
Demand- versus Supply-Side Climate Policies with a Carbon

Dioxide Ceiling

Thomas Eichner, Gilbert Kollenbach, Mark Schopf∗

Abstract

In a dynamic Hotelling model with a climate coalition and free-riding countries, we compare

demand-side and supply-side climate policies aimed at keeping the CO2 concentration below

a ceiling which corresponds to a global warming of 2 degrees Celsius. With the demand-side

policy the coalition caps its fuel consumption to adhere the ceiling. The associated alloca-

tion is intra-temporally distorted and inefficient. With the supply-side policy the coalition

purchases fuel deposits to postpone their extraction. When the coalition’s initial budget is

limited, both the fuel price and the fuel extraction paths can be discontinuous, the supply-

side policy causes an inter-temporal distortion and is inefficient. When we add coalition

formation, in an empirically calibrated economy the stable coalitions are medium-sized with

the demand-side policy, whereas the grand coalition is stable with the supply-side policy. If

the coalition acts strategically, the stable grand coalition implements first best.
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1. Introduction

In recent years, climate change and its economic consequences have received considerable

attention. There is a broad political consensus that the global temperature should not rise

by more than two degrees Celsius (UN, 2015). However, even if the parties that ratified

the Paris Agreement were to fully implement their nationally determined contributions, the

temperature would rise by about three degrees (UN, 2020). Thus, one can doubt whether

voluntary contributions to a global climate agreement could guarantee meeting international

climate goals. Efforts to mitigate climate change vary substantially across countries. While

the European Union committed to reduce greenhouse gas emissions by at least 40% by 2030,

compared to 1990 levels, other countries’ submitted targets are less ambitious. It is indeed

disturbing that worldwide carbon emissions are still increasing. If voluntary contributions

to climate agreements cannot stabilize the temperature at safe levels, it is worth considering

appropriate unilateral policies to combat global warming at manageable cost.

Unilateral climate policies can be targeted at the demand for fossil fuels (demand-side

policy) or at the supply of fossil fuels (supply-side policy) and aim at ensuring that the

carbon dioxide concentration remains below a critical level – a ceiling on the carbon dioxide

concentration. According to the IPCC (2013, chapter 8.5 and 10.3), it is very likely that more

than half of the global temperature increase between 1951 and 2010 is due to the increase

in greenhouse gas concentrations, and it is very likely that carbon dioxide accounted for

more than half of the radiative forcing of greenhouse gases between 1750 and 2011 (and

between 1980 and 2011). Thus, a ceiling on the carbon dioxide concentration is consistent

with both the two-degree target and the UN’s (1992) objective to stabilize greenhouse gas

concentrations “at a level that would prevent dangerous anthropogenic interference with the

climate system”.

The present paper is the first to investigate demand- versus supply-side policies in a

dynamic multi-country Hotelling model with a ceiling on the carbon dioxide concentration.

In that model fossil fuels are homogeneous and extracted at marginal costs which decrease

over time due to technological progress to focus on the development of scarcity rent and
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its change due to the various unilateral climate policies.1 Renewable energy is available as

perfect substitute to fossil fuels in energy consumption. There are two groups of countries, a

climate coalition which implements climate policies to combat global warming and the fringe

which is not concerned about climate change.

There is a large literature that analyzes optimal demand-side policies, particularly cap-

and-trade schemes and carbon taxes for adhering to the ceiling in dynamic one-country mod-

els. Chakravorty et al. (2006) investigate the implications of increasing or decreasing energy

demand over time on optimal abatement and renewable energy utilization. Chakravorty et al.

(2008) address the optimal extraction composition of two polluting nonrenewable resources

and find that this composition can change several times until the cleaner resource is ex-

hausted. Chakravorty et al. (2012) find that optimal energy prices can decline over time

at the ceiling and in the long run, if there is learning-by-doing in the renewable energy

sector. Henriet (2012) analyzes the optimal date of backstop invention. Finally, there

are several papers which consider carbon taxation in a dynamic two-country model with-

out a ceiling on the carbon dioxide concentration, e.g. Hoel (2011), Hassler and Krusell

(2012), Bretschger and Suphaphiphat (2014), Hémous (2016), Ryszka and Withagen (2016),

Fischer and Salant (2017), van der Meijden et al. (2018) and Kollenbach (2019).

The first papers that took up unilateral supply-side policies were Bohm (1993) and Hoel

(1994). Hoel (1994) analytically characterized the unilaterally optimal mix of supply- and

demand-side caps (or taxes) in a static model. Hoel’s (1994) model has been further re-

fined in numerical (static) analyses by e.g. Golombek et al. (1995) and Fæhn et al. (2017).

Hagem and Storrøsten (2019) derive the unilaterally optimal supply- and demand-side taxes

in a dynamic model with free-riders. They find that demand-side policies lead to intertem-

poral and within-period leakage, which creates a green paradox, whereas supply-side policies

lead to negative leakage.

A growing literature has argued that supply-side policies are preferable to demand-side

policies (Collier and Venables 2014, Faehn et al., Asheim et al. 2019). Harstad (2012) even

1This is a common assumption in the ceiling literature. See, e.g., Amigues et al. (2011), Amigues et al.
(2014), Chakravorty et al. (2006), Chakravorty et al. (2008), Henriet (2012), Lafforgue et al. (2008; 2009)
and Smulders and Van der Werf (2008).
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has shown that a supply-side policy can implement the first best. His supply-side policy

consists of purchasing fossil fuel deposits and implements first best by assuming Coasian

bargaining in the deposit market, which removes trade and, thus, strategic incentives in

the fuel market. To eliminate strategic incentives, not only deposits for preservation, but

also those for extraction are traded. Recent literature has revisited this theory under alter-

native representations of fossil fuel markets (e.g., Eichner and Pethig 2017a, 2017b). Effi-

ciency is violated if the Coasian bargaining is replaced by deposit trade at a uniform price

(Eichner and Pethig, 2017b), and efficiency may be violated if deposits are only purchased

for preservation purposes, but not for extraction (Eichner and Pethig, 2017a).

We add to this important policy discussion by showing that, on the one hand, (i) in

a setting with an emissions ceiling and with homogeneous2 fossil fuels following Hotelling

dynamics, unilateral supply-side policy is unable to decentralize the first best when the

coalition’s initial budget is not enough to purchase all deposits at the outset, but, on the

other hand, that (ii) once we add coalition formation, supply-side policy is actually predicted

to result in a stable grand coalition, whereas demand-side policy is predicted to result in

medium-sized stable coalitions. If the coalition acts strategically, the grand coalition with

supply-side policy achieves the first-best. In any case, allowing for transfers between countries

the transition from the stable equilibrium with demand-side policy to the stable equilibrium

with supply-side policy is a Pareto improvement. In sum, the results add further support

for supply-side policy under both a different policy objective (emissions ceiling) and another

fossil fuel market representation (homogeneous Hotelling dynamics) than the prior literature

has considered.

2In contrast to Harstad (2012) and Eichner and Pethig (2017a; 2017b), whose fuel deposits are hetero-
geneous and economically exhausted, we consider homogenous fuel deposits and physical exhaustion. The
assumption of homogeneous fossil fuels is in line with Chakravorty et al. (2006), Chakravorty et al. (2008)
and Hoel (2011). However, whether fossil fuels are homogeneous or heterogeneous is an empirical question.
According to IEA (2013, pp. 228), the extraction costs of fuel indeed depend on the characteristic of the
deposit. However, considerable amounts can be extracted for almost constant unit costs: 1120 billion barrel
oil in North Africa and the Middle East can be extracted for 25$ per barrel or less. 220 trillion cubic meters
of conventional gas have extraction costs of 9$ per MBtu or less. Approximately 600 billion tonnes of coal
can be extracted for 3$ per MBtu or less. Using the conversion factors of IPCC (2006, chapter 2, table
2.2) shows that the corresponding CO2 emissions amount to more than 2621Gt. According to IPCC (2018,
chapter 2, Tab. 2.2), these emissions imply a violation of the 2◦C climate target.
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When analyzing the unilaterally optimal demand- and supply-side policies,3 we charac-

terize the extraction and consumption paths of fossil fuels and the evolution of backstop

and total energy, and identify the different distortions caused by these policies. The climate

coalition may behave as a price-taker or may act strategically in the fuel market and de-

posit market. The associated policy is denoted as competitive climate policy in the former

and as strategic climate policy in the latter case. In the analysis of strategic climate policy,

we follow Lewis and Schmalensee (1980), Benchekroun et al. (2009), and Benchekroun et al.

(2010) and restrict our analysis to the open-loop solution.4

If the climate coalition applies a demand-side policy, the social climate costs are not

internalized in the fringe. If the coalition is a price taker in the fuel market, the climate

coalition limits its fuel consumption below the fringe’s fuel consumption to adhere the ceiling.

The fringe’s fuel consumption is inefficiently high until the ceiling is no longer binding, and

the coalition’s fuel consumption is inefficiently low when the ceiling is binding. The different

fuel consumptions cause an intra-temporal distortion. With the exception of linear energy

demands, the demand-side policy also causes an inter-temporal distortion and the associated

fuel extraction path does not coincide with the efficient extraction path. The coalition bears

the burden of complying with the ceiling by dispensing with fuel consumption. In case of

strategic demand-side policy, the strategic effects weaken [can strengthen] the intra-temporal

distortion, if the coalition exports [imports] fuel.

If the climate coalition applies a supply-side policy and is a price taker in the fuel market

and deposit market, a coalition in general5 buys deposits successively until it owns the

entire fuel stock before the ceiling becomes binding. As long as the coalition buys deposits

3A prominent example for the supply-side policy, in especially for the policy of purchasing deposits to
prevent their extraction, is the Yasuni-ITT initiative, proposed in 2007 by the Ecuadorian President Correa
which was built on the idea that Ecuador leaves oil underground in the Ecuadorian Yasuni National Park,
a UNESCO biosphere reserve, in exchange for financial contributions from the international community.

4According to Benchekroun et al. (2009), perfect future markets for resources can justify commitment.
A comprehensive review of dynamic games of exhaustible resources is given by Van Long (2011). Wirl
(1994), Wirl and Dockner (1995), Tahvonen (1996), and Rubio and Escriche (2001) consider polluting non-
renewable resources. However, to the best of our knowledge, this is the first paper that investigates a game
with one player imposing a ceiling on the stock of emission and natural decay of emissions. As pointed out
by Lewis and Schmalensee (1980), feedback equilibria are often intractable, so that this task is left for future
research.

5An exception is the unrealistic case that the coalition’s initial budget is unlimited and it can buy all
deposits at the outset.
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only firms supply fossil fuel. Since firms do not account for the climate costs of emissions,

extraction is inefficiently high and there is an inter-temporal distortion. At the time when

the coalition has purchased the last deposit, both the fuel price and fuel extraction path

exhibit a jump. With competitive supply-side policy, fuel extraction is inefficiently high

in the beginning, and inefficiently low at the end. With strategic supply-side policy, the

strategic effects may weaken or strengthen the inter-temporal distortion. If strategic effects

are positive, the equilibrium qualitatively has the same properties as the equilibrium with

the competitive supply side policy. If strategic effects are negative and sufficiently strong,

the fuel extraction path is smooth but still inefficient.

The previously mentioned results hold for two exogenously given groups of countries.

