in Presburger

arithmetic, in the sense of surjections.

5.2 Interpreting Pn in Presburger Arithmetic

Throughout this section, let k = |C| = 2n − 1. Index C by i ∈ {1, . . . , k} with

i < j ⇐⇒ ci ⊏ cj .

Let S ⊆ Nk be the set of all (v1, . . . , vk) such that cv11 . . . cvkk is the normal form of

a tableau, and let ϕ : S → Pn be the natural bijection. The normal form of any

tableau will obey compatibility conditions: for each pair

(a, b) ∈ {1, . . . , k} × {1, . . . , k}

such that a < b and ca ⪰̸ cb, we have that either va = 0 or vb = 0. Let

I ⊂ {1, . . . , k}2 be the set of all such pairs. Then S ⊂ Zk is defined by the

formula ∧
i∈{1,...,k}

(0 ≤ xi) ∧
∧

(a,b)∈I

[(xa = 0) ∨ (xb = 0)] .

We claim that ϕ is an interpreting map of Pn in Presburger arithmetic. Again, we



Chapter 5: On the first order theory of plactic monoids 54

check the diagonal:

ϕ−1(=) = {(a, b) ∈ S2 | ϕ(a) = ϕ(b)},

which is definable by (a ∈ S) ∧ (b ∈ S) ∧
∧

i∈{1,...,k}
(ai = bi) as in the n = 2 case. It

remains to check whether the preimage of the multiplication graph

ϕ−1(◦) =
{

(a, b, c) ∈ S3 | ϕ(a)ϕ(b) = ϕ(c)
}
⊂ Z3k

is definable.

5.2.1 Multiplication – the idea

Using section 5.1 as a base case, we will proceed with the induction hypothesis

that, for each 2 ≤ i ≤ n−1, we have a formula ηi in Presburger arithmetic defining

multiplication in Pi.

We first consider the structure of multiplication in Pn. The recursive nature of

Schensted’s algorithm yields a characterisation of multiplication in Pn via bottom

rows and top tableaux.

Definition 5.2.1. We call a tableau t ∈ Pn a top tableau if its row reading is a word

over {2, . . . , n}∗. i.e. there are no 1’s appearing in the tableau word representing t.

Note that each u ∈ Pn will have an associated top tableau: if u = r1 . . . rl, where

each ri is a row, then r1 . . . rl−1 will be a top tableau.

For u, v ∈ Pn, the product uv will be computed by first running an insertion

algorithm into the bottom row of u, and then inserting any bumped letters into

the top tableau associated to u. We will make this idea more precise.

Definition 5.2.2. Define the following maps:

1. The top map T : Pn → Pn maps an element w with row form r1 . . . rl in A∗
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to its corresponding top tableau T (w) = r1 . . . rl−1.

2. The bottom map B : Pn → Pn maps an element w as above to its bottom

row B(w) = rl.

Example 5.2.3. Let t =

3 4

2 3 3

1 1 2 4 4
. Then T (t) = 34 233 and B(t) =

11244.

For u, v ∈ Pn, by the structure of Schensted’s algorithm, the product uv will run

an insertion algorithm first into B(u), followed by any letters that are bumped

being inserted into T (u). This yields the following characterisation of the top and

bottom of the product:

T (uv) = T (u)T (B(u)v),

B(uv) = B(B(u)v),

where equality is taken to mean equality in Pn, not equality of words. Note that the

set of top tableaux, which is equivalently the image of T , is a submonoid isomorphic

to Pn−1 over the alphabet {2, . . . , n}. Thus by our induction hypothesis the product

of top tableaux will be definable via ηi−1. Therefore, if we can define the row B(uv),

and a way of stitching T (uv) and B(uv) into one tableau uv, we will obtain ηi a

formula defining multiplication in Pn.

Definition 5.2.4. The stitch map Σ : Pn × Pn → Pn is defined as follows. For

u ∈ Pn a top tableau with row reading r1 . . . rn ∈ A∗ and v a row with row reading

rv ∈ A∗, Σ(u, v) = uv if r1 . . . rnrv is the row reading of a tableau. Otherwise,

Σ(u, v) = ε.

If Σ has nontrivial output, we call u and v compatible, and uv the “stitched”

tableau.

Example 5.2.5. Suppose u = 43322234 and v = 11113. Then Σ(u, v) = uv, with

corresponding tableau
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4

3 3

2 2 2 3 4

1 1 1 1 3
.

Note that Σ(T (u), B(u)) = u. We can thus characterise multiplication via the

above maps as follows

uv = Σ(T (uv), B(uv))

= Σ(T (u)T (B(u)v), B(B(u)v)).

Let us consider the structure of w ∈ Pn as a word in normal form in C∗. We have

that w = cw1
1 cw2

2 . . . cwk
k for some wi ∈ N for each i, satisfying some compatibility

conditions. But consider now each block cmi for some m ∈ N as a tableau word

in row form in the presentation ⟨A|K⟩. Then for ci = x1x2 . . . xr in row form in

A∗, we have that cmi = xm1 x
m
2 . . . x

m
r in row form in A∗. For each ci, this row form

is unique, since each column corresponds to a unique decreasing sequence in A∗.

