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Abstract
The optical chirality and spin angular momentum of structured scalar vortex beams has been
intensively studied in recent years. The pseudoscalar topological charge ℓ of these beams is
responsible for their unique properties. Constructed from a superposition of scalar vortex beams
with topological charges ℓA and ℓB, cylindrical vector vortex beams are higher-order Poincaré
modes which possess a spatially inhomogeneous polarization distribution. Here we highlight the
highly tailorable and exotic spatial distributions of the optical spin and chirality densities of
these higher-order structured beams under both paraxial (weak focusing) and non-paraxial (tight
focusing) conditions. Our analytical theory can yield the spin angular momentum and optical
chirality of each point on any higher-order or hybrid-order Poincaré sphere. It is shown that the
tunable Pancharatnam topological charge ℓP = (ℓA + ℓB)/2 and polarization index
m= (ℓB − ℓA)/2 of the vector vortex beam plays a decisive role in customizing their spin and
chirality spatial distributions. We also provide the correct analytical equations to describe a
focused, non-paraxial scalar Bessel beam.

Keywords: structured light, vector beams, optical chirality, optical vortex, nano optics,
nonparaxial, optical angular momentum

1. Introduction

Optical beams can carry energy, linear momentum, angular
momentum (both spin and orbital), and optical chirality. These
properties of the electromagnetic fields are conserved for
beams in free space. They manifest in light-matter interactions
in a number of ways: for example, the angular momentum
can create torques on particles, while the optical chirality
is partly responsible for chiral light-matter interactions and
optical activity. The perceived canonical directions and mag-
nitudes of these optical properties have been ingrained through

Original Content from this work may be used under the
terms of the Creative Commons Attribution 4.0 licence. Any

further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

the ubiquitous plane-wave electromagnetic field description of
light studied in textbooks. However, light in general is signi-
ficantly more structured in its degrees of freedom (amplitude,
phase, polarization) than a plane wave. Optical fields with
more complex spatial distributions of their degrees of freedom
readily carry extraordinary optical properties when compared
to a plane wave. A well-known type is the optical vortex beam
with its azimuthal phase eiℓϕ, where ℓ ∈ Z is the topological
charge, leading to an orbital angular momentum (OAM) of ℓh̄
per photon in the drection of propagation [1].

Structured light [2–5] refers to our ability to tailor the amp-
litude, phase, and polarization degrees of freedom in both
space and time, leading to a remarkable diversity of laser
beam structure. One important type of structured light are vec-
tor beams. In comparison to scalar beams which possess an
homogeneous spatial distribution of polarization state, vec-
tor beams have spatially inhomogenous polarization states.
More generally, vector beams are referred to as vector vortex

1 © 2024 The Author(s). Published by IOP Publishing Ltd
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beams (VVBs) [6, 7]. VVBs are beams which possess both
inhomogeneous polarization structure and azimuthal phase
structure. VVBs can be viewed as the superposition of two
scalar orthogonally polarized spatial modes (labelled A and
B) which individually carry optical OAM through the azi-
muthal phase factor eiℓA(B)ϕ. VVBs are also known as higher-
order Poincaré (HOP) [8] or hybrid-order Poincaré (HyOP)
[7, 9–11] beams, the former carry the same magnitude of
OAM but of opposite sign ℓA =−ℓB: cylindrical vector beams
(CVBs). The latter carry arbitrary OAM: cylindrical vector
vortex beams (CVVBs). The controllable combination of the
different degrees of freedom of these significantly structured
light beams means they are under intense study due to their
applicability in areas such as optical manipulation, optical
communications, quantum information, laser machining, and
enhanced imaging to name a few [5, 12–19].

In this work we provide a general, simple analytical ana-
lysis of the optical spin and chirality properties of CVBs and
CVVBs valid for both paraxial (weakly focused) and non-
paraxial (tightly focused) light. Our theoretical description

uses orthogonally polarized Bessel beam modes expanded in
a smallness parameter to quantify the degree of focusing. Our
theory allows the extraction of the spin and chirality of each
point on any higher-order or hybrid-order Poincaré sphere.
We also provide the correct electromagnetic fields to describe
a focused scalar Bessel beam and comment on the previous
forms found in the literature.

2. Theoretical description of Bessel VVBs

Vector beams can be written as a superposition of two
co-propagating (we assume along z) orthogonally polar-
ized scalar beams [6, 20]. The amplitude distribution is
free to be chosen as any solution to the wave equation:
Laguerre–Gaussian, Hermite–Gaussian, Bessel, Bessel–
Gauss, etc. In this work we use pure Bessel modes due
to their analytical simplicity and the fact they are solu-
tions to both the paraxial and nonparaxial wave equations.
The electric field for a monochromatic scalar Bessel beam
up to second-order in the paraxial parameter kt/kz is

E=

[
J|ℓ|e

iℓϕ (αx̂+βŷ)+ ẑ
ikt
2kz

(
(α± iβ)J|ℓ|−1e

i(ℓ∓1)ϕ +(±iβ−α)J|ℓ|+1e
i(ℓ±1)ϕ

)
+ x̂

k2t
4k2

(
2αJ|ℓ|e

iℓϕ

+J|ℓ|−2 (α± iβ)ei(ℓ∓2)ϕ + J|ℓ|+2 (α∓ iβ)ei(ℓ±2)ϕ
)
+ ŷ

k2t
4k2

(
2βJ|ℓ|e

iℓϕ + J|ℓ|−2 (±iα−β)ei(ℓ∓2)ϕ

+J|ℓ|+2 (∓iα−β)ei(ℓ±2)ϕ
)]

eikzz, (1)

where J|ℓ|[ktr] is a Bessel function of the first-kind of order |ℓ|
and argument ktr (the argument is suppressed in equation (1)
and throughout the manuscript for notational brevity, fur-
ther we subsume units of electric field into the Bessel func-
tion); ℓ ∈ Z is the topological charge, ℓ > 0 left-handed hel-
ical wavefronts, ℓ < 0 right-handed helical wavefronts; ϕ is
the azimuthal angle; α and β are the Jones vector coeffi-
cients; kz =

