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Differences in lifespan between males and females are found across many
taxa and may be determined, at least in part, by differential responses
to diet. Here we tested the hypothesis that the higher dietary sensitivity
of female lifespan is mediated by higher and more dynamic expression in -
nutrient-sensing pathways in females. We first reanalysed existing RNA-seq
data, focusing on 17 nutrient-sensing genes with reported lifespan effects.
This revealed, consistent with the hypothesis, a dominant pattern of
female-biased gene expression, and among sex-biased genes there tended
to be a loss of female-bias after mating. We then tested directly the
expression of these 17 nutrient-sensing genes in wild-type third instar
larvae, once-mated 5- and 16-day-old adults. This confirmed sex-biased
gene expression and showed that it was generally absent in larvae, but fre-
quent and stable in adults. Overall, the findings suggest a proximate
explanation for the sensitivity of female lifespan to dietary manipulations.
We suggest that the contrasting selective pressures to which males and
females are subject create differing nutritional demands and requirements,
resulting in sex differences in lifespan. This underscores the potential
importance of the health impacts of sex-specific dietary responses.
1. Introduction
Sex differences in lifespan and in disease incidence are pervasive, but
whether there are unifying reasons for them remains unclear. Such differences
are influenced by the fundamental selective forces that result in sexual dimorph-
ism across all aspects of organismal physiology [1]. Three main hypotheses have
been proposed to explain ultimate causes for sex differences in lifespan. The first
arises from the ‘unguarded’ nature of the maternally inherited X chromosome in
males, meaning that X-linked genes with deleterious impacts on male lifespan
and fitnessmay be expressed [2–5]. A related explanation concerns ‘toxic Y’ effects
on lifespan [6]. A second hypothesis stems from the asymmetric, maternal, inheri-
tance of mitochondria (mt). Hence mutations carried by mtDNA that are
detrimental to males are less strongly selected against, than those with adverse
effects on females (i.e. the ‘mother’s curse’ [7–11]). A third hypothesis stems
from sex-specific selection over many aspects of male and female life history
[12–17]. A key role for sex-specific selection comes from observations of associ-
ations of lifespan with mating systems [15]. Hence sexual dimorphism in
lifespan and ageing may result from sex-specific trade-offs between longevity
and reproduction [12,18–21].

In terms of the directionality of lifespan differences, females are generally
assumed to live longer in natural contexts. However, there is considerable vari-
ation across and within species in terms of which sex generally lives longest
[1,17,20]. For example, in humans, cats, rats, pilot whales and many species of
monkeys, females generally outlive males, whereas in dogs and some bats life-
spans are very similar or males live longer. Counter-examples to the major
hypotheses described above are also known. Thus, whether there are general
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unifying principles determining the directionality of sex
differences in lifespan is unclear [1].

Whatever the ultimate explanation, it is clear that sex
differences in lifespan persist and are associated with distinct
profiles of health and disease. For example, women have
been reported to live longer than men since UK records
began in 1841 and deaths from heart disease, cancer and dia-
betes mellitus are more common in men, while women have
a higher incidence of death due to cerebrovascular disease,
osteoporosis, autoimmune disorders and Alzheimer’s disease
[22,23]. Length of life has also long been linked to dietary
intake. For example, experiments in rats first showed that
dietary restriction led to an increase of approximately 30% in
length of life [24]. Since then, the effect of dietary restriction
on longevity has been described in many taxa [25–31]. The
quality and quantity of specific nutrients have pervasive and
robust effects on lifespan and reproductive success [32,33],
with the balance between protein and carbohydrate being
critical [34–37]. Furthermore, the nutritional requirements of
each sex can differ. For example, in D. melanogaster, protein is
required for production of eggs and higher protein intake
occurs inmated over virgin females [38,39]. Amale’s reproduc-
tive success can be increased via the intake of carbohydrates, to
produce energy for finding and attracting mates [35,40]. Nutri-
tional inputs of macronutrient ratio, such as proteins and
carbohydrates, can alter sex-specific phenotypes such as
egg production and laying, male calling behaviour and diges-
tive efficiency [41,42]. The ingestion of the monosaccharide
d-galactose, present in milk, fruit and vegetables, is reported
to induce distinct behavioural outcomes in male and female
mice, in a dose-dependent manner, and with opposing effects
on key senescence traits [43]. Overall, the emerging picture is
that each sex has nutritional requirements that have sex-specific
effects on lifespan and health.