This will give us a useful way to write the column form of w as a word in A∗.

Define α = (α1, . . . , αℓ) to be the finite sequence of letters in A which first outputs

in order the letters in the row form of c1, then the letters of the row form of

c2, and so on. We also define β = (β1, . . . , βℓ) to be the finite sequence, taking

values in {1, . . . , k}, with βi = j when αi is a letter from column cj . Note that

these sequences only depend on the rank of Pn, as it is defined using the columns

generating Pn. Now, a straightforward check using Schensted’s algorithm verifies

that the word α
wβ1
1 . . . α

wβℓ
ℓ ∈ A∗ is equal to w = cw1

1 cw2
2 . . . cwk

k in the plactic

monoid, where wβi
is the coefficient of column cβi

in the normal form of w.
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Example 5.2.6. The seven columns of P3:

3

2

1
,

2

1
,

3

1
,

3

2
,

1
,

2
,

3
, yield

α = 3, 2, 1, 2, 1, 3, 1, 3, 2, 1, 2, 3

β = 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 6, 7.

For an example word w = c31c2c3c6, we get the corresponding sequence

332313211131113020102130 = 33322211121312,

which after running Schensted’s algorithm becomes the tableau

3 3 3

2 2 2 2 3

1 1 1 1 1 2
.

Lemma 5.2.7. Consider u, v, w ∈ Pn. Suppose v has normal form cv11 . . . cvkk .

Then w = uv is equivalent to the following:

There exist u0, u1, . . . , uℓ ∈ Pn such that u0 = u, uℓ = w, and we have a recursive

formula for ui

ui = ui−1α
vβi
i .

This result is immediate from the structure of the insertion algorithm and the fact

v = α
vβ1
1 . . . α

vβℓ
ℓ .

Definition 5.2.8. For each x ∈ A the map µx : N × S → S is such that

ϕ(µx(m, a)) = ϕ(a)xm.

Corollary 5.2.9. ϕ−1(◦) is definable if the maps µx are definable for each x ∈ A.

Proof. Restating lemma 5.2.7 in terms of elements of S, given u, v, w ∈ S, we

have that ϕ(w) = ϕ(u)ϕ(v) if and only if there are some u0, . . . , uℓ such that
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u0 = u, uℓ = w, and

ϕ(ui) = ϕ(ui−1)α
vβi
i .

By the definition of µx, we can rephrase the above condition as

ui = µαi(vβi
, ui−1),

so the preimage of the graph of multiplication becomes a composition of finitely

many applications of µx, which will be definable if each µx is definable.

5.2.2 The formula defining µx

Henceforth, x is a fixed letter in A.

Recall that if b = µx(m, a), then

ϕ(b) = ϕ(a)xm

= Σ(T (ϕ(a))T (B(ϕ(a))xm), B(B(ϕ(a))xm)).

So we wish to obtain a formula of Presburger arithmetic describing

b = ϕ−1Σ(T (ϕ(a))T (B(ϕ(a))xm), B(B(ϕ(a))xm)).

We can break this down into a composition of several maps. First, define a1 and

a2 such that

a1 = ϕ−1Tϕ(a),

a2 = ϕ−1Bϕ(a).

Next, considering R ⊂ Pn the set of row words, we define two maps
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ρ1, ρ2 : N× R → S such that, for r ∈ R we have

ϕ(ρ1(m, r)) = T (rxm) and ϕ(ρ2(m, r)) = B(rxm).

Then since ϕ(a2) is a row, we can define a3 and a4 to be such that

a3 = ρ1(m,ϕ(a2)),

a4 = ρ2(m,ϕ(a2)).

That is, ϕ(a3) = T (B(ϕ(a))xm) and ϕ(a4) = B(B(ϕ(a))xm).

Next, define a5 to be such that

ϕ(a5) = T (ϕ(a))T (B(ϕ(a))xm) = ϕ(a1)ϕ(a3).

By our induction hypothesis, this will be definable in Presburger arithmetic, as the

coefficients in a5 will either be calculated by the formula ηn−1, or will equal zero.

Finally, we have that

b = ϕ−1Σ(ϕ(a5), ϕ(a4)).

Since the composition of definable maps is definable, we have that µx is definable

precisely when ϕ−1Tϕ(a), ϕ−1Bϕ(a), ρ1, ρ2, and ϕ−1Σ(ϕ( ), ϕ( )) are definable. This

will be the subject of the following three lemmas.

Lemma 5.2.10. The following maps are definable:

(i) ϕ−1Bϕ : S → S.

(ii) ϕ−1Tϕ : S → S.

Proof. (i) Define the finite sets Bm for each m ∈ A by

Bm = {j ∈ {1, . . . , k} | cj = xm . . . x1 ∧ x1 = m}

which are nonempty for each m. Then we get that b = ϕ−1(B(ϕ(a)) if and only if
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the following formula holds:

∧
i∈{1,...,k−n}

(bi = 0) ∧
∧

i∈{1,...,n}

bk−n+i =
∑
j∈Bi

aj

 .