√
k2 − k2t is the longitudinal wavenumber and

kt =
√
k2x + k2y the transverse wavenumber. The derivation of

equations (1) and (2) is accomplished using the supplement-
ary information of [21] in conjunction with appendix C of
this paper. The rule determining which sign to take for the
± and ∓ parts in equations (1) and (2) is that if the topolo-
gical charge of the mode is ℓ > 0 the upper-sign is taken; if
ℓ < 0 the lower sign is taken. Note that in this work we expli-
citly use the circular polarization basis such that α= 1/

√
2

and β = iσ/
√
2, where the helicity is σ =±1, the positive

denoting left-handed circular polarization, the negative sign
right-handed.

In language first introduced by Lax et al [22], equation (1)
contains the zeroth-order transverse T0 (with respect to
the smallness parameter kt/kz), first-order longitudinal L1,
and second-order transverse field components T2. The

zeroth-order term in equation (1) is the dominating term for
a paraxial (well-collimated) Bessel beam; as a Bessel beam
is spatially confined (focused) the ratio of kt/kz becomes lar-
ger whereupon the higher-order field components, first-order
longitudinal and second-order transverse, become significant
enough in magnitude compared to the zeroth-order fields to
yield physically observable effects [23]. This transition from
paraxial optics to nonparaxial optics leads to the rich beha-
viour of spatially confined electromagnetic fields in nano-
optics. Most clear to see is that the 2D (x,y) polarized paraxial
beam becomes 3D (x,y,z) polarized [24]. It is important to
note that all of the higher-order fields are ever-present even
in a well-collimated, paraxial beam of light, however their
magnitude is essentially zero with respect to the dominating
zeroth-order transverse field under weak focusing conditions.

Maxwell’s equations in free-space are dual symmetric,
however due to the electric-bias nature of most dielectric
materials, the magnetic field is little studied compared to
the electric field. For example, the magnetic contributions to
the energy, momentum, and angular momentum of the field.
However, in this work we look at the optical chirality, a con-
served property of the free-field which is the inner product of
the electric and magnetic field. We therefore require the cor-
responding magnetic field of a Bessel beam:

2



J. Opt. 26 (2024) 125401 K A Forbes

B=

[
J|ℓ|e

iℓϕ kz
k
(αŷ−βx̂)+ ẑ

ikt
2k

(
(±iα−β)J|ℓ|−1e

i(ℓ∓1)ϕ +(±iα+β)J|ℓ|+1e
i(ℓ±1)ϕ

)
+ x̂

k2t
4kkz

(
−2βJ|ℓ|e

iℓϕ

+J|ℓ|−2 (±iα−β)ei(ℓ∓2)ϕ + J|ℓ|+2 (∓iα−β)ei(ℓ±2)ϕ
)
+ ŷ

k2t
4kkz

(
2αJ|ℓ|e

iℓϕ + J|ℓ|−2 (∓iβ−α)ei(ℓ∓2)ϕ

+J|ℓ|+2 (±iβ−α)ei(ℓ±2)ϕ
)] 1

c
eikzz. (2)

The analytical electromagnetic fields equations (1) and (2)
containing field components up to second-order in the small-
ness parameter are used in this manuscript to describe CVBs
and CVVBs. An alternative and widely used approach cur-
rently is to use numerical integration methods based on
Richards–Wolf diffraction theory [25] or the Ignatovsky [26]
model to describe the electromagnetic fields of a focused
beam. These numerical techniques have been widely used
to study the optical properties of vector beams [27–34]. A
detailed comparison of the differing methods can be found in
[26], but essentially the analytical methods we favour in this
work lead to simple analytical results and a deep insight into
the novel contributions from specific higher-order field com-
ponents to properties of electromagnetic fields.

3. Spin angular momentum

The spin angular momentum of light can be both longitud-
inal and transverse with respect to the direction of propagation
[20, 35, 36]. Longitudinal spin angular momentum is much
more familiar, and the spin of σh̄ẑ per photon for a z-
propagating circularly polarized plane wave with helicity σ =
±1 is a well-known result. More extraordinary is the trans-
verse spin of light, underpinning chiral quantum optics [37],
spin-momentum locking [38], and the quantum Hall effect of
light [39]. The cycle-averaged (electric) spin momentum dens-
ity for a monochromatic beam is calculated using [40]

sE =
ϵ0
2
ImE∗ ×E. (3)

The longitudinal spin angular momentum is generated
by the cross product between the transverse (x, y) polarized
fields. The transverse spin of light manifests through the cross
product of the transverse fieldwith the z-polarized longitudinal
component. In this work we calculate the optical properties of
VVBs up to second-order in the smallness parameter: for the
spin angular momentum this therefore includes the T0 ×T0,
T0 ×L1, and T0 ×T2 contributions, and neglects the extremely
small higher-order contributions.