Evidence showing that manipulations of diet have robust,
and potentially sex-specific effects, on longevity has prompted
much interest inwhether these effects aremediatedbynutrient-
sensing pathways. A huge bodyof research now shows that the
activity of the insulin/insulin like growth factor (IIS) and target
of rapamycin (TOR) pathway is associated with lifespan
determination across a huge range of animal species [44]. IIS
and TOR pathways are highly conserved [45,46] and many
components of themhave been shown to affect lifespandirectly
(figure 1, electronic supplementarymaterial, table S1; [47–49]).
For example, in Drosophila melanogaster, the level of expression
of insulin-like peptide genes (dilp1 and dilp2) [50] secreted
from insulin producing cells in the brain can interact to
regulate ageing [51]. Dietary restriction-mediated lifespan
extension is also associated with dilp5, and over-expression of
dilp6 in the adult fat body leads to extended lifespan [52].
Loss of the intracellular substrate encoded by chico also extends
lifespan inDrosophila [53] as does loss of function of the IIS reg-
ulatorLnk [54] andactivationof 4E-BP [55].Related findings are
also found in othermodel systems, for example, suppression of
insulin-inducedAkt signalling inC. elegans increases longevity
[56], elevated Tsc1 expression increases longevity in female
mice [57], S6k1 affects both health and lifespan in mice [58]
and FOXO expression has direct effects on longevity in
several species [59,60].

Whether there is differential activity in nutrient-sensing
pathways associated with sex differences in lifespan is the
key hypothesis we test here. Our rationale is the emerging
finding that direct manipulations of diet or IIS/TOR genes
as described above often result in very different outcomes
in each sex. For example, in D. melanogaster, nematodes and
mice the benefits of dietary restriction result in larger effects
on lifespan in females [17,61]. Similarly, perturbations to the
IIS and TOR pathways can also result in sex-specific effects
on lifespan [53,62].

In this study, we examinedwhether therewas any evidence
that the divergent responses of health and lifespan of each
sex to differing diets, and specifically the high nutritional
sensitivity of females in particular, is underpinned by sex
differences in the expression of IIS/TOR network genes with
reported effects of lifespan. The specific hypothesis was that
nutrient-sensing genes with lifespan effects would show
more activation, and more dynamic expression over time, in
females than males. We tested for sex-biased expression in 17
nutrient-sensing genes in Drosophila melanogaster that have
reported effects on lifespan [47] (electronic supplementary
material, table S1; figure 1). We first used a published RNA-
sequencing dataset [63] to undertake a new analysis to test
for sex-biased expression of nutrient-sensing gene expression
in both virgin and mated males and females (in two different
body parts, theHead + Thorax andAbdomen).We then under-
took direct tests for sex-biased expression of the same 17
nutrient-sensing genes in larvae and once mated, young and
older males and females (whole individuals). Our predictions
were that the differential sensitivity of female lifespan to diet-
ary manipulations would be associated with significant
female-biased gene expression in IIS / TOR genes, and sec-
ondly, that these nutrient-sensing genes would be more
sensitive to reproductive state in females than males.
2. Methods
(a) Analysis of nutrient-sensing genes extracted from

whole transcriptome RNA-sequencing of virgin and
mated males and females (in head + thorax and
abdomen body part samples)