Finally, in order to compare the demand-side policy with the supply-side policy we endogenize

coalition formation, i.e. we analyze the size of the stable climate coalition with demand-side

policy and supply-side policy, respectively, when countries decide to join or to stay outside

the climate coalition and conclude a long-term contract.6 A coalition is stable if no coalition

country has an incentive to leave the coalition (internal stability) and no fringe country has

an incentive to join the coalition (external stability). In case of competitive demand-side

policy, the climate coalition is just so large that the ceiling is adhered to. In an empirically

calibrated economy, with demand-side policy the stable coalition is medium-sized, whereas

with supply-side policy the grand coalition is stable. If the grand coalition strategically uses

its supply-side policy, it purchases the complete fossil stock at the outset and implements the

efficient allocation. Comparing both climate policies, the global welfare is higher in the stable

equilibrium with competitive [strategic] supply-side policy than in the stable equilibrium with

competitive [strategic] demand-side policy.

The remainder of the paper is organized as follows: Section 2 outlines the model. Sec-

tion 3 characterizes the (constrained) social optimum as a benchmark. Section 4 introduces

6Our paper also contributes to the large literature on climate treaties. Economists have analyzed in-
ternational environmental agreements for a while both in static and dynamic models. In this literature
countries decide in a pre-commitment game whether to join the coalition or to stay outside and act as
fringe country, and the stability of the climate coalition is analyzed. Reviews of the literature are given by
Finus (2001) and Barrett (2003) and some recent outstanding contributions applying dynamic games are
Battaglini and Harstad (2016) and Kováč and Schmidt (2021).
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the competitive economy in the absence of any regulation (laissez-faire economy). Section

5 analyzes the competitive demand-side policy and Section 6 the competitive supply-side

policy. Section 7 turns to demand-side and supply-side policies when the coalition acts

strategically in the fuel market and deposit market. Section 8 briefly considers the grand

coalition. Section 9 investigates coalition formation in an empirically calibrated economy.

Section 10 concludes.

2. The model

This section presents the assumptions of the model that will be maintained throughout

the paper. Consider an economy with two (groups of) countries, A and B. Country A is

the climate coalition and country B is a (representative) free rider. We refer to the latter

also as fringe. Let ni denote both the size and the population of country i = A,B. W.l.o.g.

total population is normalized to one, such that nA + nB = 1. The instantaneous utility of

country i = A,B is given by

(1) Ui(xi(t) + qi(t)) + gi(t) = niU

(
xi(t) + qi(t)

ni

)
+ gi(t)

with U ′ > 0 and U ′′ < 0. Each country consumes energy and a consumer good. At each

point in time, country i’s good consumption is gi(t). In (1), xi(t)+qi(t)
ni

is energy consumption

per capita in country i. Energy is generated from fossil fuels, fuel for short, and a renewable

(backstop) such as solar energy, wind energy or hydro power. At each point in time, the

consumption of fuel and backstop in country i is denoted by xi(t) and qi(t), respectively.

Both kinds of energy are perfect substitutes.

Each country i = A,B is endowed with fuel and with the consumer good. Country i’s

good endowment7 is K̄i and its fuel endowment is υiS(0), where υi ∈ (0, 1) is the share of

country i, υA + υB = 1, and S(0) denotes the global fuel endowment. The evolution of the

7Our model can be microfounded by production functions with a composite production factor, say land
or labor, as input. In that case K̄i can also be interpreted as country i’s factor endowment. For more details
we refer to Appendix A.1.
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global fuel stock over time is given by8

(2) Ṡ = −s,

where s(t) is fuel extraction at time t. Fuel extraction at time t causes the cost C(t)s(t).

The marginal extraction cost C(t) is constant at time t. Exogenous technological progress

decreases the marginal extraction costs over time with the rate χ, i.e.

(3) C(t) = C0e
−χt,

where C0 is the initial marginal extraction cost.

Burning fuel unleashes CO2 emissions, which accumulate in the atmosphere according

to9

(4) Ż = s− γZ.

In (4), Z denotes the emission stock, γ > 0 a natural regeneration rate and Z(0) ≥ 0 the

emission stock endowment. CO2 accumulation gives rise to global warming. In line with the

ongoing climate protection discussion, in particular the Paris Agreement, we assume that

climate damages are controllable, if global temperature does not increase by more than 2◦C

above its pre-industrial level. This climate target translates into a ceiling Z̄ on the emission

stock, i.e.

(5) Z̄ − Z(t) ≥ 0

must hold at every point in time. Following Chakravorty et al. (2008) and Lafforgue et al.

(2009), we assume that the ceiling represents a discrete damage function with negligible

damages below and prohibitively high damages above the ceiling.10

8We use the notation ż to indicate the derivation of an arbitrary variable z with respect to time t, i.e.
ż = ∂z

∂t
. The growth rate 1

z
∂z
∂t

is denoted by ẑ. For the sake of simplicity, the time index t is omitted
whenever there is no risk of confusion.

9The equation of motion (4) is widely used in the literature, e.g. by Chakravorty et al. (2006),
Tsur and Zemel (2009) and Kollenbach (2015a).

10Climate scientists argue that above the critical temperature increase of 2◦ the climate system reaches
tipping-points, which initiate non-linear and irreversible processes leading to unbearable consequences for
mankind, cf. Graßl et al. (2003). We neglect damages below the ceiling to sharpen our focus on the ef-
fects of the ceiling. Amigues et al. (2011) and Dullieux et al. (2011) assume a damage function that re-
flects manageable damages from emission stocks below the ceiling. In the following, we assume in line
with Chakravorty et al. (2006), Chakravorty et al. (2008), Lafforgue et al. (2009), Chakravorty et al. (2012),
Kollenbach (2015a) and Kollenbach (2015b) that the ceiling is exogenously given.
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Next to the extraction of fuel, each country i = A,B generates renewable energy. The

production locations of renewable energy can be ranked according to their costs and the

cheapest locations are used first. Thus, the renewable energy cost of country i

(6) Mi(qi) = niM

(
qi
ni

)
,

is increasing and convex11 in the per-capita renewable energy generation qi
ni
. We assume that

M satisfies M ′
i(0) = 0.

The description of the model is completed by the consumer good constraint

(7) gA(t) + gB(t) =
∑

i

[
K̄i −Mi(qi(t))− υiC(t)s(t)

]

and the fuel constraint

(8) s = xA + xB.

In (7), K̄i −Mi(qi(t)) − υiC(t)s(t) is country i’s possibility frontier of transforming energy

into the consumer good. Both the consumer good and fuel are internationally mobile as

expressed by (7) and (8).

The dynamics of fuel depletion and CO2 accumulation divide the time line in four different

phases, as illustrated in Fig. 1.

0 t1 t2 T

t

Phase I Phase II Phase III Phase IV

Figure 1: Timeline and sequence of phases

For t ∈ [0, t1) the economy is in the pre-ceiling Phase I. During that phase the ceiling is

non-binding but CO2 accumulates in the atmosphere. The ceiling is reached at t1 and the

11The convex cost function can be justified by the rising marginal opportunity cost of access to the land
in the deployment process of renewable production locations. Convex costs of renewable energy production
are also assumed by Grafton et al. (2012), Fell et al. (2017), and Hoel (2020). Analogously to the marginal
extraction costs, backstop costs may decrease because of technological progress. Quantitatively, decreasing
backstop costs favor an increasing backstop production and a decreasing fossil fuel extraction. However, this
does not change our results qualitatively, so that we abstract from technological progress in the backstop
sector for the sake of simplicity.
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economy switches into the ceiling Phase II. During Phase II the ceiling binds and limits fuel

extraction. At t2 fuel becomes too scarce so that the ceiling becomes non-binding and the

economy switches into the post-ceiling Phase III. This phase ends with the exhaustion of

fuel at time T . For all t ≥ T , the economy is in Phase IV and only renewable energy is used.

Def. 1 summarizes the time phases.

Definition 1.

(i) Phase I — t ∈ [0, t1): Ceiling is non-binding but will bind in the future.
(ii) Phase II — t ∈ [t1, t2): Ceiling binds.
(iii) Phase III — t ∈ [t2, T ): Ceiling is non-binding and will not bind in the future.
(iv) Phase IV — t ∈ [T,∞): Only the backstop is used.

3. The social optimum

In this section we characterize as a benchmark the (constrained) social optimum.12 The

social planner maximizes the intertemporal sum of utility
∫∞

0
e−ρt{

∑
i[Ui(xi(t)+qi(t))+K̄i−

Mi(qi(t))]−C(t)s(t)} dt subject to the limited fuel stock, the CO2 ceiling and s = xA + xB.

ρ > 0 is the time preference rate. From the first-order conditions we obtain13

U ′

(
xi + qi
ni

)
= C + τ + θ − ζxi

= M ′

(
qi
ni

)
− ζqi,(9)

τ(t) = τ0e
ρt,(10)

θ̇ = [ρ+ γ]θ − µ,(11)

where the costate variable τ is the scarcity rent of fuel, τ0 is the initial scarcity rent, and

the costate variable θ represents the social climate costs of emissions. µ is the multiplier

associated with the ceiling, and ζxi
and ζqi are the multipliers of the non-negativity conditions

xi ≥ 0 and qi ≥ 0.

Equation (9) represents the rule for the efficient allocation of energy. It requires the

marginal benefit of energy consumption in country i = A,B (U ′
i = U ′) and the marginal

social cost of energy production to be equal. In case of fuel, the marginal social cost consist of

the marginal extraction cost C, the scarcity rent τ , and the social climate costs of emissions

12The social optimum is constrained, because the social planner takes the ceiling as exogenously given,
see also footnote 10.

13The current-value Lagrangian is solved in Appendix A.2.
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θ. In case of backstop, the marginal cost is purely private and given by M ′
i = M ′. For

an arbitrary point of time t ∈ [0, T ), efficient energy consumption in country i = A,B is

illustrated in Fig. 2.

qi(t)
ni

xi(t)+qi(t)
ni

xi(t)
ni

τ(t) + θ(t)

qi(t)
ni

, xi(t)+qi(t)
ni

C(t)

C(t) + τ(t) + θ(t)

M ′

U ′

q̃i
ni

Figure 2: Efficient energy consumption in country i = A,B

Total energy consumption xi(t) + qi(t) is determined by the intersection of the marginal

utility curve U ′ and the horizontal line C(t)+τ(t)+θ(t) which represents the marginal social

cost of fuel. Whereas it is efficient to consume backstop energy at any point in time, it is only

efficient to consume fuel if the marginal social cost of fuel falls short of the marginal backstop

cost M ′
(

q̃i
ni

)
. In that case, the intersection of the marginal backstop cost curve M ′ with the

horizontal line C(t) + τ(t) + θ(t) determines backstop utilization qi(t) and fuel consumption

is given by the difference between total energy consumption and backstop use.14

While the marginal utility function and the marginal backstop cost function do not

14The energy transition is not the focus of the paper. The assumption M ′(0) = 0 is a short-cut to get an
energy transition from the beginning, and not to run into a out of focus discussion of the characteristics of
the efficient allocation and the climate policies throughout the different phases, depending on whether only
fossil energy or both energies are consumed.
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depend on time, the marginal social cost of fuel develops in accordance with (3), (10) and

(11). The marginal extraction costs continuously decrease over time with the rate χ, whereas

the scarcity rent grows at the constant rate τ̂ = ρ. The growth rate of the social climate

costs θ depends on the time phase. During Phase I the ceiling is not binding (µ = 0) and θ

evolves in time according to θI(t) = θ0e
(ρ+γ)t. Two opposing effects determine the evolution

of fossil fuel and backstop utilization. On the one hand, the increasing scarcity rent and the

increasing social climate costs ceteris paribus reduce [raise] fossil fuel extraction [backstop

use]. On the other hand, technological progress reduces marginal extraction costs and ceteris

paribus leads to a higher [less] fuel extraction [backstop use]. If the latter effect, which is

called technology effect, dominates, fuel extraction increases. However, the technology effect

is the weaker the more advanced the extraction technology, and it can only be dominant

until the switching time ts.15 In Appendix A.2, we show that a binding ceiling at time t1

implies a decreasing fossil fuel extraction path at the end of Phase I. Therefore, fossil fuel

extraction either decreases for t ∈ [0, t1) (χ = 0 is sufficient), or it increases for t ∈ [0, ts)

and decreases for t ∈ [ts, t1).

