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Abstract

The present dissertation is a contribution to the areas of combinatorial set theory

and high forcing axioms through the technique of forcing with side conditions. We

introduce new forcing notions consisting of symmetric systems of models of two

types, which can be seen as generalizations of both Neeman’s chains of elementary

submodels of two types and Asperó and Mota’s symmetric systems of countable

elementary submodels. After a preliminary chapter in which we establish the

notation and cover the background material required for what follows, we develop

the theory of the pure side condition forcings and prove their main properties.

The first application of this technique is in the area of combinatorial set theory.

We partially answer a question of Hajnal and Szentmiklóssy from the 1990s, by

forcing a strong chain of subsets of ω1 of length ω3, improving earlier results

of Koszmider and Veličković-Venturi. In the final chapter we introduce finite

support forcing iterations with symmetric systems of models of two types as

side conditions in the sense of Asperó and Mota. We isolate a class of forcing

notions naturally associated with these iterations and prove the consistency of

its forcing axiom, which is compatible with 2ℵ0 > ℵ2. This class of posets, which

is a subclass of Neeman’s high analog of the class of proper forcings, can be seen

as a generalization of Asperó and Mota’s classes of finitely proper forcings and

forcings with the ℵ1.5-chain condition.
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casa amb vosaltres és una de les millors sensacions que hi ha. Moltes gràcies per
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Introduction

The present thesis is a contribution to set theory, the area of mathematics devoted

to the study of infinity and the foundations of mathematics. More generally,

set theory can be described as the mathematical theory of certain well-defined

collections of objects called sets with respect to the relation of membership.

Set theory starts with the work of Georg Cantor in the 1870s (possibly influenced

by the work of Dedekind). While searching for a classification of infinite sets

according to their cardinality, he made the amazing discovery that the set of real

numbers R has a strictly greater cardinality than the set of natural numbers N. In

other words, the elements of R cannot be put in a one-to-one correspondence with

the elements of N. A consequence of this result, which Cantor showed later, is that

for every infinite set, there is another one of larger cardinality. This motivated

him to introduce a system of numbers to measure the cardinality of infinite sets,

the infinite cardinals. While it is relatively easy to show that the set of natural

numbers has the least possible infinite cardinality (ℵ0), finding the cardinality

of the set of real numbers (2ℵ0) turned out to be a much harder problem. This

led Cantor, in 1878, to formulate his famous Continuum Hypothesis (CH), that

asserts that there are no sets of real numbers of cardinality lying strictly between

the size of N and the size of R1. In other words, CH asserts that the set of real

numbers has the second least possible infinite cardinality, that is, it asserts that

2ℵ0 = ℵ1. This problem, which troubled Cantor for the rest of his life, appeared

1It is common practice in set theory to refer, indistinctly, to the set of real numbers
(sometimes regarded as a topological space) and to its cardinality, as the continuum.
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as the first problem in David Hilbert’s famous list of 23 problems from 1900, and

the search for its solution has been (and still is) one of the main driving forces of

development of set theory.

Early on, some inconsistencies arised from the naive use of the notion of set

proposed by Cantor as a “collection of objects that share some property”. The

most famous one being Russell’s Paradox, discovered by the mathematician and

philosopher Bertrand Russell. This lead to a foundational crisis in set theory and

in mathematics, and the way to overcome this obstacle was to adopt an axiomatic

system on which set theory could be built upon. The first axiomatization of set

theory is due to Ernst Zermelo, in 1908, and the final version, improved by Thoralf

Skolem, Abraham Fraenkel, and Zermelo himself, appeared in the 1920s. The

resulting theory, known as ZFC (Zermelo-Fraenkel with the Axiom of Choice), is

still today the most commonly used axiomatization of set theory.

Set theory has the very particular status of being a two-faced mathematical

theory. On one hand, as we have explained, it is the mathematical theory of

infinity and infinite sets. But on the other hand, set theory, and ZFC in

particular, serve as a foundation for all of mathematics. The remarkable fact

that ZFC is a formal system in which virtually all of mathematics can be

interpreted, makes possible a mathematical study of mathematics itself.

However, by Kurt Gödel’s Incompleteness Theorems ([33]), any consistent

theory which interprets Peano Arithmetic and whose axioms are presentable as

a recursively enumerable set of sentences, such as ZFC, will be incomplete.

That is, there will be statements, expressible in the language of the system,

whose truth or falsity cannot be proven within the system. Such unprovable

statements are called independent (of ZFC), and far from being mere artificial

self-referential logical paradoxes, hundreds, if not thousands, of concrete

example of independent statements have been discovered over the years.

The first and most famous example was precisely the Continuum Hypothesis.

In 1938, Gödel [34] introduced his constructible universe L, and showed that
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ZFC plus CH held in his model. Thus, proving that assuming the consistency

of ZFC, there is no counterexample to the CH in ZFC. Twenty-five years later,

in 1963, Paul Cohen [24] introduced the method of forcing and, assuming the

consistency of ZFC, obtained a model of ZFC plus the negation of CH. Therefore,

by combining Gödel and Cantor’s results, we can deduce that the truth or falsity

of the CH cannot be decided from the ZFC axioms.

The idea behind the technique of forcing is to start with a model of ZFC (the

ground model) and extend it to a new model of ZFC (the generic extension) by

adding, in a very controlled way, new generic objects. This new model of ZFC

has the same ordinals as the ground model, (most often) has the same cardinals,

and satisfies some desired formula in which we are interested.

After some refinement of this tremendously powerful method, a vast amount of

consistency results in all areas of mathematics have been obtained. For

instance, Suslin’s Hypothesis [80], Whitehead’s problem [72], the Borel

Conjecture [46], or more recently, the Brown-Douglas-Fillmore problem [27].

The search for independent statements has become one of the central topics in

set theory, and exploring the different models of ZFC (and fragments and

extensions thereof) obtainable by forcing has become one of the main sources of

development of the area.

Even if Gödel’s Theorems tell us that the independence phenomenon is

unavoidable, the search for the “right” truth value of statements such as the

ones from the last paragraph hasn’t stopped. In fact, this has motivated set

theorists to search for “natural” extensions of ZFC that settle these questions.

There are multiple candidates that have been studied over the years, but the

three main lineages of axioms that have been seriously considered are the

Determinacy Axioms, the Large Cardinal Axioms, and the Forcing Axioms. In

this thesis we will focus on the third group.

In Cohen’s proof of the consistency of ZFC+¬CH, forcing was used to extend

a model of ZFC by adding ℵ2-many new reals, thus violating the CH in the
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new model. However, it is known that models of ZFC+CH are also obtainable

by means of the technique of forcing. Therefore, models satisfying incompatible

statements can be obtained by forcing. In fact, there is a multitude of other

examples in the literature of incompatible statements whose consistency can be

proved by this technique. Hence, since no other effective method for extending

models of ZFC is known, one of the main directions pursued by set theorists

has been the search for new axioms that “get rid” of the relativity of truth with

respect to the different models of ZFC that are obtainable by forcing. In other

words, we want to eliminate, as much as possible, the independence derived from

the technique of forcing.

Forcing axioms are principles occurring naturally in set theory that fit into this

category, although they can be stated in purely combinatorial terms:

Definition 0.0.1. If K is a class of forcing notions2 and κ is an infinite cardinal,

FAκ(K) states that for every P ∈ K and every collection D of κ-many dense

subsets of P, there is a filter G on P such that G ∩D 6= ∅ for every D ∈ D.

Forcing axioms can be seen as generalizations of the Baire Category Theorem,

but their true power comes from the fact that they also assert that the universe of

set theory is saturated with respect to forcing extensions, in the sense mentioned

above. By this we mean that forcing axioms are equivalent to certain statements

of the form “if we can force, with a forcing in K, a formula of a certain complexity

with parameters in H(κ+)3, then this formula is in fact true” [16]. Therefore,

forcing axioms for κ-many dense sets decide, to a large extent, the theory of

H(κ+).

In 1965 (although the result was published in 1971), Solovay and Tennenbaum

[80] developed the theory of forcing iterations of posets with the countable chain

condition (c.c.c.) to prove the consistency of Suslin’s Hypothesis. However, it was

2A forcing notion is simply a partially ordered set with a top element.
3If θ is an infinite cardinal, H(θ) denotes the set of all sets having transitive closure of

cardinality < θ. If θ is an uncountable regular cardinal, then H(θ) is a model of ZFC minus the
Power Set axiom.
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realised by Martin and Solovay [48] that they could use this technique to build

a model of ZFC with arbitrarily large values of the continuum and satisfying a

much stronger condition. Namely, what came to be known as Martin’s Axiom4

(MA), the first forcing axiom to be isolated.

Iterated forcing is quite a complicated technique, which requires a deep

understanding of forcing theory. The point of forcing axioms is that they

capture part of the combinatorial content of forcing iterations and detach it

from the logical one. For instance, Martin’s Axiom captures the combinatorial

content of finite support iterations of c.c.c. forcings. This is exactly where the

great success of forcing axioms stems from. Since no knowledge of logic or set

theory is required to state them, mathematicians interested in the independence

phenomenon have used forcing axioms to prove consistency results in other

areas of mathematics. There are abundant concrete examples in areas such as

measure theory, topology, group theory, Boolean algebras, Banach space theory

and C∗-algebras (see [29] for many examples). Most notable is Shelah’s solution

to the Whitehead problem in group theory, already mentioned above:

Theorem 0.0.2 (Shelah,[72]). In a model of ZFC where MA and the negation

of CH hold there is a non-free Whitehead group.

Nevertheless, there are many natural statements in mathematics known to be

independent of ZFC, whose independence is known not to be provable by MA.

Indeed, the class of c.c.c. forcings is quite small, and many nice forcing notions

lie outside of it. This motivated set theorists to search for larger iterable classes

of posets with consistent forcing axioms.

Inspired by Laver’s proof of the consistency of the Borel Conjecture [46], which

used a countable support iteration of Laver forcing, Shelah isolated the class of

proper forcings [73] (see also [74] and [76]). The class of proper forcings is much

larger than the class of c.c.c. forcings, but the posets in this class are still quite

4Martin’s Axiom is the forcing axiom for the class of posets with the c.c.c. and families of
less than continuum-many dense sets.
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well-behaved. Indeed, proper forcings preserve ω1 and countable support

iterations of proper forcings are themselves proper (it was also shown by Shelah

that this fact is not true if you replace countable supports by finite ones).

Baumgartner showed the consistency of the forcing axiom for the class of proper

forcings and for collections of ℵ1-many dense sets, also known as the Proper

Forcing Axiom (PFA), by building a countable support iteration of length a

supercompact cardinal [18]. Proper forcing and the PFA have been extremely

successful in uncovering the combinatorial structure of ω1 and the possible

combinatorics of sets of real numbers, but they have also found many

applications in topology, algebra and analysis (see [19]). The most remarkable

consequences in set theory being that PFA solves the continuum problem by

deciding the value of |R| to be ℵ2 (see [20] and [87]), and it implies the Singular

Cardinals Hypothesis5 (see [89]) and the failure of �λ for all uncountable

cardinals λ (see [83]).

In 1988, Foreman, Magidor and Shelah [28] proved the consistency of a maximal

forcing axiom for ℵ1-many dense sets, known as Martin’s Maximum (MM). The

proof uses revised countable support iterations and it is much more involved

than the proof of the PFA. This forcing axiom is maximal in the sense that any

strictly stronger forcing axiom for ℵ1-many dense sets is inconsistent. Hence,

we cannot hope to find stronger consistent forcing axioms by considering bigger

classes of forcing notions, or at least not in the obvious way. Having exhausted

this direction, for many years set theorists focused on studying weakenings of

these forcing axioms, especially weakenings of PFA. One major direction has

been on measuring the strength of some consequences of PFA by studying their

relative consistency with different values of the continuum. There are essentially

three groups: those consequences of PFA that are consistent with CH, those that

decide the value of the continuum to be ℵ2, and those that are consistent with

large values of the continuum (i.e., larger than ℵ2). Of special interest are the

following:

5The Singular Cardinals Hypothesis (SCH) is the assertion that if κ is a singular strong limit
cardinal, then 2κ = κ+.
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• Abraham-Rubin-Shelah’s and Todorčević’s Open Coloring Axioms,

OCAARS and OCAT , respectively. Introduced independently in [4] and

[84]. Moore [60] showed that the conjunction of both coloring axioms

imply that the continuum is ℵ2. Gilton and Neeman [31] showed that

OCAARS is consistent with the continuum being ℵ3, and Neeman in an

unpublished work has shown that OCAT restricted to colorings of sets of

reals of size less than the continuum is compatible with large values of

2ℵ0 . Showing that OCAT is consistent together with the continuum large

is still an open question.

• Todorčević’s P-Ideal Dichotomy (PID) [85]. Abraham and Todorčević [6]

showed that the PID is consistent with the CH. It is a very important open

problem whether PID is consistent with large continuum.

• Moore’s Mapping Reflection Principle (MRP) [61]. In the same paper it

was shown that MRP implies that the continuum is ℵ2.

• Goldstern and Shelah’s Bounded Proper Forcing Axiom (BPFA) [36].

Moore in [61] introduced another principle, called vAC , which implies that

the continuum is ℵ2 and follows from both BPFA and MRP.

There is still of course another possible direction, which hasn’t been fully

explored due to the lack of an appropriate iteration theory. That is, the search

for consistent forcing axioms for more than ℵ1-many dense sets, known as high

forcing axioms. We have already mentioned that models of these principles are

naturally produced by suitable iterated forcing extensions. However, due to

technical limitations, the known techniques of iterated forcing are not suitable

for proving the consistency of high forcing axioms. The fact that 2ℵ0 = ℵ2 is a

consequence of PFA implies that the forcing axiom for the class of proper

forcings for more than ℵ1-many dense sets would be inconsistent. Therefore, we

cannot hope for a straightforward high analog of properness. It is worth

mentioning Ros lanowski and Shelah’s series of papers (see for example [66], [67],

[68], [69], [70]) on high versions of properness. Although, it is fair to say the
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right generalization of properness hasn’t been found yet. The program aiming

to find consistent high forcing axiom can be summarised in the following very

general question, which has been one of the main driving forces in the

development of modern set theory and, especially, (iterated) forcing theory:

Question. Can we find reasonable classes of forcing notions K for which FAκ(K)

is consistent for κ > ℵ1?

By “reasonable” we mean, first of all, iterable classes of forcing notions that

preserve cardinals. Additionally, we would like these classes to include high

versions of the posets that belong to the classes of forcing notions K for which

FAℵ1(K) is known to be consistent. Finally, we would like the corresponding

forcing axiom to have strong set-theoretic consequences, such as deciding the

value of the continuum. In particular, a high analog of the PFA should decide

the value of the continuum to be ℵ3. More generally, we want forcing axioms

that decide the theory of H(ω3), in the same way that strong forcing axioms for

ℵ1-many dense sets, such as PFA and MM, largely decide the theory of H(ω2).

Recent developments in the technique of forcing with side conditions have

opened the door to new approaches to overcome the technical limitations of

classical iteration theory, and it has become the most promising candidate in

the search for consistent high forcing axioms. About ten years ago, Neeman [62]

found a new and revolutionary way to iterate proper forcings with finite support

(although, not in the classical way), which he used to obtain an alternative

proof of the consistency of PFA. The breakthrough in Neeman’s work is the use

of chains of elementary submodels of two types to ensure the preservation of two

cardinals. The idea of adding elementary submodels in the conditions of your

forcing notions to preserve cardinals, known as forcing with side conditions,

goes back to Todorčević (see [83] and [81]). This technique has been exploited

by set theorists to build nice notions of forcing (see [82] for many applications),

most notably Mitchell [50] and Friedman [30] showed independently that you

can add clubs on ω2 with finite conditions. In all these applications countable
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elementary submodels are used to ensure that the forcing preserves one cardinal

(typically ω1). Neeman, building on Mitchell and Friedman’s work, introduced

a general framework for building forcing notions with side conditions of models

of two types, countable and transitive, thus ensuring the preservation of two

cardinals (typically ω1 and ω2). Applications of this method include very

elegant proofs of new and old consistency results (see [63], [88], and [59]).

Some of the technical obstacles that prevented set theorists from tackling the

problem of finding consistent high forcing axioms disappear when countable

support iterations are replaced by finite support ones. This prompted set

theorists to generalise Neeman’s new iteration theory for proper forcings to

other classes of posets. Moti Gitik and Menachem Magidor [32], and Boban

Veličković [86], independently found alternative finite support proofs of the

consistency of the semiproper forcing axiom (SPFA)6. However, although

Neeman announced (see [64] and [65]) that a generalization of his method could

be used to obtain a high analog of PFA, these results have not yet been

published, and in fact, there hasn’t been much work on high forcing axioms.

Rahman Mohammadpour’s PhD thesis [58] is one of the very few works in this

direction.

Independently of Neeman, but around the same time, David Asperó and Miguel

Ángel Mota ([11], [12]) developed a new method for building finite support

forcing iterations with symmetric systems of countable structures as side

conditions. These iterations were used to prove the consistency of certain

fragments of PFA, namely the restriction of PFA to the classes of finitely proper

forcings and forcings with the ℵ1.5-chain condition, together with arbitrarily

large values of the continuum. This was later applied to show that many known

consequences of PFA are consistent with large continuum. Especially, very

strong failures of Shelah’s club guessing (CG) principle.

In this thesis we generalise Neeman’s chains of elementary submodels of two types

6The class of semiproper forcings is an extension of the class of proper forcings, and SPFA
refers to the forcing axiom FAℵ1(Semiproper).
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by naturally combining them with Asperó and Mota’s symmetric systems. We

will introduce the forcing consisting of symmetric systems of models of two types,

we will prove their main properties, and we will use them in two very different

applications.

The thesis is organised as follows:

In chapter 1 we will establish some of the notation that will be used throughout

the thesis and cover the necessary background material about forcing, forcing

axioms, large cardinals and elementary submodels.

In chapter 2 we will introduce symmetric systems of elementary submodels of two

types. We will start by reviewing Neeman’s chains of elementary submodels of two

types and Asperó and Mota’s symmetric systems. Then we will define symmetric

systems of models of two types and show their main properties. In the last section

we will introduce a variant of the two-type symmetric systems from the previous

section, which will be used in chapter 4. The following theorem summarises the

main properties of the pure side condition forcings from these last two sections,

namely the forcing notions consisting of two-type symmetric systems, ordered by

reverse inclusion:

Theorem 0.0.3. Let M denote any of the two forcing notions from sections 2.3

and 2.4. Then, M has the following properties:

(1) M is strongly proper with respect to countable elementary submodels.

(2) M is strongly proper with respect to an appropriate class of ℵ1-sized

elementary submodels.

(3) If 2ℵ1 = ℵ2 holds, then M has the ℵ3-Knaster condition.

(4) It follows from the last three items that if 2ℵ1 = ℵ2 holds, then M preserves

all cardinals.

(5) M preserves 2ℵ1 = ℵ2.
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In chapter 3 we will force the existence of a strong chain of subsets of ω1 of length

ω3. This partially answers a question of Hajnal and Szentmiklóssy from the

1990s in combinatorial set theory. The construction involves symmetric systems

of models of two types as side conditions to ensure the preservation of cardinals.

This is proof that two-type symmetric systems can be very useful in forcing

objects of size ℵ3 with finite approximations, which are usually out of reach of

Neeman’s two-type side conditions. The following theorem is the main result of

chapter 3:

Theorem 0.0.4. Assuming the Generalized Continuum Hypothesis7 ( GCH)

there is a forcing notion P with the following properties:

(1) P is proper with respect to countable elementary submodels.

(2) P is proper with respect to an appropriate class of ℵ1-sized elementary

submodels.

(3) P has the ℵ3-chain condition.

(4) P forces the existence of a strong chain of subsets of ω1 of length ω3.

In chapter 4 we will define the class of (S,L)-finitely proper forcings, which is a

subclass of Neeman’s high analog of the class of proper forcings ([64], [65]), and

can be seen as a natural generalization of Asperó and Mota’s classes of finitely

proper forcings and forcings with the ℵ1.5-chain condition. We will develop a

high version of Asperó and Mota’s finite support iterations ([11], [12]) in which

we will incorporate symmetric systems of models of two types as side conditions.

This construction, which consists of a sequence of forcing notions 〈Pα : α ≤ κ〉,

has the following properties for every α < β ≤ κ:

• Pα is a complete suborder of Pβ.

• Pβ is proper for countable elementary submodels.

7The GCH asserts that 2κ = κ+ holds for every infinite cardinal κ.
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• Pβ is proper for an appropriate class of ℵ1-sized elementary submodels.

• Pβ has the ℵ3-chain condition.

As an application, these iterations will be used to build a generic extension where

the forcing axiom for the class of (S,L)-finitely proper forcings holds. More

precisely, the forcing notion Pκ will be a witness of the following theorem:

Theorem 0.0.5. If κ is a supercompact cardinal and 2ℵ1 = ℵ2 holds, then Pκ is

a cardinal-preserving forcing notion, which forces 2ℵ0 = κ > ℵ2 and the forcing

axiom for the class of (S,L)-finitely proper forcings and < κ-many dense sets.

In the last section we will speculate about some possible extensions of the class

of (S,L)-finitely proper forcings and their potential applications.

In appendix A we will list some open problems, and possible future lines of

research and applications of the techniques developed in this thesis.



1

Preliminaries

The standard references for set-theoretic notions are [44] and [38]. We refer the

reader to these two sources for any undefined notions. Most of the results in this

chapter are well-known and can be found in either of the two books. We will

include specific references in each section when required.

Our notation will be standard and will also follow [44] and [38]. Unless otherwise

specified, lower case Greek letters α, β, γ, δ, ε, ξ, η will be used to denote ordinals,

while κ, λ, µ, ν, θ will be used to denote infinite cardinals. We will denote by OR

the class of all ordinals. Let X be any set. We will denote by P(X) the power set

of X. If µ is a cardinal, we will denote by [X]µ the set of all subsets of X of size

µ. The sets [X]<µ and [X]≤µ are defined in the obvious way. If f is a function

and X ⊆ dom(f), then f”(X) denotes the set {f(x) : x ∈ X}. If λ is an infinite

regular cardinal and µ < cf(λ), we denote the set {α < λ : cf(α) = µ} by Sλµ .

1.1 Forcing

In this section we recall some basic facts about the technique of forcing and fix

some of the notation that will be used throughout the thesis. Our standard

reference is [44], but we will also follow [1] and [35] when dealing with proper

forcing and related concepts.
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1.1.1 Basic facts and notation

Forcing notions or forcing posets (or simply forcings) are triples (P,≤P,1P),

where ≤P is a preorder on P (transitive and reflexive binary relation) and

1P ∈ P is the largest element with respect to ≤P. We will abuse notation by

identifying a forcing notion with its universe P, and we will usually omit the

subscripts from ≤P and 1P if P is clear from the context. The elements of P are

called conditions, and if p, q ∈ P, we will read p ≤P q as “p extends q” or “p is

stronger than q”. If p, q ∈ P, we say that p and q are compatible if there is

another condition r stronger than p and q. If two conditions are not compatible,

we say that they are incompatbile.

An antichain is a subset A ⊆ P consisting of pairwise incompatible conditions.

A subset D ⊆ P is dense if for every p ∈ P there is d ∈ D such that d ≤ p, and it

is predense if for every p ∈ P there is d ∈ D compatible with p. If q ∈ P, we say

that D ⊆ P is dense below q if for every p ≤ q there is d ∈ D such that d ≤ p,

and it is predense below q if for every p ≤ q there is d ∈ D compatible with p. A

subset O ⊆ P is open if it is downwards closed.

Let M be a countable transitive model of a big enough fragment of ZFC1. We also

require that P ∈M . This model, namely the model over which we do forcing, is

called a ground model. A non-empty subset G ⊆ P is called a filter on P if it is

upwards closed and any two elements of G are compatible in G. A filter G on P

is called P-generic over M (or simply, generic over M) if G ∩D 6= ∅, for every

dense subset D ⊆ P such that D ∈M . The Rasiowa–Sikorski lemma ensures that

generic filters over countable transitive models exist. In fact, for every condition

p ∈ P there is a P-generic filter G over M such that p ∈ G.

A forcing notion P is called separative if whenever p 6≤ q, then there is an extension

r of p incompatible with q. There are many reasons to consider separative posets

in the context of forcing. First of all, if P is separative and P ∈ M , then no

1This theory should at least include Kripke-Platek set theory.
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generic filter G ⊆ P over M is a member of M . This is crucial, since we want to

extend M to a new model of set theory by means of this generic G, so it needs

to live outside of M . Moreover, any poset can be embedded (there is a map that

preserves order and incompatibility) onto a separative partial order.

Definition 1.1.1. The class MP of P-names is defined in M by transfinite

recursion on the ordinals as follows:

(1) τ is a P-name of rank 0 if τ = ∅.

(2) τ is P-name of rank ≤ α if its elements are of the form 〈σ, p〉, where σ is a

P-name of rank < α and p ∈ P.

(3) τ is a P-name if it is a P-name of rank ≤ α for some α ∈ OR ∩M .

The class MP is Σ1-definable in M with P as a parameter. In fact, it is

∆1-definable, since the complement of MP is also Σ1-definable in M . We will

use the Greek letters τ, σ and π to denote arbitrary P-names and dotted letters

(ẋ, ẏ, ż, ḟ , ġ, . . . ) to denote P-names that name specific objects. The forcing

language is the language of set theory with names added as constants.

Definition 1.1.2. For every x ∈M , we define the standard name of x, denoted

x̌, as the P-name

x̌ = {〈y̌,1〉 : y ∈ x}

Similarly, we define the standard name for the generic filter G, denoted Ġ, as the

P-name

Ġ = {〈p̌, p〉 : p ∈ P}.

Definition 1.1.3. If G ⊆ P is a generic filter over M and τ is a P-name, we define

the interpretation of τ by G, denoted τG, by transfinite recursion as follows:

(1) τG = ∅ if τ is a P-name of rank 0.

(2) τG = {σG : 〈σ, p〉 ∈ τ, p ∈ G}
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For each x ∈M , x̌G = x, and similarly, (Ġ)G = G. We will usually omit inverted

circumflexes and write x instead of x̌, when it is clear from the context that we

are dealing with standard names.

Definition 1.1.4. If G ⊆ P is a generic filter over M , we define the generic

extension of M by G, denoted M [G], as the set

M [G] = {τG : τ ∈MP}.

If P is a forcing notion, the forcing relation for P, denoted by P (or simply

, if P is clear from the context), is a binary relation between conditions of P

and formulas taking P-names as parameters. The purpose of the forcing relation

is to encode the truth predicate of the generic extension M [G] within M . The

definition of P (which we won’t include here, but can be found in [44]) is by

recursion on the complexity of the formulas in the forcing language, using P

as a parameter. The idea is to define the forcing relation so that if τ0, . . . , τn

are P-names and ϕ(x0, . . . , xn) is a formula in the language of set theory, then

p P ϕ(τ0, . . . , τn) (read “p forces ϕ(τ0, . . . , τn)”) if and only if for every generic

filter G ⊆ P such that p ∈ G, M [G] |= ϕ((τ0)G, . . . , (τn)G).

Remark 1.1.5. Another important feature of separative posets, related to the

forcing relation, is that for any two p, q ∈ P, p ≤ q iff p P q ∈ Ġ.

The following are some of the basic (but necessary) properties of the forcing

relation:

(1) If p  ϕ and q ≤ p, then q  ϕ.

(2) No condition p forces both ϕ and ¬ϕ.

(3) For every formula ϕ, the set D(ϕ) = {p ∈ P : p  ϕ ∨ p  ¬ϕ} is a dense

open subset of P. If M satisfies ZF minus the Power Set axiom, then D(ϕ)

is definable in M with P as a parameter. Hence, if G is P-generic over M ,

then ϕ is decided (i.e., forced to be true or false) by some condition in G.
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If ϕ is a formula in the language of forcing, “P forces ϕ” stands for 1P P ϕ.

Often, P ϕ or P P ϕ are written, instead of 1P P ϕ. Note that by item (1)

above, if 1P forces ϕ, then every condition in P forces ϕ. Therefore, by definition

of the forcing relation, any formula forced by P will hold in any generic extension

of M . Since for any condition p ∈ P we can find a P-generic filter G over M such

that p ∈ G, then 1P P ϕ(τ) if and only if V [G] |= ϕ(τG), for every P-generic

filter G over V , where τ is a tuple of P-names of the same arity as the number of

free variables of the formula ϕ.

In some situations we will use expressions of the form “τ is the P-name of an

ordinal” or “τ is the P-name of a subset of ω1”. In general, if ϕ is a formula in

the language of set theory, the sentence “τ is a P-name such that ϕ(τ)” means

that P ϕ(τ).

The whole machinery of forcing can be summarised in the following three

theorems, which are known as the forcing theorems.

Theorem 1.1.6. For every n ≥ 1, the forcing relation P restricted to Σn-

formulas in the language of set theory is Σn-definable in M with P as a parameter.

Theorem 1.1.7. If G is a P-generic filter over M , then for every formula

ϕ(x0, . . . , xn) in the language of set theory and τ0, . . . , τn ∈MP,

M [G] |= ϕ((τ0)G, . . . , (τn)G) iff ∃p ∈ G
(
M |= p P ϕ(τ0, . . . , τn)

)
.

Theorem 1.1.8. If M is a countable transitive model of ZFC, P ∈ M is a

forcing notion and G a P-generic filter over M , then M [G] is the least countable

transitive model of ZFC such that M ∪{G} ⊆M [G] and M ∩OR = M [G]∩OR.

Even though the above exposition of forcing has been made over countable

transitive models of big enough fragments of ZFC, it is common practice to use

V , the universe of set theory, as the ground model for our forcing constructions.

More about the technicalities of such considerations can be found in [44].
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1.1.2 Equivalence of generic extensions

Let (P,≤P,1P) and (Q,≤Q,1Q) be forcing posets. LetM be a countable transitive

model of a big enough fragment of ZFC.

Definition 1.1.9. A map e : P→ Q is said to be an embedding if the following

hold:

(1) e(1P) = 1Q.

(2) For every p0, p1 ∈ P, if p0 ≤P p1, then e(p0) ≤Q e(p1).

(3) For every p0, p1 ∈ P, if p0 and p1 are incompatible in P, then e(p0) and

e(p1) are incompatible in Q.

The map e is said to be a complete embedding if along with (1)-(3) the following

holds:

(4) If A ⊆ P is a maximal antichain, then e(A) is a maximal antichain in Q.

The map e is said to be a dense embedding if along with (1)-(3) the following

holds:

(5) e(P) is a dense subset of Q.

Definition 1.1.10. We say that P is a complete suborder of Q, and denote it by

P l Q, if the inclusion map P ⊆ Q is a complete embedding.

Lemma 1.1.11. If e : P → Q is an isomorphism (between the two structures

(P,≤P,1P) and (Q,≤Q,1Q)), then e is a dense embedding.

Lemma 1.1.12. If e : P → Q is a dense embedding, then e is a complete

embedding.

Lemma 1.1.13. Suppose that P,Q ∈ M and that e : P → Q is a complete

embedding such that e ∈ M . If H is Q-generic over M , then G = i−1(H) is

P-generic over M , and M [G] ⊆M [H].
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Lemma 1.1.14. Suppose that P,Q ∈M and that e : P→ Q is a dense embedding

such that e ∈M .

(1) If G is P-generic over M , then H = {q ∈ Q : ∃p ∈ G(e(p) ≤Q q)} is

Q-generic over M , and M [G] = M [H].

(2) If H is Q-generic over M , then G = {p ∈ P : ∃q ∈ H(e−1(q) = p)} is

P-generic over M , and M [H] = M [G].

1.1.3 Some classes of forcing notions

When going from a ground model V to a generic extension V [G] via the forcing

P, many new objects may appear in V [G], which weren’t in V . However, if we

are not careful enough, some of these objects could be troublesome, depending

on the model that we were initially aiming for. For instance, it could happen

that κ is a cardinal in V , but P has added a surjection from α to κ, where α is an

ordinal smaller than κ, and hence, we have collapsed κ in V [G]. Assuming certain

additional properties on the forcing poset P, we can prevent these unwanted

situations to happen. Let us recall some of the most important classes of forcing

notions which will be relevant to us, and mention their main properties. We will

mostly follow [44] and [76], although [1] and [35] are two great sources for proper

forcing.

From now on (countable) elementary submodels, not necessarily ground models,

will play a central role in the thesis. Hence, in order to avoid confusion, from

now on we will assume that V is our ground model.

Definition 1.1.15. A forcing notion P preserves a cardinal κ if for every generic

filter G ⊆ P over V , κ is a cardinal in V if and only if κ is a cardinal in V [G].

Definition 1.1.16. Let κ be an uncountable cardinal and let P be a forcing

notion.
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(1) P is κ-closed if every descending sequence

p0 ≥ p1 ≥ · · · ≥ pα ≥ . . .

of length β < κ has a lower bound q ∈ P, i.e., q ≤ pα for all α < β.

(2) ℵ1-closed forcings are usually called σ-closed.

(3) P has the κ-chain condition (or κ-c.c. for short) if every antichain of P has

cardinality < κ.

(4) The ℵ1-chain condition is commonly referred to as the countable chain

condition (or c.c.c. for short).

(5) P has the κ-Knaster condition if for every A ⊆ P of size κ, there is B ⊆ A

of the same size consisting of pairwise compatible conditions.

It’s almost straightforward to check that a forcing notion with the κ-Knaster

condition has the κ-chain condition.

Lemma 1.1.17. If P is a κ-closed forcing notion, then every cardinal λ ≤ κ is

preserved after forcing with P.

Lemma 1.1.18. If P is a forcing notion with the κ-c.c., then every cardinal

λ ≥ κ is preserved after forcing with P.

For lack of a better place, we will include here the statement of the ∆-system

lemma, which is an extremely important result in combinatorial set theory, with

very important consequences in forcing theory. One of its main applications is in

showing that some forcing notions have certain forms of chain conditions.

Lemma 1.1.19 (∆-system lemma). Suppose that µ is an infinite cardinal and

λ is a regular cardinal greater than µ such that ∀α < λ, |α<µ| < λ. If A is a

collection of sets, each of cardinality less than µ, and |A| = λ, then there is a

subcollection B ⊆ A of cardinality λ that forms a ∆-system, i.e., there is r such

that for all a, b ∈ B, a ∩ b = r.
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Recall that if θ is an infinite cardinal, H(θ) is the set of all sets having transitive

closure of cardinality < θ. Moreover, if θ is an uncountable regular cardinal,

then (H(θ);∈) is a model of ZFC minus the Power Set axiom. Therefore, as

a structure, H(θ) is a model of a big enough fragment of ZFC to develop the

general theory of forcing. The expressions “let θ be a big enough cardinal” or

“let θ be sufficiently large” or “let H(θ) be big enough” will be constantly used

throughout the thesis. These expressions depend on the context, but they mean

that θ is a big enough regular cardinal so that H(θ) contains all the objects

that are relevant to us in any given situation. For instance, when dealing with

a forcing notion P of size κ, then θ > 2κ will usually be big enough for our

purposes. Moreover, in many cases, additional predicates T ⊆ H(θ) are added to

the structure H(θ). For instance, it is common practice to add a well-ordering

of H(θ) as a predicate, the forcing notion P, the forcing relation for P, and other

relevant objects. We will normally identify the structure (H(θ);∈, T ) with its

universe H(θ). Elementary submodels of H(θ) play a very important role in

forcing theory, and specially, in the theory of proper forcing. It is understood

that if we let M be an elementary submodel of H(θ) (written “M � H(θ)”), we

actually mean that M is an elementary submodel of the structure H(θ) including

all the extra parameters that are relevant.

Definition 1.1.20. Let M be an elementary submodel of a big enough H(θ) and

let P ∈ M be a forcing notion. A condition p ∈ P is said to be (M,P)-generic if

for every dense subset D ⊆ P such that D ∈M , the set D∩M is predense below

p.

It is not too hard to see that if we replace “dense subset” by “maximal antichain”,

“dense open subset” or “predense subset”, we get an equivalent definition.

Remark 1.1.21. If M is an elementary submodel of a big enough H(θ) containing

a forcing notion P, and p is an (M,P)-generic condition, then any condition q ∈ P

extending p is (M,P)-generic.

Lemma 1.1.22. Let M be an elementary submodel of a big enough H(θ), let
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P ∈M be a forcing notion and let p ∈ P. The following are equivalent:

(1) p is (M,P)-generic.

(2) For every dense subset D ⊆ P such that D ∈M there is q̇ ∈ V P such that

p P q̇ ∈M ∩D ∩ Ġ.

(3) For every P-name τ ∈M such that P τ ∈ V , p P τ ∈M .

(4) p P M [Ġ] ∩ V = M ∩ V .

(5) For every P-name τ ∈M for an ordinal, p P ∃α ∈M ∩OR(τ = α).

(6) p P M [Ġ] ∩OR = M ∩OR.

Definition 1.1.23. Let B be a set of elementary submodels of a big enough H(θ)

containing a forcing notion P. We say that P is B-proper if for every M ∈ B and

every p ∈ P ∩M there is an (M,P)-generic condition q ≤ p.

If we let B be the set of all countable elementary submodels of a big enough H(θ),

then B-proper forcings are simply called proper.

Example 1.1.24. For every infinite cardinal κ, if P has the κ+-c.c., then for

every big enough θ and every M � H(θ) such that |M | ≥ κ, every p ∈ P is

(M,P)-generic. Therefore, any c.c.c. forcing is proper.

Recall that for every set X, a subset C ⊆ P(X) is club in P(X) (or club in X)

if it is closed and unbounded with respect to inclusion. A subset S ⊆ P(X) is

stationary in P(X) (or stationary in X) if it has non-empty intersection with

all clubs in P(X). More generally, C ⊆ P(X) is club in P(X) if there exists

a function f : [X]<ω → X such that for every x ∈ P(X), x ∈ C if and only

if f”([x]<ω) ⊆ x. Therefore, a subset S ⊆ P(X) is stationary in P(X) if for

every function f : [X]<ω → X, there is x ∈ S which is closed under f , i.e.,

f”([x]<ω) ⊆ x. The two notions of club coincide when replacing P(X) with

[X]ℵ0 .
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Lemma 1.1.25. Let B be a set of elementary submodels of a big enough H(θ)

containing a forcing notion P. Suppose that P is B-proper. Let λ be a cardinal

and suppose that for each α < λ, the set {M ∈ B : α ⊆M, |M | < λ} is stationary

in H(λ). Then, the forcing P preserves λ.

In this thesis we will be mostly interested in the classes S of countable

elementary submodels, which is always stationary, and classes L of ℵ1-sized

elementary submodels that, under the right assumptions, are stationary. Most

of the forcing notions that we will define throughout the thesis will be S-proper

and L-proper. Thereofore, in light of the lemma above, they will preserve ω1

and ω2.

We will also be interested in a certain strengthening of the notion of generic

condition, and hence, of proper forcing, which is due to Mitchell ([50]). We

include here the definitions and some of their basic properties without proofs,

which can be found in Mitchell’s paper and in [62].

Definition 1.1.26. Let M be an elementary submodel of a big enough H(θ)

and let P ∈ M be a forcing notion. A condition p ∈ P is said to be strongly

(M,P)-generic if for every dense subset D ⊆ P∩M , the set D is predense below

p.

Remark 1.1.27. Any strongly (M,P)-generic condition is (M,P)-generic. To see

this, it’s enough to note that if D ∈M is a dense subset of P, then by elementarity

D ∩M is a dense subset of P ∩M .

Similarly to lemma 1.1.22, we have the following characterisation of strongly

generic conditions.

Lemma 1.1.28. Let M be an elementary submodel of a big enough H(θ), let

P ∈M be a forcing notion and let p ∈ P. The following are equivalent:

(1) p is strongly (M,P)-generic.
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(2) For every dense subset D ⊆ P ∩M there is q̇ ∈ V P such that

p P q̇ ∈M ∩D ∩ Ġ = D ∩ Ġ.

Definition 1.1.29. Let B be a set of elementary submodels of a big enough

H(θ) containing a forcing notion P. We say that P is strongly B-proper if for

every M ∈ B and every p ∈ P ∩M there is a strongly (M,P)-generic condition

q ≤ p.

If we let B be the set of all countable elementary submodels of a big enough H(θ),

strongly B-proper forcings are simply called strongly proper.

It follows from the last remark that any strongly B-proper forcing is B-proper.

Therefore, strongly B-proper forcings also ensure the preservation of cardinals

(lemma 1.1.25), but they do in fact have stronger properties than proper forcings.

Remark 1.1.30. The statements “p is a strongly (M,P)-generic condition” and

“P is a strongly {M}-proper forcing” are Σ0-formulas with parameters p,P, and

P ∩M . Therefore, these two statements are absolute between transitive models

of set theory containing the parameters.

Remark 1.1.31. Let M be an elementary submodel of a big enough H(θ)

containing the forcing notion P. Suppose that P is strongly {M}-proper. If M∗

is an elementary submodel of H(θ∗), for θ∗ > θ, such that M∗ ∩ H(θ) = M ,

then P is also strongly {M∗}-proper.

Lemma 1.1.32 ([62]). Let B be a set of elementary submodels of a big enough

H(θ) containing a forcing notion P. Suppose that P is strongly B-proper. Let λ

be a regular cardinal and suppose that the set {M ∈ B : |M | < λ} is stationary

in H(λ). Then, forcing with P does not add branches of length λ to trees in V .

One might wonder why we consider elementary submodels of H(θ) instead of

say Vα, for some ordinal α. First of all, as we have already mentioned, if θ is

an uncountable regular cardinal, then H(θ) is a model of ZFC minus the Power
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Set axiom, and a model satisfying Replacement is a better model in the sense of

forcing. For instance, if P ∈ H(θ) is a forcing notion, then most of the essential

properties of P are absolute between V and H(θ):

• P is a forcing notion in V if and only if P is a forcing notion in H(θ).

• For every G ⊆ P, G is a P-generic filter over V if and only if G is a P-generic

filter over H(θ).

• For every A ⊆ P, A is a maximal antichain in V if and only if A is a maximal

antichain in H(θ).

Proposition 1.1.33. If 2θ = θ+, then there is a bijection from H(θ+) to θ+,

which is definable in (H(θ+);∈).

By equipping H(θ) with a well-order C, we also have definable Skolem hulls for

subsets of H(θ). The point is that, for every existential formula we can find

the C-least witness for this formula, and this makes Skolem functions definable.

Moreover, well-orders of H(θ) induce well-orders of their generic extensions.

Proposition 1.1.34. Let P ∈ H(θ) be a forcing notion and let C be a well-

order of H(θ). If G is a P-generic filter over V , then C induces a well-order on

H(θ)[G].

Proof. If x, y ∈ H(θ)[G], we define the binary relation CG on H(θ)[G] by x CG y

if and only if τ C σ, where τ and σ are the C-least P-names in H(θ) such that

τG = x and σG = y. It’s not too hard to see that CG is in fact a well-order of

H(θ)[G].

Lastly, we also have the following two well-known facts. For a proof see, for

example, [35].

Lemma 1.1.35. If P ∈ H(θ) is a forcing notion, then P forces that H(θ)V [Ġ] =

H(θ)V [Ġ]. In other words, if τ is a P-name, then τ ∈ H(θ) if and only if P forces

that τ ∈ H(θ)V [Ġ].
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Lemma 1.1.36. Let M be an elementary submodel of a big enough H(θ)

containing a forcing notion P. Then, P forces that M [Ġ] � H(θ)[Ġ].

We will finish this section by defining the classes of finitely proper forcings and

forcings with the ℵ1.5-chain condition. These two classes were introduced by

Asperó and Mota ([11], [12]), and as it has already been mentioned in the

introduction, our class of (S,L)-finitely proper forcings can be seen as a high

analog of these two classes.

Definition 1.1.37. Given a forcing notion P, we will say that P is finitely proper

if and only if for every big enough regular cardinal θ there is a club D ⊆ [H(θ)]ℵ0

of elementary submodels of H(θ) such that for every finite set N ⊆ D and every

p ∈ P∩
⋂
N there is q ∈ P extending p, which is (M,P)-generic for every M ∈ N .

Definition 1.1.38. Given a forcing notion P, we will say that P has the ℵ1.5-

chain condition (ℵ1.5-c.c. for short) if and only if for every big enough regular

cardinal θ there is a club D ⊆ [H(θ)]ℵ0 of elementary submodels of H(θ) such

that for every finite set N ⊆ D and every p ∈ P ∩ N , for some N ∈ N such

that N ∩ ω1 = min{M ∩ ω1 : M ∈ N}, there is q ∈ P extending p, which is

(M,P)-generic for every M ∈ N .

It’s obvious that finitely proper forcings have the ℵ1.5-chain condition, and that

c.c.c. forcings are included in the class of finitely proper forcings, in light of

example 1.1.24. Moreover, both of Asperó and Mota classes of forcings are

subclasses of the class of proper forcings with the ℵ2-chain condition. They are

clearly included in the class of proper forcings. Let us see that ℵ1.5-c.c. forcings

have the ℵ2-c.c.

Lemma 1.1.39 (Asperó-Mota, [12]). If P has the ℵ1.5-c.c., then P has the ℵ2-c.c.

Proof. Suppose that A is a maximal antichain of P of size ≥ ℵ2. Let θ and B

be as in definition 1.1.38 and let Mp, for every p ∈ A, a countable elementary

submodel of H(θ) such that Mp ∈ B and p,A ∈ Mp. Since Mp ∩ ω1 < ω1 for
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each p ∈ A, there are A′ ⊆ A and δ < ω1 such that |A′| = |A| and for every

p ∈ A′, Mp ∩ ω1 = δ. Since |A′| > ℵ1 and the models in B are countable, we

can find two different conditions p, p′ ∈ A′ such that p′ /∈ Mp. Note that as

p′ ∈ Mp′ and Mp ∩ ω1 = Mp′ ∩ ω1 = δ, we can find an extension q of p′ that

is (Mp,P)-generic, by the ℵ1.5-c.c. of P. Therefore, there must be a condition

q∗ ∈ Mp ∩ A compatible with q, and thus, also compatible with p′. But this is

impossible because p′ 6= q∗, as p′ /∈ Mp and q∗ ∈ Mp, and p′ and q∗ are both

members of the maximal antichain A.

An interesting feature of these two classes is that, unlike the class of proper

forcings, they can be iterated in arbitrarily long length. Therefore, any statement

forceable with a forcing from one of these two classes is compatible with arbitrarily

large values of the continuum.

1.1.4 Iterated forcing

Let P be a forcing poset in V and suppose that G is a P-generic filter over V .

Let Q be another forcing notion in the generic extension V [G]. Suppose that H

is a Q-generic filter over V [G], and force with Q over V [G] to obtain a further

generic extension V [G][H]. The idea behind iterated forcing is that we can define

a single forcing notion in V such that if we force with it, we can go from the

model V to the generic extension V [G][H] in just one step.

Let (Q̇, ≤̇Q, 1̇Q) be a triple of P-names such that

P “(Q̇, ≤̇Q, 1̇Q) is a forcing poset”.

We denote (Q̇, ≤̇Q, 1̇Q) by Q̇.

Definition 1.1.40. We define the two-step iteration of P and Q̇, denoted P ∗ Q̇,

as the forcing notion (P ∗ Q̇,≤P∗Q̇,1P∗Q̇) with the following properties:

(1) Conditions of P ∗ Q̇ are pairs (p, q̇) such that p ∈ P, q̇ ∈ dom(Q̇), and



Chapter 1: Preliminaries 39

p  q̇ ∈ Q̇.

(2) (p1, q̇1) ≤P∗Q̇ (p0, q̇0) if and only if p1 ≤P p0 and p1 P q̇1 ≤Q̇ q̇0.

(3) 1P∗Q̇ = (1P, 1̇Q).

Let G be a P-generic filter over V . Let H be a Q̇G-generic filter over V [G]. Then,

G ∗ Ḣ = {(p, q̇) ∈ P ∗ Q̇ : p ∈ G, q̇G ∈ H}

is a P ∗ Q̇-generic filter over V . Moreover, V [G ∗ Ḣ] = V [G][H].

Conversely, let K is a P ∗ Q̇-generic filter over V . Let G be the projection of K

on the first coordinate and let H = {q̇G : ∃p(p, q̇) ∈ K}. Then, G is a P-generic

filter over V and H is a Q̇G-generic filter over V [G]. Moreover, V [K] = V [G][H].

Lemma 1.1.41. Let κ be an uncountable regular cardinal. Let P be a forcing

notion and let Q̇ be a P-name for a forcing notion. If P is κ-c.c. and

P “Q̇ is κ-c.c.”, then P ∗ Q̇ is κ-c.c.

We can consider forcing iterations of infinite length. We won’t include the

details here, but let us briefly mention that a λ-stage forcing iteration is a pair

of sequences 〈Pα : α ≤ λ〉 and 〈Q̇α : α < λ〉, where Pα+1 is essentially the two

step iteration Pα ∗ Q̇α. Finite support iterations, countable support iterations,

and other forms of iterations differ on their definition at limit stages. We call

Pα the α-th stage of the iteration and Q̇α the α-th iterand. When we say that a

certain class of forcing notions is iterable and the like, what we actually mean is

that the iterands belong to that class of forcings and that every stage of the

iteration preserves cardinals. Normally, the preservation of cardinals is achieved

thanks to the specific properties of the class of forcing notions that we are

iterating.

Example 1.1.42. (1) Finite support iterations of c.c.c. forcings are

themselves c.c.c., and hence, every stage of the iteration preserves all

cardinals.



Chapter 1: Preliminaries 40

(2) Countable support iterations of proper forcings are themselves proper, and

hence, they preserve ω1 at every stage of the iteration. Moreover, starting

from a model of CH, countable support iterations of length ≤ ℵ2 of proper

forcings of size ℵ1 have the ℵ2-c.c. Therefore, they preserve all cardinals.

One key property of forcing iterations, which we will crucially use in chapter 4, is

that for every α < β ≤ λ, typically Pα is a complete suborder of Pβ. Therefore,

if Gβ is a Pβ-generic filter over V , then Pα ∩Gβ is a Pα-generic filter over V .

1.2 Forcing axioms

Let K be a class of forcing notions and let κ be an uncountable cardinal. Recall

from the introduction that the forcing axiom for the class K and κ-many dense

sets is the following statement:

FAκ(K): For every P ∈ K and every collection D of dense subsets of

P such that |D| = κ, there is a filter G ⊆ P such that for

every D ∈ D, G ∩D 6= ∅.

In order to obtain a model of a forcing axiom, the strategy is to force generic

filters for all the posets and all the collections of dense subsets of these posets,

via a forcing iteration. Start with a model V . Force with a poset from the class

K in V to produce a generic filter for a collection of dense subsets that are in V .

We want to add a generic filter for every partial order P ∈ K and every collection

of prescribed size κ of dense subsets. Therefore, we need to force with all the

forcing posets from the class K. Namely, we need to define a forcing iteration

in V that goes over all the posets from the class K. But there are two issues

that need to be addressed. First of all, when forcing with a poset from K we

may create new forcing notions. Hence, we not only have to take care of the

posets from K in V , but also those posets that may appear along the iteration.

The so-called bookkeeping function is a device that keeps track of all these new
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posets. Secondly, the class K of forcing notions might be a proper class, so we

need to come up with a way to capture all of these posets in an iteration of

length an infinite cardinal λ. There are different ways to achieve this. In some

cases a Löwenheim-Skolem argument allows us to restrict the proper class K to a

subclass, which is in fact a set. In other cases stronger assumptions are needed,

even beyond the ZFC axioms, such as some form of ♦ or large cardinals. For

instance, in order to force PFA, or the forcing axiom for our class of (S,L)-finitely

proper forcings, we need to assume a supercompact cardinal. We will give more

details about this in the next section.