3.1. ℓRA + ℓLB vector beams

The first type of vector beam we look at consists of a super-
position of a left circularly polarized beam A and a right-
circularly polarized beam B where each beam has the oppos-
ite signed topological charges to their polarization helicity,
i.e. sgnℓA = sgnσB and sgnℓB = sgnσA. Thus A and B also
have opposite signed topological charges with respect to one
another sgnℓA =−sgnℓB, i.e. ℓRA + ℓLB, where the superscript
labels R and L correspond to right (left) wavefront handed-
ness. Note there is also the case of sgnℓA =−sgnℓB, but where
sgnℓA = sgnσA and sgnℓB = sgnσB, i.e. ℓLA + ℓRB: the results for
these beams can be found in the appendix A

As mentioned in the Introduction, vector beams in gen-
eral are referred to as HyOP beams or CVVBs. The so-called
HOP beams, or CVBs, are a subset of CVVBs/HyOP beams
where ℓA =−ℓB, i.e. the topological charges have oppos-
ite sign and equal magnitude. The electric field of a CVVB
produced by a superposition of two Bessel beams can there-
fore be extracted from equation (1) and is given explicitly as:

E=

(
J|ℓA|e

−i(|ℓA|ϕ+θ) sinχ

[
1
i

]
+ J|ℓB|e

i(|ℓB|ϕ+θ) cosχ

[
1
−i

]
+ ẑ

ikt
kz

(
J|ℓA|−1e

i[(1−|ℓA|)ϕ−θ] sinχ+ J|ℓB|−1e
i[(|ℓB|−1)ϕ+θ] cosχ

)
+

k2t
2k2

[
x̂
(
J|ℓA|e

−i(|ℓA|ϕ+θ) sinχ + J|ℓB|e
i(|ℓB|ϕ+θ) cosχ + J|ℓA|−2e

i[(2−|ℓA|)ϕ−θ] sinχ + J|ℓB|−2e
i[(|ℓB|−2)ϕ+θ] cosχ

)
+iŷ

(
J|ℓA|e

−i(|ℓA|ϕ+θ) sinχ − J|ℓB|e
i(|ℓB|ϕ+θ) cosχ − J|ℓA|−2e

i[(2−|ℓA|)ϕ−θ] sinχ + J|ℓB|−2e
i[(|ℓB|−2)ϕ+θ] cosχ

)])
eikzz.

(4)
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The introduction of the phase e±iθ, where θ ∈ [0,π]
describes the longitude on the Poincaré sphere. [20, 41]. For
example, for |ℓ(A/B)|= 1, θ= 0 corresponds to first-order radi-
ally polarized beams, whereas θ = π/2 produce first-order azi-
muthally polarized beams. The angle χ ∈ [0,π/2] describes
the lattitude on the Poincaré sphere. For a given arbitrary
Poincaré sphere, the general pure state of 2D polarization (that
of the zeroth-order transverse field) can be described by the
angles χ and θ: the former tells us the shape of the polariza-
tion ellipse, the latter its orientation.

Using the electric field equation (4) in equation (3) gives
for the z component (up to second-order in the smallness para-
meter) of the spin angular momentum density

sEz =
(
J2|ℓA| sin

2χ− J2|ℓB| cos
2χ

)(
1+

2k2t
k2

)
+
k2t
k2

(
J|ℓA|J|ℓB|−2 − J|ℓB|J|ℓA|−2

)
× cos [(|ℓA|+ |ℓB| − 2)ϕ+ 2θ]sin2χ, (5)

for the x component,

sEx =
kt
kz

[
2
(
J|ℓA|J|ℓA|−1 sin

2χ + J|ℓB|J|ℓB|−1 cos
2χ

)
sinϕ

+
(
J|ℓA|J|ℓB|−1 + J|ℓB|J|ℓA|−1

)
×sin((|ℓA|+ |ℓB| − 1)ϕ + 2θ)sin2χ] , (6)

and the y component,

sEy =− kt
kz

[
2
(
J|ℓA|J|ℓA|−1 sin

2χ + J|ℓB|J|ℓB|−1 cos
2χ

)
cosϕ

+
(
J|ℓA|J|ℓB|−1 + J|ℓB|J|ℓA|−1

)
×cos((|ℓA|+ |ℓB| − 1)ϕ + 2θ)sin2χ] . (7)

Firstly it is clear that the amplitude of A and B have sig-
nificant influence upon the properties of the field. However,
it is more interesting, and given how these beams are gener-
ated experimentally [10, 12, 41–48], more relevant to assume
equal amplitudes and vary other parameters of the beam.When
χ= 0 or π/2, equations (5)–(7) describe the spin of a scalar
right-circularly polarized with ℓ > 0 and left-circularly polar-
ized with ℓ < 0 Bessel beam, respectively.

In the case of weak focusing, kt << kz and k≈ kz which
means that the contributions from the zeroth-order transverse
field components are far larger than the higher-order first-
order longitudinal and second-order transverse components,
i.e. paraxial optics. Under such conditions the transverse spin
is extremely weak, and the longitudinal spin is simply pro-
portional to the difference in amplitude between beam A and

beam B. The optical chirality (which we look at in the next
section) is likewise proportional to the difference between the
amplitudes of beamA and beamB, and in paraxial optics there
is a simple proportionality between the polarization ellipticity,
chirality, and spin, often measured by the fourth Stokes para-
meter S3.