We first reanalysed the mRNA-seq dataset of Fowler et al. [63]. In
that original study, differences in the expression of mRNAs in the
head/thorax (HT) and abdomen (AB) body parts of virgin versus
mated males or females were reported. In this study, we tested
specifically for sex-biased gene expression in virgin versus
mated samples (by comparing the expression level of genes in
males versus females directly). Raw sequencing reads (accession
PRJNA521155) were downloaded from the Sequence Read
Archive (SRA) [64] in FASTQ format. Reads were trimmed to
remove both poor-quality calls and adapters using Trim Galore!
(v. 0.3.4) [65] with default settings. Quality control checks were
carried out using FastQC (v. 0.11.8) [66] with default settings,
both before and after adapter and read quality trimming. Differen-
tial gene expression analysis was performed using the Berkeley
Drosophila Genome Project (BDGP6.28) genome and gene annota-
tion in GTF format downloaded from Ensembl (release 90) [67].
Trimmed reads were aligned to the genome using HISAT2 (ver-
sion 2.1.0) [68] with single-end and unstranded settings (all
other parameters set as default). Quality control of mapping
data was performed on the resulting BAM files using QualiMap
RNA-Seq QC (v. 2.2.2) [69] with default settings. Gene counts
were extracted from the BAM file for each sample using the GTF
annotations and htseq-count (v. 0.9.1) [70] run with unstranded
settings (all other parameters default). Differential expression
analysis was performed using default settings in DESeq2
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Figure 1. IIS/TOR signalling network in Drosophila illustrating IIS/TOR genes with (a) previously reported effects on lifespan determination and (b) significant sex-
biased gene expression as determined in this study. The IIS/TOR pathway is shown, with extracellular, intracellular and nuclear components. Arrows indicate acti-
vation steps and bar-ended lines indicate inhibitory interactions. Broken lines indicate indirect or potential interactions. (a) IIS/TOR genes previously reported to play
a role in lifespan determination in D. melanogaster (electronic supplementary material, table S1) are bordered in red. (b) highlighted in purple is a summary of the
IIS/TOR genes from this study that have the potential to show significantly sex-biased gene expression from RNA-seq data (in either body part in virgin or mated
adult flies), or from qRT-PCR (in 5 or 16-day-old once mated adult males or females). The nutrient-sensing pathway shown is adapted from Partridge et al. [47] and
Teleman [48]. Figures created under publication licence using Biorender.
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(v. 1.22.1) [71] via the Galaxy platform (https://usegalaxy.eu/)
[72]. We normalized and analysed the mRNA-seq data to focus
specifically on comparisons between the sexes - to test for sex
differences in mRNA expression and detect the extent to which
genes show higher or lower gene expression in males versus
females.We then extracted from that dataset the IIS/TOR network
genes (figure 1a) and compared their patterns of sex-biased
gene expression.

https://usegalaxy.eu/
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(b) Direct quantification of nutrient-sensing gene
expression in male and female larvae, and 5-
and 16-day-old adults (whole larvae and adult
samples)

To complement the above analysis, we undertook independent,
direct tests for sex-biased patterns of expression in nutrient-sensing
genes, by using quantitative RT-PCR. Wild-type D. melanogaster
flies from a large laboratory population originally collected in
the 1970s in Dahomey (Benin) were used. Experimental flies
were obtained following 2 generations of standard rearing, tomini-
mize parental carry over effects. Eggs were collected from purple
grape juice media Petri dishes (1.342 l water, 61 g agar, 0.73 l red
grape juice, 51 ml Nipagin 10% w/v) that had been placed for
2–3 h in three stock cages. Plates were then removed, divided
into 4 and each quarter placed in a 1/3 pint glass bottle containing
70 ml SYA medium (100 g brewer’s yeast powder, 50 g sugar, 15 g
agar, 30 ml Nipagin (10% w/v solution) and 3 ml propionic
acid, per litre of medium). This gave 4 bottles for each of 3 replicate
stock cages which were then incubated (25°C, 50% humidity,
12 : 12 hour light:dark cycle). The emerging flies were placed in
small egg-laying cages over purple grape juice media Petri
dishes for 3–4 h. Eggs laid were transferred into glass vials
(75 mm× 24 mm) each containing 8 ml SYA medium, at a density
of 50 per vial (3 vials for each biological replicate). Ten larvaewere
sampled at the wandering instar 3 stage (day 5 from vial set up) at
random from each vial for all replicates and placed directly in
1.5 ml tubes in a −80°C freezer. The day on which there was
peak adult emergence was designated ‘day 0’. The experimental
flies emerging on this day were allowed to mate for 24 h and
then sex separated and stored in single sex groups of 5 in vials
and transferred to fresh food every 2–3 days. On Day 5 and Day
16 after eclosion the adults were frozen at the same time of day
(120 min after lights on). Flies were briefly anaesthetized using
CO2, transferred into 1.5 ml tubes and then immediately placed
into an −80°C freezer to await RNA extraction. We reasoned that
this method of transfer would more easily standardize handling
across samples than the alternatives of blowing or shaking flies
into the tubes. All methods of transfer to the freezer have potential
effects on gene expression. However, the gene patternswe describe
are over and above any transfer effects and not expected to be
confounded by them.