For instance, using Asperó and Mota’s finite support iterations with symmetric

systems as side conditions we can show, from very mild cardinal arithmetic

assumptions, the consistency of the forcing axioms for the classes of finitely

proper forcings and forcings with the ℵ1.5-c.c. together with arbitrarily large

values of the continuum. Let us denote by PFAfin(ℵ1) the forcing axiom for the

class of finitely proper forcings of size ℵ1 and ℵ1-many dense sets.

Theorem 1.2.1 (Asperó-Mota, [11]). (CH) If κ is a cardinal such that κℵ1 = κ

and 2<κ = κ, then there is a proper forcing notion P with the ℵ2-chain condition

such that the following statements hold in the generic extension by P:

(1) 2ℵ0 = κ.

(2) PFAfin(ℵ1).

Theorem 1.2.2 (Asperó-Mota, [12]). (CH) If κ ≥ ω2 is a regular cardinal such

that µℵ0 < κ for all µ < κ and ♦({α < κ : α ≥ ω1})2 holds, then there is a proper

forcing notion P of size κ with the ℵ2-chain condition such that the following

statements hold in the generic extension by P:

(1) 2ℵ0 = κ.

(2) FA<2ℵ0 (ℵ1.5-c.c.).

2If S ⊆ κ is stationary, ♦(S) asserts the existence of a sequence 〈Aα : α ∈ S〉 such that for
every A ⊆ κ, the set {α ∈ S : Aα = A ∩ α} is stationary.
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1.3 Large cardinals

Let us introduce the notion of supercompact cardinal, which will be relevant in

the proof of the consistency of the forcing axiom for the class of (S,L)-finitely

proper forcings in chapter 4. The standard reference for large cardinal notions is

[40].

Definition 1.3.1. M is an inner model if and only if M ⊆ V is a transitive

∈-model of ZF with OR ⊆M .

Definition 1.3.2. Let κ ≤ λ be two cardinals. The cardinal κ is called λ-

supercompact if and only if there exists an inner model M and an elementary

embedding j : V → M such that crit(j) = κ3, λ < j(κ) and λM ⊆ M . We call

such an embedding a (κ, λ)-supercompact embedding.

A cardinal κ is supercompact if it is λ-supercompact for every λ ≥ κ.

Remark 1.3.3. Let j : V → M be a (κ, λ)-supercompact embedding. Then, the

following hold:

• j � Vκ = id � Vκ.

• H(λ+) ⊆M .

Theorem 1.3.4 (Laver, [47]). Let κ be a supercompact cardinal. There exists

a function f : κ → Vκ such that for every set x and every λ ≥ κ such that

λ ≥ |trcl(x)| there exists a (κ, λ)-supercompact embedding j : V → M such that

j(f)(κ) = x.

The function f from the statement of the last theorem is usually called a Laver

function, and it is crucially used, for instance, in the proof of the consistency of

PFA and other strong forcing axioms.

3κ being the critical point of the elementary embedding j, written crit(j) = κ, means that κ
is the least ordinal such that j(κ) > κ.
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1.4 Elementary submodels

It has already been stressed in the previous sections how important elementary

submodels are in forcing theory, and specially in forcing with side conditions.

In this section we will recall some basic facts about elementary submodels and

fix the notation that will be used in subsequent chapters of the thesis. As it

has already been stated, the standard references for set-theoretic notions are [44]

and [38], and most of the results of this section can be found there. Additional

information about elementary submodels and their applications in set theory can

be found in [26] and [39].

Given a model Q, we will denote Q ∩ ω1 by δQ and sup(Q ∩ ω2) by εQ, and we

will call δQ the ω1-height of Q and εQ the ω2-height of Q.

Given two ∈-isomorphic models of the Axiom of Extensionality Q0 and Q1, we

write ΨQ0,Q1 to denote the unique isomorphism Ψ : (Q0;∈)→ (Q1;∈).

Let κ > ω2 be a cardinal and let T ⊆ H(κ). Recall that we will usually refer to

the structure (H(κ);∈, T ) simply by H(κ). Let S be the collection of countable

M � (H(κ);∈, T ). We will tend to use the capital letter M to refer to models in

S, which we will call countable elementary or small models.

Definition 1.4.1. We will call a collection L of ℵ1-sized elementary submodels

N � (H(κ);∈, T ) appropriate for S4 if for every N ∈ L and every M ∈ S such

that N ∈M , then N ∩M ∈ N ∩ S.

We will tend to use L to denote arbitrary collections of ℵ1-sized appropriate

models for S, and the capital letter N to refer to models in L, which we will

call uncountable or large models. We will use S and L throughout the thesis,

independently of the parameters κ and T . At the beginning of each subsequent

chapter, κ and T will be properly specified, so that there is no possible ambiguity.

To refer to models of arbitrary size we will use Q, as well as other capital letters

4This naming comes from [62], although it has a sligthly different meaning here.
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further down in the alphabet. If Q is an elementary submodel of H(κ), we will

usually refer to the structure (Q;∈, T ∩ Q) by (Q;∈, T ). Moreover, we might

indistinctly use Q to refer to the structure (Q;∈, T ) or its universe. It will be

clear from the context which one we are referring to.

The following are some basic facts about elementary submodels which we will

constantly use throughout the thesis, sometimes without mention.

Theorem 1.4.2 (Tarski-Vaught’s Test). Let M be a structure and let A ⊆ M .

Then, A is the domain of a structure N � M iff for every formula ϕ(y, x̄) and

every tuple ā of A such that M |= ∃yϕ(y, ā), there exists an element b in A such

that M |= ϕ(b, ā).

Proposition 1.4.3. If Q0, Q1 � H(κ) are such that Q0 ⊆ Q1, then Q0 � Q1.

Proposition 1.4.4. Let Q � H(κ), µ < κ, and µ ⊆ Q. Then for every A ∈ Q,

if H(κ) |= |A| = µ, then A ⊆ Q.

Proposition 1.4.5. Let Q � H(κ). If A is definable over H(κ) with parameters

in Q, then A ∈ Q.

Proposition 1.4.6. Let Q � H(κ) such that |Q| = µ < µ+ < κ. Then, Q ∩ µ+

is a limit ordinal.

Proposition 1.4.7. Let Q0, Q1 � H(κ) such that |Q0| = |Q1| = µ < µ+ < κ

and let Ψ be an isomorphism between (Q0;∈, T ) and (Q1;∈, T ). Then, Ψ is the

identity on Q0 ∩ µ+. In particular, Q0 ∩ µ+ = Q1 ∩ µ+.

Proposition 1.4.8. Let κ < θ, Q � H(θ) and κ ∈ Q. Then Q ∩H(κ) � H(κ).

Proposition 1.4.9. Let Q,Q′ and P be elementary substructures of H(κ).

Suppose that P ∈ Q, P ⊆ Q, and that Ψ : (Q;∈, T ) → (Q′;∈, T ) is an

isomorphism. Then Ψ(P ) is an elementary substructure of (H(κ);∈, T ).

Proof. It’s easy to see that Ψ � P is an isomorphism between (P ;∈, T ) and

(Ψ(P );∈, T ). Assume now that ϕ(y, x̄) is a first-order formula in the language of

set theory and let Ψ(ā) be a tuple of elements of Ψ(P ) such that H(κ) satisfies
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the formula ∃yϕ
(
y,Ψ(ā)

)
. Since Q′ � H(κ) and Ψ(P ) ⊆ Q′, Q′ also satisfies

the formula ∃yϕ
(
y,Ψ(ā)

)
, and since Ψ is an isomorphism, Q satisfies the formula

∃yϕ(y, ā). Hence, again by elementarity, H(κ) |= ∃yϕ(y, ā), and since ā is a

tuple of elements in P , by the Tarski-Vaught test there is b ∈ P such that

H(κ) |= ϕ(b, ā). Now it’s easy to see with a similar argument, using elementarity

of the models Q and Q′ and the isomorphism Ψ, that H(κ) |= ϕ
(
Ψ(b),Ψ(ā)

)
.

Therefore, by the Tarski-Vaught test we can conclude that Ψ(P ) is an elementary

substructure of (H(κ);∈, T ).

Lemma 1.4.10. S contains a club in [H(κ)]ω.

Lemma 1.4.11. Let Q be an elementary submodel of H(κ). If α is any limit

ordinal such that α ∈ Q ∩ κ, then sup(Q ∩ α) = α if and only if cf(α) ≤ |Q|.

Proof. The left-to-right implication is clear. Assume that cf(α) ≤ |Q|. Then,

since α ∈ Q, there must be a function f ∈ Q on cf(α) whose range is unbounded

in α. But since |f | = | cf(α)| ≤ |Q|, by proposition 1.4.4 we have that f ⊆ Q.

Proposition 1.4.12. Let Q0, Q1 � H(κ) such that Q0 ∈ Q1. If α /∈ Q1, then

sup(Q0 ∩ α) < sup(Q1 ∩ α).

Proposition 1.4.13. Let M ∈ S and N ∈ L ∩M . Then, for every Q ∈ S ∪ L

such that εN∩M ≤ εQ < εN , Q /∈M .

Proof. Suppose, towards a contradiction, that there is some Q ∈ S ∪ L such

that εN∩M ≤ εQ < εN and Q ∈ M . First, note that since N ∈ L, then εN =

N ∩ ω2 is an ordinal in ω2. Therefore, εQ = sup(Q ∩ ω2) ∈ N ∩ ω2, and hence,

εQ ∈M ∩ (N ∩ ω2). So we can conclude that εQ < εN∩M , which contradicts our

assumption.

Definition 1.4.14. Let µ < κ be an infinite cardinal. An elementary submodel

Q � H(κ) is said to be µ-closed if µQ ⊆ Q5.

5ℵ0-closed models are also called countably-closed.
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We will denote by Lω-c the collection of all ℵ1-sized countably-closed elementary

submodels of (H(κ);∈, T ).

Lemma 1.4.15. Let ν be a regular cardinal and let µ be another cardinal such

that µ<ν = µ < κ. Then, for every A ∈ [H(κ)]≤µ there is some Q � H(κ) such

that A ⊆ Q, |Q| = µ and <νQ ⊆ Q.

Corollary 1.4.16. If CH holds, then Lω-c is stationary in [H(κ)]ω1.

Proposition 1.4.17. The class Lω-c is appropriate for S.

Proof. Let N ∈ Lω-c and M ∈ S such that N ∈ M . It’s clear that N ∩ M

is a member of N , because N is countably-closed. Now we need to check that

N ∩M ∈ S. We use the Tarski-Vaught test. Let ϕ(y, x̄) be a first-order formula

in the language of set theory. Let ā be a tuple of elements of N ∩M such that

H(κ) |= ∃yϕ(y, ā). Since N � H(κ), there is b ∈ N such that H(κ) |= ϕ(b, ā), and

as N is an element of H(κ), we can rewrite this as H(κ) |= ∃y(y ∈ N ∧ ϕ(y, ā)).

Now, as N ∈ M , by elementarity of M there must be some d ∈ M such that

H(κ) |= d ∈ N ∧ ϕ(d, ā). Therefore, we have found d ∈ N ∩ M such that

H(κ) |= ϕ(d, ā), and thus, we can conclude that N ∩M � H(κ).

Definition 1.4.18. An ℵ1-sized elementary submodel N � H(κ) is said to be

internally club if N is the union of a continuous ∈-increasing sequence of small

models 〈Mξ : ξ < ω1〉. In this case we call 〈Mξ : ξ < ω1〉 an IC-sequence for N .

We will denote by LIC the collection of all internally club models.

Lemma 1.4.19. The class LIC is stationary in [H(κ)]ω1.

Proof. Fix a function f : [H(κ)]<ω → H(κ). Using the clubness of S build

a continuous ∈-increasing sequence of small models 〈Mξ : ξ < ω1〉 such that

f ∈M0. Then, N :=
⋃
ξ<ω1

Mξ is an internally club model closed under f .

Proposition 1.4.20. The class LIC is appropriate for S.
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Proof. Let N ∈ LIC and let M ∈ S such that N ∈ M . By elementarity there

exists an IC-sequence 〈Mξ : ξ < ω1〉 for N in M . It’s not too hard to see that

N ∩M = MδM .



2

Symmetric systems of elementary

submodels

Suppose that we want to force an uncountable set with some specific properties.

The natural thing would be to force with the poset of all finite approximations,

but if we are not careful enough, this poset might collapse cardinals. The

method of forcing with side conditions, invented by Todorčević ([83]), consists

on adding finite systems of models to the conditions of a forcing notion to

ensure the preservation of cardinals.

Typically, a condition of a forcing with side conditions P is a pair (x,∆) where:

• x, the working part, is the finite approximation of the object that we want

to add generically.

• ∆, the side condition, is a finite system of elementary submodels.

• Normally, x and ∆ are related in such a way that we can prove that x is

(M,P)-generic for every M ∈ ∆.

We can also consider the forcing with side conditions whose working part is

empty. Namely, the poset which consists only of the side condition. This poset is

interesting in its own right, and we refer to it as the pure side condition forcing.

Suppose that S0 is a set of countable elementary submodels of a big enough H(θ).

Todorčević’s original pure side condition forcing, sometimes called Todorčević’s
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collapse, is defined as follows:

Definition 2.0.1. C(S0) is the poset of finite ∈-chains of models from S0, ordered

by reverse inclusion.

We will usually refer to the conditions of C(S0) as S0-chains, and the reason to

add them as side conditions is to ensure S0-properness.

There are different lineages of side conditions, which vary on the structure of

the system of models. In this chapter we will focus on symmetric systems (also

called matrices of elementary submodels). These are finite sets of models, not

necessarily linearly ordered by ∈, but exhibiting some form of symmetry.

Typically, models of the same rank are isomorphic and the system is closed

under these isomorphisms. Symmetric systems were also invented by Todorčević

([81]), and later rediscovered by Asperó and Mota ([11], [12]). Finite symmetric

systems of countable elementary submodels, on top of ensuring properness, also

grant the ℵ2-chain condition, and the pure side condition forcing preserves CH.

These side conditions have been used in many different contexts. Especially, in

situations in which we need to preserve all cardinals. Let us list some of the

most important objects known to be forceable using symmetric systems of

models of one type:

• Clubs of ω1 ([11], [12], [8]).

• Kurepa trees and almost Souslin Kurepa trees ([45]).

• The ♦ principle ([45]).

• Certain colourings of [ω2]
2, which give negative polychromatic partition

relations ([2], [3]).

• The principles �ω1 and �ω2 ([51], [55]).

• Kurepa trees of height ω1 ([51]).
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• (ω1, 1)-morasses, simplified (ω1, 1)-morasses, (ω1, λ)-semimorasses for λ ≥

ω2, and simplified (ω2, 1)-morasses with linear limits ([51], [53], [56],[54],

[55]).

• ω2-Souslin trees ([51], [54]).

• Countable fast functions ([52]).

• Strong almost disjoint families of functions from ω1 to ω of arbitrary size

([91]).

The chapter is organised as follows. We will start by introducing Neeman’s two-

type version of Todorčević’s collapse and we will state its main properties. As we

will see, the conditions in Neeman’s pure side condition forcing are models of two

different size, which ensure the preservation of two cardinals. Then, we will define

a variant of this forcing, which includes a third type of “models”. The last three

sections will focus on symmetric systems of elementary submodels. First, we

will give an overview of symmetric systems of countable elementary submodels.

Then, building on the ideas of the previous sections, we will introduce the pure

side condition forcing with symmetric systems of models of two-types and we

will prove their main properties. We will finish this chapter by also considering

a variant of the two-type symmetric systems, which include “models” of a third

non-elementary type.

Let M denote either of the two forcing notions M(S,L) or M(S,L, T +), which

will be properly defined in sections 2.3 and 2.4, respectively. The main properties

of these forcing notions, which constitute the main results of this chapter, can be

summarised as follows:

(1) M is strongly S-proper.

(2) M is strongly L-proper.

(3) If 2ℵ1 = ℵ2 holds, then M has the ℵ3-Knaster condition.

(4) M preserves 2ℵ1 = ℵ2.
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We let κ > ω2 be a cardinal and we fix a predicate T ⊆ H(κ). Throughout

this chapter, S will be the set of countable M � (H(κ);∈, T ) and L will be a

collection of ℵ1-sized elementary submodels N � (H(κ);∈, T ) appropriate for S.

Furthermore, we will assume that L is stationary in [H(κ)]ℵ1 .

2.1 Chains of elementary submodels of two types

This section is devoted to introduce Neeman’s side conditions with models of two

types and review their main properties. These were introduced in [62]1 (see also

[63]), and all the results from this section can be found in said paper. We decided

to include them here because they inspire many of the ideas from sections 2.3

and 2.4. The variant of Neeman’s two-type side conditions which include models

of non-elementary type were presented in [64] and [65]. Since this work hasn’t

been yet published, we have decided to include the proof of some of the results.

2.1.1 Neeman’s two-type side conditions

Definition 2.1.1. Let C be a finite set {Qi : i ≤ n} of members of H(κ). We

say that C is an (S,L)-chain if and only if the following holds:

(1) Every Qi is a member of S ∪ L.

(2) C is ∈-increasing. That is, Qi ∈ Qi+1 for each i < n.

(3) C is closed under intersections in the following sense. If N ∈ C ∩ L and

M ∈ C ∩ S are such that N ∈M , then N ∩M ∈ C.

We will naturally identify a given nonempty (S,L)-chain C with the unique

enumeration 〈Qi : i ≤ n〉, given by the strictly increasing sequence 〈εQi : i ≤ n〉

of ω2-heights of the models in C. If i < j ≤ n, we say that Qi occurs before Qj

in C and we will denote it by Qi < Qj . Moreover, (Qi, Qj) is the interval of

1With a slightly different notation.
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models lying strictly between Qi and Qj in C. We define half-open and closed

intervals in the natural way. We let C(S,L) be the forcing notion whose

conditions are (S,L)-chains and the order is reverse inclusion.

Lemma 2.1.2. Let Q ∈ S ∪ L and let C be an (S,L)-chain such that C ∈ Q.

Then, there is an (S,L)-chain C∗ such that C ∪ {Q} ⊆ C∗.

Proposition 2.1.3. Let C be an (S,L)-chain. Let M ∈ C be a small model, and

let N ∈ C be a large model such that N ∈M . If Q ∈M ∩C, then Q /∈ [N ∩M,N).

If M and N are as in the statement of the last proposition, we call the interval

[N ∩M,N) a residue gap, or simply a gap, of C in M .

Proposition 2.1.4. Let C be an (S,L)-chain and let Q ∈ C. Then, the following

hold:

(1) If Q ∈ L, then C ∩Q consists of all models of C that occur before Q.

(2) If Q ∈ S, then C ∩Q consists of all models of C that occur before Q and do

not belong to residue gaps of C in Q.

Lemma 2.1.5. Let C be an (S,L)-chain and let Q ∈ C. Then, C ∩ Q is an

(S,L)-chain such that C ∩Q ∈ Q.

Lemma 2.1.6. Let C be an (S,L)-chain and let Q ∈ C. Let D be another (S,L)-

chain such that C ∩ Q ⊆ D ⊆ Q. Then, there is an (S,L)-chain R such that

C ∪ D ⊆ R.

Corollary 2.1.7. C(S,L) is strongly S-proper and strongly L-proper.

2.1.2 Neeman’s two-type side conditions with non-elementary

submodels

If M is a countable set of elements of L (possibly finite), we will denote by εM

the ordinal
⋃
{εN + 1 : N ∈ M}, and we will call it the ω2-height of M . Note



Chapter 2: Symmetric systems of elementary submodels 53

that if M is infinite, then εM = supN∈M εN , and hence, cf(εN ) = ω. The reason

to define εM this way is to prevent εM from being equal to the ω2-height of one

of its models of maximal ω2-height in case M is finite. This will be relevant when

dealing with (S,L, T )-chains and (S,L, T +)-symmetric systems in section 2.4.

Definition 2.1.8. A countable collection M of elementary submodels of H(κ)

is called an L-tower if it is linearly ordered by ∈ and every N ∈M is a member

of L.

We will also refer to L-towers as tower-type models or models of non-elementary

type, even though they are not really models. We let T denote the collection of

all L-towers2.

Definition 2.1.9. Let C be a finite set {Qi : i ≤ n} of members of H(κ). We

say that C is an (S,L, T )-chain if and only if the following holds:

(A) Every Qi is a member of S ∪ L ∪ T .

(B) C is ∈-increasing. That is, Qi ∈ Qi+1 for each i < n.

(C) C is closed under intersections in the following sense. If N ∈ C ∩ L and

M ∈ C ∩ (S ∪ T ) such that N ∈M , then the following holds:

(C.a) If M ∈ S, then N ∩M ∈ C. Hence, N ∩M equals some Qi appearing

before N and M in C.

(C.b) If M ∈ T and N ∩M 6= ∅, then there is another L-tower M ∈ C such

that N ∩M ⊆M ∈ N .

As with (S,L)-chains, we will identify a nonempty (S,L, T )-chain C with the

unique enumeration given by the strictly increasing sequence of ω2-heights of its

models. A model Qi ∈ C is said to occur before Qj ∈ C if i < j ≤ n, and intervals

of models are defined in the same way as with (S,L)-chains. We let C(S,L, T ) be

2Not to be confused with the T used in Neeman’s papers [62] and [63], which denotes a
collection of transitive elementary submodels of some H(θ).
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the forcing notion whose conditions are (S,L, T )-chains and the order is reverse

inclusion.

Note that it follows from the definition of (S,L, T )-chains that non-elementary

models are always preceded by a large model.

All of the results from last section translate word by word to the context of

(S,L, T )-chains, and their proofs are almost exactly the same as the ones given

in [62]3. We have decided to only include the analog of lemma 2.1.6 (see lemma

2.1.11) to familiarise ourselves with arguments involving tower-type nodes.

Proposition 2.1.10. Let C be an (S,L, T )-chain and let M ∈ C be a small

model. If M is a tower-type model in C ∩M , then its immediate predecessor is a

large model N that belongs to C ∩M .

Lemma 2.1.11. Let C be an (S,L, T )-chain and let M ∈ C∩S. Let D be another

(S,L, T )-chain such that C ∩M ⊆ D ⊆M . Then, there is an (S,L, T )-chain R

such that C ∪ D ⊆ R.

Proof. For each uncountable model W in D \C we define EW and FW exactly as

in the proof of lemma 2.21 of [62]. Let N be the least uncountable model in C∩M

above W , if it exists, and let N∗ be the least uncountable model above N ∩M .

Then, we let EW be the set of all models in the interval [N ∩M,N∗). If there

is no uncountable model in C ∩M above W , we let N∗ be the least uncountable

model above M . Then, EW is defined as the set of all models in the interval

[M,N∗). Let FW be the set of all models of the form W ∩ Q, where Q ∈ EW .

Note that it makes sense to define EW and FW exactly as in [62] because all

the models in intervals [N ∩ M,N∗) and [M,N∗) as above must be elements

of C and of countable elementary type. Indeed, this follows from the fact that,

in (S,L, T )-chains, tower-type nodes need to be preceded by uncountable-type

nodes. Let R be the result of adding all the models in FW to C ∪D, placing them

in order, right before W , for each uncountable model W ∈ D \ C. We claim that

R is a condition.
3Modulo some easy arguments about non-elementary models
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To see that R is ∈-increasing, we can argue as in claims 2.22 and 2.25 from [62].

First we need to see that the intervals FW are increasing. Then, we show that

D∪C is ∈-increasing. Lastly, we add the intervals FW and check that the models

at the borders of FW are ∈-increasing.

Clause (C.a) from definition 2.1.9 for R is proven exactly as in [62] (claim 2.26).

Clause (C.b) is the only one that needs an argument. Let N ∈ R be an

uncountable model. Note that N ∈ C ∪D because all the models added to C ∪D

to form R are countable and elementary. Let M ∈ R be a model of tower type

such that N ∈ M and N ∩M 6= ∅, and note that M ∈ C ∪ D because of the

same reason as above. We need to find a tower model M
∗ ∈ R such that

N ∩M ⊆ M
∗ ∈ N . Assume first that N ∈ C. If N occurs above M , then both

N and M must be members of C and the result is clear, because C is an

(S,L, T )-chain. Hence, assume that N occurs below M . We may assume that

M ∈ D \ C. Note that in this case M ∈ M , so N ∈ M ⊆ M . Therefore, both N

and M belong to D, and we get the result immediately from the fact that D is

an (S,L, T )-chain. Assume now that N ∈ D \ C. If M ∈ D there is nothing to

check. Hence, we may assume that M ∈ C \M . Note that M must be in a gap

[N ′ ∩M,N ′), where N ′ ∈ C ∩M is an uncountable model occurring above N .

Hence, since we don’t add new models in this gap of C when forming R, M

needs to be immediately preceded by an uncountable model of C, which has to

belong to the same gap. Let N+ ∈ C ∩M be such an uncountable model, which

also occurs above N . Then, as N ∈ N+ ∩M and N+,M ∈ C, there must be

some tower-type model M
+ ∈ C such that N ∈ N+ ∩M ⊆ M

+ ∈ N+. Note

that N ∩M ⊆ N ∩M+
. If M

+ ∈ C \M , we can replace M by M
+

and repeat

the argument. Otherwise, M
+ ∈ C ∩ M ⊆ D. Therefore, as

∅ 6= N ∩M ⊆ N ∩M+
, N ∈ M+

and N,M
+ ∈ D, there is another tower-type

model M
∗ ∈ D such that N ∩M+ ⊆ M

∗ ∈ N . But then we are done, because

N ∩M ⊆ N ∩M+ ⊆M∗.

Lemma 2.1.12. Let C be an (S,L, T )-chain and let M ∈ C ∩T . Then, for every
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N ∈M there is an (S,L, T )-chain CN ⊇ C such that N ∈ CN .

Proof. Start by assuming that N /∈ C, otherwise there is nothing to check. Since

tower-type models need to be preceded by large models in (S,L, T )-chains, there

has to be some N ′ ∈ M in C. Note that if N ′ lies above N , by clause (C.b)

of definition 2.1.9 there must be another tower-type model M
′ ∈ C such that

N ∈ N ′ ∩M ⊆ M
′ ∈ N ′. Therefore, we may start by assuming that M is a

minimal tower-type model containing N . That is, we assume that all N ′ ∈M ∩C

lie below N . Let N∗ be the predecessor of M in C, which is an element of N

because of the minimality of M . We claim that

CN = C ∪ {N} ∪ {N ∩M} ∪ {N ∩M : M ∈ C ∩ S, N ∈M}

is an (S,L, T )-chain. We will denote by SN the set of all countable elementary

M ∈ C such that N ∈M .

Let us check first that CN is ∈-increasing. We will show that the new models

added to C are ordered in the following way in CN :

(1) N ∩M is the immediate successor of N∗ in CN .

(2) N ∩M is followed by all the models of the form N ∩M , for each M ∈ SN .

(3) N lies on top of the models N ∩M and N ∩M , for all M ∈ SN , and it is

the immediate predecessor of M in CN .

Note that N∗ ∈ N ∩M ∈ N ∈ M and that N ∩M ∈ N , for all M ∈ SN . So,

it’s enough to check two things. First, that N ∩M ∈ N ∩M for all M ∈ SN ,

and then, that for any two different M0,M1 ∈ SN , either N ∩M0 ∈ N ∩M1,

N ∩M1 ∈ N ∩M0, or N ∩M0 = N ∩M1.

Note first that all the models in SN lie above M , by the minimality of M . Suppose

that M ∈ C is a model of countable elementary type lying above M and such that

M /∈ M . Then, there must be some uncountable elementary node N ′ ∈ C ∩M
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such that M lies in the gap [N ′∩M,N ′). Since N∗ is the immediate predecessor of

M in C, N ′∩M needs to occur below N∗, and this implies that N also belongs to

the gap [N ′ ∩M,N ′). Therefore, N /∈M . Hence, by contraposition, if M ∈ SN ,

then M ∈ M . In fact, this implies that for every countable elementary node

M ∈ C, N ∈M if and only if M ∈M . So we can conclude that N ∩M ∈ N ∩M ,

for every M ∈ SN .

Now, let M0,M1 ∈ SN . We will show, by induction, that either N∩M0 ∈ N∩M1,

N ∩M1 ∈ N ∩M0, or N ∩M0 = N ∩M1. Suppose that M0 occurs below M1

in C. If M0 ∈ M1, then N ∩M0 ∈ M1, and we are done because it implies that

N ∩M0 ∈ N ∩M1. Hence, we may assume that M0 /∈ M1. In this case, there

has to be some uncountable elementary N+ ∈ C such that M0 lies in the gap

[N+ ∩M1, N
+). If M0 = N+ ∩M1, then N ∩M0 = N ∩ (N+ ∩M1) = N ∩M1,

because N ∈ N+, and we are done. Hence, suppose that N+ ∩M1 lies strictly

below M0. There are two possibilities now. The first one is that N+ ∩M1 ∈M0.

In this case, again because N ∈ N+, we have that N∩(N+∩M1) = N∩M1 ∈M0.

But then we are done, because as M0 ∈ SN implies that N ∩M1 ∈ N ∩M0. The

second possibility is that N ∩M1 /∈ M0. In this case we can repeat the same

argument as above, after the assumption that M0 /∈M1, but arguing with respect

to N∩M1 and M0, instead of M0 and M1, respectively. Since C is finite, in finitely

many iterations of the argument we will get the conclusion that we were looking

for. This finishes the proof that CN is ∈-increasing.

Let us show now that CN is closed under intersections. Assume first that N ′

and M ′ are two models in CN of uncountable and countable elementary type,

respectively, such that N ′ ∈ M ′. We only need to check two cases. If N ′ ∈ C

and M ′ = N ∩M , for some M ∈ SN , then N ′ must lie below N , and hence,

N ′ ∩M ′ = N ′ ∩ (N ∩M) = N ′ ∩M , which belongs to C because N ′,M ∈ C. If

N ′ = N and M ′ ∈ C, then M ′ ∈ SN , and N ′ ∩M ′ ∈ CN by construction.

Assume now that N ′,M
′ ∈ CN are uncountable elementary and tower-type

models, respectively, such that N ′ ∈ M ′ and N ′ ∩M ′ 6= ∅. We need to find a
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tower-type node M
∗ ∈ CN such that N ′ ∩M ′ ⊆ M

∗ ∈ N ′. Again, we only need

to check two cases. First, suppose that N ′ ∈ C and M
′
= N ∩M . Since N ′ ∈M

and N ′,M ∈ C, there must be another tower-type model M
∗ ∈ C such that

N ′ ∩ M ⊆ M
∗ ∈ N ′. But note that as N ′ ∈ N , we have that

N ′ ∩ M
′

= N ′ ∩ (N ∩ M) = N ′ ∩ M . Therefore, M
∗

is such that

N ′ ∩ M ′ ⊆ M
∗ ∈ N ′, as we wanted. As for the second case, suppose that

N ′ = N and that M
′ ∈ C. If M

′
= M , there is nothing to check because

N ∩M ∈ CN by construction. Hence, we may assume that M
′ 6= M . We will

show by induction that there is a model of non-elementary type M
∗ ∈ CN such

that N ∩M ′ ⊆ M
∗ ∈ N . By the minimality of M and since M

′
must occur

above M , there must be a model of uncountable elementary type N0 ∈ C such

that M ∈ N0 ∈M
′
. Since N ∈ N0 ∩M

′
and N0,M

′ ∈ C, there must be a model

of non-elementary type M0 ∈ C such that N0 ∩ M
′ ⊆ M0 ∈ N0. By the

minimality of M , either M = M0 or M0 lies above M . If M = M0, then we

have N ∩M ′ ⊆ N0 ∩M
′ ⊆ M , and thus, N ∩M ′ ⊆ N ∩M ∈ N . Therefore, in

this case letting M
∗

= N ∩M , which belongs to CN by construction, gives us

the result. If M0 occurs after M , we can argue as above, with respect to M0

instead of M
′
. It should be clear that working by induction, we will get the

result after finitely many repetitions of the same argument.

The forcing C(S,L, T ) is strongly S-proper and strongly L-proper, but moreover,

it has the following property, which follows directly from the last lemma.

Corollary 2.1.13. Let C be an (S,L, T )-chain and let M ∈ C ∩ T . Then, C is

strongly (N,C(S,L, T ))-generic for every N ∈M .

2.2 Symmetric systems of models of one type

We have divided this section in two parts. First, we will review some basic results

about elementary submodels and the properties of their isomorphisms, some of

them without proofs. All these facts are well-known and can be found in any of
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the sources cited in section 1.4, but let us add [23], which might be more fitting

for our current purposes. In the second part we will introduce symmetric systems

of models of one type and review their main properties. All the results from the

second part can be found in [11], [12], or [45].

2.2.1 Elementary submodels and isomorphisms

Proposition 2.2.1. Let Q0, Q1 be two elementary submodels of H(κ). If Ψ and

Φ are two isomorphisms between (Q0;∈, T ) and (Q1;∈, T ), then Ψ = Φ.

Proposition 2.2.2. Let Q0, Q1 � H(κ). If Q0 ∈ Q1, then (Q0;∈) and (Q1;∈)

are not isomorphic.

Proposition 2.2.3. Let Q0, Q1 be two elementary submodels of H(κ), let Ψ be

an isomorphism between the structures (Q0;∈, T ) and (Q1;∈, T ), and let fp(Ψ) =

{x ∈ Q0 : Ψ(x) = x} be the set of fixed points of Ψ. Then, the following hold:

(1) fp(Ψ) ⊆ Q0 ∩Q1.

(2) [fp(Ψ)]ω ∩Q0 ⊆ fp(Ψ).

(3) Ψ � (Q0 ∩H(ω1)) is the identity.

(4) Q0 ∩H(ω1) = Q1 ∩H(ω1).

Proposition 2.2.4. Let Q0, Q1 � H(κ) such that |Q0| = |Q1| = µ < µ++ < κ,

and suppose that Ψ is an isomorphism between (Q0;∈, T ) and (Q1;∈, T ). Then,

Q0 ∩Q1 ∩ µ++ is an initial segment of both Q0 ∩ µ++ and Q1 ∩ µ++.

Proof. Without loss of generality, we may assume that we have added a sequence

~e = (eα : α < µ++), where each eα is a bijection between α and |α|, as a

predicate to the structure H(κ). We will show that for every β ∈ Q0 ∩Q1 ∩µ++,

if α ∈ Q0 ∩ β, then α ∈ Q1 ∩ β. Note that there is some ξ ∈ Q0 ∩ µ+ such that

eβ(ξ) = α in Q0. But since Q0∩µ+ = Q1∩µ+ by proposition 1.4.7, we have that

ξ, eβ ∈ Q1. Therefore, eβ(ξ) = α ∈ Q1.
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2.2.2 The pure side condition forcing

Let µ be a cardinal such that µ+ < κ and let B be the collection of elementary

submodels Q � (H(κ);∈, P ) such that |Q| = µ and <µQ ⊆ Q.

Definition 2.2.5 ([11],[12]). Let N be a set of size < µ of subsets of H(κ). We

say that N is a B-symmetric system if the following holds:

(a) Every Q ∈ N is an element of B.

(b) Given Q0, Q1 ∈ N , if Q0 ∩ µ+ = Q1 ∩ µ+, then there is a (unique)

isomorphism ΨQ0,Q1 : (Q0;∈, T ) → (Q1;∈, T ), which is the identity on

Q0 ∩Q1.

(c) Given Q0, Q1 ∈ N , if Q0 ∩ µ+ < Q1 ∩ µ+, then there is Q2 ∈ N such that

Q2 ∩ µ+ = Q1 ∩ µ+ and Q0 ∈ Q2.

(d) Given Q0, Q1, Q
′
1 ∈ N , if Q0 ∈ Q1 and Q1 ∩ µ+ = Q′1 ∩ µ+, then

ΨQ1,Q′1
(Q0) ∈ N .

We will usually refer to condition (c) as the shoulder axiom for N . We let M(B)

be the forcing notion whose conditions are B-symmetric systems and the order is

reverse inclusion.

Proposition 2.2.6. Let N be a B-symmetric system. Let M0,M1 ∈ B such that

ΨM0,M1 is the unique isomorphism between (M0;∈) and (M1;∈). If N ∈ M0,

then ΨM0,M1(N ) is a B-symmetric system.

Lemma 2.2.7. Let Q ∈ B and let N be a B-symmetric system such that N ∈ Q.

Then, there is a B-symmetric system N ∗ such that N ∪ {Q} ⊆ N ∗.

Lemma 2.2.8. Let N be a B-symmetric system and let Q ∈ N . Then, N ∩Q is

a B-symmetric system such that N ∩Q ∈ Q.

Lemma 2.2.9. Let N be a B-symmetric system and let Q ∈ N . LetW be another

B-symmetric system such that N ∩ Q ⊆ W ⊆ Q. Then, there is a B-symmetric

system U such that N ∪W ⊆ U .
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Corollary 2.2.10. M(B) is strongly B-proper.

Lemma 2.2.11. Let N0 and N1 be two B-symmetric systems. Suppose that

(
⋃
N0)∩ (

⋃
N1) = X and that there is an isomorphism Ψ between the structures

(
⋃
N0;∈, T,X,M0)M0∈N0 and (

⋃
N1;∈, T,X,M1)M1∈N1 fixing X. Then N0∪N1

is a B-symmetric system.

Corollary 2.2.12. If 2µ = µ+ holds, then M(B) has the µ++-chain condition.

Theorem 2.2.13. M(B) is µ-closed.

Theorem 2.2.14. M(B) preserves 2µ = µ+.

Countable symmetric systems of models in L, namely L-symmetric systems, are

directly involved in our variant of the two-type symmetric systems that include

models of non-elementary type. As we will see in section 2.4, L-symmetric

systems will play the same role that tower type models played in the context of

(S,L, T )-chains.

We let T + denote the collection of all L-symmetric systems. In the context of

(S,L, T +)-symmetric systems, we will also refer to the elements of T + as non-

elementary models or models of non-elementary type, although they are not really

models. We will tend to use M to denote the elements of T +.

2.3 (S,L)-symmetric systems

In this section we will introduce the forcing with symmetric systems of models

of two types and prove their main properties. These side conditions can be

seen as a natural combination of (S,L)-chains from section 2.1 and symmetric

systems from section 2.2. We will start by defining the notion of an ω1-hull of an

elementary submodel, and prove some basic results about the interaction between

the operations of taking intersections and taking isomorphic copies of elementary

submodels. We will see that, in our context, these operations commute. Then

we will define (S,L)-symmetric systems and show their main properties. Not
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surprisingly, we will see that the pure side condition forcing is strongly S-proper,

strongly L-proper, that it has the ℵ3-Knaster condition (assuming 2ℵ1 = ℵ2), and

that it preserves 2ℵ1 = ℵ2.

2.3.1 The ω1-hull and isomorphisms

Definition 2.3.1. Given a model Q, we let

Q[ω1] := {f(α) : f ∈ Q, f a function with dom(f) = ω1, α ∈ ω1},

and we call it the ω1-hull of Q, or simply the hull of Q.

It is worth noting that if Q ∈ S ∪L and M ∈ S ∩Q, then M [ω1] is definable in Q,

and thus, M [ω1] ∈ Q. Consequently, if M ∈ S, then M [ω1] cannot be countably-

closed, otherwise M would be an element of M [ω1], and thus, we would be able

to define M [ω1] in M [ω1] itself. Therefore, if M ∈ S, then M [ω1] /∈ Lω-c.

It’s also easy to see that if N ∈ L, then N [ω1] = N .

Proposition 2.3.2. Let M ∈ S. Then, M [ω1] is the smallest elementary

submodel of H(κ) that contains M ∪ ω1 as a subset.

Proof. First note that since ω1 ∈ M , the identity function id : ω1 → ω1 is

definable in M , and thus, ω1 ⊆ M [ω1]. Moreover, for each a ∈ M , the constant

function sending all α ∈ ω1 to a is definable in M , so M ⊆M [ω1].

We use the Tarski-Vaught test to show that M [ω1] is an elementary submodel of

H(κ). Let ϕ(y, x0, . . . , xn) be a first-order formula in the language of set theory.

Let a0, . . . , an ∈ M [ω1] such that H(κ) |= ∃yϕ(y, a0, . . . , an). We have to find

b ∈ M [ω1] such that H(κ) |= ϕ(b, a0, . . . , an). Let fi ∈ M and αi ∈ ω1 be such

that ai = fi(αi), for all i ≤ n. Fix a bijection F : ω<ω1 → ω1. We can define a

function g in H(κ) by

g
(
F (β0, . . . , βn)

)
= d ⇐⇒ H(κ) |= ϕ

(
d, f0(β0), . . . , fn(βn)

)
,
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for any β0, . . . , βn ∈ ω1. Note that g ◦ F is defined with f0, . . . , fn and ω1 as

parameters. Hence, we can assume that g ◦ F ∈ M . Now, let

b = g
(
F (α0, . . . , αn)

)
. Then, b ∈ M and H(κ) |= ϕ(b, a0, . . . , an). Therefore,

M [ω1] � H(κ).

To prove the minimality of M [ω1], let N be an elementary submodel of H(κ)

such that N ⊆ M [ω1] and M ∪ ω1 ⊆ N . On one hand, since N has size ℵ1,

N [ω1] = N and hence N [ω1] ⊆ M [ω1]. On the other hand, since M ⊆ N , every

function that belongs to M also belongs to N , so M [ω1] ⊆ N [ω1] = N .

Proposition 2.3.3. Let M0,M1 ∈ S be such that Ψ is the unique isomorphism

between the structures (M0[ω1];∈,M0, T ) and (M1[ω1];∈,M1, T ). Then, Ψ � M0

is the unique isomorphism between the structures (M0;∈, T ) and (M1;∈, T ).

Proof. It’s clear that Ψ � M0 is a bijection between M0 and M1. Let ϕ be a

first-order formula in the language of set theory and let ā be a tuple of elements

of M0. Then, since M0 �M0[ω1] and M1 �M1[ω1] by proposition 1.4.3,

M0 |= ϕ(ā) ⇐⇒ M0[ω1] |= ϕ(ā)

⇐⇒ M1[ω1] |= ϕ
(
Ψ(ā)

)
⇐⇒ M1 |= ϕ

(
Ψ(ā)

)
Hence, Ψ �M0 is an isomorphism between (M0;∈, T ) and (M1;∈, T ).

Proposition 2.3.4. Let M ∈ S and let α ∈ M be an ordinal with cf(α) > ω1.

Then, sup(M [ω1] ∩ α) = sup(M ∩ α).

Proof. The inequality ≥ is clear. For the direction ≤ let ξ ∈ M [ω1] ∩ α. Then,

there are a function f ∈ M and an ordinal β ∈ ω1 such that f(β) = ξ. Define a

function g on ω1 by g(γ) = f(γ) if f(γ) ∈ α, and g(γ) = 0 otherwise, for each

γ ∈ ω1. Note that since f, ω1, α ∈M , the function g is definable in M . Therefore,
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as dom(g) = ω1 and cf(α) > ω1, we have that sup(ran(g)) ∈M ∩ α. Hence,

ξ = f(β) = g(β) < sup(M ∩ α).

Corollary 2.3.5. If M ∈ S, then εM = εM [ω1], and hence, cf(εM [ω1]) = ω.

Corollary 2.3.6. Let M0,M1 ∈ S be such that Ψ is the unique isomorphism

between (M0[ω1];∈,M0, T ) and (M1[ω1];∈,M1, T ). Then, εM0 = εM1.

The following result is an immediate consequence of lemma 1.4.11.

Proposition 2.3.7. Let M ∈ S and let α ∈ M be an ordinal with cf(α) = ω1.

Then, sup(M ∩ α) < sup(M [ω1] ∩ α) = α.

The following results tell us that, in some way, in the context of (S,L)-symmetric

systems the operations of taking intersections and taking isomorphic copies of

models in S ∪ L commute.

Proposition 2.3.8. Let Q0, Q1, Q
′
1 ∈ S ∪ L such that Q0 ∈ Q1[ω1], and let Ψ

be an isomorphism between (Q1[ω1];∈, Q1, T ) and (Q′1[ω1];∈, Q′1, T ), which is the

identity on Q1[ω1] ∩ Q′1[ω1]. Then, Ψ(Q0[ω1]) = Ψ(Q0)[ω1], and Ψ � Q0[ω1] is

the unique isomorphism between (Q0[ω1];∈, Q0, T ) and (Ψ(Q0)[ω1];∈,Ψ(Q0), T ),

and it is the identity on Q0[ω1] ∩Ψ(Q0)[ω1].

Proof. First we show that Ψ(Q0[ω1]) = Ψ(Q0)[ω1]. By proposition 2.3.2 we only

need to show that Ψ(Q0[ω1]) is the minimal elementary submodel of H(κ) that

contains Ψ(Q0)∪ω1 as a subset. It’s not hard to see that Ψ(Q0)∪ω1 ⊆ Ψ(Q0[ω1]),

and it follows from proposition 1.4.9 that Ψ(Q0[ω1]) � H(κ). Now, let R be a

subset of Ψ(Q0[ω1]) such that Ψ(Q0) ∪ ω1 ⊆ R � H(κ). Then, there is a subset

P ⊆ Q0[ω1] such that R = Ψ(P ). Note that P is an elementary submodel of

H(κ) by proposition 1.4.9, and as Ψ(Q0) ∪ ω1 ⊆ R, we have that Q0 ∪ ω1 ⊆ P .

Therefore, by proposition 2.3.2, P = Q0[ω1], and thus, R = Ψ(P ) = Ψ(Q0[ω1]).
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This shows the minimality of Ψ(Q0[ω1]), and thus, that Ψ(Q0[ω1]) = Ψ(Q0)[ω1],

as we wanted.

It follows easily that Ψ � Q0[ω1] is an isomorphism between (Q0[ω1];∈, Q0, T )

and (Ψ(Q0)[ω1];∈,Ψ(Q0), T ). To see that it is the identity on Q0[ω1]∩Ψ(Q0)[ω1]

we only need to note that Q0[ω1]∩Ψ(Q0)[ω1] is contained in Q1[ω1]∩Q′1[ω1].

Corollary 2.3.9. Let M0,M1 ∈ S, and let Ψ be an isomorphism between the

structures (M0[ω1];∈,M0, T ) and (M1[ω1];∈,M1, T ), which is the identity on

M0[ω1] ∩M1[ω1]. Let N0 ∈ L be such that N0 ∈ M0 and denote Ψ(N0) by N1.

Then, Ψ �
(
(N0 ∩ M0)[ω1]

)
is the unique isomorphism between the structures(

(N0 ∩M0)[ω1];∈, N0 ∩M0, T
)

and
(
(N1 ∩M1)[ω1];∈, N1 ∩M1, T

)
, and it is the

identity on (N0 ∩M0)[ω1] ∩ (N1 ∩M1)[ω1].

Proposition 2.3.10. Let M ∈ S and let N0, N1 ∈ L such that N0, N1 ∈ M .

Suppose that ΨN0,N1 is an isomorphism between the structures (N0;∈, T ) and

(N1;∈, T ), which is the identity on N0 ∩N1. Then, ΨN0,N1 �
(
(N0 ∩M)[ω1]

)
is

the unique isomorphism between the structures
(
(N0 ∩M)[ω1];∈, N0 ∩M,T

)
and(

(N1∩M)[ω1];∈, N1∩M,T
)
, and it is the identity on (N0∩M)[ω1]∩(N1∩M)[ω1].

Proof. Note that, by proposition 2.3.8 it’s enough to check that ΨN0,N1(N0 ∩M)

equals N1 ∩M . First note that ΨN0,N1 is definable in M with parameters N0

and N1, hence ΨN0,N1 ∈ M . On one hand, it follows that for all x ∈ N0 ∩M ,

ΨN0,N1(x) ∈ N1 ∩M . So, ΨN0,N1(N0 ∩M) ⊆ N1 ∩M . On the other hand, for all

y ∈ N1∩M there is a unique x ∈ N0 such that ΨN0,N1(x) = y. But note that x is

definable in M from y and ΨN0,N1 , so x ∈M . Therefore, x ∈ N0 ∩M , and thus,

N1 ∩M ⊆ ΨN0,N1(N0 ∩M). This shows that ΨN0,N1(N0 ∩M) = N1 ∩M .

Proposition 2.3.11. Let N0, N1 ∈ L and M0,M1 ∈ S such that N0 ∈ M0

and N1 ∈ M1. Suppose that ΨN0,N1 is an isomorphism between (N0;∈, T ) and

(N1;∈, T ), which is the identity on N0 ∩ N1. Suppose that ΨM0[ω1],M1[ω1] is an

isomorphism between the structures (M0[ω1];∈,M0, T ) and (M1[ω1];∈,M1, T ),

which is the identity on M0[ω1]∩M1[ω1]. Then, ΨN0,N1 �
(
(N0 ∩M0)[ω1]

)
is the
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unique isomorphism between the structures
(
(N0 ∩M0)[ω1];∈, N0 ∩M0, T

)
and(

(N1 ∩M1)[ω1];∈, N1 ∩M1, T
)
, and ΨN0,N1 �

(
(N0 ∩M0)[ω1]

)
is the identity on

(N0 ∩M0)[ω1] ∩ (N1 ∩M1)[ω1].

Proof. Let N ′0 denote ΨM0[ω1],M1[ω1](N0). Note that N ′0 ∈M1 and that ΨN0,N ′0
:=

ΨM0[ω1],M1[ω1] � N0 is the unique isomorphism between (N0;∈, T ) and (N ′0;∈, T ).

Hence, ΨN0,N1 = ΨN ′0,N1
◦ΨN0,N ′0

. By corollary 2.3.9, ΨN0,N ′0
�
(
(N0∩M0)[ω1]

)
=

ΨM0[ω1],M1[ω1] �
(
(N0∩M0)[ω1]

)
is the unique isomorphism between the structures(

(N0 ∩M0)[ω1];∈, N0 ∩M0

)
and

(
(N ′0 ∩M1)[ω1];∈, N ′0 ∩M1

)
. Hence, we only

need to show that ΨN ′0,N1
�
(
(N ′0 ∩M1)[ω1]

)
is the unique isomorphism between

(N ′0 ∩M1)[ω1] and (N1 ∩M1)[ω1], but this follows from the last proposition.

Proposition 2.3.12. Let N ∈ L and M0,M1 ∈ S such that N ∈M0[ω1]∩M1[ω1].

If (M0[ω1];∈,M0, T ) and (M1[ω1];∈,M1, T ) are isomorphic through the unique

isomorphism Ψ that fixes M0[ω1] ∩M1[ω1], then N ∩M0 = N ∩M1.

Proof. First note that since N ∈ M0[ω1] ∩M1[ω1], then Ψ(N) = N , which in

turn implies that Ψ(N ∩M0) = N ∩M1. Therefore, as N ∩M0 ∈ N , and thus,

N ∩M0 ∈M0[ω1] ∩M1[ω1], we have that N ∩M0 = Ψ(N ∩M0) = N ∩M1.

2.3.2 The pure side condition forcing

The following is the natural version of symmetric system of models of two types,

which combines the notion of (S,L)-chains with that of symmetric systems. In

fact, every (S,L)-chain is, in particular, an (S,L)-symmetric system.

Definition 2.3.13. Let N be a finite set of members of H(κ). We say that N

is an (S,L)-symmetric system if and only if the following holds:

(A) Every Q ∈ N is an element of S ∪ L.

(B) For any two distinct Q0, Q1 ∈ N , if εQ0 = εQ1 , then Q0[ω1] ∼= Q1[ω1].

Furthermore, ΨQ0[ω1],Q1[ω1] is an isomorphism between the structures



Chapter 2: Symmetric systems of elementary submodels 67

(Q0[ω1];∈, Q0, T ) and (Q1[ω1];∈, Q1, T ), and ΨQ0[ω1],Q1[ω1] is the identity

on Q0[ω1] ∩Q1[ω1].

(C) For any two distinct Q0, Q1 ∈ N , if εQ0 < εQ1 , then there is Q′1 ∈ N such

that εQ′1 = εQ1 and Q0 ∈ Q′1[ω1].