The first part of the formula denoting the coefficient of each column of size ≥ 2

being zero, and the second part denoting the fact that each column xm . . . x1 in

ϕ(a) contributes to the coefficient of the x1 letter in the bottom row.

(ii) Define the similar sets Ti for each i ∈ {1, . . . , k} by

Ti = {j ∈ {1, . . . , k} | cj = xm . . . x1 ∧ xm . . . x2 = ci}.

Note that if i ∈ B1, then Ti = ∅. Now, we have that b = ϕ−1(T (a)) if and only if

the following formula holds:

∧
i∈{1,...,k}

bi =
∑
j∈Ti

aj


where we take the sum over an empty indexing set to be 0.

Note that the sets Ti and Bm can be constructed algorithmically for any given n.

Given the set of columns as decreasing sequences, we can check membership in each

Bm by considering the minimal element of a column, and we can check membership

in each Ti by considering the column without its minimal element. Note also that

{Bm : m ∈ A} and {Tj : j ∈ {1, . . . , k}, Tj ̸= ∅} are partitions of {1, . . . , k}.

Next, we move on to defining the maps ϕ−1T (rxm) and ϕ−1B(rxm). Here, we

consider SR ⊂ S to be the subset of normal forms corresponding to rows (i.e. SR

is the preimage of R ⊂ Pn).

Lemma 5.2.11. The following maps are definable:

1. ρ1ϕ : N× SR → S taking ϕ−1(r) with parameter m ∈ N to ϕ−1T (rxm).

2. ρ2ϕ : N× SR → S taking ϕ−1(r) with parameter m ∈ N to ϕ−1B(rxm).
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We will abuse notation and write ρ1(r) for ρ1ϕ(m,ϕ−1(r)), which is equivalently

ρ1(m, r) (and analogously for ρ2(r)).

Proof. First note that SR is a subset definable by

∧
i∈{1,...,k−n}

xi = 0

and ρ1ϕ, ρ2ϕ will be maps from SR to SR. Indeed, for ρ2ϕ this is immediate, but

for ρ1ϕ note that by [42] the number of rows after running Schensted’s algorithm

on any w ∈ A∗ is equal to the length of the longest strictly decreasing subsequence

of w. Now, since r is non-decreasing as a sequence in A∗, the longest strictly

decreasing subsequence of rxm viewed as a word in A∗ can have length at most 2.

Thus the top T (rxm) can have at most one row, meaning the image of ρ1ϕ must

be in SR.

Now, write r = ϕ−1(r) = (0, . . . , 0, r1, r2, . . . , rn). We will describe explicitly

c = (0, . . . , 0, c1, . . . , cn) and d = (0, . . . , d1, . . . , dn) such that c = ρ1(r) and

d = ρ2(r).

2. We will first consider the ρ2ϕ case, which corresponds to B(rxm). In the

setting of the presentation ⟨A|K⟩, we will have xm inserted into

r = 1r12r2 . . . (x+ 1)rx+1(x+ 2)rx+2 . . . nrn .

It will bump m letters from this row, starting at x + 1. This means that

di = ri for i < x and dx = rx +m. We will now consider the later entries of

d, which will split into several cases depending on the size of m.

In the first case, suppose m ≤ rx+1. Then we will bump m letters x+ 1 and

replace them with letters x. This yields the effect that dx+1 = rx+1 −m and

di = ri for all i > x+ 1.

In the next case, suppose rx+1 ≤ m ≤ rx+1 + rx+2. Then all letters x+ 1 are

bumped, as are m− rx+1 letters x+ 2. Thus we have that dx+1 = 0, dx+2 =
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rx+2 + rx+1 −m, and di = ri for all i > x+ 2.

Generalising the above, suppose, for some i ≤ n− x, we have

i−1∑
j=1

rx+j ≤ m ≤
i∑

j=1

rx+j .

Then in this case, dx+j = 0 for each 0 < j < i, and dx+i =
∑i

j=1 rx+j −m,

and all later entries remain unchanged.

The last case to consider is when

n−x∑
j=1

rx+j ≤ m,

in which case all letters bigger than x will be bumped and we have dx+j = 0

for all j.

Each case yields a formula in terms of ≤, addition, and subtraction. Then

the disjunction of the above cases, which will be a finite formula, will define

d such that ϕ(d) = B(rxm), hence d = ρ2(r).

1. Let us now consider ρ1ϕ, which corresponds to T (rxm). This will be the row

of bumped letters, which will mean that ci = 0 for any i ≤ x. For the later

entries of c, we will again have cases corresponding to the size of m.

Suppose that as above, we have some 1 ≤ i ≤ n− x such that

i−1∑
j=1

rx+j ≤ m ≤
i∑

j=1

rx+j .

Then we will bump all letters x+1, . . . , x+ i−1, as well as some letters x+ i.

Therefore cx+j = rx+j for 0 < j < i, and cx+i = m−
∑i−1

j=1 rx+j .

Now suppose we are in the case

n−x∑
j=1

rx+j ≤ m.