In Phase II, the ceiling binds and fuel extraction is constant at rate s̄ := γZ̄. Fuel

consumption is divided over both countries according to x̄A = nAs̄ and x̄B = nB s̄ and is

time-invariant. The marginal social costs of fuel C+ τ + θ are also constant during Phase II.

The social climate costs θ(t) are positive during both Phase I and Phase II but they decrease

to zero at the end of Phase II, because the ceiling is never reached again for t ≥ t2.
16 Solving

(11) and making use of θ(t2) = 0 yields

(12) θII(t) =

∫ t2

t

µ(j)e−(ρ+γ)(j−t) dj,

where µ(j)e−(ρ+γ)(j−t) represents the present value opportunity costs at time j > t of an

additional fuel unit used at time t. If the ceiling binds, the social climate costs at time t are

given by the discounted sum of the opportunity costs of the ceiling.

15Strictly speaking, ts denotes a point in time, where the dynamics of C(t) + τ(t) + θ(t) switch from
d[C(t)+τ(t)+θ(t)]

dt > 0 to d[C(t)+τ(t)+θ(t)]
dt < 0 or vice versa. Because a switch of the dynamics implies a switch

in the evolution of fossil fuel extraction, ts denotes the (local) extrema of the fossil fuel extraction path.
16Because the ceiling is non-binding for all t ≥ t2 and we abstain from climate damages below the ceiling,

the social climate costs are zero.
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In Phase III and IV, the ceiling never binds so that both µ and θ equal zero. The marginal

social cost of fuel continuously increases, because ρτ(t) > χC(t) for t > t2 > ts. At time T ,

it is equal to M ′
(

qi(T )
ni

)
= M ′

(
q̃i
ni

)
with the consequence that the social planer stops fuel

extraction. The path of fuel extraction is summarized in

Lemma 1. Fossil fuel extraction either decreases or peaks during Phase I, is constant during
Phase II, decreases during Phase III, and expires at the end of Phase III.

The socially optimal evolution of marginal utility and the corresponding fuel extraction

path are illustrated in Fig. 3.17 Phase I lasts from t = 0 to t∗1, Phase II from t∗1 to t∗2,

Phase III from t∗2 to T ∗ and Phase IV begins at T ∗, where the asterisk (∗) is used to mark

the socially optimal values.18 Consider Phase I. As the ceiling is not binding, U ′
i equals

C + τ + θ, where τ and θ grow monotonically over time, while C monotonically decreases.

At early points in time, the technology effect dominates, so that fossil fuel extraction peaks

before t∗1. After the peak, fuel extraction decreases and the emission stock increases until

the end of Phase I. At t = t∗1 the ceiling is reached and binds until t = t∗2. In Phase II

fuel extraction is fixed at s̄ and the marginal utility is constant for both countries. As from

t = t∗2 the ceiling is non-binding and θ equals zero, so that U ′
i equals the sum of marginal

extraction cost C and the scarcity rent τ . At t = T ∗ this sum equals the marginal backstop

cost of qi(T ), fuel extraction expires and energy generation relies on the backstop only.

4. The laissez-faire economy

In this section we turn to the laissez-faire economy. In that economy there are perfectly

competitive international markets for fuel with price p, deposits with price py, the consumer

good19 with price 1, and perfectly competitive national markets for renewable energy with

price pqi in country i = A,B in the absence of any government intervention or regulation.

The laissez-faire economy can only be studied for Phase I, i.e. before the ceiling binds. We

assume that consumers directly purchase fuel from the fuel firm at the world market price

17The numbers in the Figures 3 - 7 stem from our calibration presented in Appendix B. Lemma A.2 proves
that the evolution paths are continuous.

18The costates τ and θ are part of the social planner’s solution of the optimization problem and, therefore,
socially optimal by definition.

19The consumer good is chosen as numéraire.
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U ′

i in $/t

s in Mt

U ′
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Figure 3: Evolution of U ′
i and fuel extraction over time at the social optimum

p. In case of renewable energy, inappropriate cross-border infrastructure, conversion losses

of long-range energy transport as well as high transportation costs support the assumption
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of domestic markets for renewables with prices pqi. In each country, consumers are identical

and backstop firms are identical. W.l.o.g. we consider a representative consumer and a

representative backstop firm in country i = A,B. In addition, there is a single representative

fuel firm.

The backstop firm of country i = A,B maximizes its profit Πi(t) = pqi(t)qi(t)−Mi(qi(t))

with respect to qi(t). The first-order condition

(13) M ′

(
qi(t)

ni

)
= pqi(t)

equates the marginal backstop cost to the renewable energy price pqi of country i. The fuel

firm maximizes its intertemporal profit20
∫∞

0
e−ρtΠF (t) dt with respect to fuel and deposit

supply, subject to a limited fuel stock. When selling deposits the fuel firm sells the property

right of extracting the fuel stored in these deposits, i.e. it sells property rights on mines, oil

or gas fields. At each point of time, the profit ΠF (t) = p(t)sF (t) + py(t)yF (t) − C(t)sF (t)

consists of the revenues p(t)sF (t) from selling fuel and the revenues [costs] py(t)yF (t) > [<]0

from selling [of purchasing] deposits diminished by the extraction costs C(t)sF (t). The

corresponding first-order conditions yield the fuel supply correspondence21

sF (t) ∈ [0, S(t)], if p(t) = C(t) + τF (t),(14)

the deposit supply correspondence

yF (t) ∈ [0, S(t)], if py(t) = τF (t)(15)

and the Hotelling-rule

τF (t) = τF0e
ρt,(16)

with τF0 as the initial private scarcity rent.22 (14) shows that the firm is willing to sell

any desired amount of fuel if the fuel price p(t) equals the sum of extraction costs C(t) and

20In the market economy there exists a capital market (not modeled here) with an interest rate that
equilibrates the capital market. We assume that the interest rate is equal to the social discount rate.

21(14) - (16) are derived in Appendix A.3
22To distinguish between the efficient costates of Section 3 and the costates in the competitive economy,

we add subscripts to the latter. Thus, τF refers to the scarcity rent of the representative fuel firm, while τ
denotes the efficient scarcity rent.
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scarcity rent τF (t). If the fuel price falls short of this sum, the firm does not sell any fuel at

time t. In contrast, the firm sells all remaining reserves if the fuel price exceeds C(t)+ τF (t).

In a similar manner, all remaining deposits are sold if the deposit price exceeds the scarcity

rent. If the deposit price equals the scarcity rent, the firm is willing to sell any desired

amount of deposits, and it would like to acquire deposits if the deposit price falls below the

scarcity rent. (16) is the well-known Hotelling-rule, i.e. the scarcity rent grows over time at

the time preference rate ρ.

Consider the energy demand in the laissez-faire economy. The representative consumer

of country i = A,B maximizes her utility (1) subject to the budget constraint p(t)xi(t) +

pqi(t)qi(t)+gi(t) = ω. Her income ω = K̄i+Πi(t)+viΠF (t) consists of the exogenous income

K̄i, the profit Πi(t) of the backstop firm in country i and the share vi of the fuel firm’s profit

ΠF (t). The first-order condition of utility maximization

(17) U ′

(
xi(t) + qi(t)

ni

)
= p(t) = pqi(t)

determines country i’s demand for fuel and backstop energy in case of an interior solution.

Eq. (17) requires at the margin that the benefit of consuming energy in country i equals the

international fuel price and the national backstop energy price of country i.

Next, consider the equilibrium of the fuel and backstop energy markets. Assuming an

interior solution with respect to fuel supply, i.e. p(t) = C(t) + τF (t), the equilibrium of the

fuel market and the national backstop energy market in country i = A,B at some point in

time t can be illustrated as in Fig. 2. The intersection of the marginal utility curve U ′ with

the horizontal p(t) = C(t)+τF (t) determines total energy consumption in equilibrium, while

backstop consumption is in equilibrium if the fuel price p(t) equals the marginal backstop

cost. Formally, fuel and backstop consumption of country i = A,B are given by

Di(p(t)) =





niU
′−1(p(t))− niM

′−1(p(t)), if p(t) < M ′
(

q̃i
ni

)

0, otherwise

,(18)

Qi(p(t)) =niM
′−1(p(t)),(19)

with p(t) = C(t) + τF (t) and

(a)
dDi

dp
=

ni

U ′′
−

ni

M ′′
< 0, (b)

dQi

dp
=

ni

M ′′
> 0.(20)
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Fuel consumption decreases, whereas backstop consumption increases in the fuel price p.

Since the increase of backstop consumption cannot completely compensate the corresponding

decrease of fuel consumption, total energy demand decreases in the fuel price p.

5. Competitive demand-side policy

In case of demand-side climate policy, the climate coalition unilaterally caps its fuel

consumption. In the economy with unilateral demand-side policy, backstop and fuel supply

are determined by (13), (14) and (16). The fringe’s23 fuel and backstop energy demand is

given by (18) and (19), and the consumer’s demand for backstop energy in the coalition is

characterized by U ′
A = pqA. The coalition’s optimal fuel cap follows from maximizing the

welfare
∫∞

0
e−ρt {UA(xA(t) + qA(t)) − p(t)xA(t) − pqA(t)qA(t) + K̄A + υAΠF (t) + ΠA(t)} dt

with respect to xA, given the CO2 ceiling. When doing so, the climate coalition neglects its

influence on the instant fuel price p and the scarcity rent τF . In other words, the coalition

is a price taker in the fuel market. The first-order condition24

U ′
A = p(t) + θA(t)(21)

characterizes the coalition’s optimal fuel cap which is set such that the coalition’s marginal

utility equals its consumer price. The consumer price is composed of the fuel price p and

the coalition’s climate costs of emissions θA.
25

In Phase I the ceiling is not binding but the emission stock becomes larger. The ceiling

binds between t1 and t2 implying θA(t) > 0 for t ∈ [0, t2). In contrast, θA = 0 during

Phase III and IV, because the ceiling never binds for t ≥ t2. It holds U ′
A > p in Phase I

and II and U ′
A = p in Phase III. Since the sum of fuel extraction costs and scarcity rent

C(t)+ τF (t) exceeds the marginal backstop cost M ′
(

q̃i
ni

)
for all t ≥ T , the economy’s energy

use rests on renewable energy in Phase IV. In Appendix A.4 we prove

Proposition 1. Suppose the coalition applies a demand-side climate policy and is a price
taker in the fuel market.

23Throughout the paper the fringe’s government is inactive. In particular, we abstract from energy security
within the fringe which is beyond the scope of the paper and left for future research.

24We add the subscript A to the co-states to differentiate them from the socially optimal co-states from
Section 3. See Appendix A.4 for the complete solution of the coalition’s optimization problem.

25The costate variable θA develops over time as in (11).
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(i) In Phase I and II fuel and total energy [backstop] consumption per capita are larger
[smaller] in the fringe than in the coalition. In Phase III and IV fuel and backstop
consumption per capita in both countries coincide.

(ii) Fuel and total energy [backstop] consumption in the fringe increases [declines] until
tsB ∈ [0, t2) and declines [increases] afterwards.