(D) For every Q ∈ N and every M ∈ N ∩ S, if Q ∈ M [ω1] and there is no

Q′ ∈ N such that εQ < εQ′ < εM , then in fact Q ∈M .

(E) For all Q0, Q1, Q
′
1 ∈ N such that Q0 ∈ Q1 and εQ1 = εQ′1 ,

ΨQ1[ω1],Q′1[ω1](Q0) ∈ N .

(F) For every N ∈ N ∩ L and every M ∈ N ∩ S, if N ∈M , then N ∩M ∈ N .

A finite set N of members of H(κ) is a pre-(S,L)-symmetric system if it satisfies

clauses (A)-(E). As in the case of symmetric systems of models of one type, we

will refer to clause (C) as the shoulder axiom for N . Let M(S,L) be the forcing

notion whose conditions are (S,L)-symmetric systems and the order is reverse

inclusion.

As we will see later, in (S,L)-symmetric systems there are also residue gaps,

similar to the ones in (S,L)-chains. The reason to ask for isomorphisms between

the ω1-hulls of the models in an (S,L)-symmetric system is to have full symmetry,

even for the models inside the residue gaps. This is also the reason why, in general,

S-symmetric systems are not (S,L)-symmetric systems.

It’s not too hard to see that if N is a finite set of members of H(κ) satisfying

clauses (A) and (B) of definition 2.3.13, then N satisfies clauses (C) and (D) if

and only if it satisfies the following clause:

(C+D) For any two distinct Q0, Q1 ∈ N , if εQ0 < εQ1 and there is no P ∈ N

such that εQ0 < εP < εQ1 , then there is Q2 ∈ N such that εQ2 = εQ1 and

Q0 ∈ Q2.

In most cases, when showing that a finite set of members of H(κ) is an (S,L)-
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symmetric system, showing that it satisfies clause (C+D) will be easier than

showing that it satisfies clauses (C) and (D) separately.

2.3.3 Basic properties

The following proposition is an immediate consequence of the basic facts about

elementary submodels presented at the beginning of section 1.4 in the

preliminaries.

Proposition 2.3.14. Let N be a pre-(S,L)-symmetric system. If Q0, Q1 ∈ N ,

then the following holds:

(1) If Q0 ∈ Q1 and |Q0| < |Q1|, then Q0 ⊆ Q1.

(2) If Q1 is a small model, Q0 ∈ Q1[ω1], and there is no large model N ∈ N

such that εQ0 < εN < εQ1, then Q0 ∈ Q1.

Proposition 2.3.15. Let N be a pre-(S,L)-symmetric system and let

Q0, Q1, Q
′
1 ∈ N such that Q0 ∈ Q1[ω1] and εQ1 = εQ′1. Then, ΨQ1[ω1],Q′1[ω1](Q0)

belongs to N .

Proof. If Q1, Q
′
1 ∈ L, then the result follows directly from clause (E). Hence, we

may assume that Q1 and Q′1 are countable. If there are no uncountable models

N ∈ N such that εQ0 < εN < εQ1 , then Q0 ∈ Q1 by the last proposition, and

the result follows from clause (E). Suppose the contrary and let ε be the greatest

ω2-height of any uncountable model in N lying strictly between εQ0 and εQ1 . By

two applications of the shoulder axiom we can find an uncountable N ∈ N and

a model R ∈ N such that εN = ε, εR = εQ1 , Q0 ∈ N and N ∈ R[ω1]. Hence,

again by the last proposition, N ∈ R. Therefore, we can apply clause (E) to get

N1 := ΨR[ω1],Q1[ω1](N) ∈ N ∩ Q1 and N ′1 := ΨQ1[ω1],Q′1[ω1](N1) ∈ N ∩ Q′1. Note

that Q0 ∈ R[ω1] ∩ Q1[ω1]. Hence, Q0 = ΨR[ω1],Q1[ω1](Q0) = ΨN [ω1],N1[ω1](Q0).

Thus, as Q0 ∈ N1, we have that ΨQ1[ω1],Q′1[ω1](Q0) = ΨN1[ω1],N ′1ω1
(Q0) ∈ N ,

again by clause (E).
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Proposition 2.3.16. Let N be a pre-(S,L)-symmetric system. Let Q0, Q1 ∈ N

such that Q0 ∈ Q1[ω1]. If there is P ∈ N such that εQ0 < εP < εQ1, then there

is some R ∈ N such that εR = εP , Q0 ∈ R[ω1] and R ∈ Q1[ω1].

Proof. By two applications of the shoulder axiom we can find P ′, Q′1 ∈ N such

that εP ′ = εP , εQ′1 = εQ1 , Q0 ∈ P ′[ω1] and P ′ ∈ Q′1[ω1]. Let R be the image

of P ′ under the isomorphism ΨQ′1[ω1],Q1[ω1], which belongs to N by proposition

2.3.15. On one hand, note that R ∈ Q1[ω1]. And on the other hand, note that

as Q0 ∈ Q′1[ω1] ∩ Q1[ω1], by clause (B), Q0 = ΨQ′1[ω1],Q1[ω1](Q0). Therefore, as

ΨP ′[ω1],R[ω1] = ΨQ′1[ω1],Q1[ω1] � P
′[ω1], we have that Q0 ∈ R[ω1].

The following proposition, which tells us that an isomorphic copy of an (S,L)-

symmetric system is again an (S,L)-symmetric system, is an easy exercise.

Proposition 2.3.17. Let N be an (S,L)-symmetric system. Let N0, N1 be two

elementary submodels of H(κ) of size ℵ1 such that ΨN0,N1 is the unique

isomorphism between (N0;∈) and (N1;∈). If N ⊆ N0, then ΨN0,N1(N ) is an

(S,L)-symmetric system.

Lemma 2.3.18. Let N be an (S,L)-symmetric system and let N ∈ L such that

N ⊆ N . Then N ∪ {N} is an (S,L)-symmetric system.

Proof. Every Q ∈ N is an element of N , and thus εQ < εN . This shows that

clause (B) from definition 2.3.13 is satisfied. The other clauses are obvious.

Lemma 2.3.19. Let N be an (S,L)-symmetric system and let M ∈ S such that

N ⊆M . Then, there is an (S,L)-symmetric system N ∗ such that N∪{M} ⊆ N ∗.

Proof. We claim that the set

N ∗ = N ∪ {M} ∪ {N ∩M : N ∈ N ∩ L}

is an (S,L)-symmetric system. It is worth noting first that if N ∈ N ∩ L, then

there is no Q ∈ N ∗ such that εN∩M < εQ < εN . Suppose first that Q ∈ N
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is such that εQ < εN . Then there is some N ′ ∈ N such that εN ′ = εN and

Q ∈ N ′. Hence, as N ⊆ M , the model Q is an element of N ′ ∩ M , and as

εN ′∩M = εN∩M by proposition 2.3.10, εQ < εN∩M . Suppose now that Q is of the

form N ′∩M for some N ′ ∈ N ∩L, and εQ < εN . If εN ′ > εN , then there is some

N ′′ ∈ N such that εN ′′ = εN ′ and N ∈ N ′′. Therefore, N ∈ N ′′ ∩M , and as

εN ′′∩M = εN ′∩M = εQ by proposition 2.3.10, we get a contradiction. If εN ′ = εN ,

then εQ = εN∩M , again by proposition 2.3.10. Finally, if εN ′ < εN , there must

be some N∗ ∈ N such that εN∗ = εN and N ′ ∈ N∗. Hence, N ′ ∈ N∗ ∩M , and

we can conclude that εQ < εN ′ < εN∗∩M = εN∩M . Now we are ready to show

that N ∗ is an (S,L)-symmetric system.

Clause (A) is clear.

To show clause (B) we only need to check the case M0,M1 ∈ N ∗ ∩ S, where

εM0 = εM1 and M0 is of the form N0 ∩M for some N0 ∈ N ∩ L. It follows from

the argument above that M1 must be of the form N1 ∩M , for some N1 ∈ N ∩L

with εN1 = εN0 . Hence, the result follows from proposition 2.3.10.

Let us show now that N ∗ satisfies clause (C+D). Let Q0, Q1 ∈ N ∗ such that

εQ0 < εQ1 and so that there is no P ∈ N ∗ with εQ0 < εP < εQ1 . We need to find

Q2 ∈ N ∗ such that εQ2 = εQ1 and Q0 ∈ Q2. If both Q0 and Q1 belong to N there

is nothing to check. Suppose first that Q1 = N1 ∩M for some N1 ∈ N ∩ L. By

the observation at the beginning of the proof, Q0 cannot be of the form N0 ∩M

for any N0 ∈ N ∩L. Hence, Q0 ∈ N , and thus, there must be some N2 ∈ N such

that εN2 = εN1 and Q0 ∈ N2. Note that as N ⊆M , we have that Q0 ∈ N2 ∩M .

Hence, if we let Q2 = N2 ∩M , since εN2∩M = εN1∩M , we are done. Suppose now

that Q0 is of the form N0 ∩M for some N0 ∈ N ∩ L. Then, by the observation

above, Q1 must have ω2-height εN0 . But then we are done, as Q0 ∈ N0.

Let Q1, Q
′
1 ∈ N ∗ be such that εQ1 = εQ′1 , let Q0 ∈ N ∗ ∩ Q1, and define Q′0 :=

ΨQ1[ω1],Q′1[ω1](Q0). To show clause (E) we have to check that Q′0 ∈ N ∗. First of

all, note that Q1 ∈ N ∗ \ N if and only if Q′1 ∈ N ∗ \ N . If Q0, Q1, Q
′
1 ∈ N there

is nothing to check. If Q0 = N0 ∩M and Q1 = N1 ∩M , for N0, N1 ∈ N ∩ L,
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then N0 ∩M ∈ N1 ∩M , which is impossible by proposition 1.4.13. If Q0 ∈ N ,

Q1 = N1∩M and Q′1 = N ′1∩M , for some N1, N
′
1 ∈ N ∩L, then Q′0 = ΨN1,N ′1

(Q0)

by proposition 2.3.10, which is clearly an element of N . Lastly, suppose that

Q0 = N0∩M , for some N0 ∈ N ∩L, and Q1, Q
′
1 ∈ N . Note that by the argument

at the beginning of the proof, εN0 ≤ εQ1 . If εN0 = εQ1 , as Q0 ∈ N0∩Q1, we have

that Q′0 = ΨQ1,Q′1
(Q0) = ΨQ1,Q′1

(ΨN0,Q1(Q0)) = ΨN0,Q′1
(Q0) = Q′1 ∩M , which

is an element of N ∗. If εN0 < εQ1 , there is some Q′′1 ∈ N such that εQ′′1 = εQ1

and N0 ∈ Q′′1[ω1]. Let N ′0 = ΨQ′′1 [ω1],Q′1[ω1](N0), which is an element of N , and

note that since Q0 ∈ Q′′1[ω1] ∩ Q1[ω1], we have that Q′0 = ΨQ′′1 [ω1],Q′1[ω1](Q0) =

ΨN0,N ′0
(Q0) = N ′0 ∩M . Hence, Q′0 ∈ N ∗.

Lastly, we show that N ∗ satisfies clause (F). Note that all the uncountable models

in N ∗ belong to N . Hence, the only non-trivial case that needs to be checked is

the following one. Let N0, N1 ∈ N be large models such that N0 ∈ N1 ∩M . We

need to show that N0 ∩ (N1 ∩M) ∈ N ∗. But note that since N0 ∈ N1 and both

models are uncountable, N0 ⊆ N1. Therefore, N0 ∩ (N1 ∩M) = N0 ∩M , which

clearly belongs to N ∗.

Lemma 2.3.20. Let N be an (S,L)-symmetric system and let N ∈ N∩L. Then,

N ∩N is an (S,L)-symmetric system.

Proof. Clauses (A) and (B) are straightforward.

Let us check that N ∩N satisfies clause (C+D). Let Q0, Q1 ∈ N ∩N such that

εQ0 < εQ1 , and suppose that there is no P ∈ N ∩N such that εQ0 < εP < εQ1 .

We need to find Q2 ∈ N ∩ N such that εQ2 = εQ1 and Q0 ∈ Q2. Note that, in

fact, there is no R ∈ N such that εQ0 < εR < εQ1 , otherwise by proposition 2.3.16

there would be some R′ ∈ N such that εR′ = εR, Q0 ∈ R′[ω1] and R′ ∈ N . Hence,

by an application of clause (C+D) followed by an application of clause (C) of N ,

there must be Q′2, N
′ ∈ N such that εQ′2 = εQ1 , εN ′ = εN and Q0 ∈ Q′2 ∈ N ′.

But then we are done. If we let Q2 = ΨN ′,N (Q′2), since Q0 ∈ N ′ ∩ N , we have

that Q0 = ΨN ′,N (Q0) ∈ Q2.
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Let Q0, Q1, Q
′
1 ∈ N ∩ N such that Q0 ∈ Q1 and εQ1 = εQ′1 . Then,

ΨQ1[ω1],Q′1[ω1](Q0) ∈ N ∩Q′1[ω1] ⊆ N ∩N . Hence, clause (E) is also satisfied.

Lastly, let N ′ ∈ N ∩ N ∩ L and let M ∈ N ∩ N ∩ S such that N ′ ∈ M . Then,

N ′ ∩M ∈ N ′ ∩ N , and since N ′ ⊆ N , N ′ ∩M ∈ N . Therefore, N ∩N satisfies

clause (F) as well.

Let N be an (S,L)-symmetric system and let M ∈ N ∩ S. If N ∩ L ∩M is

nonempty, we can fix a maximal increasing ∈-chain 〈Ni : i ≤ n〉 of elements of

N ∩ L ∩M . We clearly have Ni ∈ Ni+1 ∩M ∈ Ni+1, for each i < n. Denote

εNi by εN∩L∩Mi and εNi∩M by εN∩S∩Mi , or simply εLi and εSi , respectively, if N

and M are clear from the context, for every i ≤ n. We call 〈(εSi , εLi ) : i ≤ n〉

the residue sequence of N ∩M . Note that this sequence doesn’t depend on the

choice of the sequence of models 〈Ni : i ≤ n〉 because of proposition 2.3.10.

Remark 2.3.21. Note that every model Q ∈ N such that either εQ < εS0 , or

εQ ∈
⋃
i<n(εLi , ε

S
i+1), or εQ ∈ (εLn , εM ), is a countable model. Therefore, by

proposition 2.3.14, if P ∈ N is such that εP ∈ [εLi , ε
S
i+1) and P ∈ (N ∩M)[ω1],

for some N ∈ N ∩M such that εN = εLi+1, then P ∈ N ∩M . Similarly, if εP < εS0

and P ∈ (N ∩M)[ω1] for some N ∈ N ∩M such that εN = εL0 , then P ∈ N ∩M .

The following proposition is analogous to proposition 2.1.4 for (S,L)-chains. It

tells us exactly which models belong to N ∩M , when M is a small model that

belongs to an (S,L)-symmetric system N .

Proposition 2.3.22. Let N be an (S,L)-symmetric system, let M ∈ N ∩S, and

let 〈(εSi , εLi ) : i ≤ n〉 be the residue sequence of N ∩M . Then, Q ∈ N ∩M if and

only if Q ∈ N ∩M [ω1] and either,

(1) εQ ∈ [εLn , εM ), or

(2) εQ ∈ [εLi , ε
S
i+1) and Q ∈ (Zi+1 ∩M)[ω1], for some i < n and some large

model Zi+1 ∈ N ∩M such that εZi+1 = εLi+1, or
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(3) εQ < εS0 and Q ∈ (Z0 ∩M)[ω1], for some large model Z0 ∈ N ∩M such

that εZ0 = εL0 .

Proof. Let us check first the right-to-left implication. Let Q ∈ N ∩M [ω1]. Note

that all the models R ∈ N such that εR ∈ (εLn , εM ) are countable. Therefore, if

Q is as in (1), then Q ∈ M by proposition 2.3.14. If Q is as in (2) or (3), the

conclusion follows from the last remark.

Let us show the other direction by contraposition. Let Q ∈ N ∩ M [ω1]. If

εQ ∈
⋃
i≤n[εSi , ε

L
i ), then Q /∈ M by proposition 1.4.13. Hence, assume that Q is

such that εQ ∈ [εLi , ε
S
i+1), for some i < n. Since we are arguing by contraposition,

Q /∈ (N ∩M)[ω1], for all N ∈ N ∩L∩M such that εN = εLj , for some j ≤ n. Note

that by the last remark, since εQ ∈ [εLi , ε
S
i+1), we have that Q /∈ N ∩M , for all

N ∈ N ∩L∩M such that εN = εLj , for some j ≤ n. Now, by proposition 2.3.16,

since εQ < εSn < εLn and Q ∈M [ω1], there must be some N ′ ∈ N ∩L∩M [ω1] such

that Q ∈ N ′ and εN ′ = εLn . By item (1), N ′ ∈ M , and therefore, N ′ ∩M ∈ N .

Hence, Q /∈M , otherwise Q would be an element of N ′ ∩M , which is impossible

by assumption. If Q is as in (3), we can argue in the exact same way.

Under the assumptions of the last proposition, N ∩M consists exactly of those

models Q ∈ N ∩M [ω1] such that Q ∈ N ∩M for some large model N ∈ N ∩M ,

and those Q ∈ N ∩M [ω1] for which there is no N ∈ N ∩L∩M such that εQ < εN .

This resembles the situation of Neeman’s (S,L)-chains from section 2.1. Suppose

that C is an (S,L)-chain, that M ∈ C∩S, and that 〈(εSi , εLi ) : i ≤ n〉 is the residue

sequence of C ∩M . Then, we can reformulate item (2) from proposition 2.1.4 by

saying that C ∩M consists exactly of those models Q ∈ C such that either

• εQ ∈ [εLn , εM ), or

• εQ ∈ [εLi , ε
S
i+1) for some i < n, or

• εQ < εS0 .
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There is a major difference between (S,L)-symmetric systems and (S,L)-chains,

though. Let N be an (S,L)-symmetric system, let M ∈ N be a small model,

and let 〈Ni : i ≤ m〉 be a maximal increasing ∈-chain of large models in N ∩M .

Then, for any i ≤ m, there can be small models P ∈ N ∩ Ni such that P ∈ Ni

and εP = εNi∩M , and P not being of the form N ′i ∩M , for some N ′i ∈ N ∩L such

that εN ′i = εNi . In particular this implies that there can be models Q ∈ N such

that εQ ∈ [εNi , εNi+1∩M ) and Q ∈ P , but Q /∈M .

Lemma 2.3.23. Let N be an (S,L)-symmetric system and let M ∈ N ∩ S.

Then, N ∩M is an (S,L)-symmetric system.

Proof. Let 〈(εSi , εLi ) : i ≤ n〉 be the residue sequence of N ∩M . Note that clauses

(A) and (B) are straightforward.

Let us show that N ∩M satisfies clause (C+D). Let Q0, Q1 ∈ N ∩M such that

εQ0 < εQ1 and suppose that there is no P ∈ N∩M such that εQ0 < εP < εQ1 . We

need to find Q2 ∈ N∩M such that εQ2 = εQ1 and Q0 ∈ Q2. If εLn < εQ0 , then this

is clear by proposition 2.3.16 and the analysis of N ∩M from proposition 2.3.22.

Suppose that εQ0 ∈ [εLi , ε
S
i+1) and Q0 ∈ Ni+1∩M , for some i < n and some large

model Ni+1 ∈ N ∩M such that εNi+1 = εLi+1. If εQ1 < εSi+1, then there can’t be

any model P ′ ∈ N such that εQ0 < εP ′ < εQ1 . Indeed, if there was such a model,

by proposition 2.3.16 there would be some R ∈ N such that εR = εP ′ , Q0 ∈ R[ω1]

and R ∈ (Ni+1 ∩M)[ω1]. But then, since all the models in N of ω2-height in the

interval (εLi , ε
S
i+1) are countable, R would be a member of M , contradicting our

assumption. Hence, by an application of clause (C+D) followed by an application

of clause (C) of N , there must be some Q′2, Pi+1 ∈ N such that εQ′2 = εQ1 ,

εPi+1 = εSi+1, and Q0 ∈ Q′2 ∈ Pi+1[ω1]. Therefore, since Q0 is a member of

(Ni+1 ∩M) ∩ Pi+1[ω1], we are done by letting Q2 = ΨPi+1[ω1],(Ni+1∩M)[ω1](Q
′
2).

Suppose now that εQ1 ≥ εSi+1. Then, by proposition 2.3.22, Q1 must have ω2-

height εLi+1, and if we let Q2 be Ni+1, we are done. The case εQ0 < εS0 is proven

exactly as the case εQ0 ∈ [εLi , ε
S
i+1) by arguing with εS0 instead of εSi+1 and εL0

instead of εLi+1.
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Now we check that N ∩M satisfies clause (E). Let Q0, Q1, Q
′
1 ∈ N ∩M such that

Q0 ∈ Q1 and εQ1 = εQ′1 , and let Q′0 := ΨQ1[ω1],Q′1[ω1](Q0). It’s clear that Q′0 ∈ N ,

hence we only need to show that Q′0 ∈M . If Q′1 is countable, then Q′1 ⊆M , and

as Q′0 ∈ Q′1, we are done. If Q1 and Q′1 are uncountable, then both Q1 ∩M and

Q′1 ∩M belong to N . By proposition 2.3.10, Q′1 ∩M = ΨQ1[ω1],Q′1[ω1](Q1 ∩M),

and as Q0 ∈ Q1 ∩M , we conclude that Q′0 ∈ Q′1 ∩M .

Finally, let M ′ ∈ N ∩M be a small model and let N ∈ N ∩M be a large model

such that N ∈M ′. Then, N ∩M ′ ∈ N ∩M because M � H(κ). Hence, N ∩M

also satisfies clause (F).

2.3.4 Amalgamation lemmas

If N is an (S,L)-symetric system, we let N [ω1] denote the set {Q[ω1] : Q ∈ N}.

Lemma 2.3.24. Let n < ω, let N0, . . . ,Nn be (S,L)-symmetric systems, and

let Xi,j denote
⋃
Ni[ω1] ∩

⋃
Nj [ω1], for all i, j ≤ n. Suppose that there are

isomorphisms Ψi,j between the structures (
⋃
Ni[ω1];∈, Xi,j , Q

i)Qi∈Ni and

(
⋃
Nj [ω1];∈, Xi,j , Q

j)Qj∈Nj fixing Xi,j, for all i, j ≤ n. Then,
⋃
i≤nNi is an

(S,L)-symmetric system.

Proof. Clause (A) is obviously satisfied by
⋃
i≤nNi.

Let us show clause (B). Let Q0 ∈ Ni and Q1 ∈ Nj such that εQ0 = εQ1 , for some

i, j ≤ n. Let Q2 = Ψi,j(Q0), which is an element of Nj . Then, the structures

(Q0[ω1];∈, Q0) and (Q1[ω1];∈, Q1) are isomorphic through the isomorphism

ΨQ2[ω1],Q1[ω1] ◦ Ψi,j � Q0[ω1]. Now, if x ∈ Q0[ω1] ∩ Q1[ω1], then x must be an

element of Xi,j , which implies that Ψi,j(x) = x, and hence, x ∈ Q2[ω2].

Therefore, x ∈ Q2[ω1] ∩ Q1[ω1], and as Nj is an (S,L)-symmetric system,

ΨQ2[ω1],Q1[ω1](x) = x. Thus, ΨQ0[ω1],Q1[ω1](x) = ΨQ2[ω1],Q1[ω1](Ψi,j(x)) = x.

To show clause (C+D) it suffices to note that the existence of Ψi,j implies that

{εQ0 : Q0 ∈ Ni} = {εQ1 : Q1 ∈ Nj}, for any two i, j ≤ n.
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Let i0, i1, i2 ≤ n and let Q0 ∈ Ni0 , Q1 ∈ Ni1 and Q2 ∈ Ni2 , such that Q0 ∈ Q1 and

εQ1 = εQ2 . In order to show clause (E) we must verify that ΨQ1[ω1],Q2[ω1](Q0)

belongs to
⋃
i≤nNi. Since Q0 ∈ Q1, it follows that Q0 ∈ Xi0,i1 , and hence

Q0 = Ψi0,i1(Q0) ∈ Ni1 . Let Q′0 = Ψi1,i2(Q0) and Q′1 = Ψi1,i2(Q1), which are

both elements of Ni2 . Then, ΨQ1[ω1],Q2[ω1](Q0) = ΨQ′1[ω1],Q2[ω1](Q
′
0), which is an

element of Ni2 because Q′0, Q
′
1, Q2 ∈ Ni2 and Ni2 is an (S,L)-symmetric system.

Let N ∈ Ni ∩ L and M ∈ Nj ∩ S such that N ∈ M , for some i, j ≤ n. We need

to check that N ∩M ∈
⋃
k≤nNk to show clause (F). Note that as N ∈ Ni ∩M ,

in particular, N ∈ Xi,j . Hence, Ψi,j(N) = N , and if we let M0 ∈ Ni ∩ S be

such that Ψi,j(M0) = M , then N ∈ M0. As Ni is an (S,L)-symmetric system,

N ∩M0 ∈ Ni, and thus, Ψi,j(N ∩M0) = N ∩M ∈ Nj .

Definition 2.3.25. Let N be an (S,L)-symmetric system and let R ∈ N . Then,

an (S,L)-symmetric system V is called a virtual (N , R)-reflection if it satisfies

the following properties:

(VR.1) N ∩R[ω1] ⊆ V ⊆ R[ω1].

(VR.2) If R ∈ S and V ∈ V is such that εV = max{εV ′ : V ′ ∈ V}, then V ∈ R.

(VR.3) If R ∈ S, let ε+ = max{εN : N ∈ V ∩ L}, and define ε− as the

ordinal min{εN : N ∈ N ∩ L, εN > εR}, in case it exists, otherwise let

ε− = max{εQ : Q ∈ N}+ 1. Let N ∈ V ∩ L such that εN = ε+. Then, the

following hold:

• N ∩R ∈ V.

• For every ε ∈ {εM ′ : M ′ ∈ N , εM ′ ∈ (εR, ε
−)}, there is some small

model M ′ ∈ N such that R ∈M ′, εM ′ = ε, and N ∩M ′ ∈ V.

Proposition 2.3.26. Let N be an (S,L)-symmetric system and let R ∈ N . Let

V be a virtual (N , R)-reflection. Then,

U = {Q ∈ N : εQ ≥ εR} ∪
⋃
{ΨR[ω1],R′[ω1]”(V) : R′ ∈ N , εR′ = εR}
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is an (S,L)-symmetric system extending N and V.

Proof. First of all note that by proposition 2.3.17, for each R′ ∈ N such that

εR′ = εR, it holds that ΨR[ω1],R′[ω1]”(V) is an (S,L)-symmetric system which

extends N ∩R′[ω1] and is contained in R′[ω1]. Hence,

V∗ :=
⋃
{ΨR[ω1],R′[ω1]”(V) : R′ ∈ N , εR′ = εR},

is an (S,L)-symmetric system by lemma 2.3.24. Note that all models Q ∈ N

such that εQ < εR belong to V∗. Indeed, if Q ∈ N is such that εQ < εR, then

by the shoulder axiom for N there must be some R′ ∈ N such that εR′ = εR

and Q ∈ R′[ω1]. Therefore, ΨR′[ω1],R[ω1](Q) is a member of N ∩R[ω1], which is a

subset of V by (VR.1) of definition 2.3.25. Hence, any model in U of ω2-height

< εR is an element of V∗. Let us denote the set {Q ∈ N : εQ ≥ εR} by N ∗. It’s

clear that U satisfies clauses (A) and (B) from definition 2.3.13, and clause (C+D)

follows from (VR.2) of definition 2.3.25. Let us show that it satisfies clause (E)

now. Note that since V∗ and N are both (S,L)-symmetric systems, it’s enough

to show that if Q1, Q
′
1 ∈ N ∗ are such that εQ1 = εQ′1 , and Q0 ∈ V∗ ∩ Q1, then

ΨQ1[ω1],Q′1[ω1](Q0) ∈ V. By definition of U there must be some R0 ∈ N and

some Q∗0 ∈ V such that εR0 = εR and Q0 = ΨR[ω1],R0[ω1](Q
∗
0). Suppose first that

εQ1 = εQ′1 = εR. Since Q0 ∈ R0[ω1] ∩Q1 and N is an (S,L)-symmetric system,

Q0 = ΨR0[ω1],Q1[ω1](Q0). Therefore,

ΨQ1[ω1],Q′1[ω1](Q0) = ΨR0[ω1],Q′1[ω1](Q0)

= ΨR0[ω1],Q′1[ω1](ΨR[ω1],R0[ω1](Q
∗
0))

= ΨR[ω1],Q′1[ω1](Q
∗
0),

which is clearly an element of U . Suppose now that εQ1 = εQ′1 > εR. We can find

Q2 ∈ N such that εQ2 = εQ1 and R0 ∈ Q2[ω1], by the shoulder axiom for N . Let

R1 = ΨQ2[ω1],Q1[ω1](R0) and R′1 = ΨQ1[ω1],Q′1[ω1](R1), which are both elements

of N by proposition 2.3.15. Note that Q0 ∈ Q2[ω1] ∩ Q1. Hence, as N is an



Chapter 2: Symmetric systems of elementary submodels 78

(S,L)-symmetric system, Q0 = ΨQ2[ω1],Q1[ω1](Q0) = ΨR0[ω1],R1[ω1](Q0) ∈ R1[ω1].

Therefore, ΨQ1[ω1],Q′1[ω1](Q0) = ΨR1[ω1],R′1[ω1](Q0), which is an element of U by

the last case. Thus, U is a pre-(S,L)-symmetric system. Lastly, we check that

U satisfies clause (F). Let N∗ ∈ U ∩ L and M∗ ∈ U ∩ S such that N∗ ∈ M∗.

Note that if N∗,M∗ ∈ V∗, then N∗∩M∗ ∈ V∗ because V∗ is an (S,L)-symmetric

system. If N∗,M∗ ∈ N ∗, then N∗∩M∗ ∈ N , and it follows from the observations

at the beginning of the proof that if εN∗∩M∗ ≥ εR, then N∗ ∩M∗ ∈ N ∗, and

if εN∗∩M∗ < εR, then N∗ ∩M∗ ∈ V∗. Let us check now the last possible case,

N∗ ∈ V∗ and M∗ ∈ N ∗. Assume first that R ∈ L. Let N0 ∈ N ∗ ∩ L be a large

model of N ∗ of minimal ω2-height such that N∗ ∈ N0 ∈ M∗, by appealing to

proposition 2.3.16. Then, N0 ∩M∗ ∈ N , and by the minimality of the ω2-height

of N0 and since R is a large model by assumption, εN0∩M∗ < εR. Therefore,

N0 ∩M∗ ∈ V∗ and N∗ ∈ N0 ∩M∗. Hence, as V∗ is an (S,L)-symmetric system,

N∗ ∩ (N0 ∩ M∗) = N∗ ∩ M∗ ∈ V∗. Assume now that R ∈ S. Recall from

definition 2.3.25, that in this case we define ε+ as max{εN : N ∈ V ∩ L} and

ε− as min{εN : N ∈ N ∩ L, εN > εR}, in case it exists, otherwise we let ε− be

max{εQ : Q ∈ N}+ 1. We divide the proof in two cases:

Case 1. Suppose that εN∗ = ε+. If there is some N ∈ N ∗ ∩ L such that

εR < εN < εM∗ , let N0 ∈ N ∗ be a large model of minimal ω2-height such that

N∗ ∈ N0 ∈ M∗, again by proposition 2.3.16. Note that N∗ ∈ N0 ∩M∗ ∈ N

and that N∗ ∩ (N0 ∩M∗) = N∗ ∩M∗. Hence, in this case it’s enough to show

that N∗ ∩ (N0 ∩M∗) belongs to U . Therefore, we may assume that there is no

large model N ∈ N ∗ such that εR < εN < εM∗ . Suppose that N∗ ∈ R[ω1] and

R ∈M∗[ω1]. Then N∗ ∈ V, and by proposition 2.3.14, N∗ ∈ R ∈M∗. Hence, by

(VR.3) of definition 2.3.25 and proposition 2.3.12, N∗ ∩M∗ ∈ V. Suppose now

that N∗ /∈ R[ω1]. Then, there must be some N ′ ∈ V, and hence N ′ ∈ R[ω1], such

that N∗ = ΨR[ω1],R′[ω1](N
′), for some R′ ∈ N such that εR′ = εR. Let M ′ ∈ N ∗

such that εM ′ = εM∗ and R ∈ M ′[ω1], given by the shoulder axiom for N . Note

that εN ′ = ε+ and εM ′ < ε−, and hence, there are no large models of ω2-height

in the interval (εN ′ , εM ′). Therefore, by (VR.2) of definition 2.3.25 we have that
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N ′ ∈M ′[ω1], and hence, by proposition 2.3.14, N ′ ∈M ′. Therefore, N ′∩M ′ ∈ V

by the last case, and hence, we can conclude that ΨN ′[ω1],N∗[ω1](N
′ ∩ M ′) =

N∗∩M∗ ∈ V∗, by proposition 2.3.11 and the fact that V∗ is an (S,L)-symmetric

system.

Case 2. Suppose that εN∗ < ε+. As in the last case, we may assume that

there are no large models N ∈ N ∗ such that εR < εN < εM∗ . Since U is a

pre-(S,L)-symmetric system, we can find a model N+ ∈ U such that εN+ = ε+

(so N+ ∈ V∗) and N∗ ∈ N+ ∈M∗[ω1], by proposition 2.3.16. Since there are no

uncountable models of ω2-height in the interval (ε+, εM∗), in fact, N+ ∈ M∗ by

proposition 2.3.14. Therefore, by case 1, N+∩M∗ ∈ V∗. Hence, as N∗ ∈ N+∩M∗

and V∗ is an (S,L)-symmetric system, N∗ ∩ (N+ ∩M∗) = N∗ ∩M∗ ∈ V∗.

Lemma 2.3.27. Let N be an (S,L)-symmetric system and let M ∈ N ∩ S. Let

W be another (S,L)-symmetric system such that N ∩M ⊆ W ⊆M . Then, there

is an (S,L)-symmetric system U such that N ∪W ⊆ U .

Proof. The construction of U can be reduced to the closure of N ∪ W under

intersections and isomorphisms. We will first add models to (N ∩M [ω1]) ∪ W

that ensure that a certain fragment of the symmetric system is closed under

intersections. Then we will close under the relevant isomorphisms, and the

isomorphic copies of the models that we have added first will guarantee that the

resulting system is closed under intersections, and thus, forms an

(S,L)-symmetric system. We can do this thanks to the propositions from

section 2.3.1 that ensure that the operations of taking intersections and taking

isomorphic copies commute in our context.

Let 〈(εSi , εLi ) : i ≤ n〉 be the residue sequence of N ∩M and fix an increasing

∈-chain of large models 〈Ni : i ≤ n〉 such that Ni ∈ N ∩M and εNi = εLi for every

i ≤ n. First of all, note that since W ⊆ M , it follows from proposition 1.4.13

that for every W ∈ W, either εW < εS0 , or εLi ≤ εW < εSi+1, or εLn ≤ εW < εM ,

for all i < n. Let W ∈ W ∩ L such that εW 6= εLi for all i ≤ n. The closure
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under intersections is based on the proof of lemma 2.21 of [62] and uses a similar

notation.

If εLi < εW < εSi+1 for some i < n, since Ni, Ni+1 ∈ W, we can find some

X ∈ W such that εX = εW and Ni ∈ X ∈ Ni+1, by proposition 2.3.16. Note that

X ∈ Ni+1 ∩M , as W ⊆ M . Let ε∗ < ω2 be the least ω2-height of a model from

N ∩ L such that εSi+1 < ε∗ (possibly ε∗ = εLi+1). Let EX be any set of models of

N of ω2-height in the interval [εSi+1, ε
∗) forming a maximal ∈-chain with minimal

element Ni+1 ∩M . Note that since X ∈ Ni+1 ∩M and all models in EX are

countable, for every Q ∈ EX , we have that X ∈ Q. Let FX be the set of all

models of the form X ∩ Q, for Q ∈ EX . Note that if Q,Q′ ∈ EX are such that

Q ∈ Q′, then X ∩Q ∈ X ∩Q′. Moreover, note that X ∩ (Ni+1 ∩M) = X ∩M is

the least element in FX , and by proposition 1.4.17, X ∩Q ∈ X for all Q ∈ EX .

Note that FX doesn’t depend on the choice of the elements of EX by proposition

2.3.12.

If εW < εS0 , we let X ∈ W be such that εX = εW and X ∈ N0, and we define EX

and FX exactly as in the last paragraph.

If εLn < εW < εM , we let X ∈ W such that εX = εW and Nn ∈ X. Let ε∗ < ω2

be the least ω2-height of a model from N ∩ L such that εM < ε∗, if it exists.

Otherwise, let ε∗ be any ordinal of ω2 greater than all the ω2-heights of models

in N . Let EX be any set of models of N of ω2-height in the interval [εM , ε
∗)

forming a maximal ∈-chain with minimal element M . By the same reason as

above, all models Q ∈ EX are countable and X ∈ Q. Let FX be the set of all

models of the form X ∩Q, for Q ∈ EX , which again forms an ∈-chain, since for

any two Q,Q′ ∈ EX , if Q ∈ Q′, then X ∩Q ∈ X ∩Q′. The least element in FX is

X ∩M and, for the same reason as before, all the elements in FX belong to X.

Again, FX doesn’t depend on the choice of the elements of EX .

For every W ∈ W ∩L such that εW 6= εLi for all i ≤ n, fix a single model X ∈ W

as in the preceding paragraphs so that they form an ∈-chain. Let W∗ be the

result of adding all the models from each FX to (N ∩M [ω1]) ∪ W. Denote by



Chapter 2: Symmetric systems of elementary submodels 81

〈Zi : i ≤ m〉, m ≥ n, the ∈-sequence of models that results from adding all the

models X as above to the sequence 〈Ni : i ≤ n〉. Denote by 〈(εSi , εLi ) : i ≤ m〉

the sequence of pairs (εZi∩M , εZi), for i ≤ m, ordered in the obvious way. The

following claim tells us that, for each Zi ∈ W \ N , i ≤ m, the chain of models

that conforms FZi is placed right before Zi.

Claim 2.3.28. Let i ≤ m and Zi ∈ W \N . If Q ∈ W∗ belongs to Zi, then either

Q ∈ FZi, or εQ < εSi . Moreover, if εQ < εSi , then Q ∈ (Zi ∩M)[ω1].

Proof. Suppose that Q /∈ FZi . Then, Q ∈ (N ∩M [ω1]) ∪W. We will show that

εQ < εSi . Note that it’s enough to show the result for models Q for which there

is no R ∈ (N ∩M [ω1]) ∪W such that εQ < εR < εLi . In this case, we will show

that Q ∈ Zi ∩M , which is a stronger result. Aiming for a contradiction, suppose

that Q /∈M . First of all, note that sinceW ⊆M , Q must be an element of N . If

every Zj was a member of W \N , for all j > i, then all the models in N ∩M [ω1]

of ω2-height greater than εQ would have been of countable type, and hence, by

proposition 2.3.14, Q ∈ M . Therefore, there must be a minimal j > i for which

Zj ∈ N . By the shoulder axiom for N , there must be a model Pj ∈ N such that

εPj = εSj and Q ∈ Pj [ω1]. But note that all the models in N of ω2-height in the

interval (εQ, ε
S
j ) must be of countable type because of the minimality of j. Hence,

Q ∈ Pj , again by proposition 2.3.14. Now, since Q ∈ Zi ∈ Zj ∩M , the model Q

must be an element of (Zj ∩M)[ω1]. Therefore, as Q ∈ Pj ∩ (Zj ∩M)[ω1] and

Q,Pj , Zj ∩M ∈ N , by clause (B) for N , it must be the case that Q is fixed by

the isomorphism ΨPj [ω1],(Zj∩M)[ω1]. But then we are done, because Q ∈ Zj ∩M ,

which contradicts our initial assumption, as we wanted.

Let us show the second part of the statement now. Hence, assume that εQ < εSi .

Note that if Q ∈ FZl , for some l < i, the conclusion is clear because Zl ∈ Zi ∩M ,

and hence Q ∈ Zl ⊆ (Zi ∩M)[ω1]. Moreover, if Q ∈ W, since W ⊆M , the result

follows trivially. Hence, we may assume that Q ∈ N \M . We divide the proof in

two cases.

Case 1. Suppose that there is no j > i for which Zj ∈ N . First of all note that
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if for all k < i, every Zk such that εZk ∈ (εQ, ε
S
i ) was a member of W \N , then

Q would be an element of M . Indeed, since all the models of N of ω2-height in

the interval (εQ, εM ) would be countable, it would follow from proposition 2.3.14

that Q ∈ M , contradicting our assumption Q ∈ N \M . Fix the maximal k < i

such that Zk ∈ N and εQ < εLk . Since Q,Nk,M ∈ N , by proposition 2.3.16 we

can find a model Nk ∈ N such that εNk = εLk and Q ∈ Nk ∈ M [ω1]. By the

maximality of k and since Zj ∈ W \ N for all j > i, it follows from proposition

2.3.14 that all models of ω2-height εLk in M [ω1], and in particular Nk, are elements

of M , and consequently, elements of W. Now, since Zi ∈ W, by the shoulder

axiom for W there is a model Ni ∈ W such that εNi = εLi and Nk ∈ Ni. Note

that Q is an element of Ni ∩ Zi, hence if we let N ′k = ΨNi,Zi(Nk), which is an

element of W because of clause (E) for W, the model Q belongs to N ′k because

it is fixed by the isomorphism ΨNi,Zi . But then we are done. Note that since

N ′k ∈ Zi and N ′k ∈ W, the model N ′k must be a member of Zi∩M , and therefore,

Q ∈ N ′k ⊆ (Zi ∩M)[ω1].

Case 2. Suppose that there is some j > i for which Zj ∈ N . Assume that j is

minimal with this property. Again, we claim that if for all k < i, every Zk such

that εZk ∈ (εQ, ε
L
i ) was a member of W \ N , then Q would be an element of

M . Note that all the models in N of ω2-height in the interval (εQ, ε
S
j ) would be

countable. Therefore, since Q ∈ Zi ∈ Zj ∩M , the model Q would be an element

of (Zi∩M)[ω1], but then, by proposition 2.3.14, Q would be a member of Zi∩M ,

which would contradict our assumption Q ∈ N \M . Fix the maximal k < i such

that Zk ∈ N and εQ < εLk . Since Q ∈ Zi ⊆ Zj and Q,Zk, Zj ∩M ∈ N , we can

find Nk ∈ N such that Q ∈ Nk ∈ (Zj ∩M)[ω1] and εNk = εLk , by proposition

2.3.16. By the minimality of j and the maximality of k, it follows that all the

models in N of ω2-height in the interval (εLk , ε
S
j ) are countable. Therefore, by

proposition 2.3.14, Nk is in fact an element of Zj∩M , and thus, Nk ∈ N∩M ⊆ W.

Now, since both Nk and Zi are elements of W, we can find Ni ∈ W such that

εNi = εLi and Nk ∈ Ni, by the shoulder axiom for W. Let N ′k = ΨNi,Zi(Nk),

which is an element of W by symmetry, and hence, N ′k ∈ Zi ∩M . But now,
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since Q ∈ Nk ⊆ Ni, the model Q must be an element of Ni ∩ Zi, and hence,

it must be fixed by the isomorphism ΨNi,Zi , by clause (B) for W. Therefore,

Q ∈ N ′k ⊆ (Zi ∩M)[ω1], as we wanted.

Claim 2.3.29. There is a virtual (N ,M)-reflection V extending W∗.

Proof. We will build V by induction on i ≤ m. First, note that (Z0∩M)[ω1]∩W∗,

which equals (Z0∩M)∩W, is an (S,L)-symmetric system. It’s straightforward to

check that it is in fact a virtual (Z0∩N , Z0∩M)-reflection. Indeed, (VR.2) holds

becauseW ⊆M , and (VR.3) holds vacuously because (Z0∩M)∩W only contains

small models. Let VS0 be (Z0 ∩M) ∩W. This is the base case of our induction.

We will build now two sequences of (S,L)-symmetric systems (VSi )i≤m+1 and

(VLi )i≤m with the following properties:

• VSi ⊆ VLi ⊆ VSi+1 for all i ≤ m.

• (Zi ∩M)[ω1] ∩W∗ ⊆ VSi for all i ≤ m.

• Zi ∩W∗ ⊆ VLi for all i ≤ m.

• M [ω1] ∩W∗ =W∗ ⊆ VSm+1.

Let us explain first the idea behind the proof. Since we want to build a virtual

(N ,M)-reflection V extending W∗, in particular V needs to be an

(S,L)-symmetric system, and hence, it needs to be closed under isomorphisms.

Let us assume that Z0 ∈ N . Note that there might be models Q in

(Z0 ∩M) ∩W which are not elements of N . Let now P ∈ N ∩ Z0 be such that

εP = εZ0∩M = εS0 , and recall that P doesn’t need to be of the form N0 ∩M , for

some N0 ∈ N ∩ L such that εN0 = εL0 . Therefore, there might not be an

isomorphic copy of Q in P . Hence, we need to add all models of this form to V.

This will be the first step of the induction, and VL0 will be the result of adding

all the models of this form. Now, suppose that Z0 ∈ W \N . In the construction

of W∗ we have added all the models from FZ0 to (N ∩M [ω1]) ∩ W. Suppose

that W0 ∈ W ∩ (Z1 ∩M) is such that εW0 = εZ0 = εL0 and W0 6= Z0. Note that
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there might not be isomorphic copies in W0 of the models from FZ0 . Hence, we

need to add them all. This is the second step of the induction, and VS1 will be

the result of adding all these models. The idea is to build V inductively by

adding all these missing models. We will start by copying VS0 through the

relevant isomorphism to obtain VL0 . Then, we will copy VL0 through the relevant

isomorphisms to obtain VS1 . And we will keep repeating this process until we

obtain V. The notion of virtual reflection was isolated precisely so that we can

apply proposition 2.3.26 at each step of the induction to obtain the

(S,L)-symmetric system that will be copied in the next step.

Throughout the induction below we will keep referring to the models Zi+1 ∩M

and their ω2-heights εSi+1, for i ≤ m. Since the model Zm+1∩M and its ω2-height

εSm+1 are undefined, we will make the convention that when i = m and we refer

to Zm+1 ∩M and εSm+1, we actually mean M and εM , respectively.

Inductive step 1. Let i ≤ m. Suppose that we have obtained VSi , which has

the following properties:

(IH.1) (Zi ∩M)[ω1] ∩W∗ ⊆ VSi ⊆ (Zi ∩M)[ω1].

(IH.2) If Zi ∈ N , then VSi is a virtual (Zi ∩N , Zi ∩M)-reflection.

(IH.3) If Zi ∈ W \ N , then VSi is an (S,L)-symmetric system. If moreover

i > 0, then N ′ ∩M ′ ∈ VSi , for all M ′ ∈ EZi and all N ′ ∈ VSi ∩ L such that

εN ′ = εLi−1.

(IH.4) If i = 0, then

{Q ∈ VSi : εQ < εS0 } = {Q ∈ (Z0 ∩M)[ω1] ∩W∗ : εQ < εS0 }.

(IH.5) If i > 0, then

{Q ∈ VSi : εQ ∈ [εLi−1, ε
S
i )} = {Q ∈ (Zi ∩M)[ω1] ∩W∗ : εQ ∈ [εLi−1, ε

S
i )}.
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(IH.6) {εQ : Q ∈ VSi } = {εQ : Q ∈ (Zi ∩M)[ω1] ∩W∗}.

From this we will define VLi and we will show that it has the following properties,

which will allow us to continue the induction:

(C.1) Zi ∩W∗ ⊆ VLi ⊆ Zi.

(C.2) VLi is a virtual ((Zi+1 ∩M)[ω1] ∩W, Zi)-reflection.

(C.3) {Q ∈ VLi : εSi ≤ εQ < εLi } = {Q ∈ Zi ∩W∗ : εSi ≤ εQ < εLi }.

(C.4) {εQ : Q ∈ VLi } = {εQ : Q ∈ Zi ∩W∗}.

We will assume that i > 0. The case i = 0 is proved in the exact same way,

modulo some little notational changes.

We need to distinguish the two cases Zi ∈ W \N and Zi ∈ N . If Zi ∈ W \N , it

follows from claim 2.3.28 that all the models in W∗ of ω2-height in the interval

[εSi , ε
L
i ) are exactly the models in FZi . Recall that these models are all countable

and form an ∈-chain below Zi with minimal element Zi ∩M . In this case we

simply define VLi as FZi∩M ∪VSi . If Zi ∈ N , all the models in W∗ of ω2-height in

the interval [εSi , ε
L
i ) belong to N . In this case we let VLi be the amalgamation of

Zi ∩N and VSi given by proposition 2.3.26. That is,

VLi ={Q ∈ Zi ∩N : εQ ≥ εSi }

∪
⋃
{Ψ(Zi∩M)[ω1],Pi[ω1]”(VSi ) : Pi ∈ Zi ∩N , εPi = εSi }.

Let us show now that, in both cases, VLi satisfies clauses (C.1)-(C.4).

Assume first that Zi ∈ W \ N . Clauses (C.3) and (C.4) follow easily from the

induction hypothesis and the definition of VLi , and clause (C.1) follows from

claim 2.3.28. Hence, it’s enough to show that VLi is a virtual ((Zi+1 ∩M)[ω1] ∩

W, Zi)-reflection. It’s not too hard to see that VLi is an (S,L)-symmetric system.

Clauses (A)-(E) follow easily from the way we have defined VLi , from claim 2.3.28,
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and from the induction hypothesis. Clause (F) follows from (IH.3) by the same

argument for case 2 of the proof of proposition 2.3.26. Hence, it only remains to

show that VLi satisfies (VR.1)-(VR.3) from definition 2.3.25. Note that

(
(Zi+1 ∩M)[ω1] ∩W

)
∩ Zi = Zi ∩W = (Zi ∩M)[ω1] ∩W,

where the second equality follows from claim 2.3.28 and the fact that all the

models in W∗ of ω2-height in the interval [εSi , ε
L
i ) are exactly the models in FZi .

Hence, as (Zi ∩M)[ω1] ∩ W ⊆ VSi ⊆ VLi ⊆ Zi by (IH.1), VLi satisfies (VR.1).

Clauses (VR.2) and (VR.3) hold vacuously because Zi is a large model.

Assume now that Zi ∈ N . Clauses (C.3) and (C.4) follow easily from induction

hypothesis and the way we have defined VLi . In order to see that VLi satisfies

clause (C.1) it’s enough to show that for every Pi ∈ N ∩ Zi such that εPi = εSi ,

Pi[ω1] ∩ W∗ is a subset of Ψ(Zi∩M)[ω1],Pi[ω1]”(VSi ). Let Q ∈ Pi[ω1] ∩ W∗. By

(IH.1), we only need to check that ΨPi[ω1],(Zi∩M)[ω1](Q) ∈ W∗. If Q ∈ N , then

ΨPi[ω1],(Zi∩M)[ω1](Q) ∈ N because both Pi and Zi ∩M are elements of N , which

is an (S,L)-symmetric system. If Q ∈ FZj for some j < i, then Q belongs to Zj ,

which is a subset of (Zi ∩M)[ω1] ∩ W∗. Hence, ΨPi[ω1],(Zi∩M)[ω1](Q) = Q is a

member of (Zi ∩M)[ω1]∩W∗, again using the fact that both Pi and Zi ∩M are

elements of N , which is an (S,L)-symmetric system, and hence, the intersection

Pi[ω1] ∩ (Zi ∩M)[ω1] is fixed by the isomorphism ΨPi[ω1],(Zi∩M)[ω1]. Lastly, let

us assume that Q ∈ W \ N . Since W ⊆ M , Q must be an element of M as

well. Therefore, as Q ∈ Pi[ω1] ⊆ Zi, we have that Q ∈ Zi ∩ M . Hence, as

Q ∈ Pi[ω1]∩ (Zi ∩M), then ΨPi[ω1],(Zi∩M)[ω1](Q) = Q, which is an element of W∗

by assumption. Now, it only remains to check clause (C.2). That is, we need to

show that VLi is a virtual ((Zi+1 ∩M)[ω1] ∩W, Zi)-reflection. We know that VLi

is an (S,L)-symmetric system by proposition 2.3.26, and that it satisfies (VR.2)

and (VR.3) from definition 2.3.25 vacuously because Zi is a large model. Hence,

we only need to check that it satisfies (VR.1). But note that

(
(Zi+1 ∩M)[ω1] ∩W

)
∩ Zi = Zi ∩W ⊆ VLi ⊆ Zi,
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where the first inclusion follows from (C.1). This finishes the first inductive step.