Then we will have that cx+j = rx+j for each 0 < j < n− x.
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As above, the disjunction of these cases yields a formula defining c = ρ1(r).

We will now show the definability of the stitch map.

Lemma 5.2.12. The map ϕ−1Σ(ϕ( ), ϕ( )) : S2 → S is definable.

Proof. The condition for Σ to have nontrivial action is definable via the following

formula:

Suppose a , b ∈ S. Consider the set B1 = {i ∈ {1, . . . , k} | ci = xm . . . x1∧x1 = 1}

as in Lemma 5.2.10. Then ϕ(a) being a top tableau is definable by

( ∧
i∈B1

ai = 0

)
.

Also, ϕ(b) being a row is definable by the formula

( ∧
i∈{1,...,k−n}

bi = 0

)
.

Now, let em =
∑

i∈Bm
ai. In order for it to be possible to stitch two inputs, we

need e2 ≤ bk−n+1, e3 ≤ bk−n+2 + bk−n+1 − e2, and so on. We can rearrange this to

get the following compatibility condition:

a ∈ S∧b ∈ S∧

 ∧
i∈B1

ai = 0

∧
∧

i∈{1,...,k−n}

(bi = 0)∧
∧

i∈{2,...,n}

 i∑
j=2

ei ≤
i−1∑
j=1

bk−n+j



Where we take empty sums to be 0. Note that all sums used are finite, so we

obtain a valid formula in Presburger arithmetic. Denote this compatibility formula

γ(a, b).

When γ is satisfied, we wish to construct d = ϕ−1Σ(ϕ(a), ϕ(b)). In order to do

this, we first briefly discuss what happens at each step during the multiplication

algorithm in this case.

When a top tableau t is multiplied by a compatible bottom row r, by the

bumping property of Schensted’s algorithm and the compatibility condition, each

letter bumped by a letter of r will bump the letter directly above it, which in turn

bumps the letter directly above it, and so on until an entire column of t has been
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bumped up by one space. As an example, consider t = 34223 and r = 112. The

multiplication algorithm will bump columns as follows:

3 4

2 2 3 × 1 1 2
=

3

2 4

1 2 3 × 1 2
=

3 4

2 2

1 1 3 × 2
=

3 4

2 2 3

1 1 2
.

In this way, the columns of t are always bumped up in turn from left to right.

Due to this left-to-right bumping process, and the ordering of the coefficients

d1, . . . , dk, running Schensted’s algorithm will first calculate d1, then d2 and so on.

Furthermore, as the algorithm runs, it will insert letters (which are themselves

columns) of r into columns of t. We will call this insertion “using up” columns of

r and t. Suppose we use up k columns cki of t and k columns ckj of r. Then the

corresponding coefficients ai and bj will need to be changed to ai − k and bj − k

respectively. We can formalise this as a recursive process to compute d:

Suppose we have calculated the coefficients d1, . . . , di−1, and have obtained modified

elements ai−1 and bi−1 in S representing all columns that have not yet been used

up in the stitch. We calculate the coefficient di as follows:

di is the coefficient of ci ∈ C, which we can write as ci = xm . . . x1 ∈ A∗. Then

xm . . . x2 and x1 are two columns, which we denote respectively by ciT and ciB in

C. Denote the coefficients corresponding to ciT in ai−1 and ciB in bi−1 by ai−1
iT

and

bi−1
iB

respectively. By the structure of Schensted’s algorithm it is straightforward

to see that di = min(ai−1
iT
, bi−1

iB
), which is definable in Presburger arithmetic by

(ai−1
iT

≤ bi−1
iB

∧ di = ai−1
iT

) ∨ (bi−1
iB

≤ ai−1
iT

∧ di = bi−1
iB

).

Now define aij = ai−1
j for j ̸= iT , and aiiT = ai−1

iT
−di. Likewise, define bij = bi−1

j for

j ̸= iB and biiB = bi−1
iB

− di. This corresponds to the fact that these columns have

now been used up in a stitch. Note that we will always get one of these coefficients

being set to zero. This is clearly definable in Presburger arithmetic, and we will

denote the formula for obtaining ai and bi from ai−1 and bi−1 by δi. Note that
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when i = 1, we take a0 = a and b0 = b, which allows us to calculate d1 in terms of

a0 and b0.

Now we get that ϕ−1Σ(ϕ( ), ϕ( )) has graph consisting of all (a, b, d) satisfying:

γ(a, b) ∧ ∃a0 . . . ∃ak∃b0 . . . ∃bk : (a0 = a) ∧ (b0 = b) ∧

 ∧
i∈{1,...,k}

di = min(ai−1
iT
, bi−1

iB
) ∧ δi

 .

With the above lemmas in hand, we can now prove the following result.

Proposition 5.2.13. For any x ∈ A, the map µx is definable.

Proof. By the discussion before Lemma 5.2.10, µx is a composition of the maps

ϕ−1Bϕ, ϕ−1Tϕ, ρ1ϕ, ρ2ϕ, ϕ
−1Σ(ϕ( ), ϕ( )), and multiplication of top tableaux.