(i) RNA extraction
We extracted RNA from whole individuals of single larvae, and
from groups of 5 adult flies from each sex for each sample day
(day 5 and day 16). There were three biological replicates of each
sample and RNAwas extracted fromwhole larvae and adults. Tis-
sueswere disrupted by grinding using an electricmicro pestle, and
total RNA extracted (miRvana kit, Ambion, AM1561) according to
the kit protocol (with adjustment of the initial lysis solution
into 50 µl followed by 150 µl, to ensure proper grinding of the
material). RNA was eluted in RNA storage solution (1 mM
sodium citrate, pH 6.4 ± 0.2, Ambion). Samples were DNase trea-
ted (Ambion Turbo DNA-free kit, AM1907). RNA was assessed
for quantity and quality using a NanoDrop 8000 spectropho-
tometer. cDNA was synthesized using the Revertaid RT kit for
reverse transcriptase (Thermo Scientific K1621) by following the
kit protocol, and stored at −20°C.

(ii) Sex identification of larvae
We used a molecular method. βtubulin85D (FBgn0003889) is
reported to be expressed specifically in testes [73] predicting a
dimorphic pattern of βtub85D expression, high in males and low
in female larvae. We first verified this by sexing a subset of
larvae by eye on the basis of the larger testes versus ovary imaginal
discs. We then quantified the level of βtub85D expression in the
same larvae, normalized to reference genes elF1A (FBgn0026250)
and αTub84B (FBgn0003884) (electronic supplementary material,
table S2). As expected, larvae sexed as males had high βtub85D
expression and larvae sexed as females had no βtub85D expression
above background noise. Thus we used βtub85D expression assays
to identify the sex of experimental larvae.

(iii) RT-PCR
Quantitative RT-PCR was performed using a Bio-Rad CFX
Connect Thermal Cycler (software CFX maestro) and iTaq univer-
sal SYBR green supermix (Bio-Rad no. 1725121). Primers were
manufactured salt-free Eurofins Genomics provider; electronic sup-
plementary material, table S2). Primer efficiencies were checked
using a 5-fold standard curve of cDNA with a maximum input
of 50 ng total cDNA, and primer concentrations that yielded effi-
ciencies of between 90 and 110% were determined (electronic
supplementary material, table S2). Relative quantities of target
transcripts were normalized using 2 reference genes, elF1A and
αTub84B whose expression was stable across each sex (see raw
data file electronic supplementary material, table S10). To avoid
intra-plate variation, all samples for stage and sex were loaded
onto a single qPCR plate for each set of primers. Sufficient stock
cDNA at 2 ng/µl was prepared for all target primers and for
each RT-PCR run amastermix of primers and SYBR iTaq (62 µl for-
ward primer, 62 µl reverse primer, 620 µl SYBR iTaq and 186 µl
molecular grade water) prepared before aliquoting into each well
(15 µl mastermix and 5 µl cDNA) of a 96-well plate (Bio-Rad
MLL-9601). Plates were sealed with an adhesive film (Bio-Rad
MSB-1001). The mean Ct value for both reference gene expression
was used to normalize cDNA for each sample by subtracting it
from the mean target gene expression Ct value. Relative gene
expression was then calculated using the 2 −ΔCt method [74]. One
male sample (male, day 16, replicate 3) was removed from the
dataset as it was identified as a statistically significant outlier
using the Grubbs Test. A two-way ANOVAwas then used to test
for differences in relative expression of nutrient-sensing genes
(R v. 4.1.1 [75]). Sex and life stage were designated as factors in
the model and we also tested for interactions between them. Post
hoc Tukey tests were subsequently used to detect between which
life stages any differences in gene expression had occurred.
3. Results
(a) Sex-biased expression in nutrient-sensing genes
(i) General patterns of sex-biased gene expression—RNA-