Inductive step 2. Let i ≤ m. Suppose that we have obtained VLi , which has

the following properties:

(IH.1) Zi ∩W∗ ⊆ VLi ⊆ Zi.

(IH.2) VLi is a virtual ((Zi+1 ∩M)[ω1] ∩W, Zi)-reflection.

(IH.3) {Q ∈ VLi : εSi ≤ εQ < εLi } = {Q ∈ Zi ∩W∗ : εSi ≤ εQ < εLi }.

(IH.4) {εQ : Q ∈ VLi } = {εQ : Q ∈ Zi ∩W∗}.

From this we will define VSi+1, and we will show that it has the following properties:

(C.1) (Zi+1 ∩M)[ω1] ∩W∗ ⊆ VSi+1 ⊆ (Zi+1 ∩M)[ω1].

(C.2) If i < m and Zi+1 ∈ N , then VSi+1 is a virtual (Zi+1 ∩ N , Zi+1 ∩ M)-

reflection.

(C.3) If i < m and Zi+1 ∈ W \ N , then VSi+1 is an (S,L)-symmetric system

and N ′ ∩M ′ ∈ VSi+1, for all M ′ ∈ EZi+1 and all N ′ ∈ VSi+1 ∩ L such that

εN ′ = εLi .

(C.4) If i = m, then VSi+1 is a virtual (N ,M)-reflection.

(C.5) {Q ∈ VSi+1 : εQ ∈ [εLi , ε
S
i+1)} = {Q ∈ (Zi+1∩M)[ω1]∩W∗ : εQ ∈ [εLi , ε

S
i+1)}.

(C.6) {εQ : Q ∈ VSi+1} = {εQ : Q ∈ (Zi+1 ∩M)[ω1] ∩W∗}.

Recall that in case i = m, when referring to Zm+1 ∩M and εm+1, we actually

mean M and εM , respectively.

Note that all the models in (Zi+1 ∩ M)[ω1] ∩ W∗ of ω2-height in the interval

[εLi , ε
S
i+1) are members of W by construction of W∗. Define VSi+1 as the

amalgamation of (Zi+1 ∩M)[ω1] ∩W and VLi given by proposition 2.3.26. That
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is,

VSi+1 ={Q ∈ (Zi+1 ∩M)[ω1] ∩W : εQ ≥ εLi }

∪
⋃
{ΨZi,Wi”(VLi ) : Wi ∈ (Zi+1 ∩M)[ω1] ∩W, εWi = εLi }.

Let us show that VSi+1 satisfies clauses (C.1)-(C.6).

Clauses (C.5) and (C.6) are clear by induction hypothesis and the way we have

defined VSi+1. In order to see that VSi+1 satisfies clause (C.1) it’s enough to show

that for every Wi ∈ W∩(Zi+1∩M)[ω1] such that εWi = εLi , Wi∩W∗ is a subset of

ΨZi,Wi”(VLi ). Let Q ∈Wi ∩W∗. We will show that ΨWi,Zi(Q) ∈ VLi . First of all,

note that both Wi and Zi are elements of Zi+1∩M , and thus, Wi, Zi ∈ W. Hence,

if Q ∈ W \ N , then ΨWi,Zi(Q) ∈ W ⊆ W∗, because W is an (S,L)-symmetric

system. Hence, ΨWi,Zi(Q) belongs to VLi by (IH.1). If Q ∈ FZk for some k ≤ i,

then Q ∈ Zk ⊆ Zi ∩W∗. Hence, ΨWi,Zi(Q) = Q ∈ Zi ∩W∗, again using the fact

that both Wi and Zi are elements of W, which is an (S,L)-symmetric system,

and hence, the intersection Wi ∩ Zi is fixed by the isomorphism ΨWi,Zi . Lastly,

let us assume that Q ∈ N \M . Note that if there was no k < i for which Zk ∈ N

and εQ < εLk , since Q ∈Wi ⊆ (Zi+1∩M)[ω1], the model Q would be a member of

M . Indeed, either Q would be an element of the least model of the form Zj ∩M ,

where Zj ∈ N and j > i, or there would be no large model in N of ω2-height

in the interval (εQ, εM ), and hence, Q would be an element of M by proposition

2.3.14. In both cases we get a contradiction with our assumption Q ∈ N \M .

Hence, we can fix the maximal k ≤ i for which Zk ∈ N and εQ < εLk . We intend

to find a model Nk ∈ N ∩M ⊆ W such that εNk = εLk and Q ∈ Nk now. If there

is no j > i such that Zj ∈ N , since the models Q, Zk, and M are members of

N , we can appeal to proposition 2.3.16 to find Nk ∈ N such that εNk = εLk and

Q ∈ Nk ∈ M [ω1]. But note that by the maximality of k and proposition 2.3.14,

we have that Nk ∈ N ∩M ⊆ W. If there is some j > i such that Zj ∈ N , and

we let this j be minimal, since the models Q, Zk, and Zj ∩M are members of N

and Q ∈ (Zi+1 ∩M)[ω1] ⊆ (Zj ∩M)[ω1], we can find Nk ∈ N such that εNk = εLk
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and Q ∈ Nk ∈ (Zj ∩M)[ω1], by appealing to proposition 2.3.16 once more. But

then, by the minimality of j and the maximality of k, Nk ∈ Zj ∩M , again by

proposition 2.3.14, and hence, Nk ∈ N ∩M ⊆ W. In any case, there is a model

Nk ∈ N ∩M ⊆ W such that εNk = εLk and Q ∈ Nk, as we wanted. Now, since

both Nk and Wi are elements of W, there has to be some Ni ∈ W such that

εNi = εLi and Nk ∈ Ni, by the shoulder axiom for W. Since Q ∈ Nk ⊆ Ni, and

hence Q ∈Wi ∩Ni, the model Q must be fixed by the isomorphism ΨWi,Ni , and

thus,

ΨWi,Zi(Q) = ΨNi,Zi(ΨWi,Ni(Q)) = ΨNi,Zi(Q).

On one hand, note that if we let N ′k = ΨNi,Zi(Nk), which is an element of W

because Nk, Ni, Zi ∈ W, then ΨNi,Zi(Q) = ΨNk,N
′
k
(Q). On the other hand, note

that since Q,Nk, Zk ∈ N , the model Q∗ = ΨNk,Zk(Q) must be an element of

N , by the symmetry of N . Therefore, by the transitivity of the composition of

isomorphisms, ΨNk,N
′
k
(Q) = ΨZk,N

′
k
(Q∗). But note that, by (IH.1), on one hand

both models Q∗ and Zk are members of Zi ∩ N ⊆ Zi ∩ W∗ ⊆ VLi , and on the

other hand, N ′k ∈ Zi ∩W ⊆ Zi ∩W∗ ⊆ VLi . Hence, as VLi is an (S,L)-symmetric

system by (IH.2),

ΨWi,Zi(Q) = ΨZk,N
′
k
(Q∗) ∈ VSi ,

as we wanted. This finishes the proof of clause (C.1). We end the argument by

showing that VSi+1 satisfies clauses (C.2)-(C.4). First of all, note that since VLi is

a virtual ((Zi+1 ∩M)[ω1]∩W, Zi)-reflection, VSi+1 is an (S,L)-symmetric system

by proposition 2.3.26. We divide the rest of the proof in three cases:

Case 1. Suppose that i < m and that Zi+1 ∈ N . Let us note that in this

case all models in Zi+1 ∩ W∗ of ω2-height in the interval [εSi+1, ε
L
i+1) belong to

N . We need to check the conclusion of (C.2). Namely, that VSi+1 is a virtual

(Zi+1∩N , Zi+1∩M)-reflection. Clause (VR.1) from definition 2.3.25 follows from

(C.1). Clause (VR.2) follows from (C.5). Let us show clause (VR.3) now. Let ε−

be as in the statement of (VR.3) from definition 2.3.25, and note that ε+ coincides

with εLi . Let M ′ ∈ Zi+1 ∩N ∩S such that Zi+1 ∩M ∈M ′ and εSi+1 ≤ εM ′ < ε+.
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We claim that Zi ∩M ′ ∈ VLi . First of all note that as Zi ∈ Zi+1 ∩M ∈ M ′ and

since there are no large models of ω2-height in the interval (εLi , ε
−), we have that

Zi ∈M ′. Hence, if Zi ∈ N , then Zi∩M ′ ∈ N , because N is an (S,L)-symmetric

system, and thus, Zi ∩M ′ ∈ (Zi+1 ∩M)[ω1] ∩W∗ ⊆ VSi+1 by (C.1). Otherwise,

Zi ∈ W\N , and hence, Zi∩M ′ ∈ FZi by definition ofW∗ and proposition 2.3.12.

Therefore, the conclusion of (VR.3) follows from the fact that Zi ∩M ′ ∈ VSi+1,

that VSi+1 is an (L,L)-symmetric system, and proposition 2.3.10.

Case 2. Suppose that i < m and that Zi+1 ∈ W \ N . In this case all models in

Zi+1 ∩ W∗ of ω2-height in the interval [εSi+1, ε
L
i+1) belong to FZi+1 . We need to

check the conclusion of (C.3).

Let Zi+1 ∩M ′ ∈ FZi+1 . Note that Zi ∈ Zi+1 ∩M ′ and that Zi ∩ (Zi+1 ∩M ′) =

Zi ∩M ′. If Zi ∈ N , as N is an (S,L)-symmetric system, then Zi ∩M ′ ∈ N ,

because Zi ∈ M ′ and M ′ ∈ EZi+1 ⊆ N . Otherwise, Zi ∈ W \ N , and hence

EZi = EZi+1 by definition of W∗. So Zi ∩M ′ ∈ FZi , and thus, Zi ∩M ′ is a

member of (Zi+1 ∩M)[ω1] ∩ W∗ ⊆ VSi+1 by (C.1). Therefore, the conclusion of

(C.3) follows from the fact that Zi∩M ′ ∈ VSi+1, that VSi+1 is an (L,L)-symmetric

system, and proposition 2.3.10.

Case 3. Suppose that i = m. This case is a straightforward translation word by

word of the proof of case 1.

This finishes the induction, and by simply letting V be VSm+1, we finish the proof

of claim 2.3.29.

Now, since V is a virtual (N ,M)-reflection, we can define the amalgamation U

of V and N given by proposition 2.3.26,

U = {Q ∈ N : εQ ≥ εM} ∪
⋃
{ΨM [ω1],M ′[ω1]”(V) : M ′ ∈ N , εM ′ = εM},

which is an (S,L)-symmetric system extending N , and since W∗ ⊆ V, it also

extends W.
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The proof of the following lemma is a simpler version of the proof of lemma 2.3.27.

Lemma 2.3.30. Let N be an (S,L)-symmetric system and let N ∈ N ∩ L. Let

W be another (S,L)-symmetric system such that N ∩N ⊆ W ⊆ N . Then, there

is an (S,L)-symmetric system such that N ∪W ⊆ U .

Proof. It’s obvious that W is a virtual (N , N)-reflection. Therefore, the

amalgamation U of N and W given by proposition 2.3.26 is an

(S,L)-symmetric system extending N and W.

2.3.5 Preservation lemmas

Theorem 2.3.31. The forcing M(S,L) is strongly S-proper.

Proof. Let M ∈ S such that M(S,L) ∈ M , and let M ∈ M(S,L) ∩M . Then,

by lemma 2.3.19, there is M∗ ∈ M(S,L) such that M ∈ M∗ and M∗ ⊇ M.

We claim that M∗ is strongly (M,M(S,L))-generic. Let D ⊆M(S,L) ∩M be a

dense subset, and let N ∈ M(S,L) such that N ⊇ M∗. It follows from lemma

2.3.23 that N ∩M is a condition in M(S,L). Since D si dense, there is some

W ∈M(S,L) ∩D such that W ⊇ N ∩M , and as D ⊆M , we have that W ∈M

(andW ⊆M becauseW is finite). Therefore, N andW are compatible by lemma

2.3.27, and hence, we can conclude that M∗ is strongly (M,M(S,L))-generic as

we wanted.

The proof of the following lemma is exactly the same as the proof of lemma

2.3.31, but uses lemma 2.3.18 instead of lemma 2.3.19, lemma 2.3.20 instead of

lemma 2.3.23, and lemma 2.3.30 instead of lemma 2.3.27.

Theorem 2.3.32. The forcing M(S,L) is strongly L-proper.

Theorem 2.3.33. If 2ℵ1 = ℵ2 holds, then the forcing M(S,L) has the ℵ3-Knaster

condition.
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Proof. Let Nα be an (S,L)-symmetric system for every α < ω3. Since 2ℵ1 = ℵ2

and
⋃
Nα[ω1] has size less than or equal ℵ1 for each α < ω3, we may assume

that the set {
⋃
Nα[ω1] : α < ω3} forms a ∆-system with root X, by lemma

1.1.19. Moreover, also by 2ℵ1 = ℵ2, there are only ℵ2-many isomorphism types

for structures of the form (
⋃
Nα[ω1];∈, X,Qα)Qα∈Nα . Hence, there is a set

I ∈ [ω3]
ω3 such that for any two different α, β ∈ I, the structures

(
⋃
Nα[ω1];∈, X,Qα)Qα∈Nα and (

⋃
Nβ[ω1];∈, X,Qβ)Qβ∈Nβ are isomorphic.

Moreover, note the unique isomorphism Ψ between (
⋃
Nα[ω1];∈, X,Qα)Qα∈Nα

and (
⋃
Nβ[ω1];∈, X,Qβ)Qβ∈Nβ is the identity on X. The reason is that since

there is a definable bijection between H(ω2) and ω2, by lemma 1.1.33, then Ψ

fixes X if and only if it fixes X ∩ ω2. Therefore, Nα ∪Nβ is an (S,L)-symmetric

system by lemma 2.3.24, or in other words, Nα and Nβ are compatible in

M(S,L).

Theorem 2.3.34. If 2ℵ1 = ℵ2 holds, then M(S,L) preserves all cardinals.

Proof. Recall that we have assumed that L is stationary in [H(κ)]ℵ1 . Therefore,

the conclusion follows from the previous results and lemma 1.1.25.

If L was Lω-c, we would have to assume CH to ensure the preservation of ℵ2.

Theorem 2.3.35. If 2ℵ1 = ℵ2 holds, then M(S,L) preserves 2ℵ1 = ℵ2.

Proof. Let 〈τα : α < ω3〉 be a sequence of M(S,L)-names for subsets of ω1, and

suppose that N ∈M(S,L) is a condition forcing that 〈τα : α < ω3〉 is a sequence

of pairwise different subsets of ω1. For every α < ω3, let Nα be a large model

such that M(S,L), τα,N ∈ Nα. We may assume that there are two different

α, β < ω3 for which the structures (Nα;∈, τα) and (Nβ;∈, τβ) are isomorphic,

and the corresponding isomorphism fixes Nα ∩ Nβ and sends τα to τβ. This

follows from the fact that, as 2ℵ1 = ℵ2, there are only ℵ2-many isomorphism

types for such structures. Let Nα,β := N ∪ {Nα, Nβ}, which is easily seen to be

an (S,L)-symmetric system. We only need to notice that since N ∈ Nα ∩ Nβ,
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then ΨNα,Nβ (N ) = N . Moreover, the same argument from the proof of lemma

2.3.32 shows that Nα,β is strongly (Nα,P)-generic and strongly (Nβ,P)-generic.

Recall that N forces that τα and τβ are different. Hence, there must be an (S,L)-

symmetric systemM⊇ Nα,β and an ordinal γ < ω1, such thatM  γ̌ ∈ τα \ τβ.

Let D ⊆ M(S,L) ∩ Nα be the dense set of conditions deciding whether γ̌ is an

element of τα or not. Since Nα,β is strongly (Nα,M(S,L))-generic, then M is

also strongly (Nα,M(S,L))-generic, and hence, D must be predense below M.

Therefore, there are conditions W ∈ D and U ∈ M(S,L) such that U extends

W ∪M. On one hand, note that W forces that γ̌ ∈ τα. Hence, since ΨNα,Nβ is

an isomorphism and W ∈ Nα, we have that ΨNα,Nβ (W)  γ̌ ∈ ΨNα,Nβ (τα) = τβ.

On the other hand, note that since U extends M, the models Nα and Nβ must

be members of U . Therefore, since W ⊆ U and W ∈ Nα, then ΨNα,Nβ (W) ⊆ U

by the symmetry of U . Therefore, U  γ̌ ∈ τβ. But this is impossible because U

is an extension ofM, andM forces that γ̌ ∈ τα \ τβ. Therefore, we can conclude

that there is no condition N forcing that 〈τα : α < ω3〉 is a sequence of pairwise

different subsets of ω1.

2.4 (S,L, T +)-symmetric systems

This section is devoted to the variant of the (S,L)-symmetric systems that

includes models of non-elementary type, the (S,L, T +)-symmetric systems.

These non-elementary countable models are exactly L-symmetric systems, and

they play a similar role to that of tower-type models in (S,L, T )-chains. In fact,

the notion of (S,L, T +)-symmetric system is inspired, in a strong sense, by that

of (S,L, T )-chains, in the same way that (S,L)-chains inspired

(S,L)-symmetric systems. The organization of this section is very similar to

that of section 2.3. We will start by proving some general results about

isomorphisms between non-elementary models, which are analogous to the

results from section 2.3.1, and then we will move to the definition of

(S,L, T +)-symmetric systems. The rest of the section is devoted to prove their
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main properties. Most results in this section are proven in the exact same way

as their counterparts from section 2.3. Hence, in most cases we will simply refer

to those results and add only the necessary details.

The reason to add non-elementary models to our two-type symmetric systems

will be made explicit in chapter 4. We can advance that (S,L, T +)-symmetric

systems are the right notion of two-type symmetric systems if we want to use

them as side conditions in high versions of Asperó and Mota’s finite support

iterations from [11] and [12].

2.4.1 L-symmetric systems and isomorphisms

Recall from section 2.2 that T + denotes the collection of all L-symmetric systems,

and that if M ∈ T +, then we say that M is a non-elementary model or a model

of non-elementary type.

Recall that if M is a countable set of elements of L (possibly finite), we denote

by εM the ordinal
⋃
{εN + 1 : N ∈ M}, which we call the ω2-height of M . We

gave in section 2.1 the reasons to define εM this way.

Let M0 and M1 be two L-symmetric systems. We will denote the intersection⋃
M0∩

⋃
M1 by XM0,M1

. We will use the notation ΨM0,M1
to denote the unique

isomorphism Ψ between the structures (
⋃
M0;∈, N0, XM0,M1

,
⋃
M0 ∩ T )N0∈M0

and (
⋃
M1;∈, N1, XM0,M1

,
⋃
M1 ∩ T )N1∈M1

, instead of the more cumbersome

Ψ⋃
M0,

⋃
M1

. Moreover, for every M ∈ T +, we will simply write T instead of⋃
M ∩ T .

Proposition 2.4.1. Let N ∈ L, and let M ∈ T + such that N ∈M and N∩M 6=

∅. Then, N ∩M is a member of N ∩ T +.

Proof. This is exactly lemma 2.2.8.

Proposition 2.4.2. Let M ∈ S, and let N ∈ L such that N ∈ M . Then, for

every M ∈ T + such that εN∩M < εM < εN , M /∈M .
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Proof. If for some N ′ ∈M we have that εN∩M < εN ′ < εN , then by proposition

1.4.13, the model N ′ can’t be an element of M . Hence, M /∈ M , otherwise, M

would be a subset of M and, in particular, N ′ would be an element of M .

The proofs of the following two propositions are easy exercises.

Proposition 2.4.3. Let M0,M1 ∈ T +. Let ΨM0,M1
be an isomorphism

between (
⋃
M0;∈, N0, XM0,M1

, T )N0∈M0
and (

⋃
M1;∈, N1, XM0,M1

, T )N1∈M1
.

Then, ΨM0,M1
� N0 is the unique isomorphism between the models (N0;∈, T )

and (ΨM0,M1
(N0);∈, T ), for every N0 ∈M0.

Proposition 2.4.4. Let N0 and N1 be elementary submodels of H(κ) of size

ℵ1, and let ΨN0,N1 be the unique isomorphism between (N0;∈, T ) and (N1;∈, T )

fixing N0 ∩ N1. Let M ∈ T + such that M ∈ N0. Let M
′

be the image of M

under ΨN0,N1. Then, M
′ ∈ T +, and ΨN0,N1 �

⋃
M is the unique isomorphism

between (
⋃
M ;∈, N,X

M,M
′ , T )N∈M and (

⋃
M
′
;∈, N ′, X

M,M
′ , T )

N ′∈M ′, which is

the identity on X
M,M

′.

Proposition 2.4.5. Let M0 and M1 be two L-symmetric systems and let

ΨM0,M1
be the unique isomorphism between (

⋃
M0;∈, N0, XM0,M1

, T )N0∈M0

and (
⋃
M1;∈, N1, XM0,M1

, T )N1∈M1
. For every Q ∈

⋃
M0 the following holds:

• If Q ∈ S, then ΨM0,M1
(Q) ∈ S.

• If Q ∈ L, then ΨM0,M1
(Q) ∈ L.

• If Q ∈ T +, then ΨM0,M1
(Q) ∈ T +.

Proof. Note that there is some N0 ∈ M0 such that Q ∈ N0. Therefore,

ΨM0,M1
(Q) = ΨN0,N1(Q), where N1 = ΨM0,M1

(N0), by proposition 2.4.3.

Hence, the result follows from proposition 1.4.9, if Q ∈ S ∪ L, and from

proposition 2.4.4, if Q ∈ T +.

The following three results are analogous to propositions 2.3.10, 2.3.11 and 2.3.12,

respectively. Therefore, they describe the interactions between the elements of
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(S,L, T +)-symmetric systems with respect to the operations of taking isomorphic

copies and taking intersections.

Proposition 2.4.6. Let M ∈ T + and N0, N1 ∈ L ∩M . Suppose that N0 ∩M

and N1 ∩M are nonempty and that ΨN0,N1 is the unique isomorphism between

(N0;∈, T ) and (N1;∈, T ), which is the identity on N0 ∩ N1. Let M0 = N0 ∩M

and M1 = N1∩M . Then, ΨN0,N1 �
⋃
M0 is the unique isomorphism between the

structures (
⋃
M0;∈, N0, XM0,M1

, T )N0∈M0
and (

⋃
M1;∈, N1, XM0,M1

, T )N1∈M1
,

and it is the identity on XM0,M1
.

Proof. Let Q0 ∈ N0 ∩M . Then, ΨN0,N1(Q0) is clearly a member of N1, and it is

a member of M because M is an L-symmetric system. Hence, ΨN0,N1(N0 ∩M)

is included in N1 ∩M . A similar argument shows the other inclusion. The rest

of the proof is an easy exercise.

Proposition 2.4.7. Let M0,M1 ∈ T + and N0, N1 ∈ L such that N0 ∈ M0

and N1 ∈ M1. Suppose that N0 ∩M0 and N1 ∩M1 are nonempty. Let ΨN0,N1

be an isomorphism between (N0;∈, T ) and (N1;∈, T ), which is the identity on

N0∩N1. Let ΨM0,M1
be an isomorphism between (

⋃
M0;∈, N0, XM0,M1

, T )N0∈M0

and (
⋃
M1;∈, N1, XM0,M1

, T )N1∈M1
, which is the identity on XM0,M1

. Let M
∗
0 =

N0 ∩M0 and M
∗
1 = N1 ∩M1. Then, ΨN0,N1 �

⋃
M
∗
0 is the unique isomorphism

between (
⋃
M
∗
0;∈, N∗0 , XM

∗
0,M

∗
1
, T )N∗0∈M

∗
0

and (
⋃
M
∗
1;∈, N∗1 , XM

∗
0,M

∗
1
, T )N∗1∈M

∗
1
,

and it is the identity on XM
∗
0,M

∗
1
.

Proof. Let N ′0 and M
′
0 be the images of N0 and M

∗
0 under ΨM0,M1

, respectively.

Note that N ′0 ∩M1 = ΨM0,M1
(N0 ∩M0) = M

′
0. Hence, ΨN ′0,N1

(N ′0 ∩M1) =

N1 ∩M1 by the last proposition. Therefore, since ΨN0,N ′0
= ΨM0,M1

� N0, we

have

N1 ∩M1 = ΨN ′0,N1
(N ′0 ∩M1) = ΨN ′0,N1

(
ΨM0,M1

(N0 ∩M0)
)

= ΨN ′0,N1

(
ΨN0,N ′0

(N0 ∩M0)
)

= ΨN0,N1(N0 ∩M0).

Thus, ΨN0,N1(M
∗
0) = M

∗
1. The rest of the proof is an easy exercise.



Chapter 2: Symmetric systems of elementary submodels 97

Proposition 2.4.8. Let N ∈ L and M0,M1 ∈ T + such that N ∈ M0 ∩M1,

and so that N ∩M0 and N ∩M1 are nonempty. Suppose that ΨM0,M1
is the

unique isomorphism between the structures (
⋃
M0;∈, N0, XM0,M1

, T )N0∈M0
and

(
⋃
M1;∈, N1, XM0,M1

, T )N1∈M1
fixing XM0,M1

. Then, N ∩M0 = N ∩M1.

Proof. Note that since ΨM0,M1
(N) = N , then ΨM0,M1

(N ∩ M0) = N ∩ M1.

Therefore, as N ∩M0 ∈ N , and thus, N ∩M0 ∈
⋃
M0 ∩

⋃
M1, we have that

N ∩M0 = ΨM0,M1
(N ∩M0) = N ∩M1.

2.4.2 The pure side condition forcing

Notation 2.4.9. Let Q0, Q1 ∈ S ∪ L ∪ T +. Then, we denote Q0 ∈∗ Q1 if and

only if either

• Q0 ∈ Q1[ω1], whenever Q1 ∈ S,

• Q0 ∈ Q1, whenever Q1 ∈ L, or

• Q0 ∈
⋃
Q1, whenever Q1 ∈ T +.

Definition 2.4.10. Let M be a finite set of subsets of H(κ). We say that M is

an (S,L, T +)-symmetric system if and only if the following holds:

(A) Every Q ∈M is an an element of S ∪L∪ T +. Moreover, if Q ∈M is such

that εQ = min{εR : R ∈M}, then Q /∈ T +.

(B) For any two distinct Q0, Q1 ∈M such that εQ0 = εQ1 :

(B.1) If Q0, Q1 ∈ S ∪ L, then there is a (unique) isomorphism ΨQ0[ω1],Q1[ω1]

between (Q0[ω1];∈, Q0, T ) and (Q1[ω1];∈, Q1, T ), which is the identity

on Q0[ω1] ∩Q1[ω1].

(B.2) If Q0, Q1 ∈ T +, then there is a (unique) isomorphism ΨQ0,Q1

between the two structures (
⋃
Q0;∈, N0, XQ0,Q1 , T )N0∈Q0 and

(
⋃
Q1;∈, N1, XQ0,Q1 , T )N1∈Q1 , which is the identity on XQ0,Q1 .
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(C) For any two distinct Q0, Q1 ∈M, if εQ0 < εQ1 , then there is some Q′1 ∈M

such that εQ′1 = εQ1 and Q0 ∈∗ Q′1.

(D) For every Q ∈ M and every M ∈ M ∩ (S ∪ T +), if Q ∈∗ M and there is

no P ∈M such that εQ < εP < εM , then in fact Q ∈M .

(E) For all Q0, Q1, Q
′
1 ∈ M such that Q0 ∈ Q1 and εQ1 = εQ′1 , the following

holds:

(E.1) If Q1, Q
′
1 ∈ S ∪ L, then ΨQ1[ω1],Q′1[ω1](Q0) ∈M.

(E.2) If Q1, Q
′
1 ∈ T +, then ΨQ1,Q′1

(Q0) ∈M.

(F) For every N ∈M∩L and every Q ∈M∩ (S ∪ T +) such that N ∈ Q,

(F.1) if Q ∈ S, then N ∩Q ∈M, and

(F.2) if Q ∈ T + and N ∩Q 6= ∅, then N ∩Q ∈M.

A finite set M of subsets of H(κ) is a pre-(S,L, T +)-symmetric system if it

satisfies clauses (A)-(E). As in the previous sections, we will refer to clause (C)

as the shoulder axiom for M. Let M(S,L, T +) be the forcing notion whose

conditions are (S,L, T +)-symmetric systems and the order is reverse inclusion.

It should be obvious from the definition that any (S,L)-symmetric system is an

(S,L, T +)-symmetric system.

It is worth pointing out that the closure under intersections of non-elementary

models (clause (F.2) from the definition) is somewhat weaker than the closure

under intersections of tower-type nodes in (S,L, T )-chains (clause (C.b) from

definition 2.1.9). We have adopted this weaker closure to ensure that if M is an

(S,L, T +)-symmetric system, M ∈M is a small model, and N,M ∈M∩M are

a large model and a non-elementary model, respectively, such that N ∈M , then

N ∩M ∈M .

It’s not hard to see that ifM is a finite set of members of H(κ) satisfying clauses

(A) and (B) of definition 2.4.10, thenM satisfies clauses (C) and (D) if and only

if it satisfies the following clause:
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(C+D) For any two distinct Q0, Q1 ∈ M, if εQ0 < εQ1 and there is no P ∈ M

such that εQ0 < εP < εQ1 , then there is Q2 ∈ M such that εQ2 = εQ1 and

Q0 ∈ Q2.

In most cases, when showing that a finite set of members of H(κ) is an (S,L, T +)-

symmetric system, showing that it satisfies clause (C+D) will be easier than

showing that it satisfies clauses (C) and (D) separately.

Proposition 2.4.11. Let M be an (S,L, T +)-symmetric system and Q0, Q1 ∈

M. Then, Q0 ∈∗ Q1 if and only if there is an ∈-chain of models of M from Q0

to Q1. That is, there are P0, . . . , Pn ∈M such that Q0 ∈ P0 ∈ · · · ∈ Pn ∈ Q1.

Remark 2.4.12. Note that if M is an (S,L, T +)-symmetric system and M ∈

M ∩ T +, then M needs to be preceded by large models. More precisely, if

Q ∈ M is such that εQ < εM and there is no P ∈ M such that εQ < εP < εM ,

then Q ∈ L. Moreover, by the symmetry of M there must be some Q′ ∈ M∩ L

such that εQ′ = εQ and Q′ ∈M .

2.4.3 Basic properties

As we have already mentioned at the beginning of the section, except for a few

exceptions, most of the results from section 2.3 can be translated pretty

straightforwardly to the context of (S,L, T +)-symmetric systems. The

arguments are almost exactly the same, so in many cases we will simply omit

them and just add a comment pointing out where they differ. Showing that

clause (F.2) holds will be, in most cases, the only place that requires some extra

clarification.

The following four propositions are analogous to propositions 2.3.14, 2.3.15,

2.3.16, and 2.4.16, from last section.

Proposition 2.4.13. Let M be a pre-(S,L, T +)-symmetric system and let

Q0, Q1 ∈M. Then, the following holds:
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(1) If Q1 ∈ S ∪ L, Q0 ∈ Q1, and |Q0| < |Q1|, then Q0 ⊆ Q1.

(2) If Q1 is a small model, Q0 ∈∗ Q1, and there is no N ∈ M ∩ L such that

εQ0 < εN < εQ1, then Q0 ∈ Q1.

Proof. Clause (1) follows from the basic facts about elementary submodels in

the preliminaries. Let us show clause (2). If there is no model M ∈ M ∩ T +

such that εQ0 < εM < εQ1 , the conclusion follows for the same reasons as clause

(2) of proposition 2.3.14. Hence, suppose that there is some M ∈ M such that

εQ0 < εM < εQ1 . By two applications of the shoulder axiom for M it can

be further assumed that Q0 ∈∗ M and that there is some Q′1 ∈ M such that

εQ′1 = εQ1 and M ∈∗ Q′1. Since M needs to be preceded by large models and

there are no large models in M of ω2-height lying strictly between εQ0 and εQ1

by assumption, Q0 has to be one of these predecessors. Hence, every P ∈ M

such that εM < εP < εQ1 has to be a small model. Therefore, Q0 ∈ M ∈ Q′1,

and thus, as M is countable, by (1) we have that M ⊆ Q′1, which in turn implies

that Q0 ∈ Q′1. Hence, Q0 ∈ Q′1 ∩ Q1[ω1], and by clause (B.1), we can conclude

that Q0 = ΨQ′1[ω1],Q1[ω1](Q0) ∈ Q1.

Proposition 2.4.14. Let M be a pre-(S,L, T +)-symmetric system, and let

Q0, Q1, Q
′
1 ∈M such that Q0 ∈∗ Q1 and εQ1 = εQ′1. Then the following holds:

• If Q1, Q
′
1 ∈ S ∪ L, then ΨQ1[ω1],Q′1[ω1](Q0) ∈M.

• If Q1, Q
′
1 ∈ T +, then ΨQ1,Q′1

(Q0) ∈M.

Proof. The first item is proven exactly as proposition 2.3.15, hence we may

assume that Q1, Q
′
1 ∈ T +. We may further assume that Q0 /∈ Q1, otherwise the

conclusion follows directly from clause (E.2). Since non-elementary models in

(S,L, T +)-symmetric systems need to be preceded by large models, there must

be some large model N such that N ∈ Q1 and εQ0 < εN < εQ1 . By two

applications of the shoulder axiom, we can find Q2 ∈ M ∩ T + and

N2 ∈ M∩ Q2 such that Q0 ∈ N2 ∈ Q2 and εQ2 = εQ1 . Since Q0 ∈ XQ2,Q1 , the
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model Q0 must be fixed by the isomorphism ΨQ2,Q1 by clause (B.2), and hence,

if we let N = ΨQ2,Q1(N2), we have Q0 ∈ N ∈ Q1. Let N ′ = ΨQ1,Q′1
(N), which is

an element of M by clause (E.2). Then, by proposition 2.4.3 and clause (E.1),

ΨQ1,Q′1
(Q0) = ΨN,N ′(Q0) ∈M.

The following proposition is proven exactly as proposition 2.3.15, but using the

last proposition instead of proposition 2.3.16.

Proposition 2.4.15. Let M be a pre-(S,L, T +)-symmetric system, and let

Q0, Q1 ∈ M such that Q0 ∈∗ Q1. If there is a model P ∈ M such that

εQ0 < εP < εQ1, then there is R ∈M such that εR = εP and Q0 ∈∗ R ∈∗ Q1.

Proposition 2.4.16. Let M be an (S,L, T +)-symmetric system.

(1) Let N0, N1 be two elementary submodels of H(κ) of size ℵ1 such that ΨN0,N1

is the unique isomorphism between (N0;∈) and (N1;∈). If M ∈ N0, then

ΨN0,N1(M) is an (S,L, T +)-symmetric system.

(2) Let M0,M1 be two L-symmetric systems such that ΨM0,M1
is the unique

isomorphism between (
⋃
M0;∈, N0)N0∈M0

and (
⋃
M1;∈, N1)N1∈M1

. If

M∈
⋃
M0, then ΨM0,M1

(M) is an (S,L, T +)-symmetric system.

The following result is a local form of the shoulder axiom, which holds for large

models that are elements of non-elementary models, even if they are not members

of the (S,L, T +)-symmetric system. Although we don’t need it here, the following

form of symmetry will be crucially used in chapter 4, when dealing with finite

support iterations with symmetric systems as side conditions.

Proposition 2.4.17. Let M be an (S,L, T +)-symmetric system. Let Q ∈ M,

M ∈ M ∩ T +, and N ∈ M (possibly such that N /∈ M) such that εQ < εN .

Then, there is some M
∗ ∈ M ∩ T + and some N∗ ∈ M∗ such that Q ∈ N∗ and

there is an isomorphism ΨN∗,N between N∗ and N that fixes N∗ ∩N .

Proof. We will show by induction that there is some M
+ ∈ M ∩ T + with the

following properties:
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• ε
M

+ ≤ εM .

• There is some N ′ ∈ M
+

and an isomorphism ΨN ′,N between N ′ and N

that fixes N ′ ∩N .

• Either

(a) Q ∈M+
, or

(b) there is some N+ ∈M∩M+
such that Q ∈ N+ and εN+ ≤ εN .

Let us show first that this is enough to get the conclusion of the statement. If

(a) holds, and hence, Q ∈ M+
, since εQ < εN ′ = εN , by the shoulder axiom for

M
+

there must be some N∗ ∈M+
such that Q ∈ N∗ and εN∗ = εN ′ . Otherwise,

(b) must hold, and thus, there has to be some N+ ∈M∩M+
such that Q ∈ N+

and εN+ ≤ εN . If εN+ = εN , we let N∗ be N+ and we are done. If εN+ < εN ,

by the shoulder axiom for M
+

there is some N∗ ∈ M+
such that N+ ∈ N∗ and

εN∗ = εN ′ = εN , and hence, as Q ∈ N+ ⊆ N∗, we are done. The isomorphism

between N∗ and N is clear.

Let us start the induction. By the shoulder axiom for M there must be some

M0 ∈M∩T + such that εM0
= εM and Q ∈∗ M0. If Q ∈M0, we let M

+
be M0,

and as (a) holds, the induction ends. Suppose that Q /∈ M0. Then, since non-

elementary models in (S,L, T +)-symmetric systems must be preceded by large

models, there must be some N0 ∈M∩M0, which by proposition 2.4.15, we may

assume that Q ∈ N0. By the symmetry of M there is some N ′0 ∈ M0 such that

εN ′0 = εN . If εN0 ≤ εN , we let M
+

= M0, N
+ = N0, and N ′ = N ′0, and as (b)

holds, the induction ends. Otherwise, εN0 > εN . In this case, by the symmetry

of M0, there has to be some N ′′0 ∈M0 such that N ′′0 ∈ N0 and εN ′′0 = εN ′0 = εN .

Hence, N0 ∩M0 ∈ M by clause (F.2). Note that εQ < εN ′′0 = εN < εN0∩M0
, as

N ′′0 ∈ N0 ∩M0. Therefore, by the shoulder axiom for M there must be some

M1 ∈M∩ T + such that Q ∈∗ M1 and εM1
= εN0∩M0

.

It should be clear that we can repeat the same argument from the last paragraph

with respect to M1 instead of M0 and continue the induction. SinceM is finite,
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this induction has to end in finitely many steps, and in the end there must be

some M
+ ∈ M ∩ T + with the properties mentioned at the beginning of the

proof.

The proof of the next lemma is straightforward.

Lemma 2.4.18. Let M be an (S,L, T +)-symmetric system and let N ∈ L such

that M∈ N . Then M∪ {N} is an (S,L, T +)-symmetric system.

Lemma 2.4.19. Let M be an (S,L, T +)-symmetric system and let M ∈ S such

that M ∈ M . Then, there exists an (S,L, T +)-symmetric system M∗ such that

M∪ {M} ⊆ M∗.

Proof. The argument from the proof of lemma 2.3.19 mostly shows that the set

M∗ =M∪ {M} ∪ {N ∩M : N ∈M∩L}

is an (S,L, T +)-symmetric system. Clauses (E) and (F) are easily seen to follow

from the fact that M∗ only adds small models to M, using similar ideas to the

ones used in the proof of lemma 2.3.19.

Lemma 2.4.20. Let M be an (S,L, T +)-symmetric system and let N ∈M∩L.

Then, M∩N is an (S,L, T +)-symmetric system.

Proof. It’s a routine matter to check that M ∩ N is an (S,L, T +)-symmetric

system using the same ideas from the proof of lemma 2.3.20, which translate

easily to this situation. In particular, if N ′ ∈ L and M ∈ T + are models inM∩N

such that N ′ ∈M and N ′ ∩M 6= ∅, then it’s clear that N ′ ∩M ∈M∩N .

Towards the proof of the fact that the restriction of an (S,L, T +)-symmetric

system M to a small model M is an (S,L, T +)-symmetric system, we need to

analyse the structure ofM∩M in the same way that we did for (S,L)-symmetric

systems, captured mostly in proposition 2.3.22.
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If M is an (S,L, T +)-symmetric system and M ∈ M is a small model, we

will define the residue sequence ofM∩M exactly as we did for (S,L)-symmetric

systems. Let us recall that ifM∩L∩M is nonempty, we fix a maximal increasing

∈-chain 〈Ni : i ≤ n〉 of elements of M∩L ∩M , and we denote εNi by εM∩L∩Mi

and εNi∩M by εM∩S∩Mi , or simply εLi and εSi , respectively, ifM and M are clear

from the context, for every i ≤ n. Then, 〈(εSi , εLi ) : i ≤ n〉 is called the residue

sequence of M∩M .

It is worth noting that if M ∈ M ∩ M is a non-elementary model, it follows

from the fact that non-elementary models in (S,L, T +)-symmetric systems need

to be preceded by large models, that M must lie right above a large model whose

ω2-height equals εLi , for some i ≤ n. To be more precise, εM must be greater

than εLi , and there can’t be any P ∈M such that εLi < εP < εM . Moreover, note

that since M ∈M , all the models in M need to be elements of M by proposition

1.4.4.

The following proposition, which describes M∩M in terms of the ω2-heights of

the models inM, is proven exactly as proposition 2.3.22 with a few adjustments.

We use propositions 2.4.13 and 2.4.15 instead of propositions 2.3.14 and 2.3.16,

respectively, and we need to use proposition 2.4.2 in combination with proposition

1.4.13.

Proposition 2.4.21. LetM be an (S,L, T +)-symmetric system, let M ∈M∩S,

and let 〈(εSi , εLi ) : i ≤ n〉 be the residue sequence of M∩M . Then, Q ∈ M∩M

if and only if Q ∈M∩M [ω1] and either,

(1) εQ ∈ [εLn , εM ), or

(2) εQ ∈ [εLi , ε
S
i+1) and Q ∈ (Zi+1 ∩M)[ω1], for some i < n and some large

model Zi+1 ∈M∩M such that εZi+1 = εLi+1, or

(3) εQ < εS0 and Q ∈ (Z0 ∩M)[ω1], for some large model Z0 ∈ M ∩M such

that εZ0 = εL0 .
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Lemma 2.4.22. Let M be an (S,L, T +)-symmetric system and let M ∈M∩S.

Then, M∩M is an (S,L, T +)-symmetric system.

Proof. Similarly to the proof of lemma 2.4.20, checking thatM∩M is an (S,L)-

symmetric system is a routine matter if we translate the ideas from the proof of

lemma 2.3.23 to the context of (S,L, T +)-symmetric systems. Again, if N ∈ L

and M ∈ T + are models in M∩M such that N ∈ M and N ∩M 6= ∅, then

clearly N ∩M ∈M∩M .

2.4.4 Amalgamation lemmas

If M is an (S,L, T +)-symmetric system, we let M∗ be the set

M∗ = {Q[ω1] : Q ∈ (S ∪ L) ∩N} ∪ {
⋃
M : M ∈ T + ∩M}.

Lemma 2.4.23. Let n < ω, let M0, . . . ,Mn be (S,L, T +)-symmetric systems

and let Xi,j =
⋃
M∗i ∩

⋃
M∗j for all i, j ≤ n. Suppose that there are

isomorphisms Ψi,j between the pairs of structures (
⋃
M∗i ;∈, Xi,j , Q

i)Qi∈Mi
and

(
⋃
M∗j ;∈, Xi,j , Q

j)Qj∈Mj
fixing Xi,j, for all i, j ≤ n. Then,

⋃
i≤nMi is an

(S,L, T +)-symmetric system.

Proof. It’s not too hard to check that
⋃
i≤nMi satisfies all the clauses from

definition 2.4.10 by translating the ideas from the proof of lemma 2.3.24 to the

context of (S,L, T +)-symmetric systems, except possibly for the following case of

clause (F.2). Let N and M be a large and a non-elementary model, respectively,

both in
⋃
i≤nMi, such that N ∈ M and N ∩M 6= ∅. Let i, j ≤ n such that

N ∈Mi and M ∈Mj . We need to show that N∩M ∈
⋃
i≤nMi. Note that since

N ∈ M ∈ Mj , we have that N ∈
⋃
M∗j . Hence, N is fixed by the isomorphism

Ψj,i. Let M
′

= Ψj,i(M), which is clearly an element of Mi such that N ∈ M ′.

By proposition 2.4.8, we have N ∩M ′ = N ∩M . Hence, we can conclude that

N ∩M ∈Mi.
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Definition 2.4.24. Let M be an (S,L, T +)-symmetric system and let R ∈ M.

Then, an (S,L, T +)-symmetric system V is called a two-size virtual (M, R)-

reflection if it satisfies the following properties:

(VR.1) If R ∈ S ∪ L, then M∩R[ω1] ⊆ V ⊆ R[ω1].

(VR.2) If R ∈ T +, then M∩
⋃
R ⊆ V ⊆

⋃
R.

(VR.3) If R ∈ S ∪ T + and V ∈ V is such that εV = max{εV ′ : V ′ ∈ V}, then

V ∈ R.

(VR.4) If R ∈ S ∪ T +, let ε+ = max{εN : N ∈ V ∩ L}, and let ε− be the

ordinal min{εN : N ∈ M ∩ L, εN > εR}, in case it exists, otherwise let

ε− = max{εQ : Q ∈M}+ 1. Let N ∈ V ∩L such that εN = ε+. Then, the

following hold:

• N ∩R ∈ V.

• For every ε ∈ {εM ′ : M ′ ∈ M, εM ′ ∈ (εR, ε
−)}, there is some small

model M ′ ∈M such that R ∈M ′, εM ′ = ε, and N ∩M ′ ∈ V.

Proposition 2.4.25. Let M be an (S,L, T +)-symmetric system and let R be a

model in M∩ (S ∪ L). Let V be a two-size virtual (M, R)-reflection. Then,

U = {Q ∈M : εQ ≥ εR} ∪
⋃
{ΨR[ω1],R′[ω1]”(V) : R′ ∈M, εR′ = εR}

is an (S,L, T +)-symmetric system extending M and V.

Proof. As in the proof of proposition 2.3.26, the analogous result for (S,L)-

symmetric systems, it follows from proposition 2.4.16 and lemma 2.4.23, that

⋃
{ΨR[ω1],R′[ω1]”(V) : R′ ∈M, εR′ = εR}

is an (S,L, T +)-symmetric system. We will denote this (S,L, T +)-symmetric

system by V∗, and the set {Q ∈ N : εQ ≥ εR} by N ∗. Note that all the models

Q ∈ N such that εQ < εR belong to V∗ by the same reasons as in the proof of
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proposition 2.3.26. Moreover, arguing exactly as in the proof of that proposition,

it’s straightforward to verify that U satisfies all the clauses from the definition

of (S,L, T +)-symmetric system, except for the following case of clause (F.2).

Suppose that there are N ∈ U ∩ L and M ∈ U ∩ T + such that N ∈ M and

N ∩M 6= ∅. We want to show that N ∩M ∈ U . By similar considerations as

in the proof of proposition 2.3.26, we may assume that N ∈ V∗ and M ∈ N ∗.

If R ∈ L, we let N0 be a large model of N ∗ of minimal ω2-height such that

N ∈ N0 ∈ M , by appealing to proposition 2.4.15. Then, N0 ∩ M ∈ N , and

by the minimality of N0 and since R is a large model, εN0∩M < εR. Therefore,

N0 ∩M ∈ V∗ and N ∈ N0 ∩M . Hence, as V∗ is an (S,L, T +)-symmetric system,

N ∩ (N0 ∩M) = N ∩M ∈ V∗. Assume now that R ∈ S. Since non-elementary

models need to be preceded by large models in (S,L, T +)-symmetric systems,

there have to be large models N0 ∈ N ∗ such that N ∈ N0 ∈ M , again by

proposition 2.4.15. Note that εN0 must be strictly greater than εR. Hence, if we

pick N0 of minimal ω2-height, then N0 ∩M ∈ N and εN0∩M < εR. Therefore, by

the same reasons as above, N ∩ (N0 ∩M) = N ∩M ∈ V∗.

Proposition 2.4.26. LetM be an (S,L, T +)-symmetric system and let M ∈M

be a non-elementary model. Let V be a two-size virtual (M,M)-reflection. Then,

U = {Q ∈M : εQ ≥ εM} ∪
⋃
{Ψ

M,M
′”(V) : M

′ ∈M, ε
M
′ = εM}

is an (S,L, T +)-symmetric system extending M and V.

Proof. As in the proof of the last proposition, it follows from proposition 2.4.16

and lemma 2.4.23, that

⋃
{Ψ

M,M
′”(V) : M

′ ∈M, ε
M
′ = εM}

is an (S,L, T +)-symmetric system, which we denote by V∗. Again, we can argue

that all the modelsQ ∈ N such that εQ < εM belong to V∗, and we will denote the

set {Q ∈ N : εQ ≥ εM} by N ∗. The same argument from the proof of proposition
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2.3.26 shows that U is a pre-(S,L, T +)-symmetric system. Let us show that it

is also closed under intersections. Let N∗ ∈ U ∩ L and M∗ ∈ U ∩ (S ∪ T +) such

that N∗ ∈M∗ and N∗ ∩M∗ 6= ∅. As usual, since V∗ is an (S,L, T +)-symmetric

system and N ∗ ⊆ N , we may assume that N∗ ∈ V∗ and M∗ ∈ N ∗. Define

ε+ and ε− as in definition 2.4.24. Note that by (VR.3), the models V ∈ V∗ of

maximal ω2-height must be large models and elements of some M
′ ∈ N ∗ such

that ε
M
′ = εM . Hence, ε+ = max{εV : V ∈ V∗}. Moreover, note that the models

inN ∗ of ω2-height in the interval [εM , ε
−) are either non-elementary, and have ω2-

height εM , or countable elementary, and have ω2-height in the interval (εM , ε
−).

If there is some N ∈ N ∗ ∩ L such that εN < εM∗ , let N0 ∈ N ∗ be a model

of minimal ω2-height such that N0 ∈ L and N∗ ∈ N0 ∈ M∗, using proposition

2.4.15. Note that N∗ ∈ N0 ∩M∗ ∈ N and that N∗ ∩ (N0 ∩M∗) = N∗ ∩M∗.

Hence, in this case it’s enough to show that N∗ ∩ (N0 ∩M∗) ∈ U . Therefore, we

may assume that there is no large model N ∈ N∗ such that εN < εM∗ , which

translates to εM ≤ εM∗ < ε−. Let N+ ∈ V∗ such that N∗ ∈ N+ ∈∗ M∗ and

εN+ = ε+, using proposition 2.4.15. Then, N+ ∈M∗ by the observations above.

Therefore, if we show that N+ ∩M∗ ∈ U , then in fact N+ ∩M∗ ∈ V∗, and since

N∗ ∈ N+ ∩M∗, we will have that N∗ ∩ (N+ ∩M∗) = N∗ ∩M∗ ∈ V∗. Therefore,

we may assume that N∗ is such that εN∗ = ε+. But note that, by (VR.4), for

every N ′ ∈ V such that εN ′ = ε+, N ′ ∩M ′ ∈ V for some M ′ ∈ N ∗ such that

εM ′ = εM∗ , and this is enough to get the conclusion N∗ ∩M∗ ∈ U . Indeed, on

one hand, ΨN ′,N∗(N
′ ∩M ′) ∈ V∗ because V∗ is an (S,L, T +)-symmetric system,

and on the other hand, ΨN ′,N∗(N
′ ∩M ′) = N∗ ∩M∗ by proposition 2.3.11, if

M∗ ∈ S, and proposition 2.4.7, if M∗ ∈ T +.