We can use the Pancharatnam topological charge ℓP =
(ℓA + ℓB)/2 [49–51] and polarization order m= (ℓB − ℓA)/2
to characterize VVBs. The topological charge ℓ of a scalar vor-
tex beam is defined by the number of 2π radians the phase
accumulates along a closed path centred on the singularity.
The Pancharatnam topological charge ℓP is defined in an ana-
logous fashion with the Pancharatnam phase ψP, rather than
scalar phase. The Pancharatnam phase itself defined as ψP =
arg⟨A|B⟩, where |A⟩ and |B⟩ are two distinctly polarized waves
[49]. The polarization order m (sometimes given the symbol
Ic [6]) is a measure of rotations in the orientation of the polar-
ization ellipses per circulation about the singularity, see [18,
52] for more information. Clearly for CVBs (or HOPs) ℓP = 0.
For sgnℓA =−sgnℓB beams, where sgnℓA = sgnσB, sgnℓB =
sgnσA, then ℓP = (|ℓB| − |ℓA|)/2 andm= (|ℓA|+ |ℓB|)/2. The
spatial distributions of equations (5)–(7) are given in figure 1
for a varying range of ℓP and m. Furthermore, throughout this
work, we highlight in the figures the spatial distributions at
the specific point χ = π/4 (on the equator) and θ= 0 on any
arbitrary higher-order/hybrid Poincaré sphere, however it is
important to note the equations are kept completely general
and can evaluate each point on any Poincaré sphere. Figure 1
shows that there is no z-component of spin for ℓP = 0 CVBs,
however there are, in general, transverse spin components in
both x and y. Unlike sz, the transverse spin is independent of
the sign (or handedness) of ℓP, but is clearly very sensitive to
both the magnitude of ℓP and the polarization indexm. There is
a particularly strong component of transverse spin in the case
of ℓP = 0 and m= 1, which is not surprising given this mode
represents the first-order radially polarized vector beam, well-
known for its strong longitudinal electric field component and
resultant transverse spin [53].

3.2. ℓLA + ℓLB vector beams

We now look at CVVBs consisting of a left- and right-handed
circularly polarized superposition where each beam has the
same signed topological charges, i.e. sgnℓA = sgnℓB. It is
important to note that here we look at the case of ℓA and ℓB both
being positive, i.e. left-handed ℓLA + ℓLB: the results are different
if both ℓA and ℓB are right-handed, i.e. ℓRA + ℓRB (see appendix
B). The electric field of these CVVBs produced by a super-
position of two Bessel beams can therefore be extracted from
equation (1) and is given explicitly as:

4
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Figure 1. Spin angular momentum density spatial distributions of ℓRA + ℓLB vector beams: Top row: z-component equation (5); Middle:
x-component equation (6); Bottom: y-component equation (7). The simulated parameters throughout this paper are as follows:
kt/kz = 0.6315, λ= 729nm i.e. tight focus; The colour scale indicates the intensity in arbitrary units; θ= 0 and χ = π/4.

E=
(
J|ℓA|e

i(|ℓA|ϕ−θ) sinχ

[
1
i

]
+ J|ℓB|e

i(|ℓB|ϕ+θ) cosχ

[
1
−i

]
+ ẑ

ikt
kz

(
J|ℓB|−1e

i[(|ℓB|−1)ϕ+θ] cosχ − J|ℓA|+1e
i[(|ℓA|+1)ϕ−θ] sinχ

)
+

k2t
2k2

[
x̂(J|ℓA|e

i(|ℓA|ϕ−θ) sinχ + J|ℓB|e
i(|ℓB|ϕ+θ) cosχ + J|ℓA|+2e

i[(|ℓA|+2)ϕ−θ] sinχ + J|ℓB|−2e
i[(|ℓB|−2)ϕ+θ] cosχ)

+ iŷ(J|ℓA|e
i(|ℓA|ϕ−θ) sinχ − J|ℓB|e

i(|ℓB|ϕ+θ) cosχ − J|ℓA|+2e
i[(|ℓA|+2)ϕ−θ] sinχ + J|ℓB|−2e

i[(|ℓB|−2)ϕ+θ] cosχ)
])

eikzz. (8)

Inserting equation (8) into equation (3) gives the z compon-
ent of the spin angular momentum density as,

sEz =
(
J2|ℓA| sin

2χ− J2|ℓB| cos
2χ

)(
1+

2k2t
k2

)
+
k2t
k2

(
J|ℓA|J|ℓB|−2 − J|ℓB|J|ℓA|+2

)
× cos [(|ℓA| − |ℓB|+ 2)ϕ− 2θ]sin2χ, (9)

the x component as,

sEx =
kt
kz

[
2
(
J|ℓB|J|ℓB|−1 cos

2χ − J|ℓA|J|ℓA|+1 sin
2χ

)
sinϕ

+
(
J|ℓB|J|ℓA|+1 − J|ℓA|J|ℓB|−1

)
×sin((|ℓA| − |ℓB|+ 1)ϕ − 2θ)sin2χ] , (10)

and the y component,

sEy =− kt
kz

[
2
(
J|ℓB|J|ℓB|−1 cos

2χ − J|ℓA|J|ℓA|+1 sin
2χ

)
cosϕ

+
(
J|ℓA|J|ℓB|−1 − J|ℓB|J|ℓA|+1

)
×cos((|ℓA| − |ℓB|+ 1)ϕ − 2θ)sin2χ] . (11)

For sgnℓA = sgnℓB beams, where sgnℓA = sgnσA, sgnℓB =
sgnσA, then ℓP = (|ℓA|+ |ℓB|)/2 andm= (|ℓB| − |ℓA|)/2. The
spatial distributions of equations (9)–(11) are given in figure 2
for a varying range of ℓP and m. When χ= 0 or π/2,
equations (9)–(11) describe the spin of a scalar right-circularly
polarized with ℓ > 0 and left-circularly polarized with ℓ > 0
Bessel beam, respectively. In contrast to figure 1, this class of
CVVB can carry transverse spin in a single direction and not
the other, as well as circularly-symmetric spatial distributions
in a single direction (i.e. sy for ℓP = 1.5 and m= 0.5). Similar
to figure 1 both ℓP and m strongly influence the spatial distri-
bution and sign of the spin angular momentum density.