sequencing data
Expression data for the genes in figure 1a were obtained from
the analysis of the RNA sequencing dataset previously
provided by Fowler et al. [63] (electronic supplementary
material, tables S3 and S4). Genes were called as significantly
differentially expressed if they passed the stringent threshold
of showing a greater than log 2 fold change (±2log2FC) and
an adjusted p-value of < 0.05 from the DEseq2 analysis (with
the adjusted p-value accounting for the effects of multiple
comparisons). Significant sex-biased gene expression (a signifi-
cantly greater level of gene expression in one sex than the other,
in either direction) was detected in the majority of genes
involved in the IIS/TOR network (figure 1b). Out of the 44
IIS/TOR genes examined, 35 showed evidence for significant
sex bias in gene expression in at least one body part in virgin
or mated flies. Across both body parts and in virgins and
mated flies, consistently more sex biased nutrient-sensing
genes showed female biased (FB) in comparison to male
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biased (MB) expression (electronic supplementary material,
tables S3 and S4). Among the sex biased genes in the whole
transcriptome data, more genes showed FB expression in the
head + thorax, andmore of themMB in the abdomen (electronic
supplementary material, table S3). Thus, more nutrient-sensing
genes showed a pattern of FB expression in the abdomens than
expected in comparison towhole transcriptome data (electronic
supplementary material, table S3), and nutrient-sensing genes
showed a pattern of FB expression overall.
(ii) General patterns of sex-biased gene expression—qRT-PCR
data

Consistent with the above, direct tests for differences in
expression of nutrient-sensing genes by using a 2 way
ANOVA followed by post-hoc testing in wild-type males and
females also revealed that significant sex bias was common (10
out of 17 genes tested showed significant effects of sex × life
stage or of sex alone, with an additional locus (Pten) showing
non-significant sex bias (p < 0.1) (figure 2; table 1; electronic sup-
plementary material, tables S5 and S6). For the nutrient-sensing
loci in which a significant difference in stage was identified, post
hoc testing confirmed that the difference occurred between the
larval and adult stages, and almost never between day 5 and
day 16 adults. In general, larval gene expression was signifi-
cantly lower than in adults, except for 4EBP and dilp3. For
many genes there appeared to be a trend for differences in
expression of day 5 to day 16 adults, but this was significant
only for FOXO in which there was significantly higher
expression at day 5 in males. Nutrient-sensing loci showed



Table 1. Summary of IIS/TOR nutrient-sensing genes identified as showing
significant differences in gene expression across sexes or life stages, from
the qRT-PCR data. Shown are the summary results for the expression of 17
nutrient-sensing loci analysed by qRT-PCR in electronic supplementary
material, table S4. Ticks indicate if there was a significant main effect of
sex or stage, or their interaction (sex × stage) at p < 0.05.

gene Fbgn number sex × stage sex stage

dilp2 FBgn0036046 ✓

dilp3 FBgn0044050 ✓ ✓

dilp5 FBgn0044048 ✓

InR FBgn0283499

chico FBgn0024248 ✓

Lnk FBgn0028717 ✓ ✓

Pten FBgn0026379

FOXO FBgn0038197 ✓

MEK FBgn0010269 ✓

Tsc1 FBgn0026317 ✓

Tsc2 FBgn0005198 ✓ ✓

dTOR FBgn0021796 ✓

S6k FBgn0283472 ✓

Myc FBgn0262656 ✓

4E-BP FBgn0261560 ✓

sgg FBgn0003371 ✓

14-3-3 FBgn0004907

Table 2. Summary of IIS/TOR nutrient-sensing genes showing a significant
switch to or from sex-biased gene expression upon mating, from the RNA-seq
data (±2log2FC and an adjusted p-value of less than 0.05). FB = female-
biased, MB = male-biased, NS = no sex bias. Shown are nutrient-sensing
genes for which there was evidence of a significant change in the pattern of
sex-biased expression upon mating, from the RNA-sequencing data.