(iii) The coalition’s fuel and total energy [backstop] consumption increases [declines] until
tsA ∈ [0,min{tsB, t1}) and declines [increases] for t ∈ [tsA, t1). It increases [declines]
during Phase II if tsB < t1, and it declines [increases] for t ∈ [t1, t

s
B) and increases

[declines] for t ∈ [tsB, t2) if t
s
B > t1. Finally, it declines [increases] during Phase III.

(iv) Fuel and backstop consumption in both countries are continuous for all points in time.

The evolution of both marginal utility and fuel consumption per capita for the cli-

mate coalition and the fringe are depicted in Fig. 4. Phase I lasts from period 0 to t1.

In Phase I the marginal utility within the coalition exceeds the fringe’s marginal utility(
U ′
(

xA+qA
nA

)
= p+ θA > p = U ′

(
xB+qB

nB

))
such that the fringe consumes per capita more

fuel than the coalition.26 The demand-side policy drives a wedge between consumer prices

and a wedge between per-capita fuel consumption in both countries. The coalition limits

its per-capita fuel consumption below the fringe’s per-capita fuel consumption in order to

adhere the ceiling. The evolution of the consumer prices is determined by the technolog-

ical progress, the growing scarcity rent and the evolution of the coalition’s climate costs.

In case of the coalition, the technology effect is dominated from the outset, so that per-

capita fuel [backstop] consumption in the coalition decreases [increases] during Phase I. For

the fringe, the technology effect dominates during the complete Phase I and per-capita fuel

[backstop] consumption continuously increases [decreases]. The increasing fuel consumption

of the fringe outweighs at early periods, so that total fuel extraction peaks at ts.

At time t1, the CO2 ceiling is reached and the economy switches into Phase II, which

lasts until t2. At the ceiling, aggregated fuel consumption s̄ is constant. Because the technol-

ogy effect dominates the scarcity rent effect until tsB, the fringe’s per-capita fuel [backstop]

consumption increases [decreases] for t ∈ [t1, t
s
B], so that the coalition’s fuel cap has to de-

crease to adhere the ceiling. To put it differently, the wedge between the consumer prices

still increases during this time. From tsB on, the fringe’s consumer price increases due to the

26Fuel consumption in the coalition is given by DA(p(t) + θA(t)), while fuel consumption in the fringe is
given by DB(p(t)).
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increasing scarcity rent such that the fringe’s fuel consumption decreases and its backstop

consumption increases which allows the coalition to increase its fuel cap. For t ∈ [tsB, t2) the

consumer price wedge decreases and at time t2 it vanishes completely.

Actually, the scarcity of fuel renders the CO2 ceiling irrelevant for all t ≥ t2, because the

high fuel price induces consumers to reduce their fuel consumption to levels that no longer

endanger the ceiling. The ceiling becomes non-binding at time t2 and the economy switches

into Phase III, which lasts until time T . The climate costs θA of fuel use are nil for all t ≥ t2,

so that the coalition and the fringe face the same consumer price and their fuel consumption

per capita coincide. Within Phase III, fuel [renewables] consumption decreases [increases]

in both countries until the fuel consumption is abandoned at time T . For all t ≥ T , the

economy is in Phase IV and relies completely on renewable energy.

Next, we compare the allocation of the demand-side policy with the socially optimal

allocation. In Appendix A.4 we establish

Proposition 2. Suppose the coalition applies a demand-side climate policy and is a price
taker in the fuel market.
(i) The demand-side policy is inefficient.
(ii) In Phase I and II the fuel price path does not fully internalize the climate costs of

emissions.
(iii) The fringe’s fuel consumption is higher than at the social optimum for t ∈ [0,max{t1, t∗1}).

The coalition’s [fringe’s] fuel consumption is lower [higher] than at the social optimum
when the ceiling is binding.

(iv) If τF0 > [<] τ0, then cumulative fuel extraction
∫
sF (t) dt is higher [lower] than at the

social optimum for t ∈ [0,max{t1, t∗1}) and lower [higher] than at the social optimum
for t ∈ [min{t2, t∗2},max{T, T ∗}). The switches to Phase III and IV occur earlier [later]
than at the social optimum.

Comparing the fuel consumption path with the socially optimal one reveals an inter-

temporal and an intra-temporal distortion caused by the demand-side climate policy. In

Phase I and II, the coalition accounts for the climate costs θA whereas the fringe does not

account for any climate costs of emissions. Moreover, the coalition is not able to control the

fringe’s fuel consumption. As a consequence, the fringe’s fuel consumption is inefficiently

high. In Phase II the ceiling is binding, country A sacrifices fuel consumption in order to

adhere the ceiling and its fuel consumption is inefficiently low. For t ∈ [0, t2) the demand-side

climate policy causes an intra-temporal distortion by violating xA(t)
nA

= xB(t)
nB

.
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The relationship between the efficient scarcity rent τ0 and the scarcity rent τF0 in the

economy with the demand-side policy provides the intuition for the inter-temporal distortion.

In Phase II fuel extraction is s̄, both at the social optimum and with the demand-side policy.

Next, consider Phase I. Ceteris paribus, fuel demand is higher in the economy with the

demand-side policy than in the social optimum, which has a positive effect on the scarcity

rent τF0. To compensate the fringe’s excess consumption, the coalition sharpens its climate

policy. This, in turn, depresses demand and, therefore, has a negative effect on τF0. The

total effect is indeterminate in sign. If τF0 > [<]τ0, the energy price is inefficiently high

[low], cumulative fuel extraction is inefficiently high [low] in Phase I, and the transition

from Phase III to Phase IV occurs earlier [later] with the demand-side policy than at the

social optimum. The demand-side policy causes an inter-temporal distortion by antedating

[delaying] fuel extraction.

To shed more light on the opposing effects with respect to the inter-temporal distortion,

we turn to specific functions.27 In the special case of linear demand functions, the inter-

temporal distortion vanishes, i.e. τF0 = τ0, t1 = t∗1, t2 = t∗2, T = T ∗ and cumulative fuel

extraction is efficient in all phases. For linear demand functions the non-internalized climate

costs in the fringe are exactly offset by an over-internalization in the coalition. It remains

the intra-temporal distortion that leads to inefficiently low fuel consumption of the coalition,

and inefficiently high fuel consumption of the fringe in Phase I and II.

When utility functions exhibit hyperbolic absolute risk aversion and demand functions

become convex, the over-internalization in the coalition becomes more pronounced to ensure

that the ceiling is not violated. Furthermore, the fuel consumption paths become flatter,

which postpones the switch to Phase II, i.e. t1 > t∗1, and reduces fuel extraction in Phase I.

This depresses the scarcity rent, i.e. τF0 < τ0, which postpones the switches to Phase III and

IV, i.e. t2 > t∗2 and T > T ∗. Intuitively, the coalition’s climate policy must overcompensate

the fringe’s free-riding behavior to adhere the ceiling, which reduces global fuel demand and

thereby lowers the value of the exhaustible resource. The effects are reversed, when the

demand functions become concave.

27The associated analysis can be found in Appendix A.4.
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6. Competitive supply-side policy

In case of the supply-side policy, the climate coalition accumulates a state-owned fuel

stock by purchasing fuel deposits, and extracts later on fuel from these deposits to sell it to

the consumers.28 The state-owned fuel stock SA evolves in time according to

(22) ṠA = −sA + yA.

Purchased deposits are denoted by yA, while sA refers to the coalition’s fuel supply. To

distinguish between sA and sF we refer to the latter as private fuel supply. The coalition’s

supply-side policy consists of purchasing deposits, yA(t), and supplying fuel, sA(t). At every

period t, the coalition’s fiscal budget is given by

(23) G(t) = py(t)yA(t)− [p(t)− C(t)]sA(t),

where py(t)yA(t) are the expenditures for purchasing deposits and [p(t)−C(t)]sA(t) are the

coalition’s profits from selling fuel. The fiscal budget is financed by the lump sum tax G(t)

imposed on the coalition’s consumers.29 Due to the quasi-linear utility function (1), an (ex-

ogenous) increase in the lump sum tax reduces the consumers’ equilibrium good consumption

but leaves the consumers’ equilibrium energy consumption unchanged. Assuming the coali-

tion’s government considers a minimum level of the consumer good ḡA(t) as necessary to

secure a subsistence level for the consumers, the lump sum tax G(t) is constrained by

(24) Ḡ(t) := K̄A +ΠA(t) + υAΠF (t)− p(t)xA(t)− pqA(t)qA(t)− ḡA(t),

where Ḡ(t) is the maximal feasible lump sum tax at time t. Then ȳA(t) =
Ḡ(t)+[p(t)−C(t)]sA(t)

py(t)

are the maximal purchasable deposits at time t.

In the economy with unilateral supply-side policy, backstop energy supply is given by

(13). The firm’s fuel supply is determined by (14) and (16), and its deposit supply by (15).

Both countries’ energy demand is given by (18) and (19). The coalition purchases deposits to

28Alternatively, the coalition could sell the deposits back to the fuel firm bit by bit. Independently whether
the climate coalition sells its fuel to consumers or the fuel firm, by purchasing deposits it indirectly controls
fuel supply and fuel price. Selling the fuel to the fuel firm would not change the results.

29If G > 0 [G < 0], the individuals are taxed [receive a transfer].
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build up a fuel stock. The supply-side policy influences both the fuel market and the deposit

market equilibrium. The unilaterally optimal supply-side policy of the climate coalition

follows from maximizing the welfare
∫∞

0
e−ρt{UA(xA(t) + qA(t)) + K̄A − G(t) − p(t)xA(t) −

pqA(t)qA(t)+υAΠF (t)+ΠA(t)} dt subject to the CO2 ceiling, the limited fuel stock SA(t), the

fiscal budget (23) and the fiscal budget constraint G(t) ≤ Ḡ(t). When doing so, the climate

coalition chooses its supply-side policy (sA(t), yA(t)) for t < TF and sA(t) for t ≥ TF , where

TF denotes the point in time the fuel firm’s fuel stock becomes exhausted. In addition, the

coalition is a price taker in the fuel market and deposit market, i.e. it takes the instant fuel

price p and the instant deposit price py as given.

As shown in Appendix A.5, the coalition demands deposits according to the correspon-

dence

yA(t)





∈ [0,min{ȳA(t), S(t)}], if py(t) = τA(t),

= min{ȳA(t), S(t)}, if py(t) < τA(t).

(25)

and supplies fuel according to the correspondence

sA(t) ∈ [0, SA(t)], if p(t) = C(t) + τA(t) + θA(t).(26)

The evolution of the coalition’s scarcity rent is governed by the Hotelling-rule

τA(t) = τA0e
ρt,(27)

with τA0 as the coalition’s initial scarcity rent. The scarcity rent of the fuel firm, τF (t), and

the scarcity rent of the climate coalition, τA(t), grow with the time preference rate. In (26),

θA denotes the coalition’s climate costs of emissions.30 θA > 0 during both Phase I and

Phase II, and θA = 0 in Phase III and Phase IV.

To adhere the ceiling, the climate coalition must buy some deposits. According to (15)

and (25), either τA(t) > τF (t) = py(t) or τA(t) = τF (t) = py(t) holds.
31 In both cases, the fuel

firm is willing to sell any desired amount of deposits. If τA(t) > py(t), the coalition applies a

maximal deposit acquisition policy. It buys the complete fuel stock at time 0 and implements

30The costate variable θA develops over time as differential equation such as (11).
31See also Lemma A.5 of Appendix A.5.
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the social optimum presupposed the initial budget Ḡ(0) is unlimited (Ḡ(0) > py(0)S(0)).

This result is recorded in

Proposition 3. Suppose the coalition applies a supply-side climate policy and is a price
taker in the fuel market and deposit market. If the coalition’s initial budget is unlimited and
deposit acquisitions are maximal, the supply-side policy is efficient.