By Lemmas 5.2.10, 5.2.11, and 5.2.12, all five required maps are definable.

To define a5 = ϕ−1(T (ϕ(a))T (B(ϕ(a))xm)), first note that since a5 denotes a top

tableau, we have that a5i = 0 for each i ∈ B1 as defined in lemma 5.2.10.

Furthermore, for each i /∈ B1, we have that a5i is determined by the formula ηn−1

applied to ϕ−1(T (ϕ(a))) and ϕ−1(T (B(ϕ(a))xm)). This determines ηn by

induction, with base case η2 as detailed in section 5.1. This completes the

proof.

Combining Proposition 5.2.13 and Corollary 5.2.9, we obtain that ϕ−1(◦) is

definable. Thus proving the following theorem:

Theorem 3. The map ϕ : S → Pn as defined above is an interpretation of Pn in

Presburger arithmetic.

This reduces FOTh(Pn) to the first order theory of Presburger arithmetic, which

is decidable by lemma 2.3.1, hence yielding the following result as a corollary.

Theorem 4. For any n ∈ N, the first order theory of Pn decidable.



6

Definable submonoids and

bi-interpretability

In a plactic monoid of any rank, the centre of Pn will be generated by the column

c1 ∈ C corresponding to the decreasing sequence n(n−1) . . . 21 ∈ A∗. We have seen

that the centre of any monoid is a definable subset, so we have Z(Pn) = {cn1 | n ∈ N}

a definable subset of Pn isomorphic to (N, 0, 1,+,≤), with a ≤ b in N corresponding

to the formula ∃y : ca1y = cb1, and addition corresponding to monoid multiplication.

We can therefore take for any n, the map ψ : Z(Pn) → N to be an interpreting map

of Presburger arithmetic in Pn. In this chapter, we will show that these mutually

interpretable structures are, in fact, bi-interpretable.

6.1 The case for P2

In the style of section 5.1, take C = (t, 1, 2) with Z(P2) = {tn | n ∈ N}. Firstly, note

that ϕ : N3 → P2 as defined in that section is also an interpreting map of P2 into

the N version of Presburger arithmetic, by rearranging any subtraction formulas

a = b− c to a+ c = b.

Let ψ : Z(P2) → N be the interpretation of Presburger arithmetic in P2 described

above. Then taking S as the definable subset {(n, 0, 0) | n ∈ N} ⊂ N3, the map

ψϕ : S → N is the isomorphism sending (n, 0, 0) to n, which is clearly definable.
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Now, consider ϕψ : Z(P2)
3 → P2, sending (ta, tb, tc) to w = ta1b2c. To show

that this is definable, we will first show that the sets N1 = {1n| n ∈ N} and

N2 = {2n| n ∈ N} are definable in P2.

First, consider the set Sℓ of elements that can be multiplied on the left to yield a

central element

Sℓ = {x ∈ P2 | ∃y : yx ∈ Z(P2)}

and analogously, the set Sr of elements that can be multiplied on the right to yield

a central element

Sr = {x ∈ P2 | ∃y : xy ∈ Z(P2)}.

Since we know that 1 can be multiplied on the left to become central, and 2 can

be multiplied on the right to become central, it is straightforward to see that

Sℓ = {ta1b| a, b ∈ N} and Sr = {ta2b| a, b ∈ N}.

Notice that in Sℓ (respectively Sr), each element is written as a product of a central

element with an element of N1 (respectively N2). So if we insist that the central

element in this product is always the identity, we will obtain the elements of N1

(respectively N2). In symbols, we can formalise this as the following conditions

x ∈ N1 ⇐⇒ [x ∈ Sℓ ∧ ∀y∀z : z ∈ Z(P2) ∧ x = zy =⇒ z = ε]

x ∈ N2 ⇐⇒ [x ∈ Sr ∧ ∀y∀z : z ∈ Z(P2) ∧ x = zy =⇒ z = ε]

so both sets N1 and N2 are definable.

Now, given tb we can define x = 1b as the element of N1 such that there is some

z ∈ N2 such that zx = tb. Likewise, given tc we can define y = 2c as the element

of N2 such that there is some z ∈ N1 such that yz = tc.

Then we take the image of (ta, tb, tc) ∈ Z(P2)
3 to be ϕψ(ta, tb, tc) = taxy, with x, y

calculated as above. This is clearly definable, which completes the proof that this

is in fact a bi-interpretation.
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6.2 Submonoids generated by columns

Notice that in the above section we showed that the submonoids t∗, 1∗, and 2∗

generated by each of the columns are definable in P2. We will now show that this

is a general fact in any plactic monoid, which will be useful for constructing a

bi-interpretation.

Theorem 5. For any plactic monoid Pn with column generating set C, for each

ci ∈ C, the submonoid c∗i = {cni | n ∈ N} is definable in Pn.

Proof. We will proceed by induction, with base case P2 from the previous section.

As before, consider the set Sℓ of all elements that can be multiplied on the left to

yield a central element

Sℓ = {x ∈ Pn | ∃y : yx ∈ Z(Pn)}.