4. Optical chirality

The optical chirality density of a monochromatic beam is [40]

C=−ϵ0ω
2

ImE∗ ·B. (12)

For monochromatic beams, the pseudoscalar optical chir-
ality is directly proportional to optical helicity [54, 55]. The
optical chirality is the electromagnetic property which couples

5
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Figure 2. Spin angular momentum density spatial distributions of ℓLA + ℓLB vector beams: Top row: z-component equation (9); Middle:
x-component equation (10); Bottom: y-component equation (11).

to the electric-dipole (E1) magnetic-dipole (M1) interfer-
ence term in the linear absorption and scattering of light
by chiral materials. As such, it does not describe all chiral
light-matter interactions (e.g. nonlinear interactions or those
due to electric-dipole electric quadrupole (E2) interference
E1E2). Optical chirality equation (12) should not be confused
with the more general geometrical meaning of chirality. For
example, linearly polarized, collimated scalar optical vortex
modes possess a geometrical chirality due to their twisted
wavefront, being left-handed for ℓ > 0 and right-handed for
ℓ < 0. However, they possess zero optical chirality. Only under
non-paraxial, tight focusing conditions does the chirality asso-
ciatedwith the pseudoscalar ℓ contribute to the optical chirality

[21, 56–58]. As with the spin angular momentum, we will cal-
culate the optical chirality up to second-order in the small-
ness parameter. Therefore we include the T0 ·T0, L1 ·L1, and
T0 ·T2 contributions, and neglect the extremely small higher-
order contributions.

4.1. ℓRA + ℓLB vector beams

We already have the electric field which relates to
CVVBs equation (4) of type ℓRA + ℓLB. In order to cal-
culate the optical chirality density using equation (12)
we require the corresponding magnetic field. This
magnetic field is extracted from equation (2) as

B=
(
J|ℓA|e

−i(|ℓA|ϕ+θ) kz
k
sinχ

[
−i
1

]
+ J|ℓB|e

i(|ℓB|ϕ+θ) kz
k
cosχ

[
i
1

]
+ ẑ

kt
k

(
J|ℓA|−1e

i[(1−|ℓA|)ϕ−θ] sinχ

− J|ℓB|−1e
i[(|ℓB|−1)ϕ+θ] cosχ

)
+

k2t
2kkz

[
ix̂(−J|ℓA|e

−i(|ℓA|ϕ+θ) sinχ + J|ℓB|e
i(|ℓB|ϕ+θ) cosχ

− J|ℓA|−2e
i[(2−|ℓA|)ϕ−θ] sinχ + J|ℓB|−2e

i[(|ℓB|−2)ϕ+θ] cosχ)+ ŷ(J|ℓA|e
−i(|ℓA|ϕ+θ) sinχ + J|ℓB|e

i(|ℓB|ϕ+θ) cosχ

− J|ℓA|−2e
i[(2−|ℓA|)ϕ−θ] sinχ − J|ℓB|−2e

i[(|ℓB|−2)ϕ+θ] cosχ)
])1
c
eikzz. (13)

Inserting equations (4) and (13) into equation (12) gives for
the optical chirality

C=
ϵ0ω

2c

[(
kz
k
+

k2t
kkz

+
k2t kz
k3

)(
J2|ℓA| sin

2χ− J2|ℓB| cos
2χ

)
+

k2t
kkz

(
J2|ℓA|−1 sin

2χ − J2|ℓB|−1 cos
2χ

+

(
1
2
+

k2z
2k2

)(
J|ℓA|J|ℓB|−2 − J|ℓB|J|ℓA|−2

)
×cos((|ℓA|+ |ℓB| − 2)ϕ+ 2θ)sin2χ)] . (14)

The spatial distributions of equation (14) are given in
figure 3 for a varying range of ℓP and m. When χ= 0 or π/2,
equation (14) describes the optical chirality of a scalar right-
circularly polarized with ℓ > 0 and left-circularly polarized

6
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with ℓ < 0 Bessel beam, respectively. Figure 3 clearly exhib-
its that the optical chirality spatial distributions are identical
for a given pair of |ℓP| and |m|, however the sign of the optical
chirality density at a given location flips when changing the
Pancharatnam charge handedness, i.e. |ℓP| versus −|ℓP|. For a
given ℓP, the spatial distributions are highly-dependent on m.
Note, however, that the sign of ℓP does not influence the spatial
distribution of the optical chirality.

The final terms in equation (14) are interference terms
between the zeroth-order and second-order transverse elec-
tromagnetic fields. These interference terms for scalar vor-
tex beams are always zero for linearly polarized beams [21,
56, 59] though do have circularly symmetric non-zero con-
tributions to the chirality for circularly-polarized modes. The
additional, non-circularly symmetric (in general) terms of
VVBs we have highlighted here manifest due to the fact the
second-order transverse electric (magnetic) fields of beam A
have components which are π/2 out-of-phase with zeroth-
order transverse magnetic (electric) fields of beam B (and vice
versa). This phase relationship is unique to VVBs and clearly
cannot manifest in a single scalar beam. Thus, the optical chir-
ality equation (12), which essentially measures the degree that
the electric and magnetic field components are π/2 out of

phase with one another yields a non-zero result for these inter-
ference terms. It is worth emphasizing a point not often made
in the literature [56] that when calculating optical properties
of electromagnetic fields it is pivotal to include all contribu-
tions up to a given order of the paraxial parameter. Due to
the fact the second-order transverse fields are an order smaller
than the first-order longitudinal fields it is tempting to neglect
them. However, when calculating a property which is the inner
product of the fields (i.e. energy density and optical chirality
density), the cross-terms between zeroth-order and second-
order transverse fields are of the same general magnitude as
the pure first-order longitudinal field contribution. For scalar
beams the zeroth-order second-order interference terms gener-
ally add little qualitative difference to the spatial distributions,
however this is clearly not true for vector beams as we have
highlighted here.