Lemma 2.4.27. Let M be an (S,L, T +)-symmetric system and let M ∈M∩S.

Let W be another (S,L, T +)-symmetric system such that M∩M ⊆ W ⊆ M .

Then, there is an (S,L, T +)-symmetric system U such that M∪W ⊆ U .

Proof. The proof of this lemma is a translation, almost word by word, of the

proof of lemma 2.3.27. We will just add a few words to clarify that the same
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construction works here.

The construction of W∗, which can be summarised as the closure of a certain

fragment of (M∩M [ω1])∪W under intersections, is exactly the same as the one

for (S,L)-symmetric systems. Let us recall some of the notation that we used.

Let 〈(εSi , εLi ) : i ≤ n〉 be the residue sequence of M∩M and fix an ∈-increasing

sequence of large models 〈Ni : i ≤ n〉 such that Ni ∈ M ∩M and εNi = εLi for

every i ≤ n. Note that sinceW ⊆M , it follows from propositions 1.4.13 and 2.4.2

that for every W ∈ W either εW < εS0 , or εLi ≤ εW < εSi+1, or εLn ≤ εW < εM ,

for all i < n. Moreover, note that if M ∈ W ∩ T +, since M ∈ M , every model

N ∈ M must be a member of M . Therefore, by the same reason as above, for

all N ∈ M , either εN < εS0 , or εLi ≤ εN < εSi+1, or εLn ≤ εN < εM , for all i < n.

Let W ∈ W ∩ L such that εW 6= εLi for all i ≤ n. For every X ∈ W such that

εX = εW , we define EX and FX exactly as we did in the proof of lemma 2.3.27.

Recall that if ε∗ < ω2 was the least ω2-height of a large model in M such that

εSi < ε∗, for some i ≤ n, then EX consisted of an ∈-chain of models of ω2-height in

the interval [εSi , ε
∗), and the main point was that all those models were members

ofM∩S. This is still the case here, since models from T + need to be preceded by

large models in a (S,L, T +)-symmetric system. Hence, the definition of EX and

FX as in the proof of lemma 2.3.27 makes sense here. Now, recall that we obtain

the ∈-increasing sequence of large models 〈Zj : j ≤ m〉 by adding an ∈-increasing

maximal sequence of models X as above to the sequence 〈Ni : i ≤ n〉. We denote

by 〈(εSj , εLj ) : j ≤ m〉 the sequence of pairs (εZj∩M , εNj )j≤m, in componentwise

increasing order. Lastly, we defineW∗ as the result of adding to (M∩M [ω1])∪W

all the models in FZj , for each Zj ∈ (W \M) ∩ L.

Recall that the idea of the proof of lemma 2.3.27 was to close a certain fragment

of (M∩M [ω1]) ∪W under intersections by adding all the models from the sets

of the form FZi as above, and then close the resulting system W∗ under

isomorphisms. The exact same argument works here. Namely, we build by

induction two sequences of two-size virtual reflections (VSi )i≤m+1 and (VLi )i≤m,

which cover bigger and bigger initial segments of W∗, and so that VSm+1 is a
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two-size virtual (M,M)-reflection fully covering W∗. Then, the amalgamation

U of VSm+1 and N given by proposition 2.4.25 is the (S,L, T +)-symmetric

system extending N and W that we were looking for.

Lemma 2.4.28. Let M be an (S,L, T +)-symmetric system and let N ∈M∩L.

Let W be another (S,L, T +)-symmetric system such that M ∩ N ⊆ W ⊆ N .

Then, there is an (S,L, T +)-symmetric system U such that M∪W ⊆ U .

Proof. It’s obvious that W is a two-size virtual (M, N)-reflection. Therefore,

the amalgamation U of M and W given by proposition 2.4.25 is an (S,L, T +)-

symmetric system extending both M and W.

Lemma 2.4.29. LetM be an (S,L, T +)-symmetric system and let M ∈M∩T +.

Then, for every N ∈M there is an (S,L, T +)-symmetric system MN ⊇M such

that N ∈MN .

Proof. Our argument is inspired by the proof of lemma 2.1.12, which is the

analogous result for (S,L, T )-chains. It’s a good idea to keep it in mind

throughout the proof, but specially in case 2. Let ε∗ be the ω2-height of the

models N∗ ∈ M ∩M for which there is no R ∈ M such that εN∗ < εR < εM .

We will divide the proof in three cases:

Case 1. Suppose that εN = ε∗. Let N∗ be any model in M ∩ M such that

εN∗ = ε∗. Let M◦N be the set

⋃{
{N ′} ∪ (N ′ ∩M) : N ′ ∈M∩M, εN ′ = ε∗

}
∪ {N} ∪ΨN∗,N”(N∗ ∩M).

By propositions 2.4.20, 2.4.18, 2.4.16, and lemma 2.4.23, M◦N is an (S,L, T +)-

symmetric system. We claim that M◦N is in fact a two-size virtual (M,M)-

reflection. Clauses (VR.2) and (VR.3) form definition 2.4.24 are clear. Let us

check (VR.4). Let ε+ and ε− be defined as in the definition of two-size virtual

reflection, and note that ε+ = ε∗. Moreover, note that N∗ ∩M ∈ N∗ ∩M and

that for every M ∈M such that εM < ε− and M ∈M , then N∗ ∩M ∈ N∗ ∩M.
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Therefore, sinceM◦N is an (S,L, T +)-symmetric system, ΨN∗,N (N∗∩M) ∈M◦N

and ΨN∗,N (N∗ ∩ M) ∈ M◦N , for every M ∈ M as above. Hence, in light of

proposition 2.4.7, we can conclude that N ∩M ∈ M◦N and N ∩M ∈ M◦N , and

thus, that M◦N is a two-size virtual (M,M)-reflection, as we wanted. Now we

simply letMN be the amalgamation ofM andM◦N given by proposition 2.4.26.

Case 2. Suppose that εN > ε∗. Let (N∗j )j≤m be an enumeration of all the models

N∗ ∈ M∩M such that εN∗ = ε∗. For all j ≤ m, use the shoulder axiom for M

to find Nj ∈ M such that N∗j ∈ Nj and εNj = εN . If we show that there is an

(S,L, T +)-symmetric systemM∗ extendingM and containing Nj for all j ≤ m,

then the existence ofMN as in the statement of the lemma follows directly from

case 1. Let ε− be the least ω2-height of any large model in M above M , in case

it exists. Otherwise, let ε = max{εQ : Q ∈M}+1. Fix an ∈-increasing sequence

of countable elementary submodels SM ⊆M such that

• {εM : M ∈ SM} = {εM : M ∈M, εM < εM < ε−}, and

• M ∈M , for every M ∈ SM .

Our plan is to define a two-size virtual (M,M)-reflectionM◦ containing Nj , for

every j ≤ m, which then we will amalgamate withM to getM∗. The idea behind

the definition ofM◦ is to add all the models of the form Nj , Nj ∩M and Nj ∩M ,

for all j ≤ m and all M ∈ SM , mimicking the argument of the proof of lemma

2.1.12, and then closing the resulting system by the relevant isomorphisms. Let

us define M◦ step-by-step as follows:

(i) Let M◦0 be the result of adding Nj to
⋃
M ∩M, for all j ≤ m.

(ii) Now, let M◦1 be the result of adding Nj ∩M and Nj ∩M , for all j ≤ m

and all M ∈ SM , to M◦0.

(iii) Lastly, add all the models ΨNj0 ,Nj1
(Q), for every j0, j1 ≤ m and every

Q ∈ Nj0 ∩M◦1, to M◦1 and call the resulting set M◦.
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From the definition of M◦ (specially (ii)), it’s clear that in order to see that

it is a two-size virtual (M,M)-reflection, we only need to check that M◦ is an

(S,L, T +)-symmetric system. Note that for any two j0, j1 ≤ m, Nj0 ∩M◦ and

Nj1 ∩M◦ are isomorphic. Therefore, in light of proposition 2.4.18 and lemma

2.4.23, in order to see thatM◦ is an (S,L, T +)-symmetric system it’s enough to

check it for Nj ∩M◦, for every j ≤ m. It’s almost straightforward to check that

Nj ∩M◦ equals

⋃
i≤m
{ΨNi,Nj (N

∗
i )} ∪

⋃
i≤m

ΨNi,Nj”(N∗i ∩M) ∪ {Nj ∩M} ∪ {Nj ∩M : M ∈ SM}.

Let us make a couple observations about the structure of Nj ∩M◦:

• Since the set SM forms an ∈-chain of countable elementary submodels, the

set {Nj ∩M} ∪ {Nj ∩M : M ∈ SM} also forms an ∈-chain of models with

minimal element Nj ∩M . Let us call this set M+
j .

• For every i ≤ m, ΨNi,Nj (N
∗
i ) ∈ Nj ∩M by the symmetry of M , which is

an L-symmetric system.

• By propositions 2.4.20 and 2.4.18, for any two i0, i1 ≤ m,

{N∗i0} ∪ ΨNi0 ,j
”(N∗i0 ∩ M) and {N∗i1} ∪ ΨNi1 ,j

”(N∗i1 ∩ M) are two

isomorphic (S,L, T +)-symmetric systems. Therefore, by lemma 2.3.24,

⋃
i≤m
{ΨNi,Nj (N

∗
i )} ∪

⋃
i≤m

ΨNi,Nj”(N∗i ∩M)

is an (S,L, T +)-symmetric system, which we will denote byM−j . Also note

that, by the last point, M−j ∈
⋃

(Nj ∩M).

From these observations, it’s obvious that Nj∩M◦ is a pre-(S,L, T +)-symmetric

system. In order to see that it is also closed under intersections let N ′ ∈M+
j ∩L

and Nj ∩M ′ ∈M+
j ∩ (S ∪T +) such that N ′ ∈ Nj ∩M ′ and N ′ ∩ (Nj ∩M ′) 6= ∅,

where either M ′ = M or M ′ ∈ SM . But note that N ′ ∩ (Nj ∩M ′) = N ′ ∩M ′,

and that N ′ ∩M ′ ∈M, because both N ′ and M ′ are elements of M. Therefore,
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Nj ∩M◦ is an (S,L, T +)-symmetric system, as we wanted.

We have shown that M◦ is a two-size virtual (M,M)-reflection containing Nj ,

for all j ≤ m. Hence, the amalgamationM∗ ofM andM◦ given by proposition

2.4.26 is an (S,L, T +)-symmetric system extending M and containing Nj , for

every j ≤ m. Therefore, as we have mentioned at the beginning of case 2, now

the existence of MN as in the statement of the lemma follows by applying case

1 to M∗.

Case 3. Suppose that εN < ε∗. Let 〈ε∗i : i ≤ n〉 be the strictly decreasing

enumeration of the set {εN ′ : N ′ ∈ M ∩ M, εN ′ > εN}, where ε∗0 = ε∗. By

the shoulder axiom for M there must be some N0 ∈ M such that N ∈ N0 and

εN0 = ε∗0. Apply case 1 to obtain an (S,L, T +)-symmetric systemM0 extending

M and such that N0 ∈ M0 and {εQ : Q ∈ M0} = {εQ : Q ∈ M}. Note that

N ∈ N0 ∩M ∈ M0 and that there is some N∗1 ∈ N0 ∩M such that εN∗1 = ε∗1. It

should be clear that we can repeat the argument with respect to M0, N0 ∩M ,

and ε∗1, instead of M, M , and ε∗0, respectively. Hence, we can build (S,L, T +)-

symmetric systems Mi by induction on i ≤ n with the following properties:

(1) M⊆M0 and Mi ⊆Mi+1, for each i < n.

(2) {εQ : Q ∈Mi} = {εQ : Q ∈M} for all i ≤ n.

(3) There is some Nn ∈M ∩Mn such that N ∈ Nn ∩M and εNn = ε∗n.

(4) There is some Nn+1 ∈ (Nn ∩M) ∩Mn such that there is no R ∈Mn such

that εNn+1 < εR < εNn∩M and εNn+1 ≤ εN .

Let us explain item (4). By the symmetry of M , for every N∗n ∈ M ∩M such

that εN∗n = ε∗n, there must be some N ′ ∈ M such that N ′ ∈ N∗n and εN ′ = εN .

Therefore, N∗n ∩M 6= ∅, and by the closure of M under intersections, N∗n ∩M

must be an element of M. Hence, as N ′ is a member of N∗n ∩M , and as non-

elementary models must be preceded by large models in (S,L, T +)-symmetric

systems, there has to be some large model N∗n+1 ∈ (N∗n ∩M) ∩ M such that
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εN∗n+1
≤ εN . We may even assume that N∗n+1 is an immediate predecessor of

N∗n ∩M inM. The existence of Nn+1 as in (4) follows from the existence of this

model N∗n+1.

But now we are done. If εN = εNn+1 , the conclusion follows from case 1, and

if εN > εNn+1 , the conclusion follows from case 2, arguing with respect to Mn,

Nn ∩M and εNn+1 , instead of M, M and ε∗, respectively.

2.4.5 Preservation lemmas

Lemma 2.4.30. LetM be an (S,L, T +)-symmetric system. Then,M is strongly

(Q,M(S,L, T +))-generic for every Q ∈M∩ (S ∪ L).

Proof. Let D ⊆ Q ∩M(S,L, T +) be a dense subset. Let M∗ be an (S,L, T +)-

symmetric system such thatM∗ ⊇M. We need to find W ∈ D compatible with

M∗. It follows from lemmas 2.4.20 and 2.4.22 that M∗ ∩ Q is an (S,L, T +)-

symmetric system in Q. Since D is dense, there is some W ∈ D such that

W ⊇M∗ ∩Q, and as D ⊆ Q, then W ∈ Q. Hence, by lemmas 2.4.27 and 2.4.28,

the (S,L)-symmetric systems M∗ and W are compatible.

Lemma 2.4.31. LetM be an (S,L, T +)-symmetric system and let M ∈M∩T +.

Then, M is strongly (N,M(S,L, T +))-generic for every N ∈M .

Proof. Let D ⊆ N ∩ M(S,L, T +) be a dense subset. Let M∗ ⊇ M be an

(S,L, T +)-symmetric system. In light of lemma 2.4.29, we may assume that

N ∈ M∗. Hence, the result follows from exactly the same argument as in the

proof of lemma 2.4.30.

The following two theorems follow from lemmas 2.4.18, 2.4.19, and 2.4.30.

Theorem 2.4.32. The forcing M(S,L, T +) is strongly S-proper.

Theorem 2.4.33. The forcing M(S,L, T +) is strongly L-proper.
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The following theorem follows from lemma 2.4.23, by the same argument as in

the proof of lemma 2.3.33, the analogous result for (S,L)-symmetric systems.

Theorem 2.4.34. If 2ℵ1 = ℵ2 holds, then M(S,L, T +) has the ℵ3-Knaster

condition.

Theorem 2.4.35. If 2ℵ1 = ℵ2 holds, then M(S,L, T +) preserves all cardinals.

The following theorem is proven exactly as theorem 2.3.35.

Theorem 2.4.36. If 2ℵ1 = ℵ2 holds, then M(S,L, T +) preserves 2ℵ1 = ℵ2.



3

Strong chains of subsets of ω1

The entirety of this chapter is the result of a joint work between the author and

his PhD advisor, David Asperó.

The spaces ω2, ωω and [ω]ω have been a central topic of study in set theory

since its beginnings. In fact, it is fair to say that a great majority of the

developments in set theory were fuelled by the willingness of better

understanding these spaces. Their importance comes from the fact that when

equipped with the right topology, they are homeomorphic to R minus some

countable subset. Therefore, they are in many regards equivalent to R. It is

even common practice in set theory to refer to the elements of these spaces as

reals. Moreover, for many reasons which we won’t include here, they are more

suitable than R from the point of view of forcing theory. Of great importance is

the area of cardinal characteristics of the continuum, which deals with the

possible cardinalities of certain subsets of the the real line when the continuum

is assumed to be larger than ℵ1 (see [21] for a survey on the topic). In the past

decades there has been an increasing interest for the spaces of higher reals λ2,

λλ and [λ]λ, where λ is an uncountable cardinal, and the higher cardinal

characteristics associated to these spaces (see for example [41], [25], or [22]).

What makes this topic so interesting is that, in many cases, it turns out that

the classical theory doesn’t generalise to the uncountable case as

straightforwardly as one might expect. In fact, in some cases many results are

only known to work at the level of some large cardinal. Hence, this area has



Chapter 3: Strong chains of subsets of ω1 117

motivated the development of many deep and powerful ideas in forcing theory,

and moreover, it has given completely new characterisations of known large

cardinal notions.

In the area of higher cardinal characteristics one usually considers spaces such as

[λ]λ quotiented by the ideal of subsets of λ of size < λ. This fact is crucial when

generalising the classical theory of cardinal characteristics to the uncountable. In

fact, the space [λ]λ quotiented by the ideal of subsets of λ of size < µ, for some

cardinal µ < λ, is much harder to deal with. Indeed, the known techniques coming

from the area of cardinal characteristics don’t seem to work in this context, so

our understanding of this space is much more scarce. In this chapter we will focus

on the space [ω1]
ω1 quotiented by the ideal of finite subsets of ω1, but before we

present our results, let us give a brief overview of the main results in this area.

Let λ be an infinite cardinal, let ν ≤ λ be a cardinal, let µ ≤ λ be a regular

cardinal, and let δ be an infinite ordinal.

Definition 3.0.1. A (< µ)-strongly almost disjoint family of subsets of λ of

length δ is a sequence 〈Aα : α < δ〉 of subsets of λ such that for all α < β < δ,

(1) |Aα| = λ, and

(2) |Aα ∩Aβ| < µ.

Baumgartner in 1978 showed that you can consistently have arbitrarily long

strongly almost disjoint families of subsets of any infinite cardinal.

Theorem 3.0.2 ([17]). If GCH holds, then there is a cardinal-preserving forcing

notion P that forces the existence of a (< µ)-strongly almost disjoint family of

subsets of λ of length δ.

The next big result in the area came with Zapletal’s thesis, in which he showed

that you can get a stronger result at the level of ω1. Interestingly enough, the

result was proven using a forcing with symmetric systems of models of one type

as side conditions.
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Definition 3.0.3. A (< µ)-strongly almost disjoint family of functions from λ to

ν of length δ is a sequence 〈fα : α < δ〉 of functions such that for all α < β < δ,

(1) fα ∈ λν, and

(2) |{γ ∈ λ : fα(γ) = fβ(γ)}| < µ.

Theorem 3.0.4 ([91]). If CH holds, then there is a cardinal-preserving forcing

notion P that forces the existence of a (< ℵ0)-strongly almost disjoint family of

functions from ω1 to ω of length δ.

You can define an even stronger notion for families of functions, which will be

the focus of this chapter.

Definition 3.0.5. A (< µ)-strong chain of functions from λ to ν of length δ is

a sequence 〈fα : α < δ〉 of functions such that for all α < β < δ,

(1) fα ∈ λν, and

(2) |{γ ∈ λ : fα(γ) ≥ fβ(γ)}| < µ.

Note that by letting ν = 2 and identifying each subset of λ with its characteristic

function, you can isolate the following strictly weaker notion.

Definition 3.0.6. A (< µ)-strong chain of subsets of λ of length δ is a sequence

〈Xα : α < δ〉 of subsets of λ such that for all α < β < δ,

(1) |Xβ \Xα| = λ, and

(2) |Xα \Xβ| < µ.

From now on, when µ = ℵ0 we will omit the particle “(< ℵ0)” from the names

of the objects defined so far in this chapter.

It’s clear that the existence of a strong chain of functions from λ to ν implies

the existence of a strong chain of subsets of λ. Moreover, Baumgartner in [17]
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showed that the existence of a strong chain of subsets of λ implies the existence of

a strongly almost disjoint family of subsets of λ. More precisely, if 〈Xα : α < δ〉

is a (< µ)-strong chain of subsets of λ and we define Aα := Xα+1 \Xα, for every

α < δ, then 〈Aα : α < δ〉 is a (< µ)-strongly almost disjoint family of subsets of

λ of length δ.

It was known that strong chains on ω1 of length ω1 existed in ZFC. However, it

was not known if longer strong chains could exist consistently. So Hajnal and

Szentmiklóssy asked in [71] the natural questions about strong chains.

Question 3.0.7. Is it consistent that there exists a strong chain of subsets of ω1

of length ω2?

And the harder version of the question.

Question 3.0.8. Is it consistent that there exists a strong chain of functions

from ω1 to ω1 of length ω2?

Both questions were answered affirmatively by Koszmider in [42] and [43],

respectively. In the later paper Koszmider introduced a cardinal-preserving

forcing with side conditions organised along morasses. These side conditions

capture the combinatorial content of the set {M ∩ ω2 : M � H(ω3), |M | = ℵ0}

and, in some way, they seem to be closely related to symmetric systems. After

the introduction of Neeman’s side conditions of models of two types ([62], [63]),

Veličković and Venturi [88] obtained a much simpler proof of Koszmider’s

result, by defining a forcing with (S,L)-chains (see section 2.1).

On a completely different direction, Shelah and Inamdar proved some

impossibility results about the existence of strong chains. First, Shelah [79]

showed that, in particular, you cannot have strong chains of functions from ω2

to ω2 of length ω3. Later, Inamdar [37] improved Shelah’s result by showing

that in fact you cannot have strong chains of subsets of ω2 of length ω3.

But this is of course not the end of the story, because we can still ask the following
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question.

Question 3.0.9. How long can strong chains of functions from ω1 to ω1 be?

The problem of finding strong chains of functions from ω1 to ω1 of length ω3 is

of course a very important question from the point of view of combinatorial set

theory, but moreover, it has been a very important question in the area of forcing

with side conditions. The reason is that it has been regarded as a test question

for finding side conditions of models of three types. However, in this chapter we

will show that side conditions of models of two types seem to be enough to answer

this question. We will define a forcing with symmetric systems of models of two

types as side condition to give a partial answer to the following easier question.

Question 3.0.10. How long can strong chains of subsets of ω1 be?

The following theorem is the main result of this chapter.

Theorem 3.0.11. If GCH holds, then there is a cardinal-preserving forcing

notion P forcing the existence of a strong chain of subsets of ω1 of length ω3.

We believe that a very mild modification of the forcing, using some ideas from

[88], should allow us to get the same result for strong chains of functions from ω1

to ω1.

3.1 Definition of the forcing

Let us assume GCH holds throughout this chapter. We start out by fixing a

sequence ~e = (eα : α ∈ ω3) such that eα : |α| −→ α is a bijection for each

α < ω3. Throughout this chapter we will let κ = ω3 and T = ~e. Hence, S is the

collection of countable M � (H(ω3);∈, ~e). We will let L be the collection of all

N � (H(ω3);∈, ~e) such that |N | = ℵ1 and ωN ⊆ N .

The following standard fact, which is a particular case of proposition 2.2.4, will

be crucially used in the proof of theorem 3.0.11.



Chapter 3: Strong chains of subsets of ω1 121

Lemma 3.1.1. For all countable M0,M1 � (H(ω3);∈, ~e), if (M0[ω1];∈,M0, ~e) ∼=

(M1[ω1];∈,M1, ~e), then M0 ∩M1 ∩ ω3 is an initial segment of both M0 ∩ ω3 and

M1 ∩ ω3.

Proof. We will show that for every β ∈ M0 ∩ M1 ∩ ω3, if α ∈ M0 ∩ β, then

α ∈ M1 ∩ β. Note that there is some ξ ∈ M0 ∩ ω2 such that eβ(ξ) = α, and in

fact, this is seen by M0[ω1]. Therefore,

M1[ω1] |= ΨM0[ω1],M1[ω1](ξ) ∈M1 ∩ ω2.

But note that since ΨM0[ω1],M1[ω1] is the identity on M0[ω1] ∩ ω2, we have that

ΨM0[ω1],M1[ω1](ξ) = ξ ∈M1 ∩ ω2. Hence, α = eβ(ξ) ∈M1 as we wanted.

Definition 3.1.2. Let A be a finite subset of S, let ν ∈ ω1, and let α, β ∈ ω3.

Then, α <A,ν β holds if and only if α < β and there are M0, . . . ,Mn ∈ A and

γ0 < · · · < γn−1 < ω3 such that

(a) supi≤n δMi ≤ ν,

(b) α ∈M0 and β ∈Mn, and

(c) γi ∈Mi ∩Mi+1 ∩ (α, β), for every i < n.

Note that the order <A,ν is transitive. We will denote the set {M ∈ A : δM ≤ ν}

by Aν , and if α and β are as in the definition above, we will say that they are

Aν-connected through {M0, . . . ,Mn}.

The forcing P witnessing theorem 3.0.11 is defined as follows. Conditions in P

are tuples p = (Np,Ap, ap, dp, up) such that:

(C1) Np is an (S,L)-symmetric system.

(C2) Ap ⊆ Np∩S is such that M∩N ∈ Ap for all M ∈ Ap and N ∈ Np∩L∩M .

(C3) ap ∈ [ω3]
<ω.
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(C4) dp ∈ [ω1]
<ω.

(C5) up = (uαp : α ∈ ap) and for each α ∈ ap, uαp : dp → 2 is a function.

(C6) For every ν ∈ dp and all α, β ∈ ap, if α <Ap,ν β, then uαp (ν) ≤ uβp (ν).

Given P-conditions p and q, q extends p (which we also denote by q ≤ p) if and

only if

(O1) Nq ⊇ Np;

(O2) Aq ⊇ Ap;

(O3) aq ⊇ ap;

(O4) dq ⊇ dp;

(O5) for all α ∈ ap, uαq ⊇ uαp .

If p is a condition in P, we will write <p,ν instead of <Ap,ν .

Let us give some intuition about the definition of the forcing P. Recall that our

goal is to force a strong chain 〈Xα : α < ω3〉 of subsets of ω1. Suppose that

p is a condition in P. The small models M in the distinguished set Ap, which

we will call the set of active models of p, are exactly the models for which we

will show that p is (M,P)-generic. The fact that the set of active models is not

closed under isomorphism, unlike the (S,L)-symmetric system Np, is crucial in

many proofs so that the arguments go through. For every α ∈ ap, the function

uαp : dp → 2 is a finite approximation of the characteristic function of the α-th

set Xα of the strong chain that we want add generically. Therefore, dp gives

us an ordinal ν < ω1, and uαp decides whether ν will be an element of Xα (i.e.,

uαp (ν) = 1), or it won’t (i.e., uαp (ν) = 0).

Clause (C6) is the main ingredient of the definition. Let α, β ∈ ap such that

α < β. Suppose that α, β ∈ M , for some M ∈ Ap. We want to promise that

uαp (ν) ≤ uβp (ν) for all ν ∈ dp such that δM ≤ ν. In other words, if uαp puts ν
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in Xα, then uβp must put ν in Xβ as well, for all ν < ω1, save perhaps those ν

that belong to M . However, the situation is a little bit more complicated. Let

us momentarily denote by naive-(C6) this weak version of clause (C6). We need

to anticipate some potential issues that may appear when amalgamating two

different conditions p, q ∈ P. Let ν ∈ dp and suppose that α, β ∈ ap are such that

α < β. Moreover, suppose that α ∈M0 and β ∈M1 for some M0,M1 ∈ Aνp , but

there is no M ∈ Aνp such that α, β ∈ M . In this case, clause naive-(C6) doesn’t

impose any requirement on the values of uαp (ν) and uβp (ν). So it might very well

happen that uαp (ν) > uβp (ν). Suppose now that γ ∈ aq such that α < γ < β and

γ ∈M0∩M1. Note that in this case it would be impossible to amalgamate p and

q. Indeed, suppose that r ∈ P was a condition extending both p and q. Then, on

one hand, uαr (ν) = uαp (ν) > uβp (ν) = uβr (ν). But on the other hand, naive-(C6)

would impose uαr (ν) ≤ uγr (ν) = uγq (ν) ≤ uβr (ν), which is impossible. The order

<A,ν is designed precisely to account for these potential issues that might appear

in some of the proofs of the amalgamation lemmas, and clause (C6) is defined

accordingly.

3.2 Density lemmas and basic properties

Lemma 3.2.1. For every p ∈ P and every α ∈ ω3 there is some p∗ ∈ P extending

p, and some α∗ < ω3, α∗ > α, such that α∗ ∈ ap∗.

Proof. Let α∗ < ω3 such that α∗ > α and α∗ > sup(M ∩ ω3) for each M ∈ Ap.

Hence, α∗ is not Aνp-connected to any β ∈ Ap, for any ν ∈ dp. For every ν ∈ dp,

we let uα
∗
p∗ (ν) = 0, and uβp∗(ν) = uβp (ν) for each β ∈ ap. Then,

p∗ = (Np,Ap, ap ∪ {α∗}, dp, (uβp∗ : β ∈ ap ∪ {α∗}))

is an extension of p in P as desired.

Lemma 3.2.2. For every p ∈ P and every ν ∈ ω1 \ dp, there exists some p∗ ∈ P
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such that p∗ ≤ p, ν ∈ dp∗, and for any i ∈ {0, 1}, uαp∗(ν) = i for all α ∈ ap∗.

Lemma 3.2.3. Let p ∈ P, α ∈ ap, and ν < ω1. For each β ∈ ap such that β > α

there is some p∗ ∈ P, p∗ ≤ p, and some ν∗ < ω1 above ν such that ν∗ ∈ dp∗,

uαp∗(ν
∗) = 0, and uβp∗(ν

∗) = 1.

Proof. Let ν∗ ∈ ω1 \ dp be higher than both ν and δM for every M ∈ Ap. Let us

define dp∗ = dp ∪ {ν∗}. For every γ ∈ ap, we extend uγp to a function uγp∗ with

domain dp∗ , such that uγp∗(ν
∗) = 0 if γ < β, and uγp∗(ν

∗) = 1 if γ ≥ β. Then,

p∗ = (Np,Ap, ap, dp∗ , (uγp∗ : γ ∈ ap))

is an extension in P of p as desired.

Lemma 3.2.4. Let Q ∈ S ∪L and let p ∈ P∩Q. Then there is a condition q ∈ P

extending p and such that

(1) Q ∈ Nq and

(2) Q ∈ Aq if Q is countable.

Proof. Suppose first that Q ∈ S and let q = (Nq,Aq, ap, dp, up) be such that

Nq = Np ∪ {Q} ∪ {N ∩Q : N ∈ Np ∩ L}

and

Aq = Ap ∪ {Q} ∪ {N ∩Q : N ∈ Np ∩ L}.

The only clause in the definition of P that we need to check is (C6), as clause

(C1) follows from lemma 2.3.19, and the other ones are obvious. On one hand,

note that since p ∈ Q, in particular dp ⊆ Q, and hence, ν < δQ for all ν ∈ dp.

On the other hand, note that δQ = δN∩Q for all N ∈ Np ∩ L. Therefore, neither

Q nor the models N ∩ Q, where N ∈ Np ∩ L, add new Aνq -connections between

the elements of ap, for any ν ∈ dp. Hence, q satisfies clause (C6).
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The proof for the uncountable case is very similar to the countable one, but uses

lemma 2.3.18 instead of lemma 2.3.19, with the only change in the definition of

q being that Nq is now Np ∪ {Q}.

Definition 3.2.5. Given a condition p ∈ P and a model Q ∈ Np, we define

p � Q = (Np�Q,Ap�Q, ap�Q, dp�Q, up�Q) by letting

(1) Np�Q = Np ∩Q,

(2) Ap�Q = Ap ∩Q,

(3) ap�Q = ap ∩Q,

(4) dp�Q = dp ∩Q, and

(5) uαp�Q(ν) = uαp (ν), for all α ∈ ap�Q and all ν ∈ dp�Q,

and we call it the restriction of p to Q .

Lemma 3.2.6. If p ∈ P and Q ∈ Np, then p � Q is a condition in P ∩ Q such

that p ≤ p � Q if

(1) Q ∈ L or

(2) Q ∈ S and Q ∈ Ap.

Proof. We only prove the case when Q is countable and Q ∈ Ap, as the

uncountable case is straightforward. It is easily seen that p � Q is a condition in

P. Indeed, clause (C1) in the definition of P follows from lemma 2.3.23 and the

other clauses are immediate (in the uncountable case we use lemma 2.3.20

instead of lemma 2.3.23). Since p � Q is finite, it clearly belongs to Q. Lastly,

p ≤ p � Q follows easily from the definition of p � Q.
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3.3 S-properness

Definition 3.3.1. Let p ∈ P and M ∈ Ap. A condition q ∈ P is called an

(S,M)-reflection of p if it satisfies the following properties:

(1) q ≤ p �M .

(2) If Ap = {M0, . . . ,Mn}, then there are M ′0, . . .M
′
n ∈ S such that Aq =

{M ′0, . . . ,M ′n} with the following properties:

(2.a) Mi = M ′i , for all i ≤ n such that Mi ∈M .

(2.b) Mi ∩M ∩ ω3 = M ′i ∩M ∩ ω3, for all i ≤ n such that δMi < δM .

(2.c) For each ν ∈M ∩ ω1 and all i ≤ n such that δMi ≤ ν, δMi = δM ′i .

(2.d) If α < β are in M ∩ ω3, ν ∈ M ∩ ω1, and there is A ⊆ Aνp such that

α and β are Aνp-connected through A, then α and β are Aνq -connected

through A′ = {M ′i : Mi ∈ A}.

The following result is straightforward:

Lemma 3.3.2. Let p ∈ P and M ∈ Ap. Then, p is an (S,M)-reflection of p.

Lemma 3.3.3. Let p ∈ P and let M ∈ Ap. Let q ∈ P∩M be an (S,M)-reflection

of p. Then there is a condition r ∈ P extending both p and q.

Proof. Let Nr be the (S,L)-symmetric system extending both Np and Nq given

by lemma 2.3.27. Let also

Ar = Ap ∪ Aq ∪ {M ′ ∩N : M ′ ∈ Ap ∪ Aq, N ∈ Nr ∩ L ∩M ′},

and let ar = ap ∪ aq and dr = dp ∪ dq.

Fix some ν ∈ dr and suppose that ar = {α0, . . . , αn}, where αi < αi+1 for each

i < n. We will define uαir (ν) by induction on i ≤ n, while making sure that clause

(C6) of the definition of P is satisfied.
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Case 1. Suppose first that ν ∈ dp�M . Then, for every i ≤ n, we define uαir (ν) as

uαiq (ν) if αi ∈ aq, and as uαip (ν) if αi ∈ ap \M .

Case 2. Suppose now that ν ∈ dq \ dp. Since r has to extend q, we will simply

let uαir (ν) = uαiq (ν), for all αi ∈ aq. Hence, we only need to define uαir (ν) for

αi ∈ ap \M . Assume first that i = 0. Then, we let uα0
r = uα0

q (ν) if α0 ∈ aq, and

uα0
r = 0 if α0 ∈ ap \M . Now, let k ≤ n and assume that we have defined uαir (ν)

for every i < k, and that clause (C6) of the definition of P holds for every pair

αi0 , αi1 ∈ ar, where i0 < i1 < k. Namely, if αi0 <r,ν αi1 , then u
αi0
r (ν) ≤ u

αi1
r (ν).

Moreover, if αi1 ∈ ap \ M , we assume that u
αi1
r (ν) = 0 if αi1 doesn’t have

any <r,ν-predecessor in ar, and u
αi1
r (ν) = u

αi0
r (ν) if αi0 is the immediate <r,ν-

predecessor of αi1 in ar. First, if αk doesn’t have any <r,ν-predecessor in ar, then

we define uαkr (ν) exactly as we did in the case i = 0. Otherwise, suppose that αj

is the greatest <r,ν-predecessor of αk in ar. If αk ∈ ap \M , we can simply let

uαkr (ν) = u
αj
r (ν). If αk ∈ aq we define uαkr (ν) as uαkq (ν), but we need to make

sure that clause (C6) of the definition of P holds for {α0, . . . , αk}. Note that by

the induction hypothesis and the transitivity of <r,ν , it’s enough to check that

u
αj
r (ν) ≤ uαkr (ν). If all the <r,ν-predecessors of αk in ar belong to ap \M , then

u
αj
r (ν) = 0 ≤ uαkr (ν) and we are done. Otherwise, we let αj∗ be the greatest <r,ν-

predecessor of αj that belongs to aq. Note that αj∗ <r,ν αk by the transitivity of

<r,ν .

Claim 3.3.4. αj∗ <q,ν αk.

Proof. Let M0, . . . ,Mm ∈ Aνr and γ0 < · · · < γm−1 < ω3 such that αj∗ ∈ M0,

αk ∈Mm, and γi ∈Mi ∩Mi+1 ∩ (αj∗ , αk) for each i < m. First of all note that if

Mi is of the form Q∩N , where Q ∈ Aνp ∪Aνq and N ∈ Nr ∩L∩Q, then δMi = δQ

and γi, γi+1 ∈Mi ⊆ Q. Hence, αj∗ and αk remain Aνr -connected if we substitute

all the models Mi as above by Q. Thus, we may assume that Mi ∈ Aνp ∪ Aνq

for all i ≤ m. It is also worth noting that δMi ≤ ν < δM for every i ≤ m, since

Mi ∈ Aνr and ν ∈ dq. We will show that there are M ′0, . . . ,M
′
m ∈ Aνq such that αj∗

and αk are Aνq -connected through {M ′0, . . . ,M ′m}. If there is no i ≤ m such that
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Mi ∈ Aνq , then αj∗ <Ap,ν αk, and by item (2) of definition 3.3.1, since αj∗ , αk ∈ aq

and ν ∈ dq, we have that αj∗ <q,ν αk and we are done. Otherwise, we let i0 be

the least i ≤ m for which Mi ∈ Aνq . If i0 = 0, we let M ′0 = M0. If i0 > 0, we have

that γi0 ∈ Mi0 ⊆ M , and thus, by item (2) of the definition of (S,M)-reflection

there are M ′0, . . . ,M
′
i0−1 ∈ A

ν
q such that αj∗ and γi0 are Aνq -connected through

{M ′0, . . . ,M ′i0−1}. Moreover, we let M ′i0 = Mi0 . Now, if there is no i ≤ m such

that i0 < i and Mi ∈ Aνq , we can apply item (2) of definition 3.3.1 again to show

that γi0+1 and αk are Aνq -connected. Otherwise, we let i1 be the least i ≤ m such

that i > i0 and Mi ∈ Aνq . By the same argument as above, using item (2) of the

definition of (S,M)-reflection, we can prove that γi0+1 and γi1 are Aνq -connected.

At this point it should be clear that we can repeat this argument, which will finish

eventually because αk ∈ M ∩ ω3, and which will give us M ′0, . . . ,M
′
m ∈ Aνq such

that αj∗ and αk are Aνq -connected through {M ′0, . . . ,M ′m}, as we wanted.

It follows that u
αj∗
r (ν) = u

αj∗
q (ν) ≤ uαkq (ν) = uαkr (ν) by clause (C6) applied to

q. Hence, we will be done if j∗ = j. If j∗ < j, note that αl ∈ ap \M for every

l < j such that αj∗ <r,ν αl <r,ν αj , so uj
∗
r (ν) = uαlr (ν) = u

αj
r (ν), by induction

hypothesis. Therefore, we can conclude that u
αj
r (ν) ≤ uαkr (ν).

Case 3. Finally, suppose that ν ∈ dp \ dq = dp \M . Since r has to extend p, we

will let uαir (ν) = uαip (ν), for all αi ∈ ap. Hence, we only need to define uαir (ν) for

αi ∈ aq \ap. Assume first that i = 0. Then we let uα0
r (ν) = uα0

p (ν) if α0 ∈ ap, and

uα0
r (ν) = 0 if α0 ∈ aq \ap. As in the last case, let k ≤ n and assume that we have

defined uαir (ν) for every i < k, and that u
αi0
r (ν) ≤ uαi1r (ν) for all i0 < i1 < k such

that αi0 <r,ν αi1 . Moreover, if αi1 ∈ aq\ap, assume that u
αi1
r (ν) = 0 if αi1 doesn’t

have any <r,ν-predecessor in ar, and u
αi1
r (ν) = u

αi0
r (ν) if αi0 is the immediate

<r,ν-predecessor of αi1 in ar. First, if αk doesn’t have any <r,ν-predecessors in ar,

we define uαkr in the same way as we did in the case i = 0. Otherwise, we let αj be

the greatest <r,ν-predecessor of αk in ar. If αk ∈ aq \ ap, we let uαkr (ν) = u
αj
r (ν),

and if αk ∈ ap, we let uαkr (ν) = uαkp (ν). In this second case we need to make sure

that clause (C6) holds, and again, by induction hypothesis, this simply means
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that we need to check that u
αj
r (ν) ≤ uαkr (ν). If all the <r,ν-predecessors of αk

in ar belong to aq \ ap, then u
αj
r (ν) = 0 ≤ uαkr (ν) and we are done. Otherwise,

there is a greatest <r,ν-predecessor αj∗ of αj in ap. By the transitivity of <r,ν ,

we have that αj∗ <r,ν αk. Suppose that αj∗ and αk are Aνr -connected through

M0, . . . ,Mm, for some m < ω. Note that for every i ≤ m, if Mi ∈ Aνq , or if Mi is

of the form M∗i ∩N for some M∗i ∈ Aνq and some N ∈ N ∩L∩M∗i , then Mi ∈M ,

and thus Mi ⊆M . Since M ∈ Aνp , if we substitute Mi by M , αj∗ and αk remain

Aνr -connected. Therefore, αj∗ <p,ν αk, and by clause (C6) applied to p, we have

that u
αj∗
r (ν) ≤ uαkr (ν). By the same reason as in case 2, u

αj∗
r (ν) = u

αj
r (ν), and

hence, we can conclude that u
αj
r (ν) ≤ uαkr (ν), as we wanted.

It should be clear from the way we have defined each uαir that

r = (Nr,Ar, ar, dr, (uαr : α ∈ ar)) is a condition in P extending both p and q.

Lemma 3.3.5. The forcing P is S-proper.

Proof. Let p ∈ P and let M∗ be a countable elementary submodel of some large

H(θ) containing p and P. Let M = M∗ ∩H(ω3). By lemma 3.2.4, we may find a

condition p′ extending p and such that M ∈ Ap′ . We will show that p′ is (M∗,P)-

generic. Let D ∈M∗ be a dense subset of P, and let p∗ ∈ D be such that p∗ ≤ p′.

Note that, in light of lemma 3.3.3, it’s enough to find an (S,M)-reflection q of p∗

such that q ∈ D ∩M∗. Since p∗ is an (S,M)-reflection of itself by lemma 3.3.2,

it’s enough to check that all the parameters in the definition of (S,M)-reflection

are in M∗ so that we can find a condition q as above by elementarity. Item (1)

of definition 3.3.1 has parameters in M by lemma 3.2.6. Items (2.a), (2.c) and

(2.d) are clear. The following claim shows item (2.b) and finishes the proof of

the lemma.

Claim 3.3.6. M∗ ∩M ∩ ω3 ∈M for every M∗ ∈ Np∗ ∩ S such that δM∗ < δM .

Proof. We will use proposition 2.3.16 repeatedly throughout the proof of the

claim without mention. Assume that εM∗ > εM . The case εM∗ ≤ εM is proven
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in the exact same way. We will find, by induction, two small models M and M
∗

in Np such that M ∩M∗ ∩ ω3 = M ∩M∗ ∩ ω3 and that M ∩M∗ ∩ ω3 ∈M . The

model M
∗

will be of the form N∗ ∩M∗ for some large model N∗ ∈ Np ∩M∗, and

the model M will be an isomorphic copy of M
∗

such that M ∈M . We will need

the following result.

Subclaim 3.3.7. Let M0,M1 ∈ Np∗ ∩ S such that M0 ∈ M1[ω1] \M1. Then,

there is N ∈ Np∗ ∩ L such that the following hold:

(1) N ∈M1 and εM0 < εN .

(2) M0 ∩M1 ⊆ N .

(3) One of the following two items holds:

• εM0 < εN∩M1 and there is no large model N ′ ∈ Np∗ such that εM0 <

εN ′ < εN∩M1, or

• εN∩M1 < εM0 < εN .

Proof. We will find models N0, . . . , Nn ∈ Np∗ ∩ L by induction such that the

following hold:

(i) Nn ∈ Nn−1 ∩M1 ∈ · · · ∈ N1 ∈ N0 ∩M1 ∈ N0 ∈M1 and εM0 < εNn .

(ii) M0 ∩M1 ⊆ Ni, for all i ≤ n.

(iii) One of the two following items holds:

• εM0 < εNn∩M1 and there is no large model N ∈ Np∗ such that εM0 <

εN < εNn∩M1 , or

• εNn∩M1 < εM0 < εNn .

We will be done by letting N be Nn. Since M0 ∈ M1[ω1] \ M1, there has to

be a large model N0 ∈ Np∗ of minimal ω2-height such that M0 ∈ N0 ∈ M1.

Therefore, N0 ∩M1 ∈ Np∗ . Suppose that we have found N0, . . . , Ni ∈ Np∗ ∩L as
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above, for some i < n. Moreover, suppose that εM0 < εNi∩M1 and that there are

large models N ′ ∈ Np∗ such that εM0 < εN ′ < εNi∩M1 . Let Pi ∈ Np∗ such that

M0 ∈ Pi[ω1], Pi ∈ Ni and εPi = εNi∩M1 , and let N ′i+1 ∈ Np∗ be a large model of

minimal ω2-height such that M0 ∈ N ′i+1 ∈ Pi. Define Ni+1 as the image of N ′i+1

under the isomorphism ΨPi[ω1],(Ni∩M)[ω1]. Note that this induction must end in

finitely many steps, and hence, there has to be a model Nn as above. Clause (i)

clearly holds. We show clause (ii) by induction. Let x ∈ M0 ∩M1. Note that

x ∈ N0, because M0 ∈ N0, so x ∈ N0 ∩M1. Suppose that x ∈ Ni ∩M1 for

some i < n. Note that as M0 ∈ Pi[ω1], then x ∈ Pi[ω1] ∩ (Ni ∩M1), and hence,

x = ΨPi[ω1],(Ni∩M1)[ω1](x). Therefore, as x ∈ N ′i+1, because M0 ∈ N ′i+1, we have

that x ∈ Ni+1. Finally, clause (iii) follows from the fact that the induction must

end in finitely many steps.

Note that if δM1 < δM0 , then the second item in (3) of the last subclaim must hold.

Let M+ ∈ Np∗ such that M ∈ M+[ω1] and εM+ = εM∗ , by the shoulder axiom

for Np. Note that M /∈ M+, otherwise we would contradict δM+ = δM∗ < δM .

Hence, by subclaim 3.3.7 there is N+
0 ∈ Np∗ ∩ L such that

• N+
0 ∈M+,

• M ∩M+ ⊆ N+
0 , and

• εN+
0 ∩M+ < εM < εN+

0
.

We claim that M ∩M∗ ⊆ ΨM+[ω1],M∗[ω1](N
+
0 ). Let x ∈M ∩M∗, and note that as

M ∈ M+[ω1], the isomorphism ΨM+[ω1],M∗[ω1] fixes x. Therefore, x ∈ M+, and

since M ∩M+ ⊆ N+
0 , then x ∈ N+

0 . But then x ∈ ΨM+[ω1],M∗[ω1](N
+
0 ), again

because x is fixed by the isomorphism ΨM+[ω1],M∗[ω1]. Denote ΨM+[ω1],M∗[ω1](N
+
0 )

by N∗0 , and note that N∗0 ∈M∗, so N∗0 ∩M∗ ∈ Np∗ .

Now, let M ′ ∈ Np∗ such that εM ′ = εM and N∗0 ∩M∗ ∈M ′[ω1], by the shoulder

axiom for Np. If N∗0 ∩ M∗ ∈ M ′, we let M
∗

and M be N∗0 ∩ M∗ and

ΨM ′[ω1],M [ω1](M
∗
), respectively. Otherwise, by subclaim 3.3.7 there must be
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some N ′0 ∈ Np∗ ∩ L such that

• N ′0 ∈M ′,

• εN∗0∩M∗ < εN ′0 ,

• (N∗0 ∩M∗) ∩M ′ ⊆ N ′0, and

• N ′0 must satisfy one of the two items of clause (3) from the statement of

subclaim 3.3.7.

Let N0 be the image of N ′0 under the isomorphism ΨM ′[ω1],M [ω1](N
′
0). Note that

M∩M∗ ⊆ N0. Indeed, if x ∈M∩M∗, we have seen that x ∈ N∗0 . Moreover, since

x is fixed by the isomorphism ΨM [ω1],M ′[ω1], because x ∈ N∗0 ∩M∗ ⊆M ′[ω1] and

x ∈M , then x must be a member of M ′. Consequently, x must be an element of

(N∗0 ∩M∗)∩M ′ ⊆ N ′0 as well. Now, if the first item of clause (3) of subclaim 3.3.7

for N ′0 holds, we let M ′′ ∈ Np∗ such that εM ′′ = εN0∩M and N∗0 ∩M∗ ∈M ′′[ω1], by

the shoulder axiom for Np. Note that since there are no large models of ω2-height

in the interval (εN∗0∩M∗ , εM ′′), we have that N∗0 ∩M∗ ∈ M ′′. In this case we let

M
∗

and M be the models N∗0 ∩ M∗ and ΨM ′′[ω1],(N0∩M)[ω1](M
∗
), respectively.

If the second item of clause (3) of subclaim 3.3.7 holds, we can repeat the same

argument as above with N∗0 ∩M∗ and N0∩M instead of M∗ and M , respectively.

Note that if we keep repeating this argument, at some point the first item of

clause (3) of subclaim 3.3.7 will have to hold. This means that there will be some

N∗, N ∈ Np∗ ∩ L such that

• N∗ ∈M∗,

• N ∈M ,

• M ∩M∗ ⊆ N ∩N∗,

• εN∗∩M∗ < εN∩M , and

• there are no large models N ′ ∈ Np∗ such that εN∗∩M∗ < εN ′ < εN∩M .
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Let M ′ ∈ Np∗ such that N∗ ∩M∗ ∈ M ′[ω1] and εM ′ = εN∩M , by the shoulder

axiom for Np. Note that, by proposition 2.3.14, N∗ ∩M∗ ∈ M ′. In this case we

define M
∗

as N∗ ∩M∗ and M as ΨM ′[ω1],(N∩M)[ω1](M
∗
).

Independently from the number of iterations of the argument above, M
∗

and M

have the following properties:

(a) M ∩M∗ ⊆M∗,

(b) M
∗ ⊆M∗, and

(c) M ∈M .

It’s not too hard to see from the way we have defined M , that M ∩M∗ ⊆ M

too. If we combine this with (b) and (c) we have that M ∩ M∗ = M ∩ M∗,

and in particular M ∩M∗ ∩ ω3 = M ∩M∗ ∩ ω3. Note that M ∩M∗ ∩ ω3 is an

initial segment of M ∩ ω3 by fact 3.1.1. Hence, as M ∩ ω3 ∈ M , we also have

M ∩M∗ ∩ ω3 ∈M . Therefore, M ∩M∗ ∩ ω3 ∈M , as we wanted.

The case εM∗ ≤ εM is proven in the exact same way.

Remark 3.3.8. Lemma 3.3.5, which crucially depends on claim 3.3.6, which in

turn depends on fact 3.1.1, is the only lemma in the proof of theorem 3.0.11

which does not go through if we try to force the same object consisting of partial

functions indexed by ordinals not in ω3 but on ω4 (or anything higher, of course).

The reason is that the version of claim 3.3.6 in this situation (i.e., replacing ω3

with ω4) does not hold.

3.4 L-properness

Definition 3.4.1. Let p ∈ P and N ∈ Np ∩ L. A condition q ∈ P is called an

(L, N)-reflection of p if it satisfies the following properties:
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(1) q ≤ p � N .