The assumption of an unlimited initial budget is unrealistic, since the value of the world’s

proven coal reserves exceeds the world’s GDP. According to EIA (2020b), the world’s proven

coal reserves were 1031 billion tonnes in 2015. Given a price of $100 per tonne, the re-

serves have a value of $103.1 trillion, whereas the world’s GDP was $75.1 trillion in 2015

(The World Bank, 2022).

Next, suppose the initial fiscal budget is limited (Ḡ(0) < py(0)S(0)). If τA(t) > py(t), the

coalition’s budget constraint binds32 and its deposit acquisitions are as before maximal, but

it now uses its complete budget Ḡ(t) to successively buy deposits until the fuel firm’s stock

will be exhausted at time TF ≤ t1. If τA(t) = py(t), the coalition applies a singular deposit

acquisition policy. It is indifferent with respect to the amount of purchased deposits. The

coalition’s fiscal budget constraint does not bind and it purchases in every period t < TF

the deposits yA(t) ∈ [0, ȳA(t)]. It chooses TF so that the marginal value of postponing TF

equals the marginal costs of postponing TF . Proposition 4 which is proven in Appendix A.5

provides further information about the competitive supply-side policy.

Proposition 4. Suppose the coalition applies a supply-side climate policy and is a price
taker in the fuel market and deposit market. If the coalition’s budget constraint binds or
deposit acquisitions are singular,
(i) the private fuel stock becomes exhausted during Phase I, i.e. TF ≤ t1. For t ∈ [0, TF ),

the equilibrium is characterized by ȳA(t) ≥ yA(t) ≥ 0, sF (t) > 0 and sA(t) = 0. For
t ∈ [TF , T ), the equilibrium is characterized by yA(t) = sF (t) = 0 and sA(t) > 0.

(ii) the coalition either uses its complete budget for deposit acquisitions until the firm’s
stock is exhausted [yA(t) = ȳA(t) ∀t < TF ] or the budget constraint never binds [yA(t) ∈
[0, ȳA(t)] ∀t < TF ].

(iii) fuel and backstop consumption per capita in both countries coincide for all points in
time.

(iv) fuel and total energy [backstop] consumption in both countries increase [decline] until
ts ∈ [0, t1) and decline [increase] for t ∈ (ts, t1), they are constant during Phase II, and
they decline [increase] during Phase III.

32In that case the budget constraint binds in every period t ∈ [0, TF ].
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(v) fuel and total energy [backstop] consumption in both countries jump downwards [up-
wards] at t = TF , and are continuous for all other points in time.

To better understand Proposition 4, we illustrate the fuel price path and the fuel extrac-

tion path in Fig. 3. Consider the fuel market. For the sake of clarity we distinguish between

the consumer price p(t) = U ′, the coalition’s producer fuel price pA(t) = C(t)+ τA(t)+ θA(t)

and the firm’s producer fuel price pF (t) = C(t) + τF (t). Because the coalition’s scarcity rent

coincides with or exceeds the firm’s scarcity rent (τA(t) ≥ τF (t)), the firm’s producer price

falls short of the coalition’s producer price during Phase I, so that the fuel firm sells fuel

(sF (t) > 0), whereas the coalition’s supply is nil (sA(t) = 0) as long as the firm’s fuel stock is

not exhausted (t < TF ). To ensure the ceiling, the coalition purchases deposits (yA(t) > 0)

during this time. In the calibrated economy underlying Fig. 3, the effect of technological

progress outweighs the increase of the scarcity rent for all t < TF . Thus, the price path de-

creases, the fuel consumption and total energy consumption paths in both countries increase,

while the backstop consumption paths in both countries decline.33

At time TF , the firm’s fuel stock becomes exhausted and the coalition takes over fossil

fuel supply. Because the fuel firm does not take the ceiling into account, its producer

price is lower than the coalition’s producer price, the fuel consumer price jumps from p =

C(TF ) + τF (TF ) upwards to p = C(TF ) + τA(TF ) + θA(TF ) and fuel [backstop] consumption

in both countries jumps downwards [upwards]. The price jump rests on the exhaustion of

the firm’s fuel stock. Suppose that the (representative) fuel firm tries to exploit the price

jump. It may do so in two ways. First, it may withhold some reserves to sell them at time

j > TF . Then, perfect competition on the fuel market would yield the equilibrium fuel price

p(j) = pF (j) = C(j) + τF (j). In other words, by trying to exploit the price jump, the firm

would eliminate it and would be, therefore, indifferent between selling fuel (and deposits)

at time j or some t < TF . Withholding reserves is no option to exploit the price jump.

Second, the firm may try to buy some deposits at time TF to sell them later with profit

to the coalition. Perfect competition on the deposit market would increase the equilibrium

33If the scarcity rent effect becomes dominant before TF , fossil fuel extraction peaks at ts ∈ [0, TF ). In this
case, fuel consumption and total energy consumption increase [decline] and backstop consumption declines
[increases] for t ∈ [0, ts) [t ∈ [ts, TF )]. If fossil fuel extraction has not peaked before TF , it may peak at
ts ∈ [TF , t1).
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Figure 5: Evolution of p and fuel extraction over time with competitive supply-side policy
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deposit price from py(TF ) = τF (TF ) up to py(TF ) = τF (TF ) +
θA(TF )
1+ζG

, where ζG ≥ 0 is the

Lagrange multiplier associated to ȳA(t) − yA(t) ≥ 0.34 Moreover, the firm would not be

willing to sell fuel at the price C(t)+ τF (t) but only at the price C(t)+ τF (t)+
θA(TF )
1+ζG

eρ(t−TF ).

If at t = t1 the private fuel supply were above s̄, then the ceiling would be violated, so that

the climate coalition has to buy deposits implying a price jump.35 The fuel firm can again

try to exploit this price jump by buying deposits to sell them to the coalition. As explained

above, this would lead to a further increase in the fuel and deposit prices, and to a price

jump until the private extraction path does not violate the ceiling anymore. In this case,

the coalition would not buy any deposits, and fuel consumption would end before the firm’s

stock is exhausted. Because leaving some resources in situ does not maximize the firm’s

profits, buying deposits is also not an option to exploit the price jump.36 We conclude that

the fuel firm has no possibility to exploit the price jump, which rules out private fuel supply

after TF .

When the ceiling becomes binding at time t1, the economy switches into Phase II. The

constant fuel consumption level at the ceiling is s̄ = DA(p̄)+DB(p̄). The associated constant

fuel price is p̄. Because the fuel firm does not take the ceiling into account, its producer

price is lower than the coalition’s producer price. If the fuel firm sells fuel, the ceiling would

be violated. To avoid this, the coalition buys the last remaining deposits of the firm before

the ceiling becomes binding, so that private fuel supply expires before t1 and the coalition’s

fuel supply begins at TF ≤ t1.

At time t2, the coalition’s remaining fuel stock becomes too low to allow for an extraction

rate of s̄. The economy switches into Phase III and the ceiling becomes non-binding. In

Phase III the consumer price still equals the coalition’s producer price. Since the latter

continuously increases in time, fuel consumption in both countries decreases and backstop

consumption increases until fuel consumption is abandoned at time T and the economy

switches into Phase IV.

A comparison with the efficient allocation (see Appendix A.5) reveals

34Proposition 4(ii) implies that ζG is a constant. See the proof of Lemma A.5 in Appendix A.5 for details.
35Observe that the coalition’s fuel supply price exceeds the private fuel supply price.
36See the proof of Lemma A.9 in Appendix A.5 for details.
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Proposition 5. Suppose the coalition applies a supply-side climate policy and is a price
taker in the fuel market and deposit market. If the coalition’s budget constraint binds or
deposit acquisitions are singular,
(i) the supply-side policy is inefficient.
(ii) in Phase I the fuel price path does not fully internalize the climate costs of emissions

until the private fuel stock is exhausted.
(iii) private [governmental] fuel extraction is higher [lower] than at the social optimum

directly before [after] the private fuel stock is exhausted.
(iv) cumulative fuel extraction

∫
[sF (t)+sA(t)] dt is higher than at the social optimum for t ∈

[0,max{t1, t∗1}) and lower than at the social optimum for t ∈ [min{t2, t∗2},max{T, T ∗}).
The switches to Phase III and IV occur earlier than at the social optimum.

Observe that during Phase I and Phase II the supply-side policy is characterized by

U ′
(

xi(t)+qi(t)
ni

)
= C(t) + τF (t) until t = TF and by U ′

(
xi(t)+qi(t)

ni

)
= C(t) + τA(t) + θA(t) for

t ≥ TF . In Phase III, the policy is determined by U ′
(

xi(t)+qi(t)
ni

)
= C(t) + τA(t). Both fuel

consumption per capita and backstop consumption per capita are identical in the coalition

and the fringe for all points in time, formally xA(t)
nA

= xB(t)
nB

and qA(t)
nA

= qB(t)
nB

. In contrast to

the demand-side policy, there is no intra-temporal distortion. However, the climate costs of

emissions are not internalized until t = TF , which gives rise to an inter-temporal distortion.

Until the exhaustion of the private fuel stock, the growth rate of the fuel price path p(t) =

C(t) + τF (t) is smaller than the growth rate of the optimal price path C(t) + τ(t) + θ(t). As

a consequence, private fuel extraction is inefficiently high when the coalition takes over fossil

fuel supply. Afterwards, governmental fuel extraction is inefficiently low to adhere the ceiling.

Nevertheless, cumulative fuel extraction is inefficiently high in Phase I and inefficiently low

in Phase III. Finally, in Appendix A.5, we prove that the coalition’s scarcity rent exceeds

the socially optimal scarcity rent (τA(t) > τ(t)), such that the switches to Phase III and IV

occur earlier than at the social optimum.

7. Strategic climate policy

In this section we assume that the coalition acts strategically, i.e. uses its climate policy

both to comply with the ceiling and to influence prices and scarcity rents in its favor. We

consider a form of a dynamic Stackelberg game where the coalition is the leader and takes

the impact of its climate policy on the reaction of all consumers and producers (in its own
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jurisdiction and in the fringe) as well as on the market equilibria into account.37

7.1. Strategic demand-side policy

As before, we first consider the demand-side policy. Abandoning the technical details to

Appendix A.6 we prove that the unilaterally optimal fuel cap path xA(t) is now determined

by

U ′
A = p(t) + θA(t) + SEeρt(28)

for t ∈ [0, TA) and by xA(t) = 0 for t ∈ [TA,∞), where

SE :=

∫ TA

0
xA(t) dt− υAS(0)∣∣ ∫ T

0
eρtD′

B(t) dt
∣∣ +

∫ t2

0
θA(t)D

′
B(t) dt∣∣ ∫ T

0
eρtD′

B(t) dt
∣∣ ,(29)

represents the coalition’s strategic effects:

• The terms-of-trade effect
∫ TA
0 xA(t) dt−υAS(0)∣∣ ∫ T

0 eρtD′
B(t) dt

∣∣ R 0 induces the coalition to reduce [raise]

its fuel caps if the coalition is a fuel importer [exporter], to reduce [increase] its import

bill [export revenues] by reducing [increasing] the fuel price.

• The emission effect
∫ t2
0 θA(t)D′

B(t) dt∣∣ ∫ T
0 eρtD′

B(t) dt

∣∣ < 0 induces the coalition to raise its fuel caps to

reduce the fringe’s fuel demand and carbon leakage, which mitigates the climate costs

of emissions in Phase I and II, by increasing the fuel price.

At first, suppose there is no climate problem, so that only the terms-of-trade effect exists.

