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In our original article1, we found that thedissociation of an ensemble of
vibrationally hot 1-cyanonaphthalene cations (1-CNN+, C10H7CN

+) was
quenched by radiative cooling after a time corresponding to a critical
rate coefficient kc = 300(20) s−1. This is much higher than can be
attributed to vibrational cooling through the emission of infrared
photons (kIR < 100 s−1). It is also much higher than can be explained by
recurrent fluorescence—optical photon emission from thermally
excited electronic states—if Herzberg–Teller coupling is not included
in the calculation of the oscillator strength of the electronic transitions
involved. This efficient radiative stabilization closes some of the dis-
sociation channels included in current astrochemical models, which
underpredict the abundance of 1-CNN in themolecular cloudTMC-1by
six orders of magnitude2. In his Matters Arising comment, Professor
Hansen suggests an alternate interpretation of our experimental
observables, which implies a higher activation energy for the dis-
sociation of 1-CNN+. It does not, however, alter the essence of the
conclusions of our original article.

The so-called Finite–Heat–Bath (FHB) theory is required to
reconcile the concepts of energy and temperature in isolated mole-
cules and clusters. For a singlemolecule, the internal excitation energy
E is well-defined and conserved. The “temperature” T of such a system
is that of a fictitious ensemble, with Botzmann-distributed excitation
energies3, and with an average energy equal to E. For unimolecular
reactions, FHB theory equates the microcanonical expression for the
rate coefficient k connecting reactant to products with the classical
Arrhenius law:

k =A
ρðE � EaÞ

ρðEÞ =Ae�Ea=kBTeff , ð1Þ

where A is a constant, ρ is the density of excited states of the system,
and Ea is the activation energy of the reaction4. The question arises,
given that E is the energy of the reactant, what is the ensemble char-
acterized by temperature Teff that makes the above equation correct?
As laid out by Hansen in his comment, it is not that of the reactant or
the product, but of what he refers to as “the decaying molecule.” This

temperature may be estimated by a Taylor expansion of the state
densities in Eq. (1) and is given to first order in Ea by

Teff � Tprod +
Ea

2C
� T reac �

Ea

2C
, ð2Þ

whereTprod andTreac are the temperatures of theproduct and reactant,
respectively, and the heat capacity C is assumed to be the same for the
product and reactant, and independent of temperature4.

In our original article1, we analyze our measured kinetic
energy release (KER) distributions in the framework of RRKM
theory using expressions derived by Hansen5 from the standard
RRKM model of the rate coefficient. As acknowledged by Hansen
in his comment, the temperatures extracted from this analysis
pertain to the transition state. However, Hansen argues that,
given the small reverse reaction barrier (6.2(5) meV) determined
from the KER distributions, the temperature of the transition
state T‡ is equal to Tprod. In our analysis, we instead identify T‡

with the temperature Teff of “the decaying molecule”. We find this
interpretation more suitable, as the transition state of a unim-
olecular dissociation reaction is usually defined as the plane in
phase space separating reactants from products, i.e. “the decay-
ing molecule”. We note that FHB theory has mainly been used to
explain the evaporation rates of non-covalent clusters and ther-
mionic emission, which, unlike chemical bond-breaking, lack well-
defined transition states, and where the state densities and heat
capacities are similar for the reactant and product4,6.

However, for the sake of argument, we will hear Hansen’s sug-
gestion concerning the effective temperature and re-analyze our time-
dependent KER distributions assuming that T‡ = Tprod, i.e. replacing
Eq. 8 in [1] by:

kdissðEðTzÞÞ � kBT
z

h
e�E 0

a=kB½Tz + E 0
a=2C�: ð3Þ
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Without any other adjustments to our analysis, this results in an acti-
vation energy E 0

a =4:36ð5Þ eV. Note that our value of E 0
a differs from

that of Hansen, who estimated the correction at a single temperature,
while in our analysis, we used all data available for the range of tem-
peratures from 1610 to 1220K.

Figure 1 shows a comparison of the original (left) and refit (right)
rate coefficients. In the right pane, the reactant energies E are given by

E = EtotðTzÞ+ E 0
a ð4Þ

instead of Supplementary Eq. 6 as in our original paper, where Etot(T
‡)

refers to the energy of the transition state. The refit value of E 0
a is

indeedmuch larger than our original value of Ea = 3.16(4) eV, as well as
that of “from2.5 to 3 eV”previously reportedbyWest et al.7 However, it
is not incompatible with our experimental results. A similar agreement
between the simulated and measured rate curves, as in Fig. 2 of [1],
could likely be obtained, with some modification to the RF rate coef-
ficient. For example, a reduction of the oscillator strength of the
D1←D0 transition to f 0 =0:0015, from our calculated value of f =0.011,
would force a crossing of the dissociation and RF curves at the same
critical rate coefficient (horizontal line in Fig. 1). This is still more than
an order ofmagnitude higher thanour calculated oscillator strength of
10−4 when Herzberg–Teller coupling is neglected1. So, the higher
numerical valueof E 0

a does not change the conclusionofour paper that
reproducing the measured rate requires a significant enhancement of
this transition probability.