(2) dp = dq.

(3) If Ap = {M0, . . . ,Mn}, then there are M ′0, . . .M
′
n ∈ S such that Aq =

{M ′0, . . . ,M ′n}, and for every i ≤ n,

(3.a) Mi = M ′i if Mi ∈ Ap ∩N ,

(3.b) δM ′i = δMi , and

(3.c) N ∩Mi ∩ ω3 = N ∩M ′i ∩ ω3.

(4) There is an order-preserving bijection π : ap → aq with the following

properties:

(4.a) π is the identity on ap ∩N .

(4.b) For every Mi ∈ Ap and every α ∈ ap, α ∈Mi if and only if π(α) ∈M ′i .

(4.c) uαp (ν) = u
π(α)
q (ν), for each α ∈ ap and every ν ∈ dp.

Lemma 3.4.2. Let p ∈ P and N ∈ Np ∩L. Then, p is an (L, N)-reflection of p.

Lemma 3.4.3. Let p ∈ P and let N ∈ Np ∩ L. Let q ∈ P ∩ N be an (L, N)-

reflection of p. Then there is a condition r ∈ P extending both p and q.

Proof. Let Nr be the (S,L)-symmetric system extending both Np and Nq given

by lemma 2.3.30. Let also

Ar = Ap ∪ Aq ∪ {M ∩N ′ : M ∈ Ap ∪ Aq, N ′ ∈ Nr ∩ L ∩M},

and let ar = ap ∪ aq and dr = dp = dq. For every ν ∈ dr and every α ∈ ar,

we define uαr (ν) = uαp (ν) if α ∈ ap, and uαr (ν) = uαq (ν) if α ∈ aq, and we let

ur = (uαr : α ∈ ar). It’s clear that r = (Nr,Ar, ar, dr, ur) extends p and q and

satisfies clauses (C1)-(C5) from the definition of P, hence we only need to check

that it also satisfies clause (C6).

Fix some ν ∈ dr and let α < β in ar such that α <r,ν β. We will show that

uαr (ν) ≤ uβr (ν). Note that if α, β ∈ ap or α, β ∈ aq, then we get the result directly
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from clause (C6) applied to p or q, respectively. Hence, we only need to check

this for the case α ∈ aq \ ap and β ∈ ap \ N , and for the case α ∈ ap \ N and

β ∈ aq \ ap. Let M0, . . . ,Mm ∈ Aνr and γ0, . . . , γm−1 < ω3 such that α ∈ M0,

β ∈ Mm, and γi ∈ M i ∩M i+1 for each i < m. Note that if M i is of the form

M ∩N ′, where M ∈ Ap ∪Aq and N ′ ∈ Nr ∩L∩M , we can substitute M i by M ,

and α and β remain Aνr -connected, witnessed by the same sequence γ0, . . . , γm−1

of ordinals of ω3. Hence, we may assume that M0, . . . ,Mm ∈ Aνp ∪ Aνq .

Case 1. α ∈ aq \ ap and β ∈ ap \ N . Let α∗ ∈ ap such that α = π(α∗).

First, note that if for some i < m, M i ∈ Aνq , then there is some j ≤ n for

which M i = M ′j , and hence, by clause (3) of the definition of (L, N)-reflection,

γi, γi+1 ∈ N ∩Mj ∩ ω3. On one hand, if M0 ∈ Aνq , then M0 = M ′k for some

k ≤ n, and by clause (4) of definition 3.4.1, α∗ ∈ Mk. On the other hand, if

M0 ∈ Aνp , then M0 = Ml for some l ≤ n, and by clause (3) of the definition of

(L, N)-reflection, α ∈ M ′l . Hence, by clause (4) of the same definition, α∗ ∈ Ml.

Therefore, in both cases α∗ <p,ν β, and from clause (C6) applied to p and clause

(4) of definition 3.4.1, we get uαr (ν) = uαq (ν) = uα
∗
p (ν) ≤ uβp (ν) = uβr (ν).

Case 2. α ∈ ap \N and β ∈ aq \ ap. Let β∗ ∈ ap such that β = π(β∗). We can

argue as in case 1 with respect to β instead of α to show that α <r,ν β
∗, and

conclude that uαr (ν) = uαp (ν) ≤ uβ
∗
p (ν) = uβq (ν) = uβr (ν).

Lemma 3.4.4. The forcing P is L-proper.

Proof. Let p ∈ P and let N∗ be a countably closed ℵ1-sized elementary submodel

of some large H(θ) containing p and P. Let N = N∗ ∩H(ω3). By lemma 3.2.4,

we may find a condition p′ extending p and such that N ∈ Np′ . We will show

that p′ is (N∗,P)-generic. Let D ∈ N∗ be a dense subset of P, and let p∗ ∈ D

be such that p∗ ≤ p′. Similarly to the proof of lemma 3.3.5, since p∗ is an

(L, N)-reflection of itself by lemma 3.4.2, if we show that all the parameters in

the definition of (L, N)-reflection are in N∗, and then argue by elementarity, we

can find a condition q ∈ D ∩N∗ which is an (L, N)-reflection of p∗. Indeed, note
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that the parameters in item (3.c) of the definition of (L, N)-reflection are in N

because it is a countably closed model, and the other items are obvious or follow

from the fact that ω1 ⊆ N . But now we are done because p∗ and q are compatible

by lemma 3.4.3.

3.5 The chain condition

In our final lemma we show that P has the ℵ3-chain condition. We will in fact

prove that P has the ℵ3-Knaster condition; in other words, that for every sequence

(pξ : ξ < ω3) of conditions in P there is X ⊆ ω3 of size ℵ3 such that pξ0 and pξ1

are compatible for al ξ0, ξ1 < ω3 in P.

Lemma 3.5.1. P has the ℵ3-Knaster condition.

Proof. Let pξ ∈ P for all ξ < ω3. For each ξ, let Nξ be an elementary submodel of

(H(ω3);∈, ~e) of size ℵ1 such that pξ ∈ Nξ. By 2ℵ1 = ℵ2 we may find X ∈ [ω3]
ℵ3

such that for all ξ0 < ξ1 in X, the structures (Nξ0 ;∈, pξ0) and (Nξ1 ;∈, pξ1) are

isomorphic, and the isomorphism ΨNξ0 ,Nξ1
is the identity on Nξ0 ∩Nξ1 . We will

now prove that for all ξ0 < ξ1 in X, the conditions pξ0 and pξ1 are compatible.

By lemma 2.3.24, we have that Npξ0 ∪ Npξ1 is an (S,L)-symmetric system.

Moreover, note that if M ∈ Apξ1 ∩ S and N ∈ Npξ0 ∩ L ∩M , then N ∈ Nξ1 , and

hence, ΨNξ0 ,Nξ1
(N) = N . Therefore, N ∈ Npξ1 , and by clause (C2) applied to

pξ1 , we have that N ∩ M ∈ Apξ1 . Hence, we can conclude that Apξ0 ∪ Apξ1
satisfies clause (C2). Denote Apξ0 ∪ Apξ1 by Aq from now on. Since Nξ1 is an

uncountable model, ω1 ⊆ Nξ1 . Hence, in particular, dpξ0 ⊆ Nξ1 , and thus,

ΨNξ0 ,Nξ1
”dpξ0 = dpξ0 , which implies that dpξ0 = dpξ1 . Define aq = apξ0 ∪ apξ1

and dq = dpξ0 = dpξ1 . Note that for every ν ∈ dq, if α ∈ apξ0 ∩ apξ1 , then

uαpξ0
(ν) = uαpξ1

(ν). For every ν ∈ dq, each i ∈ {0, 1}, and every α ∈ apξi , define

uαq (ν) = uαpξi
(ν), and let uq be the sequence (uαq : α ∈ aq). It’s clear that uαq is a

well-defined function extending uαpξi
, for all i ∈ {0, 1} and all α ∈ apξi .
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Therefore, if we show that

q = (Npξ0 ∪Npξ1 ,Aq, aq, dq, uq)

satisfies clause (C6), then q will be a common extension of pξ0 and pξ1 in P, as

we wanted.

Let ν ∈ dq, and α < β in aq such that uαq (ν) > uβq (ν). We need to show that

α 6<Aq ,ν β. Suppose towards a contradiction that α <Aq ,ν β. Let M0, . . . ,Mn be

active models in Aq and let γ0 < · · · < γn−1 < ω3 such that

• supi≤n δMi ≤ ν,

• α ∈M0 and β ∈Mn, and

• γi ∈ (α, β) ∩Mi ∩Mi+1 for each i < n.

Now, for every i ≤ n, if Mi ∈ Apξ0 , we let M ′i denote the model Mi, and if

Mi ∈ Apξ1 , we let M ′i denote the model ΨNξ1 ,Nξ0
(Mi). Moreover, for every i < n,

if either Mi or Mi+1 belong to Apξ1 , we let γ′i = ΨNξ1 ,Nξ0
(γi). Otherwise, we let

γ′i = γi. Finally, if α ∈ apξ0 , let α′ = α, and if α ∈ apξ1 , let α′ = ΨNξ1 ,Nξ0
(α),

and similarly for β. We claim that

• γ′0 < · · · < γ′n−1,

• supi≤n δM ′i ≤ ν,

• α′ ∈M ′0 and β′ ∈M ′n, and

• γ′i ∈ (α′, β′) ∩M ′i ∩M ′i+1 for each i < n,

or in other words, that α′ <Apξ0 ,ν
β′. This will lead to a contradiction because

uα
′
pξ0

(ν) = uαq (ν) > uβq (ν) = uβ
′
pξ0

(ν), by assumption and the fact that ΨNξ1 ,Nξ0
is

an isomorphism.

It’s clear that supi≤n δM ′i ≤ ν and that γ′i ∈ M ′i ∩ M ′i+1, for each i < n. It

obviously holds that α′ ∈M ′0 in the cases α ∈ apξ0 and M0 ∈ Apξ0 , and α ∈ apξ1
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and M1 ∈ Apξ1 . If α ∈ apξ0 and M0 ∈ Apξ1 , then α ∈ Nξ0 ∩ Nξ1 , and hence,

α′ = α = ΨNξ1 ,Nξ0
(α) ∈ ΨNξ1 ,Nξ0

(M0) = M ′0. If α ∈ apξ1 and M0 ∈ Apξ0 , then

α ∈ Nξ0 ∩Nξ1 , and thus, α′ = ΨNξ1 ,Nξ0
(α) = α ∈M0 = M ′0. The same argument

shows that β′ ∈ M ′n. Hence, we only need to check that α′ < γ′0 < · · · < γ′n−1 <

β′. First we show that α′ < γ′0. If M0 ∈ Apξ0 , then α′ = α. Moreover, if

M1 ∈ Apξ0 , then γ′0 = γ0, and if M1 ∈ Apξ1 , then γ0 ∈ Nξ0 ∩ Nξ1 , and thus,

γ′0 = ΨNξ1 ,Nξ0
(γ0) = γ0. In both cases α′ = α and γ′0 = γ0, so we have that

α′ < γ′0. Now, if M0 ∈ Apξ1 , then α′ = ΨNξ1 ,Nξ0
(α) and γ′0 = ΨNξ1 ,Nξ0

(γ0), so

α′ < γ′0. Next, we check that γ′i < γ′i+1 for every i < n. By similar reasons as

above, it’s not too hard to see that if Mi+1 ∈ Apξ0 , then γ′i = γi and γ′i+1 = γi+1,

and if Mi+1 ∈ Apξ1 , then γ′i = ΨNξ1 ,Nξ0
(γi) and γ′i+1 = ΨNξ1 ,Nξ0

(γi+1). In both

cases γ′i < γ′i+1. Lastly, we check that γ′n−1 < β′. But again, by the same reasons

as before, if Mn ∈ Apξ0 , then γ′n−1 = γn−1 and β′ = β, and if Mn ∈ Apξ1 , then

γ′n−1 = ΨNξ1 ,Nξ0
(γn−1) and β′ = ΨNξ1 ,Nξ0

(β). So, γ′n−1 < β′. This finishes the

proof of α′ <Apξ0 ,ν
β′, which contradicts our assumption, as we mentioned above,

and thus, shows that q satisfies clause (C6) as we wanted.

3.6 Conclusions

Recall that we have assumed GCH throughout this chapter. Therefore, L is

stationary in [H(ω3)]
ℵ1 , and hence, lemmas 1.1.25, 3.3.5, 3.4.4 and 3.5.1 ensure

that the forcing P preserves all cardinals.

We finish this chapter by showing that P does in fact force a strong chain of

subsets of ω1 of length ω3, and thus proving theorem 3.0.11.

LetG be a P-generic filter over V and let us work in V [G]. For all α < ωV3 = ω
V [G]
3 ,

if there is any p ∈ G such that α ∈ ap, we let Cα := {p ∈ P : p ∈ G,α ∈ ap}, and

uαG =
⋃
{uαp : p ∈ Cα}.

By lemma 3.2.1, the set of B of α < ω3 for which uαG is defined has size ℵ3.
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Note that for all α < β in B, dom(uαG) = dom(uβG) (it follows from the fact that

all p ∈ Cα are in G). Let now A = dom(uαG) for any α ∈ B, and let us note

that A ∈ [ω1]
ω1 by lemma 3.2.2. Let (αi : i < ω3) be the strictly increasing

enumeration of B and (ντ : τ < ω1) the strictly increasing enumeration of A.

For each i < ω3 let

Xi = {τ ∈ ω1 : uαiG (ντ ) = 1}

Using our density lemmas 3.2.2 and 3.2.3 it is now a routine matter to check that

(Xi : i < ω3) is a strong ω3-chain of subsets of ω1. This finishes the proof of

theorem 3.0.11.



4

Finite support iterations with

two-type symmetric systems

This chapter is devoted to introduce a high version of Asperó and Mota’s finite

support iterations with symmetric systems from [11] and [12]. The idea is to

define a forcing iteration in which we incorporate symmetric systems to ensure

the preservation of cardinals at every stage of the iteration. We can consider

iterations of length an arbitrarily large uncountable cardinal κ. We will start by

defining the class of (S,L)-finitely proper forcings, which is one of the natural

classes of forcing notions which can be iterated in this sense. We will compare

it with Neeman’s high analog of properness and Asperó and Mota’s classes of

finitely proper forcings and forcings with the ℵ1.5-chain condition. We will then

define the iterations and prove their main properties. These are sequences of

cardinal-preserving forcing notions 〈Pα : α ≤ κ〉, which can be seen as a forcing

iteration in a broad sense. More precisely, for every α < β ≤ κ the following

hold:

(1) Pα is a complete suborder of Pβ.

(2) Pβ is proper for countable elementary submodels.

(3) Pβ is proper for an appropriate class of ℵ1-sized elementary submodels.

(4) Pβ has the ℵ3-chain condition.

We will finish this chapter by building a model of the forcing axiom for the
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class of (S,L)-finitely proper forcings. The construction requires a supercompact

cardinal and involves finite support iterations with two-type symmetric systems.

In the final model the supercompact cardinal is collapsed to become ℵ3, which

coincides with the value of the continuum. We will also prove a restricted version

of the forcing axiom which doesn’t require any large cardinal assumptions. The

last section is devoted to study different possible extensions of the class of (S,L)-

finitely proper forcings and speculate about potential applications.

Let us fix a cardinal κ > ω2 and a predicate T ⊆ H(κ). Throughout this chapter,

S will be the set of countable M � (H(κ);∈, T ) and L will be a collection of ℵ1-

sized elementary submodels N � (H(κ);∈, T ) appropriate for S. Furthermore,

we will assume that L is stationary in [H(κ)]ℵ1 .

4.1 The class of (S,L)-finitely proper forcings

We will devote this section to introducing the class of (S,L)-finitely proper

forcings. First, we will define Neeman’s high analog of properness, which stems

from his work on forcing with two-type side conditions and finite support

iterations of proper forcings ([62], [63]). Then, we will define our class of posets,

which is partially inspired by Neeman’s class, and can be seen as a high analog

of Asperó and Mota’s class of ℵ1.5-c.c. forcings (see definition 1.1.38), and we

will try to justify its definition.

Notation 4.1.1. Throughout the rest of the chapter, if P ⊆ H(κ) is a forcing

notion, G is a P-generic filter, and Q ∈ S ∪ L, we will make the technical

convention that Q[G] denotes the set {τG : τ ∈ Q, τ a P-name}. Note that P

may fail to be a member of Q, and might not even be definable there. In

general, if P /∈ Q, the set Q[G] will fail to be the generic extension of Q, in the

sense that it might not even be a a model of set theory (or a fragment thereof).
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4.1.1 Neeman’s (S,L)-proper forcing

In Neeman’s unpublished work presented in [64] and [65], we can see the seed of a

new family of classes of forcing notions, which seem to be more amenable to high

analogs of classical forcing axioms (specifically, of PFA). The idea comes from the

following characterisation of properness in terms of Todorčević’s collapse C(S).

Recall that the conditions of C(S) are finite ∈-chains of S-models.

Proposition 4.1.2 ([64], [65]). A forcing notion P is S-proper if and only if for

every C ∈ C(S) and every M ∈ C, if p ∈ P∩M and p is (M ′,P)-generic for every

M ′ ∈ C ∩M , then there is an extension q ≤ p which is (M ′,P)-generic for every

M ′ ∈ C.

You could try to generalize the notion of properness by replacing the finite chains

of countable models C from last proposition by Neeman’s (S,L)-chains. However,

as it was observed by Veličković, the straightforward generalization is not iterable.

Definition 4.1.3. We say that a forcing notion P is naively (S,L)-proper if for

every C ∈ C(S,L) and every Q ∈ C, if p ∈ P ∩ Q is (Q′,P)-generic for every

Q′ ∈ C ∩ Q, then there is an extension q ≤ p which is (Q′,P)-generic for every

Q′ ∈ C.

Example 4.1.4. Neeman’s decorated poset C(S,L)dec from [62] is naively (S,L)-

proper. Conditions are pairs p = (Cp, dp), where Cp ∈ C(S,L) and dp is a function

dp : Cp → [H(κ)]<ω such that if Q0, Q1 ∈ Cp are so that Q0 ∈ Q1, then dp(Q0)

is an element of Q1. The order is defined by q ≤ p if and only if Cq ⊇ Cp and

dq(Q) ⊇ dp(Q) for all Q ∈ Cp.

This poset adds a club on ω2 which doesn’t have infinite subsets from the ground

model. Therefore, if we could iterate this forcing notion while preserving ω1 and

ω2, we would contradict club guessing on ω2. More precisely, we would force a

club of ω2 contradicting the following theorem of ZFC, due to Shelah:

Theorem 4.1.5 ([75]). For every stationary S ⊆ Sω2
ω there exists a sequence
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〈Cδ : δ ∈ S〉 such that every Cδ is a club subset of δ of order-type ω, and for

every club D ⊆ ω2 there exists some δ ∈ S such that Cδ ⊆ D.

However, Neeman observed that he could avoid destroying club guessing by

replacing (S,L)-chains by (S,L, T )-chains in the definition of naive

(S,L)-properness. He defined the following class of forcing notions, which we

have renamed as (S,L)-proper for the sake of coherence with our own notation,

but in Neeman’s slides it appears as two-size proper or baby-{ω, ω1}-proper. Let

us make the convention that if p is a condition in a forcing notion P and M ∈ T ,

then we say that p is (M,P)-generic if it is (N,P)-generic for every N ∈M .

Definition 4.1.6 ([64], [65]). We say that a forcing notion P is (S,L)-proper if

for every C ∈ C(S,L, T ) and every Q ∈ C ∩ (S ∪L), if p ∈ P∩Q is (Q′,P)-generic

for every Q′ ∈ C ∩Q, then there is an extension q ≤ p which is (Q′,P)-generic for

every Q′ ∈ C.

This class excludes posets which kill club guessing, such as the one in example

4.1.4, and gives us the chance of defining a high forcing axiom for ℵ2-many dense

sets. Neeman claims that the class of (S,L)-proper forcings can be iterated with

a variant of his iterations from [62], and that he can obtain a model of the forcing

axiom FAℵ2
(
(S,L)-proper

)
from a supercompact cardinal. In this model the

continuum is ℵ3, although it is not known whether the forcing axiom decides its

value or not. This class of posets is closed under compositions, and it includes

c.c.c. forcings and forcings for collapsing cardinals to ω2 with finite conditions

(the pure side condition forcing).

Let us finish this section by including a mildly relaxed version of the class of

(S,L)-proper forcings, which is closer to the class of forcing notions that we will

define in the next section.

Definition 4.1.7. We say that a forcing notion P is relaxed (S,L)-proper if for

every C ∈ C(S,L, T ) and every Q ∈ C ∩ (S ∪ L), if p ∈ P ∩Q is such that either

(1) C ∩Q = ∅, or
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(2) Q ∈ S and C ∩Q ⊆ L, and p is (N,P)-generic for every N ∈ C ∩Q,

then there is an extension q ≤ p which is (R,P)-generic for every R ∈ C.

Some of the consequences of the forcing axiom for the relaxed (S,L)-proper

forcings include the square principle �ω1,fin and a certain high analogue of

Moore’s Mapping Reflection Principle (MRP), which is strong enough to imply

the failure of �λ for all λ ≥ ω2, but not strong enough to decide the value of the

continuum to be ℵ31.

4.1.2 (S,L)-finitely proper forcing

Our first approach to developing Asperó and Mota’s iterations with symmetric

systems of models of two types was to simply replace symmetric systems of models

of one type in the definition of the iteration by two-types ones, and try to iterate

the naive high analog of the class of ℵ1.5-c.c. forcings. However, this first approach

didn’t work, since you run into problems when showing properness at stages of

cofinality ω1 of the iteration. We will give more details about the exact problems

that you would run into in section 4.4. Neeman probably encountered similar

problems, so it shouldn’t be surprising that the class of forcing notions that we

ended up defining could be seen, on one hand, as a high analog of the class of

ℵ1.5-c.c. forcings, and on the other hand, as a subclass of Neeman’s class of

(S,L)-proper forcings.

Using Neeman’s characterisation of properness you could try replacing the S-

chains of models by S-symmetric systems to define the following class of posets.

Definition 4.1.8. We say that a forcing notion P is naively S-finitely proper if

for everyM∈M(S) and every M ∈M, if p ∈ P∩M is (M ′,P)-generic for every

M ′ ∈M∩M , then there is an extension q ≤ p which is (M ′,P)-generic for every

M ′ ∈M.

1We refer the reader to [38] for all the undefined notions.
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However, you cannot iterate this class of forcings using Asperó and Mota’s finite

support iterations with S-symmetric systems. Suppose that Pα is the α-th stage

of this iteration, where α ≤ κ. This iteration incorporates symmetric systems

of S-models that come from the ground model V to ensure the preservation

of cardinals at every stage of the iteration. The reason why we can’t iterate

the above class of posets using these iterations is that, if Gα is a Pα-generic

filter over V and M is an S-symmetric system from the ground model V , then

{M [Gα] : M ∈ M} doesn’t need to be an S-symmetric system. If M0,M1 are

two elementary submodels and they are isomorphic, then M0[Gα] and M1[Gα]

need not be isomorphic. In fact, preserving isomorphisms is the only obstacle in

preserving the symmetric system structure.

In the next section we will introduce the two-type version of Asperó and Mota’s

finite support iterations with symmetric systems as side condition. If you

considered the same class of posets from above, but asking for M to be an

(S,L)-symmetric system, or even an (S,L, T +)-symmetric system, rather than

an S-symmetric system, and you tried to iterate it using these iterations, you

would of course run into the same problems described above. Therefore, the

fact that the symmetric system structure is not preserved throughout the

iterations puts a limitation on the class of forcings that you can define in the

above way (which is iterable).

Keeping all these technical limitations in mind, we found that the following class

of forcings is the most natural one that you can iterate using the two-type version

of Asperó and Mota’s iterations. It is worth pointing out the resemblance with

Neeman’s class of relaxed (S,L)-proper forcings.

Definition 4.1.9. We say that a forcing notion P ∈ H(κ) is (S,L)-finitely proper

if and only if there is a club D ⊆ [H(κ)]≤ℵ1 such that for every countable subset

M⊆ D such that |M∩S| < ℵ0 and |M∩L| ≤ ℵ0, if p ∈ P∩Q for some Q ∈M

such that either

(1) M∩Q = ∅, or
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(2) Q ∈ S is such that εQ = min{εM : M ∈ M ∩ S}, and p is (N,P)-generic

for every N ∈M∩Q,

then there is an extension q ≤ p which is (R,P)-generic for every R ∈M.

4.1.3 Basic facts about (S,L)-finitely proper forcings

The following result is a straightforward consequence from the fact that every

condition of a c.c.c. forcing is generic with respect to every elementary submodel

of every big enough H(θ).

Lemma 4.1.10. Every c.c.c. forcing is (S,L)-finitely proper.

Moreover, the class of (S,L)-finitely proper forcings is a subclass of the class of

S-proper+ L-proper+ℵ3-c.c. forcings.

Lemma 4.1.11. If P is (S,L)-finitely proper, then P is S-proper.

Lemma 4.1.12. If P is (S,L)-finitely proper, then P is L-proper.

Lemma 4.1.13. If P is (S,L)-finitely proper, then P has the ℵ3-chain condition.

Proof. Let A be a maximal antichain of P such that |A| ≥ ℵ3. Let D be as in

definition 4.1.9 and let Rp, for every p ∈ A, be such that Rp ∈ D ∩ (S ∪ L) and

p,A ∈ Rp. Since εRp < ω2 for each p ∈ A, there are A′ ⊆ A and ε < ω2 such that

|A′| = |A| and for every p ∈ A′, εRp = ε. Since the models Rp have size less than

or equal ℵ1, we can find two different conditions p, p′ ∈ A′ such that p′ /∈ Rp.

Note that as p′ ∈ Rp′ and εRp = εRp′ = ε, we can find an extension q of p′ that

is (Rp,P)-generic, by the (S,L)-finite properness of P. Therefore, there must be

a condition q∗ ∈ Rp ∩ A compatible with q, and thus, also compatible with p′.

But this is impossible because p′ 6= q∗, as p′ /∈ Rp and q∗ ∈ Rp, and p′ and q∗ are

both members of the maximal antichain A.

Lastly, our class of forcings is included in Neeman’s relaxed version of (S,L)-

proper forcings.
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Lemma 4.1.14. Every (S,L)-finitely proper forcing is relaxed (S,L)-proper.

Proof. Note that if Q ∈ S is such that εQ = min{εM : M ∈M∩S}, in particular

M∩Q ⊆ L.

Even though we have mentioned that the class of (S,L)-finitely proper forcings

can be seen as a high analog of the class of forcings with the ℵ1.5-c.c., these two

classes don’t seem to be comparable. It’s clear that, in general, a forcing with

the ℵ1.5-c.c. is not (S,L)-finitely proper. In order to show the other direction

it would be enough to exhibit an example of an (S,L)-finitely proper forcing

which doesn’t have the ℵ1.5-c.c. For instance, a poset forcing the failure of club

guessing at Sω2
ω1

would do the trick. Due to time constraints, we haven’t been

able to explore this direction, which we want to pursue in the future, so we don’t

have an explicit proof of the non-comparability of these two classes. Let us give,

however, an argument which sustains this view.

Suppose that P is an (S,L)-finitely proper forcing and suppose that we want to

show that it has the ℵ1.5-c.c. Hence, fix a finite set of small modelsM and suppose

that p ∈ P belongs to some M ∈ M such that δM = min{δM ′ : M ′ ∈ M}. Note,

however, that we cannot ensure that εM = min{εM ′ : M ′ ∈ M}, and hence, in

general we cannot use (S,L)-finite properness to extend p to an (M ′,P)-generic

condition for every M ′ ∈M.

4.2 The iteration

For the rest of the chapter we will assume that V is a ground model for the GCH,

and that κ is such that 2<κ = κ.

We will describe what it means for a κ-sequence 〈(Pα,≤α) : α ≤ κ〉 of posets to

be the finite support iteration with two-type symmetric systems as side conditions

with respect to the sequence 〈Q̇α : α < κ〉, such that each Q̇α is a Pα-name for a
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poset on κ. Our notation will agree with the notation of [11] and [12] to a large

degree.

We will denote the forcing relation Pα of Pα by α, for each α ≤ κ. We

let Φ : κ → H(κ) be a surjection such that for each x ∈ H(κ), Φ−1({x}) is

unbounded in κ. The map Φ, which will act as the bookkeeping function of our

iteration, exists by 2<κ = κ. Let also C be a well-order of H(κ+) in order type

2κ. The well-order C exists by |H(κ+)| = 2κ.

Let 〈θα : α ≤ κ〉 be a strictly increasing sequence of regular cardinals that grows

fast enough to ensure that H(κ) ∈ H(θ0) and 〈H(θβ),Cβ: β < α〉 ∈ H(θα), for

each α ≤ κ, where Cβ is a well-ordering of H(θβ). For example, we can define

this sequence as θ0 = |2κ|+ and θα = |2sup{θβ :β<α}|+ for all α > 0.

For every α ≤ κ, let S∗α be the collection of all countable elementary submodels

of H(θα) containing Φ,C and 〈θβ : β < α〉, and let Sα = {M∗∩H(κ) : M∗ ∈ S∗α},

which is a subset of S. Similarly, for every α ≤ κ, let L∗α be the collection of

all ℵ1-sized elementary submodels N � H(θα) containing Φ,C and 〈θβ : β < α〉,

and such that N∗ ∩ H(κ) ∈ L. Let Lα = {N∗ ∩ H(κ) : N∗ ∈ L∗α}, which is a

subset of L.

The definition of the posets Pα will be by induction on α ≤ κ. The bookkeeping

function will give us Pα-names Q̇α of (S,L)-finitely proper forcing notions, and for

each α ≤ κ, the side condition will make sure that Pα has the ℵ3-chain condition

and that it is S∗α-proper and L∗α-proper. Before going into the definition of the

iteration, let us review some basic facts about the collections of models introduced

in the last paragraph:

• For each Q ∈ Sα ∪ Lα, α ∈ Q.

• If N ∈ Lα and M ∈ Sα such that N ∈ M , it follows from proposition

1.4.17, that N ∩M ∈ Sα.

• The classes Sα and Lα are closed under taking isomorphic copies.
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• If α < β, then S∗α belongs to all members of S∗β containing the ordinal α,

and similarly for L∗α and L∗β.

• If α < β and Q∗ ∈ S∗β ∪ L∗β such that α ∈ Q∗, then Q∗ ∩H(κ) ∈ Sα ∪ Lα.

Hence, in particular, if Q ∈ Sβ ∪ Lβ and α ∈ Q, then Q ∈ Sα ∪ Lα.

To see this note that, by proposition 1.4.8, Q∗ ∩ H(θα) � H(θα), that is,

Q∗∩H(θα) ∈ S∗α∪L∗α, and hence, (Q∗∩H(θα))∩H(κ) = Q∗∩H(κ) ∈ Sα∪Lα.

4.2.1 Definition of the iteration

Let us proceed to the definition of 〈Pα : α ≤ κ〉 now by induction on α ≤ κ.

Conditions in P0 are pairs of the form (∅,∆), where ∆ is a finite set of ordered

pairs of the form (Q, 0), where dom(∆) = {Q : (Q, 0) ∈ ∆} is an (S,L, T +)-

symmetric system. Given two conditions p = (∅,∆p) and q = (∅,∆q), we define

the order on P0 by p ≤0 q if and only if dom(∆p) ⊇ dom(∆q).

Notation 4.2.1. Let p be an ordered pair (F,∆) such that F is a function and

∆ is a binary relation.

(1) We denote F by Fp and ∆ by ∆p.

(2) If ξ is an ordinal, the restriction of p to ξ, denoted by p|ξ, is defined as the

pair

p|ξ :=
(
Fp � ξ, {(R,min{β, ξ}) : (R, β) ∈ ∆p}

)
.

(3) If ξ ∈ ran(∆p), we denote by ∆−1p (ξ) the set of all R ∈ dom(∆p) such that

(R, ξ) ∈ ∆p.

Let α ≤ κ greater than 0, and suppose that we have defined Pξ for all ξ < α.

Suppose also that if ξ < α, then Pξ ⊆ H(κ), and if p ∈ Pξ, then p is an ordered

pair of the form (Fp,∆p), where

• Fp is a finite function with dom(Fp) ⊆ ξ.
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• ∆p is a finite set of ordered pairs (Q, γ), where dom(∆p) = {Q : (Q, γ) ∈ ∆p}

is an (S,L, T +)-symmetric system, and γ is an ordinal such that γ ≤ ξ.

For every ξ < α, we define Pα|ξ := {p|ξ : p ∈ Pα}.

Definition 4.2.2. For every ξ < α, if we let Gξ be a Pξ-generic filter over V ,

and we let P be a subset of Pα, then we define the quotient of P by Gξ as the set

P/Gξ := {p ∈ P : p|ξ ∈ Gξ}.

Notation 4.2.3. If M is an (S,L, T +)-symmetric system and Z is a subset of

M, we will denote by Z the set

Z = (Z ∩ L) ∪
⋃

(Z ∩ T +).

Definition 4.2.4. Let Gξ be a Pξ-generic filter over V and let M ∈ S. We will

denote by NM
Gξ

the set

NM
Gξ

= {N ∈M : N ∈ dom(∆u), u ∈ Gξ}.

Moreover, we will denote by AMGξ the subset of NM
Gξ

,

AMGξ = {N ∈M ∩ Lξ+1 : N ∈ ∆−1u (ξ), u ∈ Gξ}.

Let us unravel the definition of AMGξ . A model N ∈ M ∩ Lξ+1 belongs to AMGξ if

there is a condition u ∈ Gξ such that either

• N ∈ dom(∆u) ∩ L and (N, ξ) ∈ dom(∆u), or

• N ∈M for some M ∈ dom(∆u) ∩ T + such that (M, ξ) ∈ ∆u.

The proof of the following lemma is an easy exercise. It uses proposition 2.4.17.

Lemma 4.2.5. Let Gξ be a Pξ-generic filter over V and let p ∈ Gξ. If M is a

small model in dom(∆p), then NM
Gξ

is an L-symmetric system.
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It will be convenient to consider the following technical variant of the class of

(S,L)-finitely proper forcings in the context of our construction.

Definition 4.2.6. (In V [Gξ] for a Pξ-generic filter Gξ over V , ξ < α) A forcing

notion Q ⊆ H(κ)V is (S,L)-finitely proper with respect to V and Gξ if and only

if there is a club D ⊆ [H(κ)V ]≤ℵ1 in V with the following property:

Suppose that M and ν are as follows.

(1) M is a countable subset of D such that |M ∩ S| < ℵ0 and |M ∩ L| ≤ ℵ0,

(2) there is u ∈ Gξ such that for every R ∈M, either

(2.a) (R, ξ) ∈ ∆u,

(2.b) R ∈M , where M ∈ T + is such that (M, ξ) ∈ ∆u, or

(2.c) R ∈ AMGξ , where M ∈ Sδ is such that sup(M ∩ δ) ≤ ξ < δ, for some

limit ordinal δ ≤ κ of cofinality ω1 and (M, ξ) ∈ ∆u,

(3) ν ∈ Q, and Q ∈ R[Gξ] for all R ∈M, and

(4) ν ∈ R+[Gξ] for some R+ ∈M such that either,

(4.a) M∩R+ = ∅, or

(4.b) R+ ∈ S is such that εR+ = min{εM : M ∈M∩S}, and ν is (N [Gξ],Q)-

generic for every N in M∩R+.

Then there is an extension ν∗ ∈ Q of ν, which is (R[Gξ],Q)-generic for all R ∈M.

If Φ(α) = Q̇ is a Pα-name in H(κ) for a nontrivial (S,L)-finitely proper forcing

relative to V and Ġα (the standard name for the Pα-generic filter), then we let

Q̇α = Q̇. Otherwise, let Q̇α be a Pα-name for the trivial forcing on {0}.

Conditions in Pα are pairs of the form p = (Fp,∆p) with the following properties.

(C0) Fp is a finite function such that dom(Fp) ⊆ α. We call Fp the working part

of p and dom(Fp) the support of p.
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(C1) ∆p is a finite set of pairs (Q, γ) with

• γ ≤ min{α, sup(Q ∩ κ)}, if Q ∈ S ∪ L, and

• γ ≤ min{α, sup{sup(N ∩ κ) : N ∈ Q}}, if Q ∈ T +.

Moreover, if (M,γ) ∈ ∆p for some M ∈ T +, then (N, γ′) ∈ ∆p, for every

N ∈M ∩ dom(∆p) and some γ′ ≥ γ. We call ∆p the side condition of p.

(C2) For every ξ < α, the restriction p|ξ of p to ξ is a condition in Pξ.

(C3) If ξ ∈ dom(Fp), then Fp(ξ) ∈ H(κ) and p|ξ ξ Fp(ξ) ∈ Q̇ξ.
2

(C4) If ξ ∈ dom(Fp), (R, β) ∈ ∆p for some β ≥ ξ+ 1, and R ∈ Sξ+1 ∪Lξ+1, then

p|ξ ξ Fp(ξ) is (R[Ġξ], Q̇ξ)-generic.

(C5) If ξ ∈ dom(Fp), (M,β) ∈ ∆p for some β ≥ ξ + 1, and M ∈ T +, then for

every N ∈M ∩ Lξ+1,

p|ξ ξ Fp(ξ) is (N [Ġξ], Q̇ξ)-generic.

(C6) Suppose that η ∈ dom(Fp). Suppose that (M,β) ∈ ∆p for some M ∈ Sδ,

where β ≥ η + 1 and δ ≤ κ is a limit ordinal such that cf(δ) = ω1 and

sup(M ∩ δ) ≤ η < δ. Then, p|η forces that Fp(η) is (N [Ġη], Q̇η)-generic for

every N ∈ ȦM
Ġη

.

Given conditions p = (Fp,∆p) and q = (Fq,∆q) in Pα, we define the order ≤α on

Pα by q ≤α p if and only if the following holds.

(D1) q|ξ ≤ξ p|ξ for all ξ < α.

(D2) dom(Fq) ⊇ dom(Fp) and, for all ξ ∈ dom(Fp),

q|ξ ξ Fq(ξ) ≤Q̇ξ Fp(ξ).

2Recall from the preliminaries that we will omit inverted circumflexes when dealing with
standard names.
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(D3) For all (Q, β) ∈ ∆p there is some β∗ ≥ β such that (Q, β∗) ∈ ∆q.

The pairs (Q, γ) from the side conditions are called models with markers. The

reason why we use models with markers is twofold. On one hand, markers grant

complete embeddability between intermediate stages of the iteration (see

corollary 4.3.4. On the other hand, the markers tell us at what stages of the

iteration the models will be generic. More precisely, if (Q, γ) ∈ ∆p and

Q ∈ S ∪ L, for some condition p ∈ Pα, we want to force the working part Fp(ξ),

for ξ ∈ Q ∩ γ, to be generic for Q[Ġξ]. Similarly, if M ∈ T + and (M,γ) ∈ ∆p,

we want to force the working part Fp(ξ) to be generic for N [Ġξ], for all N ∈ M

such that ξ ∈ N . These are clauses (C4) and (C5), respectively. Hence, the

marker γ for the pair (Q, γ) is a device that tells us up to which stage is Q to be

seen as “active” as a model in the side condition. This is why we will say that a

model Q ∈ dom(∆p) ∪
⋃

dom(∆p) is active at ξ + 1 if either

• (Q, ξ + 1) ∈ ∆p|ξ+1
and Q ∈ Sξ+1 ∪ Lξ+1, or

• Q ∈M ∩ Lξ+1 and (M, ξ + 1) ∈ ∆p|ξ+1
, for some M ∈ T +.

Remark 4.2.7. Let p ∈ Pα for some α ≤ κ, and let Q ∈ Sβ ∩ Lβ. If (Q, γ) ∈ ∆p

or Q ∈M for some M ∈ dom(∆p) ∩ T + such that (M,γ) ∈ ∆p, then Q is active

at all ξ ∈ Q ∩min{γ, β}.

It is also worth noting that given a condition p ∈ Pα, a model Q ∈ dom(∆p) might

have multiple markers. However, in practice we only care about the largest one.

In the next section we will see exactly what we mean by this.

There is one significant difference between Asperó and Mota’s finite support

iterations with one-type symmetric systems and our two-type version. This

difference, which is reflected in clause (C6) above, is a consequence of the

coexistence of models of two different types in our side conditions. Suppose that

we have a condition p and a stage α of cofinality ω1. Suppose that M and Q

are, respectively, a small model and a model of arbitrary type in dom(∆p), such
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that εQ < εM . Note that, in light of lemma 1.4.11, M ∩ α is bounded below α,

and thus, it cannot be active at stages β such that sup(M ∩ α) ≤ β < α. If Q is

a small model, we can argue by symmetry that sup(Q ∩M ∩ α) < sup(M ∩ α),

and hence, Q cannot be active at stages beyond sup(M ∩ α) either. However, if

Q is a large model, then Q ∩ α is unbounded in α, and thus, it may be active at

stages β ≥ sup(M ∩ α). This is in fact one of the reasons why we are forced to

use (S,L, T +)-symmetric systems as side conditions in our iterations, instead of

the more natural (S,L)-symmetric systems. We will get back to this matter in

the proof of (P2)α in section 4.4, where we will explain the exact reasons why

we need to add non-elementary models to our symmetric systems.

4.3 General facts and amalgamation lemmas

All the results appearing in this section are essentially a translation of lemmas

2.9-2.15 from [12]. It is worth noting that they are all general facts about the

iteration, and that they are independent of the class of forcings that we are

iterating. That is, we won’t use anywhere the fact that the iterands are names for

(S,L)-finitely proper forcing notions. Let us start with some basic observations

about the iterations.

Note that for every α ≤ κ, the poset Pα is a subset of H(κ). Hence, as |H(κ)| =

2<κ = κ by assumption, Pα ∈ H(κ+).

For all α < β ≤ κ and every R∗ ∈ S∗β ∪ L∗β, if α ∈ R∗, then S∗α,L∗α,Pα,α∈ R∗.

Moreover, if β < κ is a nonzero limit ordinal, then Pβ,β∈ R∗.

Note that if α < β ≤ κ, it follows from the definition of the iteration that

Pα ⊆ Pβ. Moreover, if p is a condition in Pβ such that dom(Fp) ∪ Im(∆p) ⊆ α,

then p is a condition in Pα, and in fact p = p|α.

In the definition of Pα we haven’t made any distinctions regardless of whether

α was a successor or limit ordinal, but note that if α is a nonzero limit ordinal,
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then a pair p = (Fp,∆p) is a condition in Pα if and only if it satisfies (C0)-(C2).

The next result follows from these facts.

Lemma 4.3.1. For all α ≤ β ≤ κ, Pα is nonempty and Pα ⊆ Pβ. Moreover,

Pκ =
⋃
α<κ Pα.

Also note that for every α < β ≤ κ, if p is a condition in Pβ, then dom(∆p) =

dom(∆p|α). In particular, since dom(∆p) = dom(∆p|0), the domain of p is an

(S,L, T +)-symmetric system, because p|0 ∈ P0 by (C2).

If p ∈ Pα for α ≤ κ, (Q, γ) ∈ ∆p and δ is an ordinal smaller than γ, then

p∗ =
(
Fp,∆p ∪ {(Q, δ)}

)
is a condition in Pα. Note that ∆p and ∆p∗ have the

same domain, and in fact, p and p∗ are clearly equivalent. This is exactly what

we meant above, when we said that we only care about the largest marker of a

model in a side condition.

More generally, it follows from the last two paragraphs that if α ≤ β ≤ κ, p ∈ Pα,

and {pi : i < n} is a finite set of conditions in Pβ such that p ≤α pi|α for all

i < n, then dom(∆p) = dom(∆p|0) ⊇ dom(∆pi) = dom(∆pi|α) and the pair(
Fp,∆p ∪

⋃
{∆pi|α : i < n}

)
is a condition in Pα, equivalent to p. The following

lemma summarizes this.

Lemma 4.3.2. Let α ≤ β ≤ κ. If p ∈ Pα and {pi : i < n} is a finite set of

conditions in Pβ such that p ≤α pi|α for all i < n, then (Fp,∆p∪
⋃
{∆pi|α : i < n})

is a condition in Pα equivalent to p.

There are two main conclusions that we can extract from this lemma. Let α ≤ κ,

suppose that p is a condition in Pα, and let (Q, γ) ∈ ∆. On one hand, adding

the pair (Q, γ′) to ∆p, for some γ′ < γ, results in an equivalent condition. On

the other hand, if (Q, δ) ∈ ∆p for some δ < γ, removing the pair (Q, δ) from ∆p,

also results in an equivalent condition.

Lemma 4.3.3. Let α ≤ β ≤ κ. If q = (Fq,∆q) ∈ Pα, r = (Fr,∆r) ∈ Pβ and

q ≤α r|α, then

r ∧α q :=
(
Fq ∪ (Fr � [α, β)),∆q ∪∆r

)
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is a condition in Pβ extending r.

Proof. We show the result by induction on β ≥ α. If β = α, then q ≤α r, and

hence, r∧α q is defined as
(
Fq,∆q ∪∆r

)
, which is equivalent to q. Therefore, the

base case follows from lemma 4.3.2.

Assume now that β = γ+1 where γ ≥ α. Clauses (C0) and (C1) in the definition

of Pγ+1 are clearly satisfied. On one hand, note that since r|γ ∈ Pγ , by induction

hypothesis

r|γ ∧α q =
(
Fq ∪ (Fr � [α, γ)),∆q ∪∆r|γ

)
is a condition in Pγ . On the other hand note that

∆(r∧αq)|γ = {(R,min{δ, γ}) : (R, δ) ∈ ∆q ∪∆r}

= ∆q ∪∆r|γ .

Therefore, (r ∧α q)|γ = r|γ ∧α q, and by induction hypothesis (r ∧α q)|γ is a

condition in Pγ extending r|γ . This is enough to show that clause (C2) holds for

r ∧α q. If γ /∈ dom(Fr), then clauses (C3)-(C6) for r ∧α q follow from induction

hypothesis, so we can assume that γ ∈ dom(Fr). Let (R, δ) ∈ ∆r∧αq = ∆q ∪∆r

for δ ≥ γ + 1 such that R is active at γ + 1. Since q ∈ Pα, the range of ∆q must

be contained in α+ 1, and as δ ≤ γ + 1, (R, δ) must necessarily be an element of

∆r, by (C1) applied to q. Moreover, since r ∈ Pγ+1, then δ ≤ γ + 1, and thus,

the equality δ = γ + 1 must hold. In summary, (R, δ) = (R, γ + 1) ∈ ∆r and, by

definition of r∧α q, Fr∧αq(γ) = Fr(γ). But then, clauses (C3)-(C6) follow directly

from the fact that (r ∧α q)|γ is an extension of r|γ by induction hypothesis.

If β is a nonzero limit ordinal such that α < β, then clauses (C0)-(C6) follow

directly from the induction hypothesis.

The following result tells us that 〈Pα : α ≤ κ〉 can be seen, in a broad sense, as a

forcing iteration.
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Corollary 4.3.4. For every α < β ≤ κ, every maximal antichain in Pα is a

maximal antichain in Pβ, and therefore Pα is a complete suborder of Pβ.

Lemma 4.3.5. Let α < κ and let q0 = (F0,∆0) and q1 = (F1,∆1) be conditions

in Pα+1 such that there is a Pα-name ẋ ∈ H(κ), a condition r = (Fr,∆r) in Pα,

and a finite set {Rj : j ∈ n} with the following properties:

(a) For all j < n,

• (Rj , α) ∈ ∆r,

• α+ 1 ≤ sup(Rj ∩ κ), if Rj ∈ S ∪ L, and

• α+ 1 ≤ sup{sup(N ∩ κ) : N ∈ Rj}, if Rj ∈ T +.

(b) r extends both q0|α and q1|α,

(c) α ∈ dom(F0) ∩ dom(F1) and r α “ẋ ∈ Q̇α and ẋ ≤Q̇α F0(α), F1(α)”,

(d) r α “ẋ is (Rj [Ġα], Q̇α)-generic”, for all j < n such that Rj ∈ Sα+1∪Lα+1,

(e) r α “ẋ is (N [Ġα], Q̇α)-generic”, for all N ∈ Rj ∩Lα+1 and all j < n such

that Rj ∈ T +, and

(f) for all j < n, if Rj ∈ Sδ is such that δ ≤ κ is a limit ordinal with cf(δ) = ω1

and sup(Rj ∩ δ) ≤ α < δ, then r forces that ẋ is (N [Ġα], Q̇α)-generic for

every N ∈ ȦRj
Ġα

.

Then,

q2 =
(
Fr ∪ {〈α, ẋ〉},∆r ∪∆0 ∪∆1 ∪ {(Rj , α+ 1) : j ∈ n}

)
is a condition in Pα+1 extending both q0 and q1.

Proof. First we show that q2 ∈ Pα+1. Showing that q2 satisfies clause (C0) is

straightforward, and (C1) follows from (a). Note that

q2|α = (Fr,∆r ∪∆q0|α ∪∆q1|α).
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Hence, it follows from (b) and lemma 4.3.2 that r and q2|α are equivalent

conditions in Pα, so q2 also satisfies (C2). Clause (C3) follows from (c) and the

equivalence between the conditions r and q2|α. Let us check (C4) now. Let

ξ ∈ dom(Fq2) and S ∈ Sξ+1 ∪ Lξ+1 such that (S, β) ∈ ∆q2 , for some β ≥ ξ + 1.

If ξ < α, the result follows from (b) and the fact that r and q2|α are equivalent.

Thus, we can assume that ξ = α. Note that, in this case, β = α + 1 and

(S, β) ∈ ∆0 ∪∆1 ∪ {(Rj , α+ 1) : j ∈ n}. Hence, we have to show that r forces in

Pα that ẋ is (S[Ġα], Q̇α)-generic. If (S, α + 1) ∈ {(Rj , α + 1) : j ∈ n}, this

follows from (d). If (S, α + 1) ∈ ∆i for some i ∈ {0, 1}, since α ∈ dom(Fi) by

(c), qi|α forces that Fi(α) is (S[Ġα], Q̇α)-generic by (C4) applied to qi|α.

Therefore, r must force the same thing because it extends qi|α, and since r

forces that ẋ ≤Q̇α Fi(α) by (c), it also forces that ẋ is (S[Ġα], Q̇α)-generic.

Clauses (C5) and (C6) follow from a similar argument using (e) and (f),

respectively, instead of (d). Lastly, note that (b), (c), and ∆i ⊆ ∆q2 imply

together that q2 extends qi for i ∈ {0, 1}.

Lemma 4.3.6. Let α < κ and let q0 = (F0,∆0) and q1 = (F1,∆1) be conditions

in Pα+1, r = (Fr,∆r) a condition in Pα, and a finite set {Rj : j ∈ n} with the

following properties:

(a) For all j < n,

• (Rj , α) ∈ ∆r,

• α+ 1 ≤ sup(Rj ∩ κ), if Rj ∈ S ∪ L, and

• α+ 1 ≤ sup{sup(N ∩ κ) : N ∈ Rj}, if Rj ∈ T +.

(b) r extends both q0|α and q1|α, and

(c) α /∈ dom(F0) ∪ dom(F1).