Then, the coalition uses its fuel caps to reduce [increase] its import costs [export revenues]

by depressing [increasing] the fuel price if it is fuel importer [exporter]. The coalition reduces

[increases] its fuel demand below [above] the fringe’s demand for all t ≤ TB [t ≤ TA] and

it abandons fuel consumption earlier [later] than the fringe. In the presence of the climate

problem the emission effect emerges and the coalition switches to the backstop later than the

fringe (TA > TB), if the coalition exports fuel (nA ≤ υA) or if the emission effect outweighs

37By following Lewis and Schmalensee (1980), Benchekroun et al. (2009), Benchekroun et al. (2010), and
Battaglini and Harstad (2016), we assume throughout this section that the coalition can commit itself to
its strategy, i.e. we assume open-loop strategies. The time consistency problem of our approach is dis-
cussed in Appendix A.6. See also Bergstrom (1982), and, e.g., Karp (1984), Karp and Newbery (1992) and
Maskin and Newbery (1990).
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the terms-of-trade effect. This case is illustrated in Fig. 6. Ceteris paribus, the strategic

effects alleviate the inefficiency of the demand side policy (see Proposition 2) by weakening

the intra-temporal distortion. Relaxing the coalition’s fuel cap counters the inefficiently high

fuel consumption in the fringe. However, the fuel price path in the fringe is p(t) = c+ τF (t),

so that the intra-temporal distortion still exists and efficiency is not achieved.

If the coalition imports fuel (nA > υA) and the terms-of-trade effect outweighs the emis-

sion effect, fuel utilization terminates earlier in the coalition than in the fringe (TA < TB)

and fuel consumption per capita in the coalition falls short of per-capita consumption in

the fringe during the first three phases. Ceteris paribus, the strategic effects amplify the

inefficiency of the demand-side policy, because the lower fuel consumption in the coalition

reduces the fuel price, and therefore increases the already inefficiently high fuel consumption

in the fringe during Phase I and II, i.e. the strategic effects strengthen the intra-temporal

distortion. Irrespective of whether the coalition imports or exports fuel, it stops consuming

fuel at another point in time than the fringe (TA 6= TB) indicating that the inter-temporal

distortion still is present. For the knife-edge case that the strategic effects cancel out, both

countries abandon fuel use at the same time. We summarize our results in38

Proposition 6. Suppose the coalition applies a demand-side climate policy, acts strategically
in the fuel market and is committed to its strategy.
(i) The demand-side policy inefficient.
(ii) In Phase I-III [III] fuel and total energy consumption per capita are larger [smaller]

in the fringe than in the coalition if the positive [negative] strategic effects dominate,
which implies TB >[<]TA.

(iii) If the positive strategic effects dominate, Propositions (iii) and (iv) continue to hold.
Fuel and total energy [backstop] consumption in the fringe increases [declines] until
tsB ∈ [0, TB) and declines [increases] afterwards.

(iv) If the negative strategic effects dominate, Propositions 1(ii) and (iv) continue to hold.
The coalition’s fuel and total energy [backstop] consumption declines [increases] for t ∈
[t1,max{t1, tsB}), increases [declines] for t ∈ [max{t1, tsB},min{t2, TB}) and is constant
for t ∈ [min{t2, TB}, t2).

(v) The negative strategic effects dominate if the coalition exports fuel (nA ≤ υA).

In the special case of linear demand functions, the switch to Phase II [III] occurs later

38For χ = 0, the technology effect vanishes. If the coalition then imports fuel (nA > υA), the emission
effect is outweighed by the coalition’s climate cost of emissions at the end of Phase I, so that fuel consumption
per capita is larger in the fringe than in the coalition at t = t1.
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Figure 6: Evolution of U ′
A, U

′
B = p, fuel consumption and extraction over time with strategic

demand-side policy

[earlier] than at the social optimum (or without strategic action), and cumulative fuel extrac-

tion is lower [higher] during Phase I [III]. If the positive [negative] strategic effects dominate,
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the coalition reduces [raises] fuel demand, which reduces [raises] the scarcity rent. In both

cases, the initial extraction declines, i.e. the smaller initial fuel consumption in country A

[B] outweighs the larger initial fuel consumption in country B [A] in case of SE> [<]0.39

7.2. Strategic supply-side policy

With the supply-side policy the coalition acts strategically both in the fuel market and

deposit market. For the sake of more specific results, we assume40 that the (absolute) price

elasticity of demand, ǫ(p) := −D′(p)p
D(p)

> 0, is weakly increasing in the price. The technical

details of deriving the unilaterally optimal supply-side policy are delegated to Appendix A.7.

If the coalition’s initial budget is unlimited and it applies a maximal deposit acquisition

policy, it buys all deposits at t = 0. In this case, the coalition internalizes the climate

costs of emissions from the outset and exploits its monopoly position on the fuel market

subsequently. The corresponding fuel price path is given by

pA(t) = C(t) + τA(t) + θA(t) + ME(t).(30)

In (30), ME(t) := −DB(t)
D′(t)

> 0 reflects the monopoly effect, which induces the coalition to

reduce its fuel supply in order to increase the fuel price and the coalition’s export revenues.

This result is recorded in41

Proposition 7. Suppose the coalition applies a supply-side climate policy, acts strategically
in the fuel market and deposit market and is committed to its strategy. If the coalition’s
initial budget is unlimited and deposit acquisitions are maximal,
(i) the supply-side policy is inefficient.
(ii) the equilibrium is characterized by sF (t) = 0 and sA(t) > 0 for t ∈ [0, T ).
(iii) Propositions 4(iii) and (iv) continue to hold.
(iv) fuel and backstop consumption in both countries are continuous for all points in time.

Next, suppose the coalition’s initial budget is limited. Then the coalition does not buy

39See Lemma A.11 in Appendix A.6.
40The sign of ǫ′(p) also plays an important role in the literature on monopolistic competition.

Bertoletti and Etro (2017) use ǫ′(p) > 0 as standard assumption, and Mrázová and Neary (2017) find em-
pirical evidence supporting ǫ′(p) > 0.

41Applying the proof of Lemma A.18 in Appendix A.7 shows that s∗(j) ≤ sA(j) for some j during Phase
III implies s∗(t) < sA(t) for all t > j, such that s∗(j) = sA(j) holds for at most one j during Phase III and
the supply-side policy cannot be efficient.
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the initial fuel stock at once, and its deposit demand correspondence is given by

yA(t)





∈ [0, ȳA(t)], if py(t) = τA(t)− SEeρt

= ȳA(t), if py(t) < τA(t)− SEeρt.

(31)

During Phase I, the firm’s fuel supply is positive in the time interval [ta, tb), while the

coalition’s fuel supply correspondence is given by

sA(t) ∈ [0, SA(t)], if p(t) = C(t) + τA(t)− SEeρt.(32)

In (31) and (32),

SE := BE + ToT + EE(33)

represents the coalition’s strategic effects:

• The budget effect BE := ζG

{
υAτF0 −

∫ tb
ta

[C(t)+τF (t)]|D′
A(t)+Q′

A(t)| dt∣∣ ∫ tb
ta

eρtD′(t) dt

∣∣

}
R 0 emerges if the

coalition’s budget constraint binds at some point in time. The budget effect is am-

biguous in sign. It induces the coalition to use its deposits acquisitions to weaken the

fiscal budget constraint.

• The terms-of-trade effect ToT := [1 + ζG]
υBS(0)−

∫ tb
ta

DB(t) dt∣∣ ∫ tb
ta

eρtD′(t) dt

∣∣ R 0 induces the coalition

to reduce its deposit acquisitions if the coalition is a fuel and deposit importer, such

that the deposit price and the firm’s fuel price and the import costs decline. If the

coalition is a fuel exporter, the effect increases deposit acquisitions to increase the fuel

price and, therefore, the export revenues.

• The emission effect EE :=
∫ tb
ta

θA(t)D′(t) dt∣∣ ∫ tb
ta

eρtD′(t) dt

∣∣ < 0 induces the coalition to raise its deposit

acquisitions, such that the fuel and deposit prices increase. This reduces the fringe’s

fuel demand and carbon leakage, which mitigates the climate costs of emissions during

Phase I for sF > 0.

Suppose there is no climate problem and the coalition’s budget constraint does not bind.

Then, only the monopoly effect and the terms-of-trade effect exist. If the coalition is a

fuel exporter, both effects work in the same direction, i.e. the terms-of-trade effect leads to
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higher deposit acquisitions, so that the depletion of the firm’s resource stock is antedated

and the coalition can longer enjoy its monopoly on the fuel market. If the terms-of-trade

effect is sufficiently strong, the coalition’s monopoly price can undercut the firm’s producer

price before TF , so that there is a smooth transition. In contrast, the effects work in opposite

directions if the coalition is a fuel importer. On the one hand, the coalition has an incentive

to drive the fuel firm out of the market to enjoy its monopoly position. On the other hand,

the terms-of-trade effect induces the coalition to reduce its import costs by reducing its

deposit acquisitions, which spares the firm’s resource stock.

Suppose next there is a climate problem. If the coalition applies a singular deposit

acquisition strategy, its fuel price is given by (30). If the coalition’s budget constraint

binds,42 it applies a maximal deposit acquisition strategy and its fuel price reads

pA(t) = C(t) + ME(t) + τA(t) + θA(t) + B̃E(t),(34)

where B̃E(t) := ζG
D′+ζG[D′

B−Q′
A]

{
[D′

A +Q′
A]
[
C(t) + ME(t)

]
− [D′

B −Q′
A]
[
τA(t) + θA(t)

]}
is

also a budget effect of ambiguous sign. The budget effect composes of two partial effects.

The first product in curly brackets induces the coalition to increase its fossil fuel revenues

by increasing its fuel supply price. The second product reflects that the coalition can reduce

its energy costs by reducing its supply price.

In Appendix A.7 we prove

Proposition 8. Suppose the coalition applies a supply-side climate policy, acts strategically
in the fuel market and deposit market and is committed to its strategy.
(i) If the coalition’s budget constraint binds, the supply-side policy is inefficient and the

equilibrium is characterized by sF (t) = yA(t) = 0 and sA(t) > 0 for t ∈ [TF , T ).
Propositions 4(ii) and (iii) continue to hold, and fuel and backstop consumption are
constant during Phase II.

– If θA0 + SE ≥ 0, the equilibrium is characterized by sF (t) > 0 and sA(t) = 0 for
t ≤ TF ≤ t1, and Propositions 4(iv) and (v) continue to hold.

– If θA0+SE < 0, the equilibrium is characterized by either sF (t) > 0 and sA(t) = 0
or by sF (t) = 0 and sA(t) > 0 for t ≤ TF , and fuel and backstop consumption are
continuous for t 6= TF .

(ii) If the coalition’s deposit acquisitions are singular, the supply-side policy is inefficient
and the equilibrium is characterized by sF (t), sA(t) ≥ 0 for t ≤ t1, and by sF (t) = 0,
yA(t) ≥ 0 and sA(t) > 0 for t ∈ [t1, T ). Propositions 4(ii) and (iii) continue to hold.

42If the budget constraint binds at t = 0, it binds in every period until the coalition has purchased the
last deposit of the fuel firm.
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– If θA0 + SE ≥ 0, the equilibrium is characterized by sF (t) > 0 for t ≤ TF ≤ t1,
and Propositions 4(iv) and (v) continue to hold.

– If θA0+SE < 0, fuel and total energy [backstop] consumption in both countries are
constant during Phase II, and they decline [increase] during Phase III. Fuel and
total energy [backstop] consumption in both countries jump downwards [upwards]
at t = TF if the coalition imports fuel and deposits (nA ≥ υA), and they are
continuous for all other points in time.