Note that the centre of any monoid is definable, so Sℓ is a definable set. We claim

that any element of Sℓ will have all its columns in the form

ui =

i

i−1
...

1

i.e. a general X ∈ Sℓ will be of the form uxn
n . . . ux1

1 . Indeed, for each such X we

have a Y = f
xn−1
n f

xn−2

n−1 . . . fx1
2 , where

fi =

n

n−1
...

i

and Y X is central, so X is a member of Sℓ.
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To show that there are no other elements in Sℓ, consider the structure of Schensted’s

algorithm. Given two elements u, v ∈ Pn, for each x ∈ A that appears in the row

reading of v, the corresponding x in the row reading of uv will either be on the

same row as it started in v, or on a lower row. As an example, in P3, consider the

product of u = 3 223 1122 and v = 3 22 1123, here written in row reading. Then

after running Schensted’s algorithm with colour coding, we can see that

3

2 2 3

1 1 2 2 ×

3

2 2

1 1 2 3
=

3 3 3

2 2 2 2

1 1 1 1 2 2 2 3
.

This will be true in general because when you run Schensted’s algorithm on a

string in A∗, a letter may only be bumped by other letters further to the right in

the string. So any x that started in v will only be moved by other letters of v, even

in the product uv. But since each letter must bump the leftmost letter in the row,

it might happen that x will not be bumped as many times in the product as it was

in v, in which case it might end up on a lower row. Most importantly, any x that

started on a given row of v cannot be in a higher row of uv than the row it started

in.

Note that in a central element (a power of c1), any x ∈ A must appear in the row

that is x-th from the bottom1. The columns of the form ui are all the columns in

C where each x appears only on the x-th row from the bottom.

Now, suppose w ∈ Pn is a tableau with at least one of its columns not in the form

of some ui. Then there will be some letter x in the tableau of w which is lower

than the x-th row from the bottom. But because multiplication on the left cannot

move letters of w to a higher row, for any Y we must have an x in Y w in a row

lower than x-th from the bottom. Hence Y w is never central, so w is not a member

of Sℓ.

Next, notice that any X ∈ Sℓ can be written as the product of X̃ = uxn
n . . . ux2

2 and

1i.e. all 1’s appear on the bottom row, all 2’s on the second from bottom row, and so on.
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ux1
1 . This is useful, because X̃ commutes with the generator 2, while ux1

1 does not.

Furthermore, the column u1 corresponds to the generator 1. So, similar to the case

of P2, we may define the submonoid 1∗ as the set satisfying the formula

x ∈ Sℓ ∧ ∀y∀z : z2 = 2z ∧ x = zy =⇒ z = ε.

Since X̃ commutes with 2, the formula above will insist that X̃ = ε, leaving only the

elements of Sℓ of the form ux1 . Therefore, this is precisely the set 1∗ = {1m |m ∈ N},

as in the P2 case.

Using this, we can define the set satisfying the formula

∀x∀y∀z : w = xyz ∧ (y ∈ 1∗) =⇒ y = ε.

This formula disallows any instance of the generator 1, so defines the subset of Pn

generated by {2, . . . , n}. This is a submonoid isomorphic to Pn−1.

Since it is definable in Pn, any set definable in this submonoid is also definable

in Pn. By our induction hypothesis, any column generated submonoid of Pn−1 is

definable in Pn−1. Therefore, by this hypothesis we get that x∗ is definable in Pn

for any x ∈ A = {1, . . . , n}.

Now, we know that each column ci ∈ C will correspond to a nonempty subset of

A. Of these, every column except c1 will have at least one letter x ∈ A omitted.

But since x∗ is definable in Pn for each x, we can define a submonoid isomorphic

to Pn−1 generated by A \ {x}, using a similar formula to the one above:

∀x∀y∀z : w = xyz ∧ y ∈ x∗ =⇒ y = ε.

Each ci ∈ C except c1 will be an element of at least one of these definable

submonoids. Then, using our induction hypothesis, it follows that c∗i is definable

in Pn for each ci ∈ C except c1. But c∗1 is the centre of Pn, which is also definable,

thus completing the proof.
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6.3 A bi-interpretation for plactic monoids

Theorem 6. Pn and Presburger Arithmetic are bi-interpretable for each n ∈ N.

Proof. We start with the map ϕ : S → Pn from section 5.2, which by Theorem 3 is

an interpretation, and the interpretation ψ : Z(Pn) → N.

Taking T ⊂ S corresponding to the preimage of Z(Pn), we have that

T = {(x, 0, . . . , 0) | x ∈ N}.

Thus ψϕ : T → N is the obvious bijection sending (n, . . . , 0) to n, and clearly an

isomorphism in the language of Presburger arithmetic.

On the other hand, considering the reverse composition we have ϕψ : V → Pn,

where V ⊂ Z(Pn)k is the subset defined through the incompatibility conditions on

columns, which simply insist that certain entries be identity. This map ϕψ will

identify a tuple a = (ca11 , c
a2
1 , . . . , c

ak
1 ) with an element ca11 c

a2
2 . . . cakk ∈ Pn.