4.2. ℓLA + ℓLB vector beams

We already have the required electric field which
relates to the ℓLA + ℓLB type CVVBs equation (8). In
order to calculate the optical chirality density using
equation (12) we require the magnetic field. The corres-
ponding magnetic field is extracted from equation (2) as

B=

(
J|ℓA|e

i(|ℓA|ϕ−θ) kz
k
sinχ

[
−i
1

]
+ J|ℓB|e

i(|ℓB|ϕ+θ) kz
k
cosχ

[
i
1

]
− ẑ

kt
k

(
J|ℓA|+1e

i[(|ℓA|+1)ϕ−θ] sinχ

+ J|ℓB|−1e
i[(|ℓB|−1)ϕ+θ] cosχ

)
+

k2t
2kkz

[
ix̂
(
−J|ℓA|e

i(|ℓA|ϕ−θ) sinχ + J|ℓB|e
i(|ℓB|ϕ+θ) cosχ

−J|ℓA|+2e
i[(|ℓA|+2)ϕ−θ] sinχ + J|ℓB|−2e

i[(|ℓB|−2)ϕ+θ] cosχ
)
+ ŷ

(
J|ℓA|e

i(|ℓA|ϕ−θ) sinχ + J|ℓB|e
i(|ℓB|ϕ+θ) cosχ

−J|ℓA|+2e
i[(|ℓA|+2)ϕ−θ] sinχ − J|ℓB|−2e

i[(|ℓB|−2)ϕ+θ] cosχ
)]) 1

c
eikzz. (15)

Inserting equations (8) and (15) into equation (12) gives for
the optical chirality

C=
ϵ0ω

2c

[(
kz
k
+

k2t
kkz

+
k2t kz
k3

)(
J2|ℓA| sin

2χ− J2|ℓB| cos
2χ

)
+

k2t
kkz

(
J2|ℓA|+1 sin

2χ − J2|ℓB|−1 cos
2χ

+

(
1
2
+

k2z
2k2

)(
J|ℓA|J|ℓB|−2 − J|ℓB|J|ℓA|+2

)
×cos((|ℓA| − |ℓB|+ 2)ϕ− 2θ)sin2χ)] . (16)

The spatial distributions of equation (16) are given in
figure 4 for a varying range of ℓP and m. When χ= 0 or π/2,
equation (16) describes the chirality of a scalar right-circularly
polarized with ℓ > 0 and left-circularly polarized with ℓ > 0
Bessel beam, respectively. In stark contrast to figure 3, the sign
of ℓP not only dictates the sign of optical chirality it also com-
pletely alters the spatial distributions.

5. Discussion and conclusion

Here we have provided an analytical description of the elec-
tromagnetic fields of cylindrical VVBs using a co-propagating
superposition of orthogonally polarized scalar Bessel beams.
The equations can account for both a paraxial (weakly
focused) or nonparaxial (tightly focused) CVVB. We high-
lighted the importance of including the second-order trans-
verse electromagnetic field components for CVVBs. We used
these electromagnetic fields to calculate the spin angular
momentum density (both longitudinal and transverse) and
optical chirality density for a variety of modes up to second-
order in the paraxial parameter. We showed that CVVBs have
rich and exotic spatial distributions of spin and chirality, and
are highly tailorable through manipulating their Pancharatnam
topological charge and polarization index. Using a general for-
mulation of the 2D polarization state of the VVBs, i.e. using
the angles χ and θ, including all possible combinations of
ℓA, ℓB, σA, and σB we produce analytical equations which
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Figure 3. Optical chirality density spatial distributions of ℓRA + ℓLB vector beams equation (14): Top row: ℓA > ℓB; Bottom: ℓA < ℓB,
i.e. negative ℓP of Top row.

Figure 4. Optical chirality density spatial distributions of ℓLA + ℓLB vector beams equation (16): Top row: ℓA > ℓB; Bottom: ℓA < ℓB,
i.e. negative ℓP of Top row.

can describe the optical spin angular momentum density and
optical chirality density of each point on any higher-order
or hybrid-order Poincaré sphere (in the circular polarization
basis).

The work can readily be extended to the elliptical or lin-
ear polarization bases for vector beams by using our general
formulation, specifically equations (1) and (2). Changing the
basis will lead to different spatial distributions of the spin
and chirality. Furthermore, it would be interesting to study a
VVB built ffrom a superposition of real propagating modes
that have a Gouy phase which should lead to interesting dif-
ferences with the pure non-diffracting Bessel modes stud-
ied here, such as a rotation of the spatial patterns of spin
and chirality along z. Truly nondiffracting beams like perfect

Bessel modes are of course not possible to generate in reality.
Bessel-Gaussian beams are the most commonly produced
approximation to a true Bessel beam. Truncated by a Gaussian
envelope, VVBs built from Bessel–Gauss modes will exhibit
essentially the same spin and chirality as the VVBs studied in
this work in the important region of the focal plane. Indeed,
because the Pancharatnam and polarization indices respons-
ible for the interesting spin and chirality properties of VVBs
are determined by the individual topological charges ℓA and
ℓB, a superposition built from any scalar vortex mode (e.g.
Laguerre–Gaussian) will possess analogous spin and chiral-
ity in the focal plane because all vortex modes possess a uni-
versal azimuthal phase of eiℓϕ. Similar to the Bessel–Gauss
versus Bessel discussion above, a vector-vortex mode built

8
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from scalar Laguerre–Gaussian modes will display differ-
ent diffractive behaviour of its optical properties, but such
calculations are beyond the scope of this work which is inter-
ested in the behaviour at the focal plane where materials are
usually probed.