Both for the binding budget constraint and the singular deposit acquisition strategy, the

consumer price and, thus, the fuel and backstop consumption per capita in both countries

coincide for all points in time. Furthermore, there is no private supply at the ceiling to

ensure a constant fuel consumption level. Because both the private and governmental price

paths are continuous and p(t) = min{pF (t), pA(t)} holds for t < TF , the consumer price path

can jump at t = TF but is continuous for all other points in time.

Consider the singular deposit acquisition strategy. If the positive strategic effects domi-

nate (SE > 0), the firm’s producer price (14) is always below the coalition’s producer price

(30), as with the competitive supply-side policy (pF (t) < pA(t) for all t ∈ [0, TF )). Conse-

quently, there is private fuel supply at early points in time and fuel consumption in both

countries jumps downwards, while backstop consumption jumps upwards, at exactly the

time TF ≤ t1 when the private fuel stock becomes exhausted. Qualitatively, this equilibrium

coincides with that of the competitive supply-side policy illustrated in Fig. 5. Quantita-

tively, the positive monopoly effect depresses the private scarcity rent below its level with

the competitive supply-side policy.43

Even if the negative strategic effects dominate (SE < 0), the internalization of the climate

costs can raise the coalition’s producer price above the firm’s producer price, at least when

the private fuel stock becomes exhausted. This is definitely the case when the coalition

imports fuel and deposits (nA ≥ υA is sufficient). Due to pF (TF ) < pA(TF ), again fuel

[backstop] consumption in both countries jumps downwards [upwards] at TF ≤ t1.

If the negative strategic effects are sufficiently strong (nA < υA is necessary), there are

time periods in which fuel is only supplied by the firm44 and there are time periods in

43This is the case if the budget constraint does not bind without strategic action, and the private fuel
stock is exhausted at the same time or later with strategic action than without.

44Otherwise, the negative parts of the strategic effects −
∫ tb
ta

DB(t) dt and
∫ tb
ta

θA(t)D
′(t) dt vanish.
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which fuel is only supplied by the coalition before the private fuel stock is exhausted. In

the former case the consumer price is temporarily determined by the firm’s producer price

and in the latter case the coalition has the monopoly on fuel and sets the consumer price.

For strong negative effects the coalition’s fuel supply price may undercut the firm’s price

(pF (TF ) > pA(TF )), only the coalition supplies fuel when the firm’s stock gets exhausted,

and the fuel price and the extraction paths are smooth, as illustrated in Fig. 7.

p in $/t

p̄ = 221

p(0) = 170

p(T ) = 331
pIIIA (t)pF (t) pIA(t)

t in years
t0 = 31 t1 = 63 t2 = 225 T = 266

tsF = 8

0

Figure 7: Evolution of p over time with strategic supply-side policy and strong negative strategic
effects

Finally, suppose the budget constraint binds. In that case, the budget effects alter the

coalition’s producer price (34). If B̃E is sufficiently small, the coalition undercuts the firm’s

producer price temporary during Phase I,45 and both the fuel price and the fuel extraction

paths are smooth. If B̃E is sufficiently large, the coalition does not sell fuel at the firm’s

producer price, because the coalition values fuel more than the firm. The fuel and extraction

paths have a jump and the equilibrium qualitatively coincides with that of the competitive

45Lemma A.18 rules out that the coalition undercuts the firm for all t.
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supply-side policy.

Similar to the competitive supply-side policy the strategic supply-side policy causes no

intra-temporal distortions which prevail in the economy with the demand-side policy. How-

ever, both the strategic effects and private fuel supply during Phase I lead to inter-temporal

distortions and render the strategic supply-side policy inefficient.

Neither the demand- nor the supply-side climate policy in general implements the social

optimum. There are two reasons for this negative result. First, the climate costs of emissions

are not fully internalized, either internationally (demand-side regime) or intertemporally

(supply-side regime). Second, the coalition may have strategic incentives to manipulate the

fuel and deposit prices in its favor.

8. Grand coalition

So far we have assumed that there are two groups of countries, a coalition and a group of

free riders. In this subsection, we briefly report on the performance of the grand coalition (a

coalition encompassing all countries) with the different policies. In case of both competitive

and strategic demand-side policy the grand coalition implements the efficient allocation

by choosing the efficient fuel caps in all countries. Since there are no free-riders, there

is no possibility to benefit from strategic behavior and the competitive and the strategic

demand-side policy coincide.46 In case of the supply-side policy, the grand coalition also

implements the efficient allocation when it acts strategically. The coalition’s initial budget

constraint does not bind, it purchases all deposits at t = 0 with both maximal and singular

deposit acquisitions, and the extraction path is smooth and efficient.47 In contrast, with

the competitive supply-side policy the coalition’s budget constraint does also not bind, but

the coalition only implements the efficient allocation with maximal deposit acquisitions. If

deposit acquisitions are singular, the extraction path jumps at t = TF and the allocation is

inefficient.48

46In the competitive [strategic] demand-side regime, the grand coalition sets θA(t) = θ(t) [and SE = 0],
which yields p(t) = C(t) + τ(t) and U ′

A = C(t) + τ(t) + θ(t) in equilibrium.
47In the strategic supply-side regime, the grand coalition sets TF = 0 and p(t) = C(t) + τ(t) + θ(t) with

singular deposit acquisitions.
48In the competitive supply-side policy with singular deposit acquisitions the coalition sets TF > 0. The

firm’s profit increases when TF decreases, and the coalition delays TF until the instantaneous profit of the
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9. Coalition formation

In this section, we endogenize coalition formation, i.e. at t = 0 countries decide whether

to join the climate coalition or stay outside and act as fringe country. Coalition countries

conclude a long-term contract. Applying the stability concept of d’Aspremont et al. (1983),

a coalition is stable if no coalition member has an incentive to leave the coalition (internal

stability) and no fringe country has an incentive to join the coalition (external stability). In

Appendix A.8 we prove

Proposition 9. In the competitive demand-side regime with linear demand functions and
quadratic cost functions, any stable coalition is just so large that the ceiling is adhered to.

In the competitive demand-side regime with quadratic cost functions and linear demand

functions, per-capita welfare of any country increases [decreases] if it leaves [joins] the coali-

tion as long as the ceiling is adhered to. As a consequence, any country has an incentive

to leave a coalition if the remaining coalition countries can ensure the ceiling. By contrast,

no country has an incentive to leave a coalition if the remaining countries cannot ensure the

ceiling, because this would lead to prohibitively high climate damages and definite welfare

losses. Thus, any stable coalition is just large enough to ensure the ceiling. The grand

coalition implements the efficient allocation, but is not stable.

For the competitive supply-side policy and the strategic climate policies, even for linear

demand functions and quadratic cost functions we are not able to characterize the size of the

stable coalition. Therefore, we now turn to an empirically calibrated economy. The model is

calibrated to the world coal market in the year 2015.49 Following Hassler and Krusell (2012)

and Hassler et al. (2021), we divide the world into nine asymmetric regions, consider the five

countries with the greatest coal reserves and divide the rest of the world into four regions

with comparable coal reserves. The world regions are listed in Table 1.

We begin with the competitive demand-side policy. In line with Proposition 9, any

stable coalition is just large enough to ensure the ceiling in the competitive demand-side

regime. In the calibrated economy the coalition countries’ share of global consumption

fuel firm is so small that it is perceived as worth taking over fossil fuel supply.
49The calibration is described in more detail in Appendix B.
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Table 1: World regions in 2015 (υi, ni in %; K̄i in $trillion).

υi ni K̄i

USA 22.4 9.4 18.2
Russia (Rus) 15.6 2.7 1.4
Australia (Aus) 14.0 1.5 1.4
China (Chi) 13.0 51.3 11.1
India (Ind) 9.2 10.3 2.1
EU 7.2 8.4 13.6
Rest of Asia (ROA) 6.6 9.6 12.2
Rest of Europe (ROE) 5.7 3.0 5.2
Rest of the World (ROW) 6.3 3.8 9.3

Note: υi is region i’s share of global coal reserves, ni is region i’s share of global coal consumption,

and K̄i is region i’s exogenous income, i.e. its GDP.

to adhere the ceiling is nA ≥ 0.651. Closer inspection of Table 1 reveals that there are

multiple stable coalitions and any stable coalition comprises three or four world regions

including China. The smallest stable coalition consists of China, Rest of Asia, Russia and

Australia (nA = 0.651), and the largest stable coalition consists of China, India and USA

(nA = 0.710).50 In the smallest [largest] stable coalition, global energy welfare51 amounts to

70.5$trillion [72.3$trillion], each coalition country’s per-capita energy welfare net of its fuel

firm’s profit share amounts to 58.2$trillion [63.5$trillion], and each fringe country’s per-capita

energy welfare net of its fuel firm’s profit share amounts to 91.7$trillion [91.7$trillion].52

Table 2 lists the grand coalition (line 2) and53 coalitions consisting of eight regions for the

50The 24 stable coalitions are {Chi + USA + Ind}, {Chi + USA + EU}, {Chi + USA + ROA}, {Chi +
Ind + EU}, {Chi + Ind + ROA}, {Chi + Ind + ROW}, {Chi + EU + ROA}, {Chi + USA + Rus + ROE},
{Chi + USA + Rus + ROW}, {Chi + USA + Aus + ROE}, {Chi + USA + Aus + ROW}, {Chi + USA +
ROE + ROW}, {Chi + Ind + Rus + Aus}, {Chi + Ind + Rus + ROE}, {Chi + Ind + Aus + ROE}, {Chi
+ EU + Rus + ROE}, {Chi + EU + Rus + ROW}, {Chi + EU + ROE + ROW}, {Chi + ROA + Rus +
Aus}, {Chi + ROA + Rus + ROE}, {Chi + ROA + Rus + ROW}, {Chi + ROA + Aus + ROE}, {Chi +
ROA + Aus + ROW}, {Chi + ROA + ROE + ROW}.

51Here, we report the energy welfare of country i ∈ N , which is defined as welfare net of exogenous income
Wi|K̄i=0 = Wi −

∫
∞

0
e−ρtK̄i dt, instead of welfare, because the welfare related to energy consumption and

production only amounts to 3% of welfare and the difference between countries becomes more visible when
considering energy welfare. Global energy welfare is then defined by W |K̄=0 =

∑
i∈N Wi|K̄i=0.

52An increase in the coalition size raises global welfare and per-capita welfare of the coalition countries,
and it does not affect per-capita welfare of the fringe countries. See Lemma A.21 in Appendix A.8.

53In competitive supply-side regime underlying Table 2 we have assumed that the equilibrium with singular
deposit acquisition sets in. However, the results do not change qualitatively when the equilibrium with
maximal deposit acquisition sets in. For more details we refer to Table B.6 in Appendix B.1.
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Table 2: Large coalitions with the competitive supply-side policy (υA, nA in %; τF0, θA0 in $/t;
W |K̄=0,∆

Wi

ni
in $trillion).