Then,

q2 =
(
Fr,∆r ∪∆0 ∪∆1 ∪ {(Rj , α+ 1) : j ∈ n}

)
is a condition in Pα+1 extending both q0 and q1.
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Suppose, in addition, that ẋ is a Pα-name in H(κ) is such that

(d) r α “ẋ is (Rj [Ġα], Q̇α)-generic”, for all j < n such that Rj ∈ Sα+1∪Lα+1,

(e) r α “ẋ is (N [Ġα], Q̇α)-generic”, for all N ∈ Rj ∩Lα+1 and all j < n such

that Rj ∈ T +,

(f) for all j < n, if Rj ∈ Sδ is such that δ ≤ κ is a limit ordinal with cf(δ) = ω1

and sup(Rj ∩ δ) ≤ α < δ, then r forces that ẋ is (N [Ġα], Q̇α)-generic for

every N ∈ ȦRj
Ġα

,

(g) r α “ẋ is (S[Ġα], Q̇α)-generic”, for all S such that (S, α + 1) ∈ ∆0 ∪∆1

and S ∈ Sα+1 ∪ Lα+1,

(h) r α “ẋ is (N [Ġα], Q̇α)-generic”, for all N ∈ M ∩ Lα+1 and all M such

that (M,α+ 1) ∈ ∆0 ∪∆1 and M ∈ T +, and

(i) if M ∈ Sδ is such that (M,α+1) ∈ ∆0∪∆1 and δ ≤ κ is a limit ordinal with

cf(δ) = ω1 and sup(M ∩ δ) ≤ α < δ, then r forces that ẋ is (N [Ġα], Q̇α)-

generic for every N ∈ ȦM
Ġα

.

Then,

q′2 =
(
Fr ∪ {〈α, ẋ〉},∆r ∪∆0 ∪∆1 ∪ {(Rj , α+ 1) : j ∈ n}

)
is a condition in Pα+1 extending both q0 and q1.

Proof. Same proof as lemma 4.3.5.

Lemma 4.3.7. Assume that 0 ≤ γ < α ≤ κ. Let q0 = (F0,∆0) and q1 = (F1,∆1)

be conditions in Pα such that dom(F0)∪ dom(F1) ⊆ γ, and such that there exists

a condition r ∈ Pγ extending both q0|γ and q1|γ. Then,

q2 = (Fr,∆r ∪∆0 ∪∆1)

is a condition in Pα extending both q0 and q1.
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Proof. We show by induction on β, γ ≤ β ≤ α, that q2|β is a condition in Pβ

extending both q0|β and q1|β. The base case follows from lemma 4.3.2. The

successor step follows from lemma 4.3.6. The limit step follows easily from the

induction hypothesis.

Lemma 4.3.8. Let β ≤ κ and let q0 = (F0,∆0) and q1 = (F1,∆1) be two

conditions in Pβ. For every i ∈ {0, 1}, let

Ai = dom(Fqi) ∪
⋃
{R ∩ β : R ∈ dom(∆i) ∩ (S ∪ L)}

∪
⋃
{N ∩ β : N ∈

⋃
(dom(∆i) ∩ T +)},

and let Bi be the set of all ν < β such that (M,ν + 1) ∈ ∆i, for some M ∈ Sδ,

where δ ≤ κ is a limit ordinal of cofinality ω1 such that sup(M ∩ δ) ≤ ν < δ.

Define Zi as the union of Ai and Bi. Let α ≤ β be such that Z0 ∩ Z1 ⊆ α, and

assume that there is a condition r = (Fr,∆r) in Pα extending both q0|α and q1|α.

Define F 0,1
r as Fr ∪

(
F0 � [α, β)

)
∪
(
F1 � [α, β)

)
. Then,

(q0 ∧ q1) ∧α r := (F 0,1
r ,∆r ∪∆0 ∪∆1)

is a condition in Pβ extending q0 and q1.

Proof. We show the result by induction on β ≥ α. If β = α, then (q0∧ q1)∧α r =

(Fr,∆r ∪∆0 ∪∆1), so it is equivalent to r by lemma 4.3.2.

Assume now that β = γ+1 > α. It is immediate to see that (q0∧q1)∧α r satisfies

clauses (C0) and (C1). Note that

(
(q0 ∧ q1) ∧α r

)
|γ =

(
Fr ∪ (F0 � [α, γ)) ∪ (F1 � [α, γ)),∆r ∪∆q0|γ ∪∆q1|γ

)
= (q0|γ ∧ q1|γ) ∧α r.

Hence, by induction hypothesis
(
(q0 ∧ q1) ∧α r

)
|γ is a condition in Pγ extending

both q0|γ and q1|γ , and this suffices to show that (q0 ∧ q1) ∧α r satisfies (C2).

Moreover, it follows that (q0 ∧ q1)∧α r satisfies clauses (C3)-(C6) for every ξ < γ
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such that ξ ∈ dom(F 0,1
r ). Assume now that γ ∈ dom(F 0,1

r ), and let us check

clauses (C3)-(C6) with respect to γ. It follows from the definition of F 0,1
r , from

γ ≥ α, and from Z0 ∩ Z1 ⊆ α, that for some i ∈ {0, 1} and j ∈ {0, 1} \ {i},

γ ∈ dom(Fi) \ dom(Fj) and F 0,1
r (γ) = Fi(γ). As qi satisfies (C3), the restriction

qi|γ forces that Fi(γ) is an element of Q̇γ . Therefore, since
(
(q0∧q1)∧αr

)
|γ extends

qi|γ , it forces in Pγ that F 0,1
r (γ) is an element of Q̇γ . This shows that (q0∧q1)∧α r

satisfies clause (C3). Now let R ∈ Sγ+1 ∪ Lγ+1 such that (R, δ) ∈ ∆r ∪∆0 ∪∆1

and δ ≥ γ + 1. Since r ∈ Pα and α ≤ γ, (R, δ) /∈ ∆r, and as q0, q1 ∈ Pγ+1, we

have that δ ≤ γ + 1, and thus, δ = γ + 1. Since Z0 ∩ Z1 ⊆ α and γ ∈ R, we

have that R ∈ dom(∆i) for the same i as above. But then, since qi satisfies (C4),

qi|γ forces in Pγ that Fi(γ) is (R[Ġγ ], Q̇γ)-generic, and hence, as
(
(q0∧ q1)∧α r

)
|γ

extends qi|γ , it forces in Pγ that F 0,1
r (γ) is (R[Ġγ ], Q̇γ)-generic. Therefore, clause

(C4) holds for (q0 ∧ q1) ∧α r. Clause (C5) is proven analogously. Let us check

clause (C6) now. Let (M,η) ∈ ∆r∪∆0∪∆1 such that η ≥ γ+1 for some M ∈ Sδ,

where δ ≤ κ is a limit ordinal of cofinality ω1 such that sup(M ∩ δ) ≤ γ < δ. By

the same reason as above, η = γ + 1, and hence, (M,γ + 1) must be an element

of ∆0 ∪ ∆1. Since B0 ∩ B1 ⊆ Z0 ∩ Z1 ⊆ α ≤ γ and γ ∈ B0 ∪ B1, for the same

i as above, γ ∈ Bi. In other words, (M,γ + 1) ∈ ∆i. But then we are done

because the conclusion of clause (C6) follows from the fact that qi satisfies (C6)

and that
(
(q0∧q1)∧α r

)
|γ extends qi|γ . Lastly, we have to check that (q0∧q1)∧α r

extends q0 and q1. Note that
(
(q0 ∧ q1) ∧α r

)
|γ ≤γ q0|γ , q1|γ implies that (D1)

and (D2) hold for ξ ∈ γ ∩ dom(F 0,1
r ). To see that (D2) holds for γ, assume

that γ ∈ dom(F 0,1
r ) and note that it follows from the definition of F 0,1

r , from

γ ≥ α, and from Z0 ∩ Z1 ⊆ α that for some i ∈ {0, 1} and j ∈ {0, 1} \ {i},

γ ∈ dom(Fi) \ dom(Fj) and F 0,1
r (γ) = Fi(γ). Finally, (D3) follows from the fact

that ∆0 ∪∆1 ⊆ ∆(q0∧q1)∧αr.

If β is a nonzero limit ordinal greater than α, the conclusion follows directly from

the induction hypothesis.
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4.4 Preservation lemmas

We will devote this section to proving the lemmas necessary to show that Pα

is S∗α-proper, L∗α-proper, and has the ℵ3-chain condition, for every α ≤ κ. We

will also point out (mainly in the proof of (P2)α) the reason why the class of

(S,L)-finitely proper forcings is defined the way it is.

Definition 4.4.1. Let α ≤ κ and let p ∈ Pα. If Q ∈ S ∪L∪T +, we will say that

p is (Q,Pα)-pre-generic in case

(i) α < κ and the pair (Q,α) is in ∆q,

(ii) α = κ, Q ∈ S ∪ L, and the pair (Q, sup(Q ∩ κ)) is in ∆q, or else

(iii) α = κ, Q ∈ T +, and the pair (Q, sup{sup(N ∩ κ) : N ∈ Q}) is in ∆q.

Our goal is to prove the following lemma.

Lemma 4.4.2. For every α ≤ κ, the following conditions hold.

(P1)α If Q∗ ∈ S∗α ∪ L∗α and Q = Q∗ ∩H(κ), then for every p ∈ Pα ∩Q there is

q ≤α p such that q is (Q,Pα)-pre-generic.

(P2)α Let Q∗ ∈ S∗α∪L∗α and Q = Q∗∩H(κ). If p ∈ Pα is a (Q,Pα)-pre-generic

condition, then p is (Q∗,Pα)-generic.

(P3)α Let M ∈ T +. If p ∈ Pα is an (M,Pα)-pre-generic condition, then p is

(N∗,Pα)-generic for every N∗ ∈ L∗α such that N∗ ∩H(κ) ∈M .

(P4)α Pα has the ℵ3-chain condition.

The proof will go by induction on α ≤ κ, and in the precise order established in

the statement of the lemma. Some of the arguments are inspired by the proof of

lemma 2.22 from [12]. But before getting into the proof of lemma 4.4.2, let us

show some technical results that will be useful later on.
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Recall from the last section that we observed that Pα ∈ H(κ+). The following

result is just a restatement of lemma 1.1.36.

Lemma 4.4.3. Let α ≤ κ and Q∗ ∈ S∗α ∪ L∗α. If Gα is a Pα-generic filter over

V , then H(κ+)Q
∗[Gα] � H(κ+)V [Gα].

The following lemmas improve some of the results from the preliminaries,

exploiting the fact that the iteration will have the ℵ3-chain condition.

Lemma 4.4.4. Let P ⊆ H(κ) be a forcing notion with the µ-chain condition for

some µ ≤ κ. Let θ > κ be a big enough cardinal so that P ∈ H(θ). If Q � H(θ)

is such that κ,P ∈ Q, and G is a P-generic filter over V , then (Q∩H(κ)V )[G] =

Q[G] ∩H(κ)V [G].

Proof. The inclusion (Q ∩H(κ)V )[G] ⊆ Q[G] ∩H(κ)V [G] is clear. Let us show

the other direction. It’s enough to show that Q[G]∩H(κ)V [G]∩OR is a subset of

(Q∩H(κ)V )[G]∩OR. First of all, note that since P ⊆ H(κ), then H(κ)V [G]∩V =

H(κ)V . Hence, Q[G] ∩ H(κ)V [G] ∩ OR = Q[G] ∩ H(κ)V ∩ OR. Let γ̌ ∈ Q be

a canonical P-name such that γ̌G = γ ∈ H(κ)V ∩ OR. We have to show that

γ̌ ∈ H(κ)V . We may assume that γ̌ is of the form {〈x̌, q〉 : q ∈ A}, where A is a

maximal antichain and the x̌ are in H(κ)V . Since P has the µ-chain condition,

|A| < µ ≤ κ. Therefore, γ̌ ∈ H(κ)V , as we wanted.

Lemma 4.4.5. If P ⊆ H(κ) is a forcing notion with the µ-chain condition for

some µ ≤ κ, then P forces that H(κ)V [Ġ] = H(κ)V [Ġ]. In other words, if τ is a

P-name, then τ ∈ H(κ)V if and only if P τ ∈ H(κ)V [Ġ].

Proof. Let τ be a P-name. Suppose first that τ ∈ H(κ)V . Let G be a P-generic

filter over V . We will show by induction on the rank of τ that τG ∈ H(κ)V [G].

The base case is trivial. Suppose that τ has rank α, and that σG ∈ H(κ)V [G] for

every P-name σ in H(κ)V of rank < α. The elements of τ are of the form (τ ′, p),

where τ ′ is a P-name of rank < α that belongs to H(κ)V (because τ ∈ H(κ)V ),

and p is a condition in P. Therefore, by induction hypothesis, τ ′G ∈ H(κ)V [G] for
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each τ ′ ∈ dom(τ). Hence, τG = {τ ′G : (τ ′, p) ∈ τ, p ∈ G} ⊆ H(κ)V [G], and as κ is

preserved because P has the µ-chain condition, and |τG| ≤ |τ | ≤ | trcl(τ)| < κV ,

then τG ∈ H(κ)V [G].

Assume now that P forces that τ ∈ H(κ)V [G], i.e., that | trcl(τ)| < κV [Ġ]. Again,

we argue by induction on the rank of τ . The base case is trivial. Suppose that τ

has rank α, and that every P-name σ of rank < α forced by P to be in H(κ)V [Ġ],

is such that σ ∈ H(κ)V . Note that, as P forces τ ∈ H(κ)V [Ġ], every τ ′ ∈ dom(τ)

is forced by P to be in H(κ)V [Ġ]. Hence, by induction hypothesis τ ′ ∈ H(κ)V ,

and thus, it suffices to check that |τ | < κV . But this follows from the fact that P

forces that |τ | ≤ | trcl(τ)| < κV [Ġ] and that κ is preserved thanks to the µ-chain

condition of P.

Lemma 4.4.6. Let P ⊆ H(κ) be a forcing notion with the µ-chain condition

for some µ ≤ κ, and let θ > κ be a big enough cardinal so that P ∈ H(θ). If

Q � H(θ) is such that κ,P ∈ Q, and G is a P-generic filter over V , then

(Q ∩H(κ)V )[G] = Q[G] ∩H(κ)V [G] = Q[G] ∩H(κ)V [G] � H(κ)V [G].

Proof. Note that by lemma 1.1.36, Q[G] � H(θ)V [G], and thus, by lemma

1.1.35, Q[G] � H(θ)V [G]. Hence, we have that Q[G] ∩ H(κ)V [G] � H(κ)V [G] by

proposition 1.4.8. The other two equalities follow from lemmas 4.4.4 and

4.4.5.

4.4.1 Proof of (P1)α

Let Q∗ ∈ S∗α ∪ L∗α and Q = Q∗ ∩ H(κ). Let p ∈ Pα ∩ Q. We have to find an

extension q ∈ Pα of p such that q is (Q,Pα)-pre-generic.

? Base case

Suppose that α = 0.

Lemmas 2.4.19 and 2.4.18 ensure that there is an (S,L, T +)-symmetric system
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M extending dom(∆p) and containing Q. Hence, q = (∅, {(R, 0) : R ∈M}) is a

(Q,P0)-pre-generic condition extending p.

? Successor case

Suppose that α = γ + 1 and that (P1)β-(P4)β hold for every β ≤ γ.

Assume first that γ ∈ dom(Fp). By (P1)γ , since p|γ ∈ Q, we may also assume, by

extending p|γ if necessary, that p|γ is (Q,Pγ)-pre-generic, i.e., that (Q, γ) ∈ ∆p|γ .

Let Ḋ be the C-least Pγ-name for a club D of ([H(κ)]≤ℵ1)V in V such that D

witnesses the (S,L)-finite properness of Q̇γ with respect to V and Ġγ . Since

Q∗ ∈ S∗γ+1 ∪ L∗γ+1, the well-order C and the poset Pγ belong to Q∗, and hence,

the Pγ-name Ḋ belongs to Q∗ as well. Note that p|γ forces that every element

of Q∗[Ġγ ] ∩ H(κ)V can be covered by an element of Q∗[Ġγ ] ∩ Ḋ, and thus, we

can cover Q∗[Ġγ ] ∩H(κ)V by an ⊆-increasing sequence of length |Q∗[Gγ ]| ≤ ℵ1

of elements of Q∗[Ġγ ] ∩ Ḋ. Therefore, p|γ forces that Q∗[Ġγ ] ∩ H(κ)V ∈ Ḋ.

Since p|γ is (Q,Pγ)-pre-generic, it follows from (P2)γ that p|γ is (Q∗,Pγ)-generic.

Therefore, p|γ forces that Q∗[Ġγ ] ∩ V = Q∗, and thus, that Q∗[Ġγ ] ∩H(κ) = Q.

Hence, it forces that Q ∈ Ḋ. Moreover, note that p|γ forces the following:

(1) {Q} ⊆ Ḋ.

(2) {(Q, γ)} ⊆ ∆p|γ and p|γ ∈ Ġγ .

(3) Fp(γ) ∈ Q̇γ and Q̇γ ∈ Q[Ġγ ].

(4) Fp(γ) ∈ Q[Ġγ ].

The last two points follow from the fact that γ, Fp(γ) ∈ Q, since p ∈ Q and we

have (possibly) only extended p|γ . Moreover, note that if Q ∈ Sδ for some limit

δ ≤ κ such that cf(δ) = ω1 and γ < δ, then γ < sup(Q ∩ δ). Since Q̇γ is the

Pγ-name of an (S,L)-finitely proper forcing notion relative to V and Ġγ , there

is an extension p∗ ∈ Pγ of p|γ and some Pγ-name ẋ ∈ H(κ) such that p∗ forces
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that ẋ ∈ Q̇γ and that ẋ is a (Q[Ġγ ], Q̇γ)-generic condition extending Fp(γ). Let

q =
(
Fp∗ ∪ {〈γ, ẋ〉},∆p ∪∆p∗ ∪ {(Q, γ + 1)}

)
.

Lemma 4.3.5 ensures that q is a condition in Pγ+1 extending p.

Now, suppose that γ /∈ dom(Fp). Hence, dom(Fp) ⊆ γ, as p ∈ Pγ+1. Since p ∈ Q,

we can find a condition t ∈ Pγ extending p|γ and such that (Q, γ) ∈ ∆t by (P1)γ .

Define q := (Ft,∆t ∪∆p ∪ {(Q, γ + 1)}). We claim that q is a condition in Pγ+1

extending p. Clauses (C0) and (C1) in the definition of Pγ+1 are clearly satisfied.

Note that q|γ = (Ft,∆t ∪ ∆p|γ ), because (Q, γ) ∈ ∆t. Hence, clause (C2) also

holds, because q|γ ∈ Pγ by lemma 4.3.2. Clauses (C3)-(C6) follow from q|γ ∈ Pγ

and the fact that γ /∈ dom(Fp). To see that q ≤γ+1 p, it’s enough to note that

q|γ ≤γ t ≤γ p|γ and that ∆p ⊆ ∆q.

? Limit case

Suppose that α is a nonzero limit ordinal and that (P1)β-(P4)β hold for every

β < α.

By definition of Pα, dom(Fp) ⊆ α. Since p ∈ Q, there is some γ ∈ Q ∩ α such

that dom(Fp) ⊆ γ. By (P1)γ there is a condition t ∈ Pγ such that t ≤γ p|γ and

(Q, γ) ∈ ∆t. Define q =
(
Ft,∆t∪∆p∪{(Q,α∩sup(Q∩κ))}

)
. It’s enough to show

by induction on ξ ∈ [γ, α] that q|ξ is a condition in Pξ. The base case follows from

the fact that t ≤γ p|γ and (Q, γ) ∈ ∆t. Suppose that ξ > γ. Clauses (C0) and

(C1) are clearly satisfied, and clause (C2) holds by induction hypothesis. Note

that since t ∈ Pγ , q|ξ =
(
Ft,∆t∪∆p|ξ ∪{(Q, ξ∩ sup(Q∩κ))}

)
for every ξ ∈ [γ, α].

Moreover, ξ /∈ dom(Ft) for any ξ ∈ [γ, α]. Therefore, clauses (C3)-(C6) follow

directly.
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4.4.2 Proof of (P2)α

Let Q∗ ∈ S∗α ∪ L∗α and Q = Q∗ ∩ H(κ). Let p ∈ Pα be a (Q,Pα)-pre-generic

condition. We will show that p is (Q∗,Pα)-generic.

? Base case

Suppose that α = 0.

Let E be an open dense subset of P0 in Q∗. We will find a condition in E ∩Q∗

compatible with p. We may assume, without loss of generality, that p ∈ E.

Note that p ∩ Q∗ = p ∩ Q ∈ P0, by lemmas 2.4.22 and 2.4.20. Hence, we can

find a condition q ∈ E ∩ Q∗ extending p ∩ Q∗ by elementarity. Let M be the

(S,L, T +)-symmetric system extending both dom(∆p) and dom(∆q), given by

lemmas 2.4.27 and 2.4.28. It follows that r = (∅, {(R, 0) : R ∈M}) is a common

extension of p and q in P0.

? Successor case

Suppose that α = γ + 1, that (P1)β-(P4)β hold for every β ≤ γ, and that (P1)α

holds.

Assume first that γ ∈ dom(Fp). Let E ∈ Q∗ be an open dense subset of Pγ+1.

We will find a condition q ∈ E ∩ Q∗ compatible with p. Since E is dense open

we may start by assuming that p ∈ E. Let Gγ be a Pγ-generic filter over V such

that p|γ ∈ Gγ and work in V [Gγ ]. Let Qγ be the interpretation of Q̇γ by Gγ . By

(P2)γ we have that Gγ is also generic over Q∗. Recall that E/Gγ is defined as

the set {r ∈ E : r|γ ∈ Gγ}. Let Ẽ be the set of Qγ-conditions ν such that either

(i) there is t ∈ E/Gγ such that γ ∈ dom(Ft) and Ft(γ) = ν, or

(ii) there is no t ∈ E/Gγ such that γ ∈ dom(Ft) and Ft(γ) ≤Qγ ν.

Clearly Ẽ is a dense subset of Qγ . Note that Ẽ is defined from γ, E, Pγ+1, Qγ and

Gγ , and note that E,Pγ+1, Q̇γ ∈ Q∗. Therefore, since H(κ+)Q
∗[Gγ ] � H(κ+)V [Gγ ]
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by lemma 4.4.3, we have that Ẽ ∈ Q∗[Gγ ]. Note that as Q̇γ ∈ H(κ)V , by (P4)γ

and lemma 4.4.5 we have that Qγ ∈ H(κ)V [Gγ ], which in particular implies that

Ẽ ∈ H(κ)V [Gγ ]. Therefore, by (P4)γ and lemma 4.4.4, Ẽ is in fact a member of

Q[Gγ ].

By clause (C4) in the definition of Pγ+1, and since p|γ ∈ Gγ , we have that Fp(γ)

is (Q[Gγ ],Qγ)-generic. Therefore, there is some ν ∈ Q[Gγ ] ∩ Ẽ compatible with

Fp(γ). We claim that (i) above holds for ν. Indeed, let ν∗ be a condition in

Qγ extending both Fp(γ) and ν, and let r be a condition in Gγ extending p|γ

and deciding ν∗. Let p∗ := (Fr ∪ {〈γ, ν∗〉},∆r ∪ ∆p), which is a condition in

Pγ+1 extending p, by lemma 4.3.5, and note that p∗ ∈ E/Gγ . Moreover, p∗ is

a witness of the negation of (ii) for ν, so condition (i) must hold for ν. Since

H(κ+)Q
∗[Gγ ] � H(κ+)V [Gγ ], there must be a condition q in Q∗[Gγ ] witnessing

that (i) holds for ν, i.e., q ∈ E/Gγ ∩Q∗[Gγ ] must be such that γ ∈ dom(Fq) and

Fq(γ) = ν. Note that as p|γ ∈ Gγ , by (P2)γ we have that Q∗[Gγ ] ∩ V = Q∗,

and hence, q must be a member of Q. It remains to see that q is compatible

with p. Recall that ν and Fp(γ) are compatible. Hence, as p|γ , q|γ ∈ Gγ , there

has to be a condition s ∈ Gγ extending both p|γ and q|γ , and deciding some

ν∗ ∈ Qγ such that ν∗ ≤Qγ ν, Fp(γ). In light of lemma 4.3.5, the amalgamation

(Fs ∪ {〈γ, ν∗〉},∆p ∪∆q ∪∆s) is a common extension of p and q in Pγ+1.

Assume now that γ /∈ dom(Fp). Let E ∈ Q∗ be an open dense subset of Pγ+1. We

will find a condition q ∈ E∩Q∗ compatible with p. Since E is dense open we may

start by assuming, without loss of generality, that p ∈ E. Let Gγ be a Pγ-generic

filter such that p|γ ∈ Gγ and work in V [Gγ ]. Note that γ,E,Pγ+1 ∈ Q∗, hence

by H(κ+)Q
∗[Gγ ] � H(κ+)V [Gγ ], we can find a condition q ∈ Q∗[Gγ ] ∩ Pγ+1 such

that

• q ∈ E,

• q|γ ∈ Gγ , and

• dom(Fq) ⊆ γ,
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since the existence of q is witnessed in V [Gγ ] by p. Note that in fact q ∈ Q∗

because Q∗[Gγ ] ∩ V = Q∗ by the induction hypothesis (P2)γ and p|γ ∈ Gγ .

Hence, we may assume, by extending p below γ if necessary, that p|γ decides q,

and since it forces that q|γ ∈ Ġγ , we have that p|γ ≤γ q|γ . By lemma 4.3.7,

(Fp,∆p ∪∆q) is a condition in Pγ+1 extending both p and q.

? Limit case

Suppose that α is a nonzero limit ordinal, that (P1)β-(P4)β hold for every β < α,

and that (P1)α holds.

Let E ∈ Q∗ be an open dense subset of Pα. We will find a condition q ∈ E ∩Q∗

compatible with p. Since E is dense open we may start by assuming that p ∈ E.

We divide the proof in three cases.

Case 1. cf(α) = ω.

Note that in this case sup(Q ∩ α) = α, by lemma 1.4.11. Hence, as dom(Fp)

is finite and contained in α, there is some γ ∈ Q ∩ α such that dom(Fp) ⊆ γ.

Fix a Pγ-generic filter Gγ over V such that p|γ ∈ Gγ . Note that the parameters

γ,E,Pα belong to Q∗. Therefore, by H(κ+)Q
∗[Gγ ] � H(κ+)V [Gγ ], we can find a

condition q ∈ Q∗[Gγ ] ∩ Pα such that

• q ∈ E,

• q|γ ∈ Gγ , and

• dom(Fq) ⊆ γ.

Again, the existence of q is witnessed in V [Gγ ] by p. Since p|γ ∈ Gγ and p|γ is

(Q∗,Pγ)-generic by induction hypothesis (P2)γ , we have that Q∗[Gγ ] ∩ V = Q∗,

and thus, q ∈ Q∗. Note that as p|γ ∈ Gγ , we may assume by extending p below

γ, that p|γ decides q, and moreover, since in particular it forces that q|γ ∈ Ġγ , we

have that p|γ ≤γ q|γ . Lemma 4.3.7 ensures that the amalgamation (Fp,∆p ∪∆q)

is a common extension of p and q in Pα.
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Case 2. cf(α) > ω1.

Note that in this case, in light of lemma 1.4.11, sup(R ∩ α) < α for very model

R ∈ dom(∆p) such that α ∈ R. If dom(Fp) ⊆ sup(Q ∩ α) we can argue exactly

as in case 1. Hence, we may assume that dom(Fp) is not bounded by sup(Q∩α).

Claim 4.4.7. For every R ∈ dom(∆p) such that εR < εQ,

(a) sup(R ∩Q ∩ α) < sup(Q ∩ α), if R ∈ S ∪ L, and

(b) sup(
⋃
R ∩Q ∩ α) < sup(Q ∩ α), if R ∈ T +.

Proof. Assume first that R ∈ dom(∆p) ∩ (S ∪ L). Note that if R ∈ Q[ω1],

since α ∈ Q, the model Q[ω1] thinks that R ∩ α is bounded in α. Therefore,

sup(R ∩ α) ∈ Q[ω1] ∩ α, and thus,

sup(R ∩ α) < sup(Q[ω1] ∩ α) = sup(Q ∩ α).

Note that the equality sup(Q[ω1] ∩ α) = sup(Q ∩ α) holds trivially if Q is

uncountable, and if Q is countable, it holds by proposition 2.3.4. Now, if

R′ ∈ dom(∆p) is such that εR′ < εQ, since dom(∆p) is an (S,L, T +)-symmetric

system, there must be some Q′ ∈ dom(∆p) such that εQ′ = εQ and R′ ∈ Q′[ω1],

and hence, sup
(
ΨQ′[ω1],Q[ω1](R

′) ∩ α
)
< sup(Q ∩ α). The symmetry of the

system dom(∆p) is needed precisely to get this result. Finally, note that if R′

and Q′ are as above, since ΨQ′[ω1],Q[ω1] fixes Q′[ω1] ∩ Q[ω1] ∩ κ, it also fixes

R′ ∩Q ∩ κ, and hence, sup(R′ ∩Q ∩ α) ≤ sup
(
ΨQ′[ω1],Q[ω1](R

′) ∩ α
)
. Therefore,

we can conclude that for every R ∈ dom(∆p) ∩ (S ∪ L) such that εR < εQ,

sup(R ∩Q ∩ α) < sup(Q ∩ α),

as we wanted.

Assume now that R ∈ T +. Note that if R ∈ Q[ω1], then
⋃
R ∈ Q[ω1], and by the

same reason as above, sup(
⋃
R ∩ α) < sup(Q ∩ α). If R /∈ Q[ω1], there is some
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Q′ ∈ dom(∆p) such that εQ′ = εQ and R ∈ Q′[ω1]. Hence, ΨQ′[ω1],Q[ω1](R) is a

member of dom(∆p)∩Q[ω1], and thus, sup(
⋃

ΨQ′[ω1],Q[ω1](R)∩α) < sup(Q∩α).

Again, since ΨQ′[ω1],Q[ω1] fixes Q′[ω1] ∩ Q[ω1] ∩ κ, it also fixes (
⋃
R) ∩ Q ∩ κ, so

sup(
⋃
R∩Q∩α) ≤ sup(

⋃
ΨQ′[ω1],Q[ω1](R)∩α). Hence, we can conclude that for

every R ∈ dom(∆p) ∩ T + such that εR < εQ,

sup(
⋃
R ∩Q ∩ α) < sup(Q ∩ α).

Note that for every M ∈ dom(∆p) ∩ S such that εM < εQ, since M is countable

and α has cofinality greater than ω1, the same analysis from the last claim shows

that sup(
⋃

(M ∩ L) ∩Q ∩ α) < sup(Q ∩ α). Therefore, by claim 4.4.7, and since

∆p and Fp are both finite, we may fix some γ ∈ Q ∩ α such that

• sup(R ∩Q ∩ α) < γ, for all R ∈ dom(∆p) ∩ (S ∪ L) such that εR < εQ,

• sup(
⋃
R ∩Q ∩ α) < γ, for all R ∈ dom(∆p) ∩ T + such that εR < εQ,

• sup(
⋃

(M ∩ L) ∩Q ∩ α) < γ, for all M ∈ dom(∆p) ∩ S such that εM < εQ,

and

• η < γ, for all η ∈ dom(Fp) such that η < sup(Q ∩ α).

Fix a generic filter Gγ for Pγ over V such that p|γ ∈ Gγ . Note that the parameters

γ,E,Pα are members of Q∗. Therefore, by H(κ+)Q
∗[Gγ ] � H(κ+)V [Gγ ], we can

find a condition q ∈ Q∗[Gγ ] ∩ Pα such that

• q ∈ E,

• q|γ ∈ Gγ , and

• dom(Fq) \ γ 6= ∅.

By exactly the same reasons as in case 1, q ∈ Q∗, and by extending p below γ if

necessary, we may assume that p|γ decides q and extends q|γ .
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In order to finish the proof of (P2)α we need to find a condition q in Pα extending

both p and q. The condition q can be built by recursion on dom(Fq)\γ, mimicking

the proof of (P1)β for β successor. Note that min(dom(Fp) \ γ) ≥ sup(Q∩ α) by

the choice of γ, and therefore, min(dom(Fp)\γ) > max(dom(Fq)). Let (ξi)i<r be

the strictly increasing enumeration of dom(Fq) \ γ. We may assume that r > 0.

We will build a sequence (qi)i<r such that for every i < r, qi is a condition in

Pξi+1 extending both p|ξi+1 and q|ξi+1. The construction goes as follows.

Suppose first that i = 0. We want to find a condition q0 ∈ Pξ0+1 such that

q0 ≤ξ0+1 p|ξ0+1, q|ξ0+1. We start by extending p|γ to a condition p̃ ∈ Pξ0 such

that p̃ ≤ξ0 p|ξ0 , q|ξ0 . If ξ0 = γ, we let p̃ = p|γ , and otherwise, we let p̃ =

(Fp|ξ0 ,∆p|ξ0 ∪∆q|ξ0 ), which is a condition in Pξ0 extending both p|ξ0 and q|ξ0 by

lemma 4.3.7. Note that since q ∈ Q∗, in particular, dom(Fq) ⊆ Q∗. Therefore, ξ0

and Fq(ξ0) belong to Q∗, and thus, Fq(ξ0) ∈ Q = Q∗ ∩H(κ). Our plan now is to

find a condition p̂ ∈ Pξ0 and a Pξ0-name ẋ ∈ H(κ) such that

(i) p̂ ≤ξ0 p̃,

(ii) p̂ ξ0 “ẋ ≤Q̇ξ0
Fq(ξ0)”,

(iii) for every R ∈ Sξ0+1 ∪ Lξ0+1 such that (R, ξ0 + 1) ∈ ∆p|ξ0+1
∪∆q|ξ0+1

,

p̂ ξ0 “ẋ is (R[Ġξ0 ], Q̇ξ0)-generic”,

(iv) for every M ∈ T + such that (M, ξ0 + 1) ∈ ∆p|ξ0+1
∪ ∆q|ξ0+1

, and every

N ∈M ∩ Lξ0+1,

p̂ ξ0 “ẋ is (N [Ġξ0 ], Q̇ξ0)-generic”,

and

(v) for every M ∈ Sδ such that (M, ξ0 +1) ∈ ∆p|ξ0+1
∪∆q|ξ0+1

, where δ ≤ κ is a

limit ordinal such that cf(δ) = ω1 and sup(M ∩ δ) ≤ ξ0 < δ, the condition

p̂ forces that ẋ is (N [Ġξ0 ], Q̇ξ0)-generic for every N ∈ ȦM
Ġξ0

,
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so that we can define q0 as the natural amalgamation

q0 = (Fp̂ ∪ {〈ξ0, ẋ〉},∆p̂ ∪∆p|ξ0+1
∪∆q|ξ0+1

),

which, in light of lemma 4.3.5, is a condition in Pξ0+1 extending both p|ξ0+1

and q|ξ0+1. Note that if R ∈ Sξ0+1 ∪ Lξ0+1 is such that (R, β) ∈ ∆q for some

β ≥ ξ0+1, then by clause (C4) of the definition of the iteration, the condition q|ξ0

forces that Fq(ξ0) is (R[Ġξ0 ], Q̇ξ0)-generic, and thus, any Q̇ξ0-extension of Fq(ξ0)

will be forced by q|ξ0 (and hence, by any extension of q|ξ0) to be (R[Ġξ0 ], Q̇ξ0)-

generic. Similarly for N ∈M ∩ Lξ0+1, where M ∈ T + is such that (M,β) ∈ ∆q,

where β ≥ ξ0 + 1, using (C5) instead of (C4). It follows from these observations

that if we find a Pξ0-name ẋ satisfying (ii), then the set of models for which we

need to check item (iii) is

M0 := {R ∈ Sξ0+1 ∪ Lξ0+1 : (R, ξ0 + 1) ∈ ∆p|ξ0+1
\∆q|ξ0+1

},

and the set of models for which we need to check item (iv) is

M1 := {N ∈M ∩ Lξ0+1 : M ∈ T +, (M, ξ0 + 1) ∈ ∆p|ξ0+1
\∆q|ξ0+1

}.

Note that if R ∈ M0, then εR ≥ εQ. To see this suppose that εR < εQ. Since

R ∈ Sξ0+1 ∪ Lξ0+1, then ξ0 ∈ R, and hence ξ0 < sup(R ∩ Q ∩ α). But this is

impossible by our choice of γ. Also note that if N ∈ M1, then ξ0 ∈ N , and

hence, if M ∈ T + is such that (M, ξ0 + 1) ∈ ∆p|ξ0+1
\∆q|ξ0+1

and N ∈ M , then

ξ0 < sup(
⋃
M ∩Q∩α). Therefore, εM > εQ for every M as above, by our choice

of γ. Moreover, note that Q ∈ M0. Indeed, since ξ0 ∈ Q and Q ∈ Sα ∪ Lα,

Q must also be a member of Sξ0+1 ∪ Lξ0+1, and as p is (Q,Pα)-pre-generic by

assumption and q ∈ Q∗, (Q, ξ0 + 1) ∈ ∆p|ξ0+1
\∆q|ξ0+1

.

A similar analysis to the one from the last paragraph shows that the models for

which we need to check item (v) are those N ∈ Lξ0+1 forced by p̃ to be members

of ȦM
Ġξ0

, where M ∈ Sδ is such that (M, ξ0 + 1) ∈ ∆p|ξ0+1
\∆q|ξ0+1

, with δ ≤ κ a
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limit ordinal of cofinality ω1 such that sup(M ∩ δ) ≤ ξ0 < δ. We will denote the

set of models N as above, relevant for item (v), as M2.

Denote by M the set M0 ∪ M1 ∪ M2 of all relevant models and note that

M∩Q = ∅. Indeed, it’s clear thatM0 ∩Q = ∅ because the models inM0 have

ω2-height greater than or equal εQ. Suppose now that N ∈ (M1∪M2)∩Q. Then,

N ∈ Lξ0+1, and thus, ξ0 ∈ N . But this implies that γ < ξ0 < sup(N ∩ Q ∩ α),

which is impossible by the choice of γ.

Recall that Q̇ξ0 is the Pξ0-name for an (S,L)-finitely proper forcing notion relative

to V and Ġξ0 . So p̃ forces that the first club D ⊆ [H(κ)V ]≤ℵ1 in V (in the well-

order of H(κ+)[Ġξ0 ] induced by C) witnessing the (S,L)-finite properness of Q̇ξ0

with respect to V and Ġξ0 is such that M0 ∪M1 ⊆ Ḋ. To see this let R ∈ M0

and let R∗ ∈ S∗ξ0+1∪L∗ξ0+1 such that R = R∗∩H(κ). Note that since C∈ R∗, R∗

contains a Pξ0-name Ḋ for the club D. This fact combined with the fact that p̃

is (R∗,Pξ0)-generic by (P2)ξ0 , imply that p̃ forces that R ∈ Ḋ, by the exact same

argument as the one in the proof of the successor case of (P1)α. If N ∈ M1, we

can argue in the exact same way, using (P3)ξ0 rather than (P2)ξ0 , to show that

p̃ forces that N ∈ Ḋ. The following claim shows, in particular, that p̃ also forces

that M2 ⊆ Ḋ.

Claim 4.4.8. Pξ0 forces that ȦM
Ġξ0
⊆ Ḋ.

Proof. Let Gξ0 be a Pξ0-generic filter over V and work in V [Gξ0 ]. Let D be

the interpretation of Ḋ by Gξ0 . Let N ∈ AMGξ0 such that N = N∗ ∩ H(κ), for

some N∗ ∈ L∗ξ0+1. Then, N ∈ M ∩ Lξ0+1 and there is a condition u ∈ Gξ0 such

that either (N, ξ0) ∈ ∆u, or N ∈ M for some M ∈ dom(∆u) ∩ T + such that

(M, ξ0) ∈ ∆u. Hence, u is (N∗,Pξ0)-generic by (P2)ξ0 , if N ∈ dom(∆u) ∩ L, or

by (P3)ξ0 , if N ∈
⋃

(dom(∆u)∩T +). Since N∗ ∈ L∗ξ0+1, the Pξ0-name Ḋ belongs

to N∗, and as u forces that N∗[Ġξ0 ]∩H(κ)V = N , we can conclude that u forces

that N ∈ Ḋ, by the same argument of the last paragraph. The conclusion follows

from the fact that u belongs to the generic Gξ0 .
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Therefore, p̃ forces the following:

(1) M is a countable subset of Ḋ, which contains only finitely many small

models (all of them in M0).

(2) p|ξ0 ∈ Ġξ0 and for every R ∈M,

(2.a) (R, ξ0) ∈ ∆p|ξ0 , if R ∈M0,

(2.b) R ∈M for some M ∈ T + such that (M, ξ0) ∈ ∆p|ξ0 , if R ∈M1, and

(2.c) R ∈ ȦM
Ġξ0

for some M ∈ Sδ such that sup(M ∩ δ) ≤ ξ0 < δ and

(M, ξ0) ∈ ∆p|ξ0 , where δ ≤ κ is a limit ordinal of cofinality ω1, if

R ∈M2.

(3) Fq(ξ0) ∈ Q̇ξ0 and Q̇ξ0 ∈ R[Ġξ0 ] for all R ∈M.

(4) Fq(ξ0) ∈ Q[Ġξ0 ] and Q ∩M = ∅, where Q ∈M0.

Therefore, it follows from the (S,L)-finite properness of Q̇ξ0 relative to V and

Ġξ0 that there are a Pξ0-name ẋ ∈ H(κ) and an extension p̂ ∈ Pξ0 of p̃ that forces

that ẋ is a condition in Q̇ξ0 such that ẋ ≤Q̇ξ0
Fq(ξ0) and that ẋ is (R[Ġξ0 ], Q̇ξ0)-

generic for all R ∈M. Hence, by lemma 4.3.5 there exists a condition q0 ∈ Pξ0+1

extending both p|ξ0+1 and q|ξ0+1, as we wanted.

The definition of the class of (S,L)-finitely proper forcing notions is designed so

that this proof can go through at this exact point (and others that will come

later, specially in the case cf(α) = ω1). This depends directly on the structure

of the set of relevant models M that we have considered above.

For the case i > 0 such that i + 1 < r, we assume inductively that qi ∈ Pξi+1

extends p|ξi+1 and q|ξi+1. We may argue exactly as in the case i = 0 with

ξi+1 instead of ξ0 and starting with qi rather than p|γ , to obtain qi+1 ∈ Pξi+1+1

extending both p|ξi+1+1 and q|ξi+1+1.

Let µ = ξr−1 = max(dom(Fq)) and define

q :=
(
Fqr−1 ∪ (Fp � [µ+ 1, α)),∆qr−1 ∪∆p ∪∆q

)
.
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Claim 4.4.9. q is a condition in Pα extending both p and q.

Proof. We show by induction on ξ, for µ+ 1 ≤ ξ ≤ α, that q|ξ ∈ Pξ and that q|ξ

extends both p|ξ and q|ξ.

If ξ = µ + 1, the condition q|µ+1 equals (Fqr−1 ,∆qr−1 ∪∆p|µ+1
∪∆q|µ+1

), and as

qr−1 ≤µ+1 p|µ+1, q|µ+1, the conditions q|µ+1 and qr−1 are equivalent by lemma

4.3.2. Therefore, the result follows from the fact that qr−1 ∈ Pµ+1.

Now assume that ξ = η+1 > µ+1. Clauses (C0)-(C2) in the definition of Pη+1 are

clear by induction hypothesis. Note that if η ∈ dom(Fq) then η ∈ dom(Fp), and

hence, as p ∈ Pα, clause (C3) follows from the induction hypothesis q|η ≤η p|η.

Let us show clause (C4) now. Suppose that η ∈ dom(Fq), and let (R, β) ∈ ∆q

be such that β ≥ η + 1 and R ∈ Sη+1 ∪ Lη+1. We need to check that q|η

forces that Fq(η) is (R[Ġη], Q̇η)-generic. Note that (R, β) cannot be in ∆qr−1 , as

qr−1 ∈ Pµ+1 and β ≥ η+ 1 > µ+ 1. Suppose that (R, β) ∈ ∆q|η+1
. On one hand,

η ∈ dom(Fp) \ γ = dom(Fp) \ sup(Q∩α), so sup(Q∩α) < η. On the other hand,

q ∈ Q∗, so in particular, R ∈ Q = Q∗∩H(κ), and thus, sup(R∩α) < sup(Q∩α).

But note that as R ∈ Sη+1 ∪ Lη+1, then η ∈ R, and thus, η < sup(R ∩ α),

which contradicts the fact that sup(Q ∩ α) < η. Therefore, if (R, β) ∈ ∆q, it

must be the case that (R, β) ∈ ∆p|η+1
. Since η ∈ dom(Fp), by (C4) applied to

p we have that p|η forces that Fp(η) is (R[Ġη], Q̇α)-generic, and as q|η ≤η p|η

by induction hypothesis, and Fq(η) = Fp(η), clause (C4) holds for q|η. A very

similar argument shows that (C5) holds for q|η+1. Now we check clause (C6).

Suppose that η ∈ dom(Fq). Let M ∈ Sδ such that (M,β) ∈ ∆q, where β ≥ η + 1

and δ ≤ κ is a limit ordinal of cofinality ω1 such that sup(M ∩ δ) ≤ η < δ.

As before, (M,β) cannot be in ∆qr−1 , as qr−1 ∈ Pµ+1 and β ≥ η + 1 > µ + 1.

Suppose that (M,η + 1) ∈ ∆q|η+1
. Then, M ∈ Q, and as Q ∈ S ∪ L, M ⊆ Q.

In particular, M ∩ L ⊆ Q. Hence, if N ∈ M ∩ Lη+1, on one hand η ∈ N ,

and thus, η < sup(N ∩ α), and on the other hand, N ∈ Q, so sup(N ∩ α) <

sup(Q ∩ α). Therefore, if M ∈ dom(∆q), then q|η forces that ȦM
Ġη

is empty, and

hence, clause (C6) follows vacuously. Suppose now that (M,η + 1) ∈ ∆p|η+1
.
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Then, as Fq(η) = Fp(η), the conclusion of clause (C6) follows from the fact that

q|η ≤η p|η. Lastly, we need to check that q|η+1 ≤η+1 p|η+1, q|η+1. Clauses (D1)

and (D3) are clear by induction hypothesis and the definition of q. Clause (D2)

follows from induction hypothesis q|η ≤η p|η, q|η, from the definition of q, and

from the fact that max(dom(Fq)) = ξr−1 = µ < η.

The case ξ > µ + 1 limit follows from the induction hypothesis. Recall that in

this case, to see that q|ξ ∈ Pξ we only need to check clauses (C0)-(C2).

Case 3. cf(α) = ω1.

The proof of this case has the same structure as the one for case 2, with a

few technical subtleties that require some extra work. The main issue, which has

already been mentioned before, being that, while countable models M ∈ dom(∆p)

are bounded below α, there might be uncountable models N ∈ M ∩ dom(∆p)

active beyond sup(M ∩ α) and up to α.

First of all, note that in light of lemma 1.4.11, if R ∈ dom(∆p) and α ∈ R, then

• sup(R ∩ α) < α, if R ∈ S,

• sup(R ∩ α) = α, if R ∈ L, and

• sup(
⋃
R ∩ α) = α, if R ∈ T +.

Hence, if Q ∈ L or dom(Fp) ⊆ sup(Q ∩ α), we can argue exactly as in case 1,

cf(α) = ω. Therefore, we may assume that Q ∈ S and that dom(Fp)\ sup(Q∩α)

is nonempty.

Let R ∈ dom(∆p) ∩ Q. If R ∈ L, then Q thinks that R ∩ α is unbounded in

α, and thus sup(R ∩ Q ∩ α) = sup(Q ∩ α). Consequently, if R ∈ T +, then

sup(
⋃
R ∩ Q ∩ α) = sup(Q ∩ α). However, it follows from the symmetry of

dom(∆p) and the same argument as in the proof of claim 4.4.7, that for every

M ∈ dom(∆p) ∩ S such that εM < εQ, sup(M ∩Q ∩ α) < sup(Q ∩ α).

Since ∆p and Fp are finite, we may fix some γ ∈ Q ∩ α such that
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• sup(M ∩Q ∩ α) < γ, for all M ∈ dom(∆p) ∩ S such that εM < εQ, and

• η < γ, for all η ∈ dom(Fp) such that η < sup(Q ∩ α).

Fix a Pγ-generic filter Gγ over V such that p|γ ∈ Gγ . Note that if η ∈ dom(Fp)\γ,

then sup(Q ∩ α) ≤ η < α, where Q ∈ Sα and (Q,α) ∈ ∆p, and α is a limit

ordinal of cofinality ω1. Therefore, by (C6) we have that p|η forces that Fp(η)

is (N [Ġη], Q̇η)-generic for every N ∈ ȦQ
Ġη

. Note that the parameters γ,E,Pα

are members of Q∗. Therefore, by H(κ+)Q
∗[Gγ ] � H(κ+)V [Gγ ], we can find a

condition q ∈ Q∗[Gγ ] ∩ Pα such that

• q ∈ E,

• q|γ ∈ Gγ ,

• dom(Fq) \ γ 6= ∅,

• if ξ ∈ (Q ∩ α+ 1) \ γ, then ∆−1p|ξ (ξ) ∩Q ⊆ ∆−1q|ξ (ξ), and

• for every ξ ∈ dom(Fq)\γ, we have that q|ξ forces that Fq(ξ) is (N [Ġξ], Q̇ξ)-

generic for every N ∈ ȦQ
Ġξ
∩Q.

The fourth item ensures that if (R, ξ) ∈ ∆p|ξ ∩ Q, then (R, ξ) ∈ ∆q|ξ . As in

the previous cases, we can argue that q ∈ Q∗, and by extending p below γ if

necessary, we may assume that p|γ decides q and extends q|γ .

As in the last case, the idea is to build a condition q ∈ Pα extending p and q by

recursion on dom(Fq) \ γ. Recall that min(dom(Fp) \ γ) ≥ sup(Q ∩ α) by the

choice of γ, and therefore min(dom(Fp) \ γ) > max(dom(Fq)). Let (ξi)i<r be the

strictly increasing enumeration of dom(Fq) \ γ. We may assume that r > 0. We

will build a sequence (qi)i<r such that for every i < r, qi is a condition in Pξi+1

extending both p|ξi+1 and q|ξi+1. The construction goes exactly the same way as

in the last case.

Suppose first that i = 0. We want to find a condition q0 ∈ Pξ0+1 such that

q0 ≤ξ0+1 p|ξ0+1, q|ξ0+1. Extend p|γ to a condition p̃ ∈ Pξ0 such that p̃ ≤ξ0 p|ξ0 , q|ξ0 .
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If ξ0 = γ, we let p̃ = p|γ . Otherwise, we let p̃ = (Fp|ξ0 ,∆p|ξ0 ∪ ∆q|ξ0 ), which is

a condition in Pξ0 extending both p|ξ0 and q|ξ0 by lemma 4.3.7. Note that since

q ∈ Q∗, in particular, dom(Fq) ⊆ Q∗. Therefore, ξ0 and Fq(ξ0) are elements of

Q∗, and thus, Fq(ξ0) ∈ Q = Q∗ ∩H(κ). As in the last case, our plan is to find a

condition p̂ ∈ Pξ0 and a Pξ0-name ẋ ∈ H(κ) such that

(i) p̂ ≤ξ0 p̃,

(ii) p̂ ξ0 “ẋ ≤Q̇ξ0
Fq(ξ0)”,

(iii) for every R ∈ Sξ0+1 ∪ Lξ0+1 such that (R, ξ0 + 1) ∈ ∆p|ξ0+1
∪∆q|ξ0+1

,

p̂ ξ0 “ẋ is (R[Ġξ0 ], Q̇ξ0)-generic”,

(iv) for every M ∈ T + such that (M, ξ0 + 1) ∈ ∆p|ξ0+1
∪ ∆q|ξ0+1

, and every

N ∈M ∩ Lξ0+1,

p̂ ξ0 “ẋ is (N [Ġξ0 ], Q̇ξ0)-generic”,

and

(v) for every M ∈ Sδ such that (M, ξ0 +1) ∈ ∆p|ξ0+1
∪∆q|ξ0+1

, where δ ≤ κ is a

limit ordinal such that cf(δ) = ω1 and sup(M ∩ δ) ≤ ξ0 < δ, the condition

p̂ forces that ẋ is (N [Ġξ0 ], Q̇ξ0)-generic for every N ∈ ȦM
Ġξ0

,

so that we can define q0 as the natural amalgamation

q0 = (Fp̂ ∪ {〈ξ0, ẋ〉},∆p̂ ∪∆p|ξ0+1
∪∆q|ξ0+1

),

which, in light of lemma 4.3.5, is a condition in Pξ0+1 extending both p|ξ0+1

and q|ξ0+1. Note that if R ∈ Sξ0+1 ∪ Lξ0+1 is such that (R, β) ∈ ∆q for some

β ≥ ξ0+1, then by clause (C4) of the definition of the iteration, the condition q|ξ0

forces that Fq(ξ0) is (R[Ġξ0 ], Q̇ξ0)-generic, and thus, any Q̇ξ0-extension of Fq(ξ0)

will be forced by q|ξ0 (and hence, by any extension of q|ξ0) to be (R[Ġξ0 ], Q̇ξ0)-
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generic. Similarly for N ∈M ∩ Lξ0+1, where M ∈ T + is such that (M,β) ∈ ∆q,

where β ≥ ξ0 + 1, using (C5) instead of (C4). It follows from these observations

that if we find a Pξ0-name ẋ satisfying (ii), then the set of models for which we

need to check item (iii) is

M0 := {R ∈ Sξ0+1 ∪ Lξ0+1 : (R, ξ0 + 1) ∈ ∆p|ξ0+1
\∆q|ξ0+1

},

and the set of models for which we need to check item (iv) is

M1 := {N ∈M ∩ Lξ0+1 : M ∈ T +, (M, ξ0 + 1) ∈ ∆p|ξ0+1
\∆q|ξ0+1

}.