The rich spatial distributions of spin and chirality for VVBs
we have highlighted can be utilized in spatially-dependent
light-matter interactions [14, 60, 61], exotic optical trap-
ping landscapes for particles [62–64], alongside chiral sort-
ing mechanisms [65–68]. Clear to see from the results of
this work is that the handedness (or geometrical chirality)
of the Pancharatnam topological charge ℓP (and thus phase)
strongly influences the spatial distributions of the spin and
chirality densities, even under weak focusing (paraxial) con-
ditions. This is in stark contrast to the case of scalar vortex
beams where the geometric chirality associated with ℓ does
not influence the optical chirality density unless the scalar
beam is under significant spatial confinement (tight focusing)
[21, 56, 58]. Finally it must be remembered that, due to spa-
tial constraints, we have only provided simulations for a tiny
fraction of possible variations in the given parameters which
tailor CVVBs: amplitude, ℓP, m, θ, χ, kt/kz, etc. Our simula-
tions throughout this paper correspond to relatively low values
of Pancharatnam topological charge −4⩽ ℓP ⩽ 4 and polar-
ization index −4⩽ m⩽ 4 at a single point θ = 0,χ = π/4
on any given higher-order/hybrid-order Poincaré sphere for a
tightly focused beam kt/kz = 0.6315. Higher values of ℓP and
m in varying combinations do yield even more complex spatial
distributions: whilst these cannot be presented, our analytical
equations do account for this essentially infinite variation in
the degrees of freedom.
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Appendix A. ℓLA + ℓRB beams

The spin and chirality densities for ℓLA + ℓRB type beams is given
in this appendix. For these beams ℓP = (|ℓA| − |ℓB|)/2 and
m=−(|ℓA|+ |ℓB||)/2.

sEz =
(
J2|ℓA| sin

2χ− J2|ℓB| cos
2χ

)(
1+

2k2t
k2

)
+
k2t
k2

(
J|ℓA|J|ℓB|+2 − J|ℓB|J|ℓA|+2

)
× cos [(|ℓA|+ |ℓB|+ 2)ϕ− 2θ]sin2χ, (17)

sEx =
kt
kz

[
2
(
−J|ℓA|J|ℓA|+1 sin

2χ − J|ℓB|J|ℓB|+1 cos
2χ

)
sinϕ

+
(
J|ℓB|J|ℓA|+1 + J|ℓA|J|ℓB|+1

)
×sin((|ℓA|+ |ℓB|+ 1)ϕ − 2θ)sin2χ] , (18)

and the y component,

sEy =
kt
kz

[
2
(
J|ℓA|J|ℓA|+1 sin

2χ + J|ℓB|J|ℓB|+1 cos
2χ

)
cosϕ

+
(
J|ℓB|J|ℓA|+1 + J|ℓA|J|ℓB|+1

)
×cos((|ℓA|+ |ℓB|+ 1)ϕ − 2θ)sin2χ] . (19)

The spatial distributions of equations (17)–(19) are given in
figure 5 for a varying range of ℓP and m.

C=
ϵ0ω

2c

[(
kz
k
+

k2t
kkz

+
k2t kz
k3

)(
J2|ℓA| sin

2χ− J2|ℓB| cos
2χ

)
+

k2t
kkz

(
J2|ℓA|+1 sin

2χ − J2|ℓB|+1 cos
2χ

+

(
1
2
+

k2z
2k2

)(
J|ℓA|J|ℓB|+2 − J|ℓB|J|ℓA|+2

)
×cos [(|ℓA|+ |ℓB|+ 2)ϕ− 2θ]sin2χ)] . (20)

The spatial distributions of equation (20) are given in
figure 6 for a varying range of ℓP and m.
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Figure 5. Spin angular momentum density spatial distributions of ℓLA + ℓRB vector beams: Top row: z-component equation (17); Middle:
x-component equation (18); Bottom: y-component equation (19).

Figure 6. Optical chirality density spatial distributions of ℓLA + ℓRB vector beams equation (20): Top row: ℓA > ℓB; Bottom: ℓA < ℓB,
i.e. negative ℓP of Top row.

Appendix B. ℓRA + ℓRB beams

For these beams sgn|ℓA|= sgn|ℓB|where ℓA/B ⩽ 0 beams ℓP =
−(|ℓA|+ |ℓB|)/2 and m= (|ℓA| − |ℓB||)/2.

The z component of the spin angular momentum is

sEz =
(
J2|ℓA| sin

2χ− J2|ℓB| cos
2χ

)(
1+

2k2t
k2

)
+
k2t
k2

(
J|ℓA|J|ℓB|+2 − J|ℓB|J|ℓA|−2

)
× cos [(|ℓA| − |ℓB| − 2)ϕ+ 2θ]sin2χ, (21)

the x component,

sEx =
kt
kz

[
2
(
J|ℓA|J|ℓA|−1 sin

2χ − J|ℓB|J|ℓB|+1 cos
2χ

)
sinϕ

+
(
J|ℓB|J|ℓA|−1 − J|ℓA|J|ℓB|+1

)
×sin((|ℓA| − |ℓB| − 1)ϕ + 2θ)sin2χ] , (22)

and the y component,
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Figure 7. Spin angular momentum density spatial distributions of ℓRA + ℓRB vector beams: Top row: z-component equation (21); Middle:
x-component equation (22); Bottom: y-component equation (23).

Figure 8. Optical chirality density spatial distributions of ℓRA + ℓRB vector beams equation (24): Top row: ℓA > ℓB; Bottom: ℓA < ℓB,
i.e. negative ℓP of Top row.

sEy =− kt
kz

[
2
(
J|ℓA|J|ℓA|−1 sin

2χ − J|ℓB|J|ℓB|+1 cos
2χ

)
cosϕ

+
(
J|ℓB|J|ℓA|−1 − J|ℓA|J|ℓB|+1

)
×cos((|ℓA| − |ℓB| − 1)ϕ + 2θ)sin2χ] . (23)

The spatial distributions of equations (21)–(23) are given in
figure 7 for a varying range of ℓP and m.