gene
FBgn
number

body
part

sex-biased
expression

virgin mated

dilp3 FBgn0044050 HT NS FB

dilp 5 Fgbn0044048 HT FB NS

dilp 6 FBgn0044047 HT NS FB

chico Fgbn0024248 HT MB NS

Lnk Fgbn0028717 HT FB NS

steppke Fgbn0086779 HT MB NS

Ras Fgbn0003204 HT FB NS

PDK1 Fgbn0020386 AB FB NS

Pten Fgbn0026379 HT MB NS

AMPK Fgbn0023169 HT FB NS

Sik2 Fbgn0025625 HT FB NS

4E-BP Fgbn0261560 HT FB NS

14-3-3 Fgbn0004907 HT MB NS

S6k Fbgn0283472 HT NS FB

TIF1A Fgbn0032988 HT MB NS

SREBP Fgbn0261283 HT FB NS

SREBP Fgbn0261283 AB NS MB

Myc Fgbn0262656 HT NS FB

calderon Fgbn0086365 HT FB NS

MEK FBgn0010269 HT FB NS
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significant sex-biased expression only in adults. Loci showing a
significant main effect of sex (dilp3, Lnk, Tsc2 and dTOR) had
higher expression in females (figure 2; table 1; electronic sup-
plementary material, tables S5 and S6). Similar expression
patterns were observed for dilp2 and dilp5, with male expression
being significantly higher in adultmales compared to females. A
similar but sex-reversed patternwas observed forDm,MEK and
Tsc1, with expression being significantly higher in adult females.
FOXO showed significantly higher expression in young male
adults. dTOR appeared to show higher expression in young
females but this effect was not significant. Overall, there was
consistency in the findings from the high and low throughput
methods of quantifying sex-biased gene expression. The qPCR
data confirmed that significant sex-biased expression of nutri-
ent-sensing genes in adults is typical, and both datasets
confirmed a pattern of female-biased expression in nutrient-
sensing genes (electronic supplementary material, table S6).
(iii) Sex-biased gene expression in different parts of the nutrient
signalling pathway

To check for patterns of sex-biased gene expression across the
nutrient signalling pathway in more detail, we divided it into
upstream to downstream sections (electronic supplementary
material, figure S1a–f; table S8) and examined the direction
of sex-bias (as indicated by the analysis derived from the
RNA-seq data). This analysis again highlighted the general
dominance of FB gene expression, but with no particular
focus of either FB or MB genes in any specific part of the nutri-
ent-sensing pathway. The qRT-PCR data were consistent with
these findings (electronic supplementary material, table S7)
and showed that throughout the nutrient-sensing pathway
there were nutrient-sensing loci showing expression differ-
ences due to sex, life stage or their interaction (figure 2;
table 1; electronic supplementary material, tables S5 and S6).
(b) Changes in sex-biased expression in nutrient-
sensing genes upon mating

Analysis of the RNA-seq data allowed us to probewhether sex--
biased gene expression patterns changed upon mating.
In general, mating did not result in a change in the dominant
pattern of FB expression of nutrient-sensing genes in the
abdomen (table 2). 23 nutrient-sensing genes showed significant
FB expression before and 22 after mating. 5 genes showed sig-
nificant MB in virgin abdomens and 6 in mated flies. Of those
genes that did change pattern upon mating in the abdomen,
Pdk1 was significantly FB before, but lost this pattern after
mating, while SREBP expression showed no sex bias before
and became MB after mating. By contrast, sex-biased patterns
of expression in nutrient-sensing genes in the head + thorax
varied significantly before and after mating. In virgins there
were 9 FB and 5 MB genes, but only 4 FB genes in mated flies.
Both MB and FB genes in the head + thorax of virgins lost
their sex bias in mated flies. 4 genes showing no sex bias in
virgin head + thorax gained a FB pattern after mating (table 2;
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electronic supplementary material, table S9). The dominant pat-
tern in the head + thorax was the loss of sex bias upon initiation
of reproduction: 10/4 genes lost/gained FB expression and 5/1
genes lost/gainedMB expression. In the head + thorax ofmales,
expression was reduced in 16 of the 18 nutrient-sensing genes
after mating, while none showed an increase of expression fol-
lowing mating. In females, 9 genes showed lower expression
after mating, with 6 having increased expression. When a non
sex-biased gene became FB following mating, this was typically
driven by a reduction in male expression, in some cases
accompanied by an increase in female expression. Changes
from FB to NS arose from either a reduction in gene expression
in females or a reduction in both males and females. The genes
showing a change in pattern fromMB toNS resulted from either
a reduction in gene expression in males, or both a reduction in
male and increase in females. In the two genes showing
change in sex bias in the abdomen after mating (PDK1 lost FB
to become NS, while SREBP changed from NS to MB), an
increase in expressionwas seen in both sexes, however, thedirec-
tion in both instances was with greater expression in males
(table 2; electronic supplementary material, table S9).