By the argument in lemma 5.2.7, this is equivalent to identifying a with an

element α
aβ1
1 α

aβ2
2 . . . α

aβt
t . Since the sequences α and β are fixed, this means that

as long as we can identify ca1 with xa for each x ∈ A, we can define the element

α
aβ1
1 α

aβ2
2 . . . α

aβt
t in terms of a. Namely, this will show that the map ϕψ is

definable in the language of Pn, which will complete the proof that we have built

a bi-interpretation.

Recall the columns of the form ui and fi from the proof of theorem 5. Note that

for each x ∈ A we have that

fx+1xux−1 = c1.

Furthermore, by theorem 5, we know that x∗, u∗x−1, and f∗x+1 are definable subsets

of Pn. So, if we consider w ∈ x∗, y ∈ f∗x+1, and z ∈ u∗x−1, we will have that
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ywz = ca1 precisely when w = xa. So, the formula

w ∈ x∗ ∧ ∃y∃z : y ∈ f∗x+1 ∧ z ∈ u∗x−1 ∧ ywz = ca1

defines xa in terms of ca1. Hence the image α
aβ1
1 α

aβ2
2 . . . α

aβt
t of a under ϕψ is

definable in the language of Pn.

Due to the transitivity of interpretations, we also have the following nice corollary.

Corollary 6.3.1. For any m,n ∈ N, Pn and Pm are bi-interpretable.



7

Infinitely generated plactic monoids

We note that the above interpretations were constructed algorithmically in a

uniform way. That is to say, there will exist an effective procedure which, given n,

will construct the interpreting map for Pn. The procedure runs as follows:

1. Generate the interpretation for Pn−1.

2. Given n, generate the power set of {1, . . . , n} except the empty set.

3. Enumerate the set P({1, . . . , n}) \∅ by the order ⊑ on columns. Since each

column is a decreasing sequence of elements in {1, . . . , n}, each column

corresponds to a unique element of the power set.

4. Run Schensted’s algorithm on each pair of columns. If the output of running

Schensted’s algorithm on cicj is not cicj , then (i, j) is an incompatible pair.

5. Generate the formula defining S by conjuncting with xi = 0∨xj = 0 for each

incompatible pair discovered in step 3.

6. Generate the formula defining equality in terms of the formula defining S.

7. Generate the formula for µx in terms of the interpretation for Pn−1.

8. Generate the sequences α and β from lemma 5.2.7. Steps 7 and 8 yield a

formula defining multiplication.

Step 1 will repeat recursively until we reach P2, which can be written explicitly as

in section 5.1.
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7.1 The plactic monoid of all tableaux

We consider A = N \ {0} with KN the set of Knuth relations for all triples

(x, y, z) ∈ N3. Then the associated plactic monoid P (N) is the monoid of all

semistandard Young tableaux. Despite the work in this thesis, the question of

deciding the theory of P (N) remains open. However, we present an algorithm, by

uniformity, for deciding the Diophantine problem for P (N).

Lemma 7.1.1. For any n ∈ N the map ϕ : P (N) → Pn, defined on generators as

ϕ(k) = k if k ≤ n and ϕ(k) = ε if k > n and extended to words in the natural way,

is a homomorphism.

Proof. Considered as a map from N∗ to {1, . . . , n}∗, ϕ is clearly a homomorphism.

It only remains to show that ϕ is well defined as a map from P (N) to Pn. We will

show this by proving that each Knuth relation in KN will map to a relation that

holds in Pn.

Suppose u = xzy and v = zxy, for x ≤ y < z. If z ≤ n then ϕ(u) = u, ϕ(v) = v,

and u = v in Pn so there is nothing to prove. If z > n then ϕ(u) = ϕ(x)ϕ(y) = ϕ(v),

as ϕ(z) = ε. Thus ϕ(u) = ϕ(v) will always hold in Pn. An analogous argument

shows ϕ(u) = ϕ(v) for u = yxz and v = yzx with x < y ≤ z.

Theorem 7. The Diophantine problem for P (N) is decidable.

Proof. Suppose we are given some equation u1X1 . . . Xnun+1 = v1Y1 . . . Ymvm+1.

Denote this equation by φ. Define the support of an element u ∈ P (N) to be the

set of all numbers appearing in u. Further, define the support of φ to be all letters

appearing in the supports of ui and vi

supp(φ) =
⋃

i≤n+1

supp(ui) ∪
⋃

j≤m+1

supp(vj).

Let k = max(supp(φ)). Then by the above proposition there exists a

homomorphism ϕ : P (N) → Pk. Since each ui and vj is an element of Pk, we get
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that ϕ(ui) = ui and ϕ(vj) = vj .

Now, suppose φ has a solution (x1, . . . , xn, y1, . . . , ym) ∈ P (N)m+n.

Then (ϕ(x1), . . . ϕ(xn), ϕ(y1), . . . , ϕ(ym)) ∈ Pn+m
k will also be a solution to φ, since

ϕ is a homomorphism. Thus φ has a solution in P (N) if and only if it has a solution

in Pk.