The optical chirality density is

C=
ϵ0ω

2c

[(
kz
k
+

k2t
kkz

+
k2t kz
k3

)(
J2|ℓA| sin

2χ− J2|ℓB| cos
2χ

)
+

k2t
kkz

(
J2|ℓA|−1 sin

2χ − J2|ℓB|+1 cos
2χ

+

(
1
2
+

k2z
2k2

)(
J|ℓA|J|ℓB|+2 − J|ℓB|J|ℓA|−2

)
× cos((|ℓA| − |ℓB| − 2)ϕ+ 2θ)sin2χ)] . (24)

The spatial distributions of equation (24) are given in
figure 8 for a varying range of ℓP and m.

Appendix C. Electromagnetic fields of a scalar
Bessel beam

Here we discuss the derivation of the electromagnetic fields
for scalar Bessel beams. The form of the electromagnetic
fields of a Bessel beam found throughout the literature (e.g.
[20, 21, 69–72]) can describe the optical properties (energy,

11
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momentum, optical chirality) of scalar beams by virtue of the
fact all of these quantities are quadratic in the fields. However,
when attempting to use scalar Bessel beams to construct vector
beams an issue became apparent, namely the forms currently
found in literature cannot achieve this (note [73] use a descrip-
tion which does achieve it but not via the superposition of two
scalar beams). There are two important points which authors
have previously neglected (including the author of this paper):
1) The Bessel function order must be the absolute value of
the topological charge J|ℓ|, not the topological charge Jℓ 2)
when deriving higher-order fields, the Bessel relations have to
be used in a consistent way with aspect 1). Firstly it is worth
giving an explicit example of the most obvious issue of try-
ing to construct a simple first-order radially polarized beam
using two scalar Bessel modes in the form found throughout
the literature. The zeroth-order electric field for a Bessel beam
is (almost always) given in the literature as:

ET0 = (αx̂+βŷ)Jℓ [ktr]ei(kzz+ℓϕ). (25)

To construct a first-order radially-polarized beam we
require the superposition of a left-circularly polarized mode
with ℓ=−1 and a right-circularly polarized mode with ℓ= 1:

1√
2
(x̂+ i ŷ)J−1e

i(kzz−ϕ) +
1√
2
(x̂− i ŷ)J1ei(kzz+ϕ)

=
1√
2
r̂(J−1 + J1)e

ikzz

= 0. (26)

Because J−1 =−J1, The correct zeroth-order transverse
field of Bessel beam is given as

ET0 = (αx̂+βŷ)J|ℓ| [ktr]e
i(kzz+ℓϕ). (27)

Note the fact the Bessel mode has the order of the modu-
lus of topological charge. With this small change implemen-
ted and reflected in equation (18) then the first-order radially
polarized field is readily constructed. This small correction
has much deeper consequences when the higher-order longit-
udinal and transverse fields are required for a tight focussed
Bessel mode. With the aid of Gauss’s Law, it is simple to show
the first-order longitudinal field component of a scalar Bessel
beam is

EL1
z =

i
kz

(
α
∂

∂x
+β

∂

∂y

)
J|ℓ| [ktr]e

i(kzz+ℓϕ). (28)

Converting the Cartesian partial derivatives to cylindrical
coordinates we readily come to the expression:

EL1
z =

i
kz

(
α

[
cosϕ

{
kt
2
(J|ℓ|−1 − J|ℓ|+1)

}
− iℓ
r
J|ℓ| sinϕ

]
+
(
β

[
sinϕ

{
kt
2
(J|ℓ|−1 − J|ℓ|+1)

}
+
iℓ
r
J|ℓ| cosϕ

]
× ei(kzz+ℓϕ). (29)

In the derivations used so far in the literature the two
terms linearly dependent on ℓ are given as (remembering

most authors neglect the modulus of the order of the Bessel
function):

− iℓ
r
Jℓ sinϕ (30)

iℓ
r
Jℓ cosϕ. (31)

At this point the following Bessel relation is used:

2ℓ
ktr
Jℓ [ktr] = Jℓ+1 [ktr] + Jℓ−1 [ktr] (32)

which leads to following form of the longitudinal
component

EL1
z =

ikt
2kz

(
(α+ iβ)Jℓ−1e

−iϕ +(iβ−α)Jℓ+1e
iϕ
)

× ei(kzz+ℓϕ). (33)

However, what we actually have is

− iℓ
r
J|ℓ| sinϕ =∓ i|ℓ|

r
J|ℓ| sinϕ (34)

iℓ
r
J|ℓ| cosϕ =± i|ℓ|

r
J|ℓ| cosϕ. (35)

In which the correct Bessel relation to use is:

2|ℓ|
ktr

J|ℓ| [ktr] = J|ℓ|+1 [ktr] + J|ℓ|−1 [ktr] (36)

which leads to following correct form of the longitudinal com-
ponent

EL1
z =

ikt
2kz

(
(α± iβ)J|ℓ|−1e

∓iϕ +(iβ∓α)J|ℓ|+1e
±iϕ

)
× ei(kzz+ℓϕ) (37)

where the upper sign corresponds to ℓ > 0 and lower sign
ℓ < 0: for ℓ= 0 the sign does not matter, both give equivalent
and correct results. Following similar algebra the second-order
transverse fields can be derived. The correct formula for Bessel
beams which should be used from now on are equations (1)
and (2) of the main manuscript.
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