(c) Changes in sex-biased expression in nutrient-sensing
genes across different life stages

The qRT-PCR analysis of expression changes in nutrient-
sensing genes across life stages showed sex differences in
expression were not established until adulthood. Patterns
of sex bias in either direction were also consistent across
young and older adults (i.e. did not cross over; figure 2).
9 genes showed significant FB and 4 MB in adults, with
none showing sex bias in larvae. Most nutrient-sensing
genes also had higher expression in adults than in larvae.
4. Discussion
Overall, the findings were generally consistent with the
hypothesis that nutrient-sensing genes with lifespan effects
would show more activation, and more dynamic expression
over time, in females than males. In line with our first predic-
tion, there was an overall pattern of female-biased gene
expression in lifespan-influencing IIS/TOR genes. Following
the second, these nutrient-sensing genes also appeared to be
more sensitive to reproductive state in females than males,
with a general loss of female-biased expression upon mating.

That many of the IIS/TOR pathway genes tested showed
significant sex bias is not surprising, given that there is sex
biased expression in the majority of protein-coding genes. How-
ever, there was no consistent directionality in the sex bias of
gene expression across the whole comparator transcriptome in
the RNA-seq data analysed, whereas among nutrient-sensing
genes, there were more FB than MB genes found across all
body parts and in virgin and mated flies. This pattern was con-
firmed directly by using qRT-PCR. The pattern of sex-biased
expression of nutrient-sensing genes was also observed to
change significantly upon the transition to the mated state
and this pattern differed across body parts, with the patterns
of sex bias remaining stable in abdomens but being much
more dynamic in the head + thorax. When changes in the pat-
terns of sex-biased expression occurred, it was generally due
to the loss of FB expression. Results from RNA-sequencing
and qRT-PCR showed that no particular up- or downstream
part of the nutrient-sensing pathway was more or less domi-
nated by FB or MB expression. Nutrient-sensing genes were
never sex-biased in expression during the larval stage, but
developed patterns of sex bias in adulthood, which generally
remained consistent. The changing dynamics of sex-biased
gene expression across life stages and with mating status
show that elevated FB expression in nutrient-sensing genes is
not simply a consequence of females generally having larger
body sizes than males. Overall, these results suggest that the
greater sensitivity of female lifespan to diet could be associated
with greater activation in their nutrient-sensing genes. We
suggest that the consistent loss of FB patterns of gene
expression could underlie the generally greater survival costs
of reproduction in females than males.

The genes chosen for study were the nutrient-sensing genes
with reported effects on lifespan (electronic supplementary
material, table S1). These were initially identified as affecting
lifespan mostly via tests with mutant strains, direct assays or
by genetic interactions (electronic supplementary material,
table S1). Those findings highlight the central importance of
these genes in determining length of life. However, studies of
the relationships of segregating genetic variation in nutrient
genes and longevity in natural populations remain scarce.
Studies of the functional differentiation between different dilp
nutrient-sensing genes across Drosophila suggests that this pat-
tern may have been selected because it confers fitness benefits
[50]. However, the significance of genetic variation in nutri-
ent-sensing genes in natural populations remains unclear, as
is how any sex-specific regulatory architecture is encoded.

The results are of general relevance because nutrient-sensing
genes show deep conservation and effects of these genes on life-
span are found acrossmay different taxa [47]. This could suggest
that the activation of nutrient-sensing genes is a general contribu-
tor to variation in male and female lifespan. The results also beg
the question of whether other physiological processes might
exhibit similarly dynamic patterns of sex-biased gene expression.
Differences between the sexes and some sex-biased gene
expression have been reported, for example, in energy metab-
olism, immunity, excretion and neurosensory pathways. We
describe a few such examples in electronic supplementary
material, box S1 and note that comprehensive investigations
into the patterns and consequences of sex-biased gene expression
in these pathways could be useful. Our results also add funda-
mental information to the emerging picture of how the distinct
effects of diets on the life history and health ofmales and females
might be determined. This could be of relevance to understand-
ing the potential effectiveness of dietary interventions used to
treat diseases such as type 2 diabetes [76,77]. An understanding
of sex-specific changes in gene expression following the initiation
of potentially costly reproductive activity might also suggest
potential routes for health interventions. For example, in model
systems, the drug mifepristone can block the negative effect of
shortened lifespan that results in females after mating [78,79]
and in humans mifepristone is used treat patients with high
blood sugar [80]. Understanding the links between these effects
of reproduction-induced changes in lifespan and nutrient
metabolism could be useful.