By the choice of γ and the same reasons as in the last case, it’s easy to check that

if M ∈M0 ∩S, then εM ≥ εQ. However, we cannot argue the same for the large

models inM0∪M1. This shouldn’t be surprising. We have seen at the beginning

of this case that large models can be active at stages beyond sup(Q ∩ α), unlike

in the last case. But we claim thatM0 ∩Q = ∅. Note that if R ∈M0 ∩Q, then

(R, ξ0 + 1) ∈ ∆p|ξ0+1
∩Q (it’s clear that if ξ0 ∈ Q, then ξ0 + 1 ∈ Q), and hence,

(R, ξ0 + 1) ∈ ∆q|ξ0+1
by the way we have defined q. Moreover, it is still true that

Q ∈M0.

As in the last case, a similar analysis to the one above shows that the models for

which we need to check item (v) are those N ∈ Lξ0+1 forced by p̃ to be members

of ȦM
Ġξ0

, where M ∈ Sδ is such that (M, ξ0 + 1) ∈ ∆p|ξ0+1
\∆q|ξ0+1

, with δ ≤ κ a

limit ordinal of cofinality ω1 such that sup(M ∩ δ) ≤ ξ0 < δ. Denote the set of

models N as above, relevant for item (v), as M2.

Denote by M the set M0 ∪M1 ∪M2. We have shown that M0 ∩ Q = ∅, but

note that in general (M1 ∪ M2) ∩ Q 6= ∅. However, we claim that p̃ forces

that Fq(ξ0) is (N [Ġξ0 ], Q̇ξ0)-generic for every N ∈ (M1 ∪ M2) ∩ Q. Suppose

first that N ∈ M1 ∩ Q. Then, there is some M ∈ dom(∆p) ∩ T + such that

(M, ξ0 + 1) ∈ ∆p|ξ0+1
(and hence, (M, ξ0) ∈ ∆p|ξ0 ). Therefore, since p̃ ≤ξ0 p|ξ0 ,

and thus, p̃ ξ0 p|ξ0 ∈ Ġξ0 , we have that p̃ ξ0 N ∈ ȦQ
Ġξ0

. Recall that q|ξ0
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forces that Fq(ξ0) is (N ′[Ġξ0 ], Q̇ξ0)-generic for every N ′ ∈ ȦQ
Ġξ0
∩ Q. Therefore,

as p̃ ≤ξ0 q|ξ0 , we have that p̃ forces that Fq(ξ0) is (N [Ġξ0 ], Q̇ξ0)-generic, as we

wanted. Suppose now that N ∈M2 ∩Q. It’s not too hard to see that Pξ0 forces

that ȦM
Ġξ0
∩ Q ⊆ ȦQ

Ġξ0
. Therefore, p̃ forces that N ∈ ȦQ

Ġξ0
, and by the same

argument as above, it forces that Fq(ξ0) is (N [Ġξ0 ], Q̇ξ0)-generic.

Let Ḋ be the C-least Pξ0-name for a club D of ([H(κ)]≤ℵ1)V in V witnessing

the (S,L)-finite properness of Q̇ξ0 with respect to V and Ġξ0 . The exact same

argument from the last case shows that p̃ forces thatM⊆ Ḋ. Therefore, we can

conclude that p̃ forces the following:

(1) M is a countable subset of Ḋ, which contains only finitely many small

models (all of them in M0).

(2) p|ξ0 ∈ Ġξ0 and for every R ∈M,

(2.a) (R, ξ0) ∈ ∆p|ξ0 , if R ∈M0,

(2.b) R ∈M for some M ∈ T + such that (M, ξ0) ∈ ∆p|ξ0 , if R ∈M1, and

(2.c) R ∈ ȦM
Ġξ0

for some M ∈ Sδ such that sup(M ∩ δ) ≤ ξ0 < δ and

(M, ξ0) ∈ ∆p|ξ0 , where δ ≤ κ is a limit ordinal of cofinality ω1, if

R ∈M2.

(3) Fq(ξ0) ∈ Q̇ξ0 and Q̇ξ0 ∈ R[Ġξ0 ] for all R ∈M.

(4) Fq(ξ0) ∈ Q[Ġξ0 ] and Fq(ξ0) is (N [Ġξ0 ], Q̇ξ0)-generic for every N ∈ Q ∩M,

where Q ∈M0 ∩ S is such that εQ = min{εM : M ∈M∩ S}.

Therefore, it follows from the (S,L)-finite properness of Q̇ξ0 relative to V and Ġξ0

that there are a Pξ0-name ẋ ∈ H(κ) and an extension p̂ ∈ Pξ0 of p̃ that forces that

ẋ is a condition in Q̇ξ0 extending Fq(ξ0) and that ẋ is (R[Ġξ0 ], Q̇ξ0)-generic for

all R ∈M. Hence, by lemma 4.3.5 there exists a condition q0 ∈ Pξ0+1 extending

both p|ξ0+1 and q|ξ0+1, as we wanted.

This is the other point of the proof that hints us how the class of (S,L)-finite

proper forcings needs to be defined.
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For the case i > 0 such that i + 1 < r, we assume inductively that qi ∈ Pξi+1

extends p|ξi+1 and q|ξi+1. We may argue exactly as in the case i = 0 with

ξi+1 instead of ξ0 and starting with qi rather than p|γ , to obtain qi+1 ∈ Pξi+1+1

extending both p|ξi+1+1 and q|ξi+1+1.

Let µ = ξr−1 = max(dom(Fq)) and define

q :=
(
Fqr−1 ∪ (Fp � [µ+ 1, α)),∆qr−1 ∪∆p ∪∆q

)
.

Claim 4.4.10. q is a condition in Pα extending both p and q.

Proof. We show by induction on ξ, for µ + 1 ≤ ξ ≤ α, that q|ξ ∈ Pξ and

that q|ξ extends both p|ξ and q|ξ. If ξ = µ + 1, the condition q|µ+1 equals

(Fqr−1 ,∆qr−1 ∪ ∆p|µ+1
∪ ∆q|µ+1

), and as qr−1 ≤µ+1 p|µ+1, q|µ+1, the conditions

q|µ+1 and qr−1 are equivalent by lemma 4.3.2. Therefore, the result follows from

the fact that qr−1 ∈ Pµ+1.

Now assume that ξ = η + 1 > µ+ 1. Clauses (C0)-(C2) in the definition of Pη+1

are clear by induction hypothesis. If η ∈ dom(Fq) then η ∈ dom(Fp), and hence,

as p ∈ Pα, clause (C3) follows from the induction hypothesis q|η ≤η p|η. Let us

show clause (C4) now. Suppose that η ∈ dom(Fq), and let (R, β) ∈ ∆q be such

that β ≥ η+ 1 and R ∈ Sη+1 ∪Lη+1. We need to check that q|η forces that Fq(η)

is (R[Ġη], Q̇η)-generic. First of all, note that Fq(η) = Fp(η). Moreover, note that

(R, β) cannot be in ∆qr−1 , as qr−1 ∈ Pµ+1 and β ≥ η+1 > µ+1. If (R, β) belongs

to ∆p, then we get the conclusion from the fact that q|η ≤η p|η. Hence, we may

assume that (R, β) ∈ ∆q. On one hand, η ∈ dom(Fp)\γ = dom(Fp)\ sup(Q∩α),

and so sup(Q∩α) < η. On the other hand, q ∈ Q∗, so in particular, (R, β) ∈ Q∗.

If R ∈ Sη+1, then η ∈ R, and hence, η < sup(R ∩ α) < sup(Q ∩ α), which

is impossible. However, if R ∈ Lη+1, then sup(R ∩ α) = α, and moreover, as

sup(Q ∩ α) < η < β and β ∈ Q, it must be the case that β = α. Therefore,

(N, η + 1) ∈ ∆q|η+1
. Recall from the beginning of this case that p|η forces that

Fp(η) is (N [Ġη], Q̇η)-generic for every N ∈ ȦQ
Ġη

. Hence, as q|η ≤η p|η, we will
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be done if we show that q|η forces that R ∈ ȦQ
Ġη

. But note that this is indeed

the case. The condition q|η forces that q|η ∈ Ġη, because q|η ≤η q|η by induction

hypothesis. Hence, as R ∈ Q∩Lη+1 and (R, η) ∈ ∆q|η , we get that q|η forces that

R ∈ ȦQ
Ġη

. In fact more is true: q|η forces that ∆−1q|η(η)∩Lη+1 ⊆ ȦQĠη . We can use

this, and a similar argument to the one above to show that q|η+1 satisfies clause

(C5). Let us show clause (C6) now. Suppose that η ∈ dom(Fq). Let M ∈ Sδ such

that (M,β) ∈ ∆q, where β ≥ η+1 and δ ≤ κ is a limit ordinal of cofinality ω1 such

that sup(M ∩ δ) ≤ η < δ. As before, (M,β) cannot be in ∆qr−1 , as qr−1 ∈ Pµ+1

and β ≥ η+ 1 > µ+ 1. If (M,β) ∈ ∆p, then the conclusion follows from the fact

that q|η ≤ p|η. Hence, we may assume that (M,β) ∈ ∆q. Note that then M ∈ Q,

and as Q ∈ S, M ⊆ Q. It’s not too hard to see that q|η forces that ȦM
Ġη
⊆ ȦQ

Ġη
.

But then we are done because q|η ≤η p|η and p|η forces that Fp(η) is (N [Ġη], Q̇η)-

generic for every N ∈ ȦQ
Ġη

. Lastly, we need to check that q|η+1 ≤η+1 p|η+1, q|η+1.

Clauses (D1) and (D3) are clear by induction hypothesis and the definition of q.

Clause (D2) follows from induction hypothesis q|η ≤η p|η, q|η, from the definition

of q, and from the fact that max(dom(Fq)) = ξr−1 = µ < η.

The case ξ > µ + 1 limit follows from the induction hypothesis. Recall that in

this case, to see that q|ξ ∈ Pξ we only need to check clauses (C0)-(C2).

4.4.3 Proof of (P3)α

Let M ∈ T + and let p ∈ Pα be an (M,Pα)-pre-generic condition. We will show

that p is (N∗,Pα)-generic for every N∗ ∈ L∗α such that N∗ ∩H(κ) ∈M .

Fix some N∗ ∈ L∗α such that N∗ ∩H(κ) ∈M .

? Base case

Suppose that α = 0.

Let E be an open dense subset of P0 in N∗. We will find a condition in E ∩N∗

compatible with p. We may assume, without loss of generality, that p ∈ E. In
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light of lemma 2.4.29, we may assume further that N ∈ dom(∆p). Now, we

simply argue exactly as in the base case of (P2)α.

? Successor case

Suppose that α = γ + 1, that (P1)β-(P4)β hold for every β ≤ γ, and that (P1)α

and (P2)α hold.

Let E ∈ N∗ be an open dense subset of Pγ+1. It is a routine matter to check that

we can argue exactly as in the proof of (P2)γ+1, using (P3)γ instead of (P2)γ ,

and (C5) instead of (C4), to find a condition q ∈ E ∩N∗ compatible with p.

? Limit case

Suppose that α is a nonzero limit ordinal, that (P1)β-(P4)β hold for every β < α,

and that (P1)α and (P2)α hold.

Let E ∈ N∗ be an open dense subset of Pγ+1 and assume, without loss of

generality that p ∈ E. The argument is very similar to that of (P2)α for α limit,

so we will just point out the places in which they differ. We divide the proof in

three cases.

Case 1. cf(α) = ω.

Argue exactly as in the proof of (P2)α for α of countable cofinality, and use (P3)γ

instead of (P2)γ .

Case 2. cf(α) > ω1.

Note that sup(N∩α) < α and assume that dom(Fp) is not bounded by sup(N∩α).

The main difference from the proof of (P2)α is the proof of the following claim.

Claim 4.4.11. For every R ∈ dom(∆p) such that εR < εN ,

(a) sup(R ∩N ∩ α) < sup(N ∩ α), if R ∈ S ∪ L, and

(b) sup(
⋃
R ∩N ∩ α) < sup(N ∩ α), if R ∈ T +.
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Proof. Assume that R ∈ dom(∆p) ∩ (S ∪ L). If R ∈ N , then sup(R ∩ α) <

sup(N ∩ α). Hence, assume that R /∈ N . Then, by lemma 2.4.17, there must be

an N ′ ∈ dom(∆p)∩
⋃
T + such that R ∈ N ′ and an isomorphism ΨN ′,N between

N ′ and N fixing N ′ ∩N . Therefore, sup(ΨN ′,N (R)∩α) < sup(N ∩α). Hence, as

ΨN ′,N fixes N ′ ∩N ∩ κ, it also fixes R ∩N ∩ κ, and thus,

sup(R ∩N ∩ α) ≤ sup(ΨN ′,N (R) ∩ α) < sup(N ∩ α).

We can prove (b) similarly.

The rest of the proof of this case is, word by word, a translation of the proof of

(P2)α for α limit of cofinality > ω1.

Case 3. cf(α) = ω1.

Note that since N ∈ L, then sup(N ∩α) = α, and hence, dom(Fp) ⊆ sup(N ∩α).

Therefore, we can argue exactly as in case 1, cf(α) = ω.

4.4.4 Proof of (P4)α

If α is a nonzero ordinal, we will assume that (P1)β-(P4)β hold for every β < α,

and that (P1)α-(P3)α hold.

Lemma 4.4.12. Let Gα be a Pα-generic filter over V . Then, in V [Gα] the

following holds:

(1) The set {M ∈ Sα : (M,α) ∈ ∆u for some u ∈ Gα} is stationary in

[H(κ)]ℵ0.

(2) The set {N ∈ Lα : (N,α) ∈ ∆u for some u ∈ Gα} is stationary in [H(κ)]ℵ1.

Proof. The proof of both (1) and (2) are exactly the same. Let us show (1).

Denote the set {M ∈ Sα : (M,α) ∈ ∆u for some u ∈ Gα} by Y and let Ẏ be a

Pα-name for Y . Assume, aiming for a contradiction, that Y is non-stationary.
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Let ḟ be a Pα-name for a function from [H(κ)]<ω into H(κ) and let p ∈ Pα be

a condition forcing that ḟ is a witness of the non-stationarity of Ẏ , i.e., p forces

that, for every M ∈ Ẏ , M is not closed under ḟ . Since S∗α is a club of [H(θα)]ℵ0 ,

there is some M∗ ∈ S∗α such that p, ḟ ∈ M∗. Define M := M∗ ∩ H(κ) and

note that p ∈ M by definition of Pα. By (P1)α there is some q ≤α p such that

(M,α) ∈ ∆q. Note that q forces that M ∈ Ẏ . Hence, if we show that q forces

that M is closed under ḟ , we will get a contradiction. Note that it follows from

(P2)α that q is (M∗,Pα)-generic. Therefore, q forces that M∗[Ġα] ∩H(κ) = M .

If we combine this with the fact that ḟ ∈ M∗, it follows that q forces that M is

closed under ḟ , as we wanted.

Lemma 4.4.13. Suppose that α = γ + 1. Then, Pγ forces that Q̇γ has the

ℵ3-chain condition.

Proof. Let Gγ be a Pγ-generic filter over V and let Qγ be the interpretation of

Q̇γ by Gγ . Working in V [Gγ ], suppose that A := {νξ : ξ < ω3} is a maximal

antichain of Qγ . Let Ȧ and ν̇ξ be Pγ-names for A and νξ, respectively, for all

ξ < ω3. Let D be a club of [H(κ)]≤ℵ1 in V witnessing that Qγ is (S,L)-finitely

proper relative to V and Gγ . By lemma 4.4.12, for each ξ < ω3 we can find

a model Rξ ∈ Sγ ∪ Lγ in D such that ν̇ξ, Ȧ ∈ Rξ and (Rξ, γ) ∈ ∆uξ for some

uξ ∈ Gγ . Since εRξ < ω2 for each ξ < ω3, there are I ∈ [ω3]
ω3 and ε < ω2 such

that εRξ = ε for every ξ ∈ I. Since the models Rξ have size less than or equal ℵ1,

we can find two different ξ0, ξ1 ∈ I such that νξ0 /∈ Rξ1 [Gγ ], and as Gγ is a filter,

we can find a common extension r of uξ0 and uξ1 in Gγ . Note that νξ0 ∈ Rξ0 [Gγ ]

and that {(Rξ0 , γ), (Rξ1 , γ)} ⊆ ∆r, where εRξ0 = εRξ1 . Therefore, by the (S,L)-

finite properness of Qγ relative to V and Gγ , there is a Qγ-extension ν of νξ0 that

is (Rξ1 [Gγ ],Qγ)-generic. Hence, since A is a maximal antichain by assumption

and it is an element of Rξ1 [Gγ ], there must be a condition in Rξ1 [Gγ ]∩A, different

from νξ0 and compatible with ν. Note that Rξ1 [Gγ ]∩A doesn’t contain νξ0 because

ξ0 and ξ1 were chosen so that νξ0 /∈ Rξ1 [Gγ ], and that it is non-empty because

it contains νξ1 . Hence, this contradicts our assumption that A is a maximal
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antichain of Qγ .

Definition 4.4.14. Suppose that α = γ + 1. We define Ṙγ in V Pγ as the set of

all pairs (W,M) such that W has cardinality at most 1 and

• if W = {ν}, then there is some r = (Fr,∆r) ∈ Pγ+1/Ġγ with γ ∈ dom(Fr)

such that ν = Fr(γ) and M = ∆−1r (γ + 1), and

• if W = ∅, then there is some r = (Fr,∆r) ∈ Pγ+1/Ġγ with γ /∈ dom(Fr)

such that M = ∆−1r (γ + 1).

We define an order on Ṙγ by (W0,M0) ≤Ṙγ (W1,M1) if and only if

• M0 ⊇M1, and

• if W1 = {ν1}, then W0 = {ν0} for some ν0 ∈ Q̇γ which extends ν1 in Q̇γ .

Lemma 4.4.15. Suppose that α = γ + 1. Then, Pγ+1 is isomorphic to a dense

subset of Pγ ∗ Ṙγ.

Proof. Let P̃γ+1 be the set of all pairs (q|γ , x̌) where x = ({Fq(γ)},∆−1q (γ + 1))

if γ ∈ dom(Fq), and x = (∅,∆−1q (γ + 1)) if γ /∈ dom(Fq), for some condition q in

Pγ+1. Note that if (q|γ , x̌) ∈ P̃γ+1 is as above, since q|γ forces that q|γ ∈ Ġγ , it also

forces that x̌ ∈ Ṙγ . Therefore, (q|γ , x̌) ∈ Pγ ∗ Ṙγ . We claim that P̃γ+1 is dense in

Pγ∗Ṙγ . Let (p, x̌) ∈ Pγ∗Ṙγ and assume that the first component of x is nonempty

(the same argument works if the first component of x is empty). Then p forces

that there is r ∈ Pγ+1 such that r|γ ∈ Ġγ and x̌ = ({Fr(γ)},∆−1r (γ+1)). Consider

the natural amalgamation q := (Fp ∪ {〈γ, Fr(γ)〉},∆p ∪∆r) of p and r, which is

a condition in Pγ+1 extending r by lemma 4.3.3. Let y = ({Fq(γ)},∆−1q (γ + 1)).

We claim that (q|γ , y̌) ∈ P̃γ+1 and that (q|γ , y̌) ≤Pγ∗Ṙγ (p, x̌). The first part is

clear. For the second part note that as ∆q = ∆p∪∆r and p ∈ Pγ , then ∆−1q (γ+1)

equals ∆−1r (γ + 1), and thus, y = x. Moreover, note that q|γ = (Fp,∆p ∪∆r|γ ).

Hence, the second part also holds. Finally, note that the map ψ : Pγ+1 → P̃γ+1

defined by ψ(q) = (q|γ , x̌), where x = ({Fq(γ)},∆−1q (γ + 1)) if γ ∈ dom(Fq), and
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x = (∅,∆−1q (γ+ 1)) if γ /∈ dom(Fq), is clearly an isomorphism between Pγ+1 and

P̃γ+1.

Lemma 4.4.16. Suppose that α = γ + 1. Then, Pγ forces that Ṙγ has the

ℵ3-chain condition.

Proof. Let Gγ be a Pγ-generic filter over V and let Rγ be the interpretation of

Ṙγ by Gγ . Working in V [Gγ ], suppose that {(Wξ,Mξ) : ξ < ω3} ⊆ Rγ , where for

each ξ < ω3, Wξ = {Frξ(γ)} is nonempty,Mξ = ∆−1rξ (γ + 1), and rξ = (Frξ ,∆rξ)

is a condition in Pγ+1/Gγ . By lemma 4.4.13, recall that Pγ forces Q̇γ to have

the ℵ3-chain condition. Hence, there are ν ∈ Qγ , two different ξ0, ξ1 ∈ ω3, and a

condition s ∈ Gγ , such that s forces that ν ≤Qγ Frξ0 (γ), Frξ1 (γ). Since Gγ is a

filter, and by extending s if necessary, we may assume that s extends both rξ0 |γ

and rξ1 |γ . Hence, in particular (R, γ) ∈ ∆s, for every R ∈Mξ0∪Mξ1 . Therefore,

the amalgamation

s∗ = (Fs ∪ {〈γ, ν〉},∆s ∪∆rξ0
∪∆rξ1

)

is a condition in Pγ+1, extending both rξ0 and rξ1 by lemma 4.3.5. Moreover,

note that since ∆s∗|γ = ∆s ∪∆rξ0 |γ ∪∆rξ1 |γ and as s extends rξ0 |γ and rξ1 |γ , the

conditions s∗|γ and s are equivalent in the forcing Pγ by lemma 4.3.2.

Consequently, s∗|γ ∈ Gγ , and hence, ({ν},∆−1s∗ (γ + 1)) = ({ν},Mξ0 ∪Mξ1) is a

condition in Rγ extending both (Wξ0 ,Mξ0) and (Wξ1 ,Mξ1).

Suppose now that, working in V [Gγ ], there is {(Wξ,Mξ) : ξ ∈ I} ⊆ Rγ , for

some I ∈ [ω3]
ω3 , such that for each ξ ∈ I, Wξ is empty, Mξ = ∆−1rξ (γ + 1), and

rξ = (Fr,∆r) is a condition in Pγ+1/Gγ . For any two different ξ0, ξ1 ∈ I, since

Gγ is a filter, there is s ∈ Gγ extending both rξ0 |γ and rξ1 |γ . In this case, since

γ /∈ dom(Frξ0 ) ∪ dom(Fξ1), instead of lemma 4.3.5, we can use the first part of

lemma 4.3.6 and argue exactly as in the last case.

Lemma 4.4.17. Pα has the ℵ3-chain condition.
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Proof. Recall that we have assumed that GCH holds in the ground model V .

Although, 2ℵ1 = ℵ2 seems to be enough to get this result.

If α = 0 the result follows from lemma 2.4.34. In fact, in this case P0 has the

ℵ3-Knaster condition.

If α = γ + 1, the result follows from lemmas 4.4.15 and 4.4.16, together with the

induction hypothesis and the fact that the ℵ3-c.c. is preserved under two-step

iterations (see lemma 1.1.41).

Assume now that α is a nonzero limit ordinal. Let qξ be a condition in Pα for

every ξ < ω3. Suppose first that cf(α) 6= ω3. If cf(α) > ω3, there is γ < α such

that dom(Fqξ) ⊆ γ for every ξ < ω3. If cf(α) < ω3, by a counting argument

there must be some γ < α such that {ξ < ω3 : dom(Fqξ) ⊆ γ} has size ℵ3. In

both cases there are I ∈ [ω3]
ω3 and γ < α such that dom(Fqξ) ⊆ γ for each ξ ∈ I.

By induction hypothesis there are two different ξ0, ξ1 ∈ I and a condition r ∈ Pγ

extending both qξ0 |γ and qξ1 |γ . Hence, it follows from lemma 4.3.7 that qξ0 and

qξ1 are compatible in Pα. Now assume that cf(α) = ω3. For every ξ < ω3, define

Aξ = dom(Fqξ) ∪
⋃
{R ∩ β : R ∈ dom(∆qξ) ∩ (S ∪ L)}

∪
⋃
{N ∩ β : N ∈

⋃
(dom(∆qξ) ∩ T

+)},

and let Bξ be the set of all ν < α such that (M,ν + 1) ∈ ∆qξ , for some M ∈ Sδ,

where δ ≤ κ is a limit ordinal of cofinality ω1 such that sup(M ∩ δ) ≤ ν < δ.

Define Zξ as the union of Aξ and Bξ. By 2ℵ1 = ℵ2 (recall that we have assumed

that V is a ground model for the GCH) there is I ∈ [ω3]
ω3 such that {Zξ : ξ ∈ I}

forms a ∆-system with root X, by lemma 1.1.19. Since X is a set of ordinals of

α of size at most ℵ1 and cf(α) = ω3, there must be some γ < α such that X ⊆ γ.

By induction hypothesis, for any two different ξ0, ξ1 ∈ I there is a condition

r ∈ Pγ extending both qξ0 |γ and qξ1 |γ . Hence, the amalgamation of r, qξ0 and qξ1

given by lemma 4.3.8 is a condition in Pα extending qξ0 and qξ1 .
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4.5 Properness and further preservation lemmas

The next theorem follows from (P1)α-(P3)α of lemma 4.4.2.

Theorem 4.5.1. Pα is S∗α-proper and L∗α-proper for every α ≤ κ.

Together with lemma 4.4.17, we get the following.

Corollary 4.5.2. Pα preserves all cardinals, for all α ≤ κ.

Lemma 4.5.3. For every γ < α ≤ κ and every p ∈ Pα such that γ /∈ dom(Fp)

there is an extension p∗ of p such that γ ∈ dom(Fp∗).

Proof. The proof is a simpler version of the proof of the limit case of (P2)α. We

will divide it into two parts. Our plan is to find first an extension q of p|γ and a

Pγ-name ẋ ∈ H(κ) so that the amalgamation

p′ = (Fq ∪ {〈γ, ẋ〉},∆q ∪∆p|γ+1
),

given by lemma 4.3.6, is a condition in Pγ+1 extending p|γ+1. Then, in case

α > γ + 1, we will define p∗ as the natural amalgamation

p ∧γ+1 p
′ = (Fp′ ∪ (Fp � [γ + 1, α),∆p′ ∪∆p),

which is a condition in Pα extending p by lemma 4.3.3.

We start by defining the sets of relevant models. First, the set of relevant

elementary models from dom(∆p),

M0 := {R ∈ Sγ+1 ∪ Lγ+1 : (R, γ + 1) ∈ ∆p|γ+1
}.

Second, the set of relevant models that belong to non-elementary models from

dom(∆p),

M1 := {N ∈M ∩ Lγ+1 : M ∈ T +, (M,γ + 1) ∈ ∆p|γ+1
}.
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Third, the setM2 of models N ∈ Lγ+1 forced by p|γ to be members of ȦM
Ġγ

, where

M ∈ Sδ is such that (M,γ+1) ∈ ∆γ+1, with δ ≤ κ a limit ordinal of cofinality ω1

such that sup(M ∩ δ) ≤ γ < δ. Denote by M the set M0 ∪M1 ∪M2. Let Ḋ be

the C-least Pγ-name for a club D of [H(κ)]≤ℵ1 in V witnessing the (S,L)-finite

properness of Q̇γ with respect to V and Ġγ . We can argue as in the proof of the

limit case of (P2)α to show that p|γ forces that M ⊆ Ḋ. It’s also clear that p|γ

forces that Q̇γ ∈ R[Ġγ ] for every R ∈M. Pick any Q ∈M such that Q∩M = ∅.

Since 1Q̇γ is forced to be a member of Q[Ġγ ], there is an extension q ∈ Pγ of p|γ

and a Pγ-name ẋ ∈ H(κ) such that q forces that ẋ is a condition in Q̇γ (extending

1Q̇γ ) and that ẋ is (R[Ġγ ], Q̇γ)-generic for all R ∈ M. Hence, by lemma 4.3.6

there is a condition p′ ∈ Pγ+1 extending p|γ+1 and such that γ ∈ dom(Fp′).

Now, if α = γ + 1, we simply let p∗ be the condition p′. Otherwise, define p∗ as

the amalgamation p ∧γ+1 p
′ given by lemma 4.3.3.

Lemma 4.5.4. For every α < κ and every condition p ∈ Pκ, p forces that the set

{y ∈ H(κ) : ∃(F,∆) ∈ Ġκ(F (α) = y)} generates a V [Ġα]-generic filter on Q̇α.

Proof. Let Ġ+
α be a Pκ-name for the set {y ∈ H(κ) : ∃(F,∆) ∈ Ġκ(F (α) = y)}. It

is immediate to see that Ġ+
α is forced to be a set of pairwise compatible conditions

from Q̇α. Now let Ė be a Pκ-name for a dense subset E of Q̇α in V [Ġα]. We

claim that the set

E∗ := {p ∈ Pκ : α ∈ dom(Fp), p|α α Fp(α) ∈ Ė}

is a dense subset of Pκ. Let q ∈ Pκ and find, by lemma 4.5.3, a condition q∗ ∈ Pκ

extending q and such that α ∈ dom(Fq∗). Since Ė is a name of a dense subset

of Q̇α, there are an extension r ∈ Pα of q∗|α and a Pα-name ẋ ∈ H(κ) such that

r α “ẋ ∈ Ė and ẋ ≤Q̇α Fq∗(α)”. By lemma 4.3.5, there is an extension s ∈ Pα+1

of q∗|α+1 with Fs(α) = ẋ. The amalgamation q := q∗ ∧α+1 s, given by lemma

4.3.3, is a condition in Pκ such that q ≤κ q∗ and Fq(α) = ẋ, and, in particular,

q ≤κ q and q|α α Fq(α) ∈ Ė. This shows that E∗ is dense. Hence, for every
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Pκ-generic filter over V , there is some p ∈ Gκ ∩ E∗ such that α ∈ dom(Fp) and

p|α α Fp(α) ∈ Ġ+
α ∩ Ḋ.

Definition 4.5.5. For a Pκ-name τ , a Pκ-nice name for a subset of τ is a Pκ-

name of the form
⋃
{{σ} × Aσ : σ ∈ dom(τ)}, where each Aσ is an antichain of

Pκ3.

Lemma 4.5.6. Pκ forces that κ<κ = κ.

Proof. First note that Pκ ⊆ H(κ), so |Pκ| ≤ |H(κ)| = 2<κ = κ. Moreover, since

Pκ has the ℵ3-c.c., there are at most κℵ2 many antichains. Hence, there are at

most (κℵ2)<κ = κ<κ = κ many nice names for bounded subsets of κ.

It is worth pointing out that Pκ forces that 2ℵ0 = κ. This follows, from example,

from the fact that Φ(α) is Cohen forcing for κ-many ordinals α < κ, since Cohen

forcing has the c.c.c., and c.c.c. forcings are included in the class of (S,L)-finitely

proper forcings.

Lemma 4.5.7. If Q̇ is a Pκ-name for an (S,L)-finitely proper forcing such that

Q̇ ∈ H(κ)V , then Pκ forces that Q̇ is (S,L)-finitely proper relative to V and Ġκ.

Proof. Let Gκ be a Pκ-generic filter over V and let Q be the interpretation of Q̇ by

Gκ. First, note that since Q̇ ∈ H(κ)V , then by lemma 4.4.5, Pκ Q̇ ∈ H(κ)V [Ġκ].

Hence, in particular, Q ∈ H(κ)V [Gκ]. Let D ⊆ [H(κ)V [Gκ]]≤ℵ1 be a club in V [Gκ]

witnessing the fact that Q is (S,L)-finitely proper, and let Ḋ be a Pκ-name for

D. Let E be a club of [H(κ)]≤ℵ1 in V such that for every R ∈ E ∩ (S ∪L), there

is an elementary submodel R∗ of a big enough H(θ) such that κ,Pκ, Q̇, Ḋ ∈ R∗

and R = R∗ ∩H(κ). We claim that the club E witnesses that Q̇ is (S,L)-finitely

proper relative to V and Ġκ.

Let M be a countable subset of E such that |M ∩ S| < ℵ0 and |M ∩ L| ≤ ℵ0.

Suppose that u ∈ Gκ is such that for every R ∈M, either

3See [44] for a further discussion on nice names and arguments involving counting of nice
names.
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• (R, sup(R ∩ κ)) ∈ ∆u, or

• R ∈M , where M ∈ T + and (M, sup(
⋃
M ∩ κ)) ∈ ∆u, or

• R ∈ AMGκ , where M ∈ Sκ and (M, sup(M ∩ κ)) ∈ ∆u.

Note that Q̇ ∈ R∗ ∩H(κ)V = R for every R ∈M, so Q ∈ R[Gκ]. Moreover, note

that as Ḋ ∈ R∗ for every R ∈M, lemma 4.4.2 implies that u forces that R ∈ Ḋ.

Furthermore, suppose that u forces that ẋ ∈ R0[Ġκ] ∩ Q̇, where R0 ∈ M is such

that either

(a) M∩R0 = ∅, or

(b) R0 ∈ S and εR0 = min{εM : M ∈ M∩ S}, and ẋ is (N [Ġκ], Q̇)-generic for

every N ∈M∩R0.

Observe that u forces that εR = εR[Ġκ]
for every R ∈ M, again by lemma 4.4.2.

Moreover, it’s not too hard to see that

{R[Gκ] : R ∈M∩R0} = {N [Gκ] : N ∈M} ∩R0[Gκ].

Therefore, since Ḋ witnesses that Q̇ is (S,L)-finitely proper, u forces that there

is an extension of ẋ in Q̇ which is (R[Ġκ], Q̇)-generic for every R ∈ M. Hence,

we can conclude that E witnesses that Q̇ is (S,L)-finitely proper relative to V

and Ġκ, as we wanted.

4.6 Consistency of forcing axioms

4.6.1 Forcing axiom for posets of restricted size

Lemma 4.6.1. Let Q̇ be a Pκ-name for an (S,L)-finitely proper poset of size

µ < κ and let (Ḋi)i<µ be a sequence of Pκ-names for dense subsets of Q̇. Then,

there is a high enough α < κ such that Q̇ and each Ḋi are Pα-names and Φ(α) = Q̇

is a Pα-name of an (S,L)-finitely proper forcing notion with respect to V and Ġα.
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Proof. Note that Q̇ and each Ḋi is decided by at most µ-many maximal antichains

of Pκ. By corollary 4.3.4, and since Pκ has the ℵ3-chain condition, there must

be some α < κ such that Q̇ and all Ḋi are Pα-names. Moreover, recall that

the bookkeeping function Φ was chosen so that Φ−1({x}) is unbounded in κ for

each x ∈ H(κ), so we may assume that Φ(α) = Q̇. In order to see that Q̇ is

(S,L)-finitely proper relative to V and Ġα we can argue exactly as in the proof

of 4.5.7 by replacing all the instances of κ by α.

Corollary 4.6.2. Pκ forces the forcing axiom for the class of (S,L)-finitely

proper forcings of size < κ.

4.6.2 Forcing axiom for posets of unrestricted size

Theorem 4.6.3. Let κ be a supercompact cardinal and suppose that Φ is a Laver

function4. Then, Pκ forces the forcing axiom for the class of (S,L)-finitely proper

forcings and < κ-many dense sets.

Proof. Let Q̇ be a Pκ-name for an (S,L)-finitely proper forcing. Let χ < κ and

let Ȧi, for i < χ, be Pκ-names for maximal antichains of Q̇. Let Gκ be a Pκ-

generic filter over V . Let Q and Ai be the interpretations of Q̇ and Ȧi by Gκ,

respectively, for all i < χ. We will be done if we show, in V [Gκ], that there is a

filter on Q intersecting all Ai. Let λ > |trcl(Q̇)|+ such that Q ⊆ λ. Since Φ is a

Laver function, there is a (κ, λ)-supercompact embedding j : V → M such that

j(Φ)(κ) = Q̇ (see theorem 1.3.4). Since λM ⊆M and Pκ has the ℵ3-c.c., we have

λM [Gκ] ⊆M [Gκ], and hence, Q ∈M [Gκ].

Note that j(Pκ) is a finite support iteration with two type symmetric systems of

length j(κ) and bookkeeping function j(Φ) in M . Moreover, as Pκ ⊆ H(κ)V and

j � H(κ)V = id � H(κ)V , we have that Pκ is the κ-th stage of the iteration j(Pκ).

Therefore, j(Φ)(κ) = Q̇ is a Pκ-name in H(j(κ))M of an (j(S), j(L))-finitely

proper forcing notion. Hence, by lemma 4.5.7, Pκ = j(Pκ)κ forces that Q̇ is

4See section 1.3 for the definition of these notions.
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(j(S), j(L))-finitely proper relative to M and Ġκ. Therefore, Q̇ is the κ-th iterand

of the iteration j(Pκ). Let Gj(κ) be a j(Pκ)-generic filter over V [Gκ]. In V [Gj(κ)]

we can naturally extend the elementary embedding j : V →M to an elementary

embedding j∗ : V [Gκ] → M [Gj(κ)], by letting j∗(ẋGκ) = j(ẋ)Gj(κ) for every Pκ-

name ẋ. By lemma 4.5.4, there is a j∗(Q)-generic filter over M [Gj(κ)], which has

non-empty intersection with every maximal antichain in j∗({Ai : i < χ}). Hence,

by elementarity of j∗ we can conclude that there is a Q-generic filter over V [Gκ],

which of course has non-empty intersection with all Ai, i < χ.

4.7 Extensions of the class of (S,L)-finitely proper

forcings

In this section we will introduce several extensions of the class of (S,L)-finitely

proper forcing notions, which we would like to explore further in the future. Let

us recall the definition of (S,L)-finite properness so that we can refer to it.

Definition 4.7.1. We say that a forcing notion P ∈ H(κ) is (S,L)-finitely proper

if and only if there is a club D ⊆ [H(κ)]≤ℵ1 such that for every countable subset

M⊆ D such that |M∩S| < ℵ0 and |M∩L| ≤ ℵ0, if p ∈ P∩Q for some Q ∈M

such that either

(1) M∩Q = ∅, or

(2) Q ∈ S is such that εQ = min{εM : M ∈ M ∩ S}, and p is (N,P)-generic

for every N ∈M∩Q,

then there is an extension q ≤ p which is (R,P)-generic for every R ∈M.

There are several ways in which this class of posets can be enlarged, while

preserving its main properties, namely the preservation of all cardinals and

being iterable in the sense of section 4.2. The main way to do this is by giving

more structure to the countable sets of models M.
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There is a clear upper bound on how much structure you can ask forM, which has

been already mentioned in section 4.1. You cannot ask forM to be an (S,L, T +)-

symmetric system. The reason being that the symmetric system structure is not

transferred, in general, from M to {Q[Gα] : Q ∈ M}, where Gα is a Pα-generic

filter over V and Pα is the α-th stage of a finite support iteration with two-type

symmetric systems as side conditions. But we can be more precise and give a

much better upper bound. Indeed, the exact amount of structure that the sets

M admit is dictated by the sets of relevant models from the proof of the limit

case of item (P2)α of lemma 4.4.2. Therefore, by analysing that proof we can

extract information about the potential ways in which the class of (S,L)-finitely

proper forcings can be extended.

The first and most straightforward way to improve the definition of (S,L)-finite

properness would be to replace item (1) by the assertion that Q is a model of

minimal ω2-height among all the models inM. In order to get this improvement

we would need to prove a stronger result than that of claim 4.4.7. Namely, we

would have to prove that for every N ∈ L such that εN < εQ and either N ∈M ,

for some M ∈ dom(∆p) ∩ T +, or N ∈M , for some M ∈ dom(∆p) ∩ S, then

sup(N ∩Q ∩ α) < sup(Q ∩ α).

We speculate that it should be relatively easy to prove this using the symmetry

of (S,L, T +)-symmetric systems.

Another way in which we could extend the class of (S,L)-finitely proper forcings

would be by considering stratified families of models, first defined in [15].

Definition 4.7.2. A subset M of S ∪ L is said to be stratified in case for all

Q0, Q1 ∈M, if εQ0 < εQ1 , then in fact ot(Q0 ∩ ω3) < εQ1 .

Hence, we could strengthen the class of (S,L)-finitely proper forcings by requiring

the sets of models M to be stratified. Based solely on the results obtained by

Asperó and Tananimit, it seems reasonable to expect that certain weakenings of
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square on ω3 and failures of weak forms of Chang’s Conjecture follow from the

forcing axiom for the class of stratified (S,L)-finitely proper forcings.

Lastly, let us describe another extension of the class of (S,L)-finitely proper

forcings with very interesting potential applications. Let S0 be the collection of

countable elementary submodels of (H(ω2);∈, T ), let L0 be a collection of ℵ1-

sized elementary submodels of (H(ω2);∈, T ) appropriate for S0, and let T0 be

the collection of all L0-towers.

Definition 4.7.3. LetM be a countable subset of S ∪L such that |M∩S| < ℵ0

and |M∩L| ≤ ℵ0. We say thatM is H(ω2)-chained if for every Q ∈M there is

a set HQ such that

(1) HQ � H(ω2)
Q,

(2) εHQ = εQ and δHQ = δQ, and

(3) {HQ : Q ∈M} is a subset of an (S0,L0, T0)-chain.

The models HQ correspond of course to the models of the form Q[G]∩H(ω2)
V =

H(ω2)
Q, where Q is a model in the set of relevant models from the proof of item

(P2)α of lemma 4.4.2. It’s straightforward to check that these models satisfy

(1)-(3) from the definition above. It’s enough to note that if you take the trace

of the models of an (S,L, T +)-symmetric system with H(ω2), the resulting set

forms an (S0,L0, T0)-chain.

Hence, we can define the following extension of the class of (S,L)-finitely proper

forcings using the notion of H(ω2)-chainedness.

Definition 4.7.4. We say that a forcing notion P ∈ H(κ) is chained (S,L)-

finitely proper if and only if there is a club D ⊆ [H(κ)]≤ℵ1 such that for every

countable H(ω2)-chained M ⊆ D such that |M ∩ S| < ℵ0 and |M ∩ L| ≤ ℵ0, if

p ∈ P ∩Q for some Q ∈M such that either

(1) M∩Q = ∅, or
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(2) Q ∈ S is such that εQ = min{εM : M ∈ M ∩ S}, and p is (N,P)-generic

for every N ∈M∩Q,

then there is an extension q ≤ p which is (R,P)-generic for every R ∈M.

We believe that the forcing axiom for the class of chained (S,L)-finitely proper

forcings could have very interesting consequences. For instance, destroying club

guessing at Sω2
ω1

of any club-sequence from the ground model is one of the most

straightforward applications. Forcings in this class don’t seem to have the ℵ3-c.c.

in general, but they do have it in the specific model that we obtain after iterating

them with a finite support iteration with two-type symmetric systems as side

conditions (see lemma 4.4.13). So this class is still nice enough.

Although there are some limitations on how far we can extend the class of (S,L)-

finite proper forcings, there is still plenty of room to explore different variants

of this class and find interesting applications. The main common feature of all

these classes of forcing notions is that they are iterable in arbitrarily long length,

while preserving all cardinals. So the consequences of these forcing axioms will

be compatible with arbitrarily large values of the continuum.
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Chapter 4: Finite support iterations with two-type symmetric systems 202

[31] Thomas Gilton and Itay Neeman. Abraham-Rubin-Shelah open colorings

and a large continuum. J. Math. Log., 22(1):Paper No. 2150027, 55, 2022.

[32] Moti Gitik and Menachem Magidor. SPFA by finite conditions. Arch. Math.

Logic, 55(5-6):649–661, 2016.
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A

Open problems and future work

In this appendix we collect a list of questions, which we think could be of interest,

and propose some lines of research that we would like to follow in the future.

We believe that the technique of forcing with symmetric systems of models of two

types should open the door to a plethora of consistency results of combinatorial

nature at the level of ω2. We have listed some of the most important objects

known to be forceable using one-type symmetric systems at the beginning of

chapter 2. We speculate that our two-type symmetric systems should allow us to

improve many of these results.

The most straightforward application would be to improve our own results from

chapter 3 by forcing a strong chain of functions from ω1 to ω1 of length ω3. By

redefining the relation <A,ν appropriately, using some of the ideas of Veličković

and Venturi [88], we should be able to define a cardinal-preserving forcing

notion forcing such a strong chain. Moreover, our technique of two-type

symmetric systems should be useful to force objects of size > ℵ2, which are

usually out of reach of Neeman’s two-type side conditions, because they only

grant the preservation of ℵ1 and ℵ2 in general.

We have already mentioned at the end of chapter 4 a few possible ways in which

we could extend the class of (S,L)-finitely proper forcings. Exploring the different

classes of posets naturally associated with finite support iterations with two-type

symmetric systems and their applications is one of our main priorities. Based
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on our knowledge of the classes of finitely proper forcings and forcings with the

ℵ1.5-c.c., we expect our class of posets to have certain variants of Baumgartner’s

forcing for adding clubs of ω2 (see [19] and [5]). This forcing, and variants thereof,

add clubs not including any club from the ground model. Hence, one of their main

applications is in forcing certain failures of club guessing. A test problem that

we have in mind is to force the negation of the following form of club guessing

on Sω2
ω1

: For every club-sequence (Cδ : δ ∈ Sω2
ω1

) there is a club D of ω2 such that

Cδ \D is unbounded in δ for every δ.

Apart from exploring the class of (S,L)-finitely proper forcings, we would like

to know, in a broad sense, what are the possibilities of the new technique of

finite support iterated forcing with symmetric systems of models of two types

developed in chapter 4. Asperó and Mota’s iterations with one-type symmetric

systems have been an extremely fruitful source of consistency results compatible

with arbitrarily large values of the continuum at the level of ω1. Hence, we expect

our own technique to have as much impact on the combinatorics of ω2. Let us list

some of the results and objects that can be obtained using Asperó and Mota’s

iterations, which we expect to be able to generalize to ω2. Some of them have

been already mentioned throughout the thesis.

• Very strong failures of club guessing on ω1 together with the continuum

large and with the GCH ([7], [8], [11], [12], [13], [14], [52]).

• b(ω1) = ℵ2 < κ = d(ω1) = r(ω1) ([8], [12]).

• Some weakenings of �ω1 such as �ω1,fin, �taω1,ω and �ω1,ω1 ([15], [63]).

• Strong failures of Chang’s Conjecture ([15]).

• (ω1, ω1)-gaps ([90]).

• Specializing functions for ℵ2-Aronszajn trees, which implies Souslin’s

Hypothesis at ℵ2, together with the GCH ([9]).

• The same negative polychromatic partition relations from [2] together with

the continuum large ([13]).
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• k-entangled sets of reals ([57]).

Note that there are a couple results compatible with the GCH in the list above.

These results were obtained with a variant of Asperó and Mota’s iterations in

which the side conditions have extra structure besides being symmetric systems.

In [14] they introduced the notion of edges, which are certain suitable graphs

on symmetric systems of elementary submodels that ensure that, if your ground

model satisfies CH, then the CH is preserved along the iteration. More precisely,

the side conditions consist of graphs of edges 〈(M0, α0), (M1, α1)〉, where each

(Mi, αi) is a model with a marker, and there is the extra requirement that all

information carried by the condition and contained in M0 needs to be copied into

M1 in an appropriate way. The reason to add edges to the side conditions of the

iteration is to extend the symmetry also to the working part, so that the argument

of the preservation of the CH can go through at every stage of the iteration. We

believe that the edge technology should be adaptable to our iterations with two-

type symmetric systems, and this framework should allow us to build interesting

models of high consequences of PFA together with 2ℵ1 = ℵ2.

This is just a wild guess, but there is one extra feature of the edge technology

that could be used to connect finite support iterations with symmetric systems

as side conditions and the class of forcings with the ℵ2-properness isomorphism

condition (or ℵ2-p.i.c. for short). We won’t define this class here, but let us say

that in the same way that Todorčević’s collapse can be seen as the natural side

condition used to build proper forcings (see proposition 4.1.2), symmetric systems

of countable elementary submodels can be seen as the natural side condition for

building forcings with the ℵ2-p.i.c. Edges ensure that all the models active at

some stage of the iteration form a symmetric system. Therefore, it looks like we

should be able to adapt the edge technology to iterate ℵ2-p.i.c. forcings with

finite support. Of course, this would open the door to iterating high analogs of

the class of ℵ2-p.i.c. forcings using symmetric systems of models of two types, and

this could lead to interesting applications such as forcing high restricted versions



Appendix A: Open problems and future work 211

of combinatorial dichotomies on ω1 such as PID(ℵ1) or OCA(ℵ1).

In a completely different direction, Asperó and Golshani [10] combined the

techniques of iterated forcing with symmetric systems as side conditions and

Shelah’s memory iterations to force PFA restricted to posets of size ℵ1 together

with continuum large, answering a longstanding open question. Iterations with

restricted memory appeared first in Shelah’s work on the null ideal and the

possible cofinalities of its covering number ([77], [78]). Later, other applications

were found in a much broader context in the area of cardinal characteristics of

the continuum ([49]), and recently Gilton and Neeman [31] used this technique

to show that Abraham-Rubin-Shelah’s Open Coloring Axiom is consistent with

2ℵ0 = ℵ3. As a second application, a small variant of the iteration technique

developed by Asperó and Golshani gives rise to a model satisfying a very useful

principle of generic absoluteness. In this model the continuum is large and it

satisfies a multitude of Π2-statements that hold in models obtainable by

countable support iterations of proper forcings. These include, among others,

Baumgartner’s Axiom for ℵ1-dense sets of reals, Todorčević’s Open Coloring

Axiom for sets of size ℵ1, Moore’s Measuring principle, Todorčević’s P-Ideal

Dichotomy for ℵ1-generated ideals on ω1, and Baumgartner’s Thinning-out

Principle. It would be very interesting to combine our iterations with

symmetric systems of models of two types and Shelah’s memory iterations, in a

similar fashion as in the work of Asperó and Golshani. If successful, we should

be able to iterate, in arbitrarily long length, Neeman’s class of (S,L)-proper

forcings restricted to partial orders of size ℵ2, and hopefully also obtain a high

analog of the principle of generic absoluteness mentioned above.

Lastly, we would like to know whether the assumption of a supercompact cardinal

from the consistency of the forcing axiom for the class of (S,L)-finitely proper

posets can be weakened to, for example, just ZFC. In particular, whether some

form of diamond, as in the proof of the consistency of the forcing axiom for the

class of ℵ1.5-c.c. forcings (see theorem 1.2.2), can be used to force our forcing

axiom.
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