Now, since there is a uniform algorithm for deciding first order sentences in Pk

for any k, we obtain the following procedure for solving Diophantine problems in

P (N):

1. Given φ as input, calculate k = max(supp(φ)).

2. Generate the interpretation of Pk into Presburger arithmetic.

3. Interpret the sentence

∃X1 . . . ∃Xn∃Y1 . . . ∃Ym : u1X1 . . . Xnun+1 = v1Y1 . . . Ymvm+1

in Presburger arithmetic using the interpretation of Pk, and check whether

it holds.

7.2 A plactic monoid on integers

We need not restrict ourselves to plactic monoids generated by N.

Let’s consider instead tableaux with labels taken from Z. By the total order on Z

we obtain a set KZ of Knuth relations on triples (x, y, z) ∈ Z3. Define the plactic

monoid on integers to be P (Z) = ⟨Z | KZ⟩. This is an infintely generated plactic

monoid, but note that P (N) and P (Z) are not isomorphic.

Indeed, suppose ψ : P (Z) → P (N) were an isomorphism. Then for some y ∈ P (Z)
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we have ψ(y) = 1. Since 1 is irreducible, we must have y ∈ Z. Consider x < y <

z, x, y, z ∈ Z. Then by irreducibility, ψ(x), ψ(z) ∈ N. Thus we have some a, b ∈ N

such that 1ab = 1ba. Such an equality cannot hold in P (N).

Given φ a Diophantine equation in P (Z), we will have supp(φ) a finite totally

ordered set. This set will have some smallest element a ∈ Z and some largest

element b ∈ Z. Then the interval [a, b] ⊂ Z has size k = b−a+1, and we can define

an order preserving injective map from supp(φ) to {1, . . . , k}. We will extend this

map to a homomorphism.

Lemma 7.2.1. Let {z1 < z2 < · · · < zn} be a finite set of integers with their

standard order. Then the map ϕ : P (Z) → Pk, with k = zn − z1 + 1 defined on

generators by

ϕ(z) =


ε, z < z1

z − z1 + 1, z ∈ [z1, zn]

ε, z > zn

and extended to words in the natural way, is a homomorphism.

Proof. As in lemma 7.1.1, consider u = xzy and v = zxy, for x ≤ yz. If more than

one letter in {x, y, z} is mapped to ε, there is nothing to prove. Likewise if no letters

are mapped to ε. If only one letter is mapped to ε, then this is either x, yielding

ϕ(u) = ϕ(z)ϕ(y) = ϕ(v), or this letter is z, yielding ϕ(u) = ϕ(x)ϕ(y) = ϕ(v). An

analogous argument holds for all other Knuth relations.

Thus, as in the case above, any Diophantine equation φ is solvable in P (Z) if

and only if it has a solution in a fixed finite rank plactic monoid. Therefore, by

uniformity of the above algorithm, we obtain the following corollary.

Corollary 7.2.2. The Diophantine problem for P (Z) is decidable.
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7.3 Some open questions

1. Is the first order theory of P (N) decidable? It is known that this monoid

satisfies no identities [19], and the above proof shows it has decidable

Diophantine problem. Can this be extended to the whole theory? What

about in the P (Z) case?

2. Do infinite rank plactic monoids defined on other generating sets have

decidable Diophantine problem? For example, does P (Q) = ⟨Q | KQ⟩ have

decidable Diophantine problem? What about P (L) for an arbitrary

recursive total order? More generally, do such monoids have decidable

theory as well?
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A

A theoretical computer

Despite most of the results in this thesis being results about algorithms, and

hence about computers, the author has made no attempt to define what model of

theoretical computation we are using, nor indeed what it means to provide an

‘algorithm’ for a problem. Mainly, this is because any reasonable and intuitive

definition of ‘a procedure of applying certain rules in an order’ suffices to show

our results. Furthermore, most reasonable models of computation are Turing

equivalent. Nonetheless, for the sake of completeness what follows is the

definition of a register machine, or Minsky machine. These machines are named

after Marvin Minsky, the computer scientist who first described them. The

definition is taken from Chapter 4 of Peter Johnstone’s book [20] – an excellent

reference text on logic.

Definition (Register Machine). A Register machine will firstly have countably

many registers R1, R2, R3, . . . , each of which may store a natural number. To

begin with, each register will store 0. We then specify a program to run on the

registers by giving a list of states S0, S1, . . . , Sn, for some n ∈ N. These states each

store one of the following instructions:

• The state S0 stores the instruction “HALT”.

• A nonzero state may have the instruction (i,+, j), in which case we add 1 to

the number in register Ri, and move to the state Sj .

• A nonzero state may alternatively have the instruction (i,−, j, k), in which
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case we check whether register Ri has a nonzero entry. If it does, we subtract

1 from it and move to state Sj . If Ri has a zero entry, we do nothing and

move to state Sk.

This register machine takes as input some tuple (n1, . . . , nk) ∈ Nk, and will start in

state S1. When the machine is in a given state, it executes the instruction stored

in the state. If it moves into state S0, the machine executes ‘HALT’, meaning

the computation is finished. The output of the register machine will then be the

number stored in the register R1.
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