(a) Directionality in sex-biased pattern of expression
in nutrient-sensing genes

The findings were generally consistent with the prediction
that the greater sensitivity of female lifespan and life history



royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

290:20222086

8

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

13
 N

ov
em

be
r 

20
24

 

to variation in diet might be manifested as an increase in the
activation of nutrient-sensing gene expression. For virgin and
mated flies and across both body parts (RNA-seq data)
and for young and adult once mated flies (qRT-PCR data)
approx. 2–4 times as many nutrient-sensing genes showed FB
than MB expression. This contrasted with the comparator
whole transcriptome data, which showed more FB expression
in the head + thorax, but more MB in the abdomen. Thus, it
seems that the nutrient-sensing pathway is characterized by a
pattern of FB gene expression among sex-biased genes. This
has the potential to underlie the increased sensitivity of
female lifespan and life history to nutrients, assuming that
higher levels of expression in such genes in females translates
into phenotypic sensitivity. Many studies have examined pat-
terns of sex-biased gene expression in terms of documenting
its occurrence [81] and relevance to the field of sexual selection
[82], sexual conflict [83,84] and sex chromosome linkage [85].
These studies have sought to understand how sex-specific
selection can alter genome-wide patterns of sex-biased gene
expression. However, to our knowledge, there are few studies
so far seeking to associate effects of nutrient-sensing genes to
patterns of sex-biased gene expression.

(b) Mating alters sex-biased patterns of expression
in nutrient-sensing genes

The pattern of sex bias in nutrient-sensing genes was stable
before and after mating in the abdomen across all nutrient-sen-
sing genes. By contrast, in the head + thorax the situation was
more dynamic, with mating often leading to a change in sex-
biased gene expression, usually the loss of FB expression in
mated females. The induction of significant alterations to the
pattern of sex bias in nutrient-sensing genes upon mating
could potentially be associated with survival costs of mating
in females. Mating and receipt of seminal fluid proteins have
been shown to increase female nutrient acquisition [38], alter
nutrient-sensing [39] and reduce lifespan [86–90]. It is not yet
known whether/how these effects are directly linked—
changes to the pattern of expression of nutrient-sensing
genes in females upon mating that we describe here provide
a potential bridging mechanism [79,91]. Future tests should
investigate the direct links between these different facets [92].

(c) Sex-biased expression in nutrient-sensing genes
differs across different body parts

Perhaps unsurprisingly, the results suggests that sex-biased
expression varied significantly across different body parts.
Most work in Drosophila has focused on sex bias gene
expression in either gonads, the brain or whole-body samples
[93]. Observations of gene expression in Drosophila have
shown that MB expression tends to be restricted to sex-specific
tissues, whereas FB genes are often more broadly expressed
[94]. Our analyses showed that the pattern of sex-biased gene
expression in the abdomen was different to that seen in the
head + thorax, with sex-biased expression in the abdomen
being consistently FB before and after mating. The head +
thorax was more labile. The observation of changes in the
IIS/TOR gene network, particularly in females, in response
to mating supports the link between longevity of females and
their sensitivity to mating and nutrient-sensing.
(d) Sex-biased expression in nutrient-sensing genes
differs across the lifecourse

The direct tests of nutrient-sensing gene expression were under-
taken by using qRT-PCR to determine gene expression in 17
nutrient-sensing loci reported to have effects on lifespan
[47,95]. This analysis validated the dominant female-biased pat-
terns of expression in nutrient-sensing genes observed in the
RNA-sequencing and identified different patterns of gene
expression across the lifecourse. The expression of nutrient-sen-
sing genes did not differ between the sexes during development
(consistentwith previous evidence of lack of sexually dimorphic
expression of in dilps [96]) and was generally, but not always,
lower than in adults. Sex bias in the expression of nutrient-sen-
sing genes during adulthood tended not to interact with adult
age and was generally consistent in direction in young and
older males and females. Whether the patterns described here
differ across body parts or show interactions with mating
status across age will be interesting to test in the future.

Overall, our results contribute to an increase in understand-
ing sex-specific variation in nutritional effects and in the
expression of genes in the IIS and TOR network. This offers
potential in developing interventions to improve health
during ageing [49] as well as giving greater understanding of
mechanisms that maintain sex differences.
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