Following this re-analysis, we find the larger value of E 0
a would

imply that 1-CNN cations would be efficiently radiatively stabilized up
to about 8 eV of internal energy, where the dissociation and RF rate
coefficients are equal, rather than 5 eV with our original value of Ea.
This would completely rule out the dissociation of 1-CNN+ following
ionization in collisions with H+, the most abundant atomic cation in
TMC-1, strengthening our conclusion that RF helps explain the high
abundance of 1-CNN in this cloud. Since the publication of our original
paper, two different groups have reported appearance energies for
dissociative ionization of 1-CNN exposed to VUV radiation, which is
about 7 eV above the ionization threshold8,9, i.e., about 1 eV lower than
the threshold discussed above. This discrepancy is larger than can be
explainedby the initial thermal energy of the neutral precursors, about
0.2 eV at 323 K sample temperature used in ref. 8. Amuch larger shift in
the measured appearance energy in the opposite direction is rather
expected as these experiments are conducted using time-of-flight
mass spectrometers employing constant extraction fields. Such
instruments are prone to large kinetic shifts10. While not completely

Fig. 1 | Comparison of original and refit rate coefficients. a Original rate coeffi-
cients as published in ref. 1. The dissociation rate coefficient kdiss is computed
according to Eqn. 10 in [1] with Ea = 3.16 eV, and the RF rate coefficient kRF is
computed to Eqs. (14) and (15) in [1] using our calculated value of the oscillator
strength of the D1←D0 transition, including Herzberg–Teller (H–T) coupling, of
f =0.011. b Refit rate coefficients with Hansen’s interpretation, with E 0

a =4:36 eV
and the oscillator strength f 0 =0:0015 adjusted ad hoc to reproduce the

experimentally determined kc. The horizontal dotted line in both plots passes
through the crossing point between the original dissociation and RF rate coeffi-
cients and illustrates how the RF rate would need to be adjusted to achieve similar
agreement with the experiment as the original rates. In both plots, the rate coef-
ficient for RF using the calculated oscillator strength, neglecting H–T coupling, of
10−4 is labeled kRF No H–T, and the vibrational cooling rate is kIR.

Fig. 2 | Molecular structures. a 1-CNN with H atoms labeled. b Lowest-energy
product with H atom B removed.
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dispositive, the measured fragment appearance energies thus favor
the lower Ea value of our original analysis.

We have calculated dissociation energies, i.e. differences in
energy between reactants and infinitely separated products, for the
dominant C10H7CN

+�!C10H6
+ +HCN channel at the CCSD(T)/cc-

pVTZ//ωB97X-D/cc-pVTZ level of theory as implemented in Gaussian
16.B.0111. The results are presented in Table 1.

The dissociation energy is a lower limit for the activation energy
and, given the small observed reverse barrier, is likely a good estimate.
Depending on which peripheral H atom leaves with the CN group (see
Fig. 2), the dissociation energy ranges from 4.2 to 4.7 eV. This value
aligns nicelywith the higher value of E 0

a =4:36ð5Þ eV followingHansen’s
interpretation but is in tension with the above-mentioned experi-
mental results. A detailed exploration of the dissociation potential
energy surface, which is well outside the scope of this comment,
shouldbeperformed todetermine if lower-energyproducts exist, such
as those resulting from isomerization of the naphthalene moiety12,13.
Such pathways are known to be important for small PAHs14.

The second point in theMatters Arising concerns the relationship
between the measured dissociation rates R(t) and the intrinsic dis-
sociation rate coefficients kdiss(E), and is discussed at some length in
our follow-up paper15. This enters our analysis at Eq. 8 in [1], or Eq. 3
above in the re-analysis, which we fit to our data to determine Ea:

kdissðEðTzÞÞ � kBT
z

h
e�Ea=kBT

z
, ð5Þ

where T ‡ is obtained from the KER distributions. The rate coefficient
kdiss(E(T ‡)) is related to the measured rate R(t) by Eq. 9, in which we
implicitly assume:

RðtÞ= r0kdissðEðTzÞÞ: ð6Þ

We determine the constant of proportionality r0 empirically by a
fit of the experimental data with Eq. 2 in [1]: RðtÞ= r0t�1e�kct . This
approximation is motivated by the general principle that the most
probable rate coefficient for a reaction observed at time t is km = t−1.
Thus, in the absence of radiation (kc→0), the observed dissociation
rate R(t) = r0t−1 = r0km. As explained by Hansen in his Matters Arising
comment and elsewhere16, the reactants observed to decay at time t
have a narrow range of vibrational energies peaking at the energy Em
such that km = kdiss(Em) =R(t)/r0, as we assume. The effect of radiation,
which reduces the vibrational energy without yielding detectable
products, is to accelerate the decline in km by the factor e�kct . The
constant r0 includes all experimental factors (see Eq. 4 in [1]) and,
crucially, a dimensionless factor we call, in our follow-up paper15, γ0.
This factor can be described as the fraction of molecules in the
ensemble with vibrational energies E ≈ Em.

In his comment, Hansen elaborates on an expression (Eq. 3) for γ0,
which is proportional to the quantity g(Em), which is unknown but
assumed by Hansen to be constant. In the analysis in [1], we instead

make the assumption explained in the previous paragraph that the
most probable rate coefficient is given by kdissðEmÞt�1e�kct , and thus
that the relationship between observed rates and intrinsic rate coeffi-
cients is given by the experimentally determined constant r0. Even if
g(Em) could be directly determined from experiments without further
approximations, we would not expect such a nuanced adjustment of
themodel parameterization to give a significantly different value of Ea.

To summarize, we have re-analyzed our data as suggested in the
Matters Arising, leading to a higher activation energy for dissociation
than in our original article1. This would not change our main conclu-
sion, namely that hot 1-CNN cations are efficiently stabilized by fast
radiative cooling, and that this could help to explain the high abun-
dance of this molecule in space.

Data availability
The data generated in this study have been deposited in the Zenodo
database. Source data are provided in this paper.
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Table 1 | Dissociation energies for C10H7CN
+�!C10H6

+ +HCN

H atom Diss. energy (eV)

A 4.25

B 4.18

C 4.70

D 4.44

E 4.70

F 4.72

G 4.67

The letters indicate which H atom is removed (see Fig. 2).
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