υA nA t1 t2 T τF0 θA0 W |K̄=0 ∆Wi

ni

WORLD 100 100 33 237 253 0.59 47.9 77.7 –
WORLD-Aus 86.0 98.5 34 237 253 0.59 46.8 77.8 16.2
WORLD-Rus 84.4 97.3 34 237 253 0.59 46.5 77.8 18.4
WORLD-ROE 94.3 97.0 34 237 253 0.59 46.8 77.8 20.7
WORLD-ROW 93.7 96.2 34 237 253 0.59 46.6 77.8 20.9
WORLD-EU 92.8 91.6 35 237 253 0.59 45.8 77.8 21.6
WORLD-USA 77.6 90.6 35 237 254 0.58 45.1 77.9 21.0
WORLD-ROA 93.4 90.4 35 237 253 0.59 45.6 77.8 21.8
WORLD-Ind 90.8 89.7 35 237 253 0.58 45.4 77.9 21.7
WORLD-Chi 87.0 48.7 36 238 254 0.58 43.4 78.0 23.0

Note: υA is the coalition’s share of global coal reserves, nA is the coalition’s share of global coal

consumption, t1, t2 and T is the end of Phase I, II and III, respectively, τF0 is the initial private

scarcity rent, θA0 is the coalition’s initial cost of emissions, W |K̄=0 is global energy welfare, and

∆Wi

ni
is the fringe country’s increase in per-capita welfare by joining the coalition.

competitive supply-side regime (line 3 - 11) and shows that the grand coalition is stable.54 In

Table 2, ∆Wi

ni
is the increase in per-capita welfare of the respective fringe country by joining

the coalition. The grand coalition does not purchase all deposits at t = 0 but successively

up to the time TF = 9, and thus does not implement the first-best solution. For coalitions of

eight countries, the private fuel stock becomes exhausted earlier at TF ∈ [3, 8], which shortens

the period of private supply and alleviates the climate costs of emissions.55 This decreases the

magnitude of the extraction jump and increases global welfare. More importantly, it is always

beneficial to join the grand coalition since ∆Wi

ni
> 0 holds. The main reason why a country

looses welfare when it leaves the grand coalition is that a free rider receives no revenues

from the coalition’s fuel sales. Consequently, the grand coalition is stable and coalitions

comprising eight regions are unstable. In the grand coalition, global energy welfare amounts

to 77.7$trillion, and each coalition country’s per-capita energy welfare net of its fuel firm’s

54For coalitions of eight world regions, the budget constraint does not bind in the competitive supply-side
regime. In particular, any of these coalitions could purchase the entire private fuel stock within a year,
whereas the optimal exhaustion date of the private fuel stock is TF ≥ 3.

55The smaller the coalition, the earlier the private fuel stock becomes exhausted, because the difference in
consumption welfare between private and governmental supply becomes less relevant (nA ↓) and the profit
of the fuel firm becomes less relevant (υA ↓).
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Table 3: Stable coalitions with the strategic demand-side policy (υA, nA in %; τF0, θA0,SE,ToT
in $/t; W |K̄=0 in $trillion).

υA nA t1 t2 TB TA τF0 θA0 SE ToT W |K̄=0

Chi+USA+Rus+Aus 65.0 64.9 37 231 108 259 21.6 57.3 −21.1 148 75.7
Chi+ROW+Rus+Aus 48.9 59.3 37 228 119 261 16.6 63.7 −16.1 219 74.3
Chi+ROE+Rus+Aus 48.3 58.5 37 227 118 261 16.9 64.3 −16.4 218 74.2
Chi+ROW+ROE+Rus 40.6 60.8 37 229 132 261 12.2 64.5 −11.7 282 73.6
Chi+ROW+ROE+Aus 39.0 59.6 37 228 131 261 12.4 65.5 −11.9 283 73.4
Chi+EU+Aus 34.2 61.2 37 229 140 260 9.88 65.1 −9.39 327 73.1
Chi+EU+ROW 26.5 63.5 37 230 156 260 6.71 64.3 −6.21 400 72.7
Chi+EU+ROE 25.9 62.7 37 230 154 260 7.00 64.9 −6.50 396 72.6
Chi+ROA 24.6 60.9 37 229 156 260 6.66 66.9 −6.17 419 72.0
Chi+Ind 22.2 61.6 37 229 155 260 6.81 66.1 −6.31 409 72.3

Note: υA is the coalition’s share of global coal reserves, nA is the coalition’s share of global coal

consumption, t1, t2 and Ti is the end of Phase I, II and III for group i = A,B, respectively, τF0 is

the initial private scarcity rent, θA0 is the coalition’s initial cost of emissions, SE is the strategic

effect, ToT is the terms-of-trade effect, and W |K̄=0 is global energy welfare.

profit share amounts to 77.1$trillion.56 Comparing the welfare levels of coalition countries

shows that the countries’ welfare levels increase when moving from the stable equilibrium of

the demand-side regime to the stable equilibrium of the supply-side regime. We summarize

our results in

Proposition 10. Suppose the climate coalition is a price taker. In the calibrated economy
(i) the grand coalition is stable in the supply-side regime, while the stable coalition com-

prises only three or four world regions including China with 65.1% to 71% of the global
energy demand in the demand-side regime,

(ii) the per-capita welfare of each coalition country is higher in the stable equilibrium of the
supply-side regime than in the stable equilibrium of the demand-side regime,

(iii) the global welfare is higher in the stable equilibrium of the supply-side regime than in
the stable equilibrium of the demand-side regime.

Table 3 provides information about the stable coalitions in the strategic demand-side

regime. As in the competitive demand-side regime in the strategic demand-side regime there

are multiple stable coalitions and stable coalitions are small. In view of Table 3 the stable

coalition comprises two, three or four world regions including China. The smallest stable

56Note that the scarcity rent and, thus, the per-capita profit of the fuel firm is smaller in the demand-side
regime than in the supply-side regime. In particular, τF0S(0) = 592$billion in the demand-side regime and
τF0S(0) = 608$billion in the supply-side regime.
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Table 4: Large coalitions with the strategic supply-side policy (υA, nA in %; τF0, θA0,SE,ME(0)
in $/t; W |K̄=0,∆

Wi

ni
in $trillion).

υA nA t1 t2 T τF0 θA0 SE ME(0) W |K̄=0 ∆Wi

ni

WORLD 100 100 37 238 254 0.57 42.4 – – 78.11 –
WORLD-Aus 86.0 98.5 37 237 254 0.40 41.4 0.18 2.79 78.10 25.8
WORLD-Rus 84.4 97.3 38 238 255 0.38 40.5 0.19 4.99 78.10 25.3
WORLD-ROE 94.3 97.0 38 238 255 0.48 40.3 0.09 5.53 78.10 24.3
WORLD-ROW 93.7 96.2 38 238 255 0.47 39.8 0.10 6.97 78.10 24.3
WORLD-EU 92.8 91.6 39 237 255 0.45 36.8 0.10 15.0 78.08 24.6
WORLD-USA 77.6 90.6 40 237 255 0.32 36.2 0.23 16.7 78.08 25.1
WORLD-ROA 93.4 90.4 40 237 255 0.46 36.1 0.10 17.0 78.08 24.6
WORLD-Ind 90.8 89.7 40 237 256 0.43 35.6 0.13 18.2 78.07 24.7
WORLD-Chi 87.0 48.7 55 234 262 0.34 16.0 0.14 72.6 77.37 26.9

Note: υA is the coalition’s share of global coal reserves, nA denotes the coalition’s share of global

coal consumption, t1, t2 and T is the end of Phase I, II and III, respectively, τF0 is the initial private

scarcity rent, θA0 is the coalition’s initial cost of emissions, SE is the strategic effect, ME(0) is the

initial monopoly effect, W |K̄=0 is global energy welfare, and ∆Wi

ni
is the fringe country’s increase

in per-capita welfare by joining the coalition.

coalition consists of China, ROE, Russia and Australia (nA = 0.585), and the largest stable

coalition consists of China, USA, Russia and Australia (nA = 0.649). These stable coalitions

are slightly smaller than the smallest stable coalition in the competitive demand-side regime.

Strategic action enables coalition countries to increase their welfare. More importantly, it

enables the coalition to increase the fuel firm’s scarcity rent, which reduces the carbon leakage

and makes it easier to adhere to the ceiling.57

Table 4 provides information about the grand coalition and coalitions of eight regions

in the strategic supply-side regime. Common to the competitive supply-side regime and

the strategic supply-side regime is that the grand coalition is stable, but in contrast to the

competitive supply-side regime in the strategic supply-side regime the grand coalition buys

all deposits at t = 0 and implements the first-best solution. For coalitions of eight countries

the fiscal budget constraint is binding and the private fuel stock becomes exhausted later.

The strategic effects are positive, and in particular the monopoly effect leads to large profits

from fuel sales in coalition countries at the fringe country’s expense. More specifically, joining

57The coalition consisting of China and USA could adhere the ceiling, but Russia and Australia are better
off joining this coalition to raise the scarcity rent and, thus, their export revenues.
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Table 5: Per-capita energy welfare in $trillion in the stable coalitions with the strategic climate
policies.

Region
υA 100 65.0 48.9 48.3 40.6 39.0 34.2 26.5 25.9 24.6 22.2

USA 78.9 98.4 113 114 106 106 103 98.5 98.9 98.5 98.7
Russia 80.9 174 146 147 124 150 137 122 123 122 122
Australia 83.0 253 206 208 193 170 148 147 149 146 147
China 77.7 51.0 51.1 50.4 54.5 53.5 55.6 58.1 57.5 56.0 56.6
India 78.0 88.4 87.6 87.6 87.4 87.4 87.6 88.2 88.2 88.3 61.1
EU 78.0 87.6 86.9 87.0 86.9 86.9 61.2 62.3 61.8 88.0 88.0
Rest of Asia 77.9 83.8 84.0 84.0 84.8 84.8 85.5 86.8 86.7 59.0 86.8
Rest of Europe 78.6 111 105 79.1 75.1 74.5 97.8 95.2 69.4 95.2 95.3
Rest of the World 78.5 105 75.1 101 72.1 71.4 95.4 67.9 93.7 93.5 93.6

Note: Bold numbers refer to coalition countries.

the coalition of eight countries raises the per-capita welfare of the respective fringe country

by about one third of the global per-capita welfare which proves the stability of the grand

coalition.

Finally, Table 5 compares the welfare of coalition countries in the stable coalition of the

strategic supply-side regime with the coalition countries’ welfare in stable coalitions of the

strategic demand-side regime. For that purpose, Table 5 lists country’s per-capita energy

welfare. The column with vA = 100 belongs to the (stable) grand coalition in the strategic

supply-side regime. All other columns belong to stable coalitions in the strategic demand-side

regimes. The welfare levels of the countries which are in the stable coalition are highlighted

in bold letters. Closer inspection of Table 5 reveals that USA, Russia, Australia are always

better off in the demand-side regime, China is always better off in the supply-side regime,

and India, EU, Rest of Asia, Rest of World are better off in the supply-side regime if and

only if they participate in the demand-side coalition.58 We summarize our results in

Proposition 11. Suppose that any climate coalition acts strategically and is committed to
its strategy. In the calibrated economy
(i) the grand coalition is stable in the supply-side regime, while the stable coalition com-

58The latter also holds for Rest of Europe with the exception that it is better off in the demand-side regime
if it participates in the {Chi+ROE+Rus+Aus} coalition. Combining Table 5 with the population shares
ni of Table 1 it turns out that both the average and the median per-capita welfare of coalition countries
increase when moving from the stable equilibrium of the demand-side regime to the stable equilibrium of
the supply-side regime.
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prises two, three or four world regions including China with 58.5% to 64.9% of the
global energy demand in the demand-side regime,

(ii) the average and median per-capita welfare of the coalition countries is higher in the
stable equilibrium of the supply-side regime than in the stable equilibrium of the demand-
side regime,

(iii) the global welfare is higher in the stable equilibrium of the supply-side regime than in
the stable equilibrium of the demand-side regime.

Propositions 10 and 11 have a striking implication. Suppose that any stable coalition has

formed in the competitive or strategic demand-side regime, and that the respective coalition

countries can propose (consumer good) transfers to change the policy and to establish the

stable grand coalition of the competitive or strategic supply-side regime. Since global [each

fringe country’s] welfare is smaller [greater] in any stable equilibrium with demand-side policy

than in the stable equilibrium with supply-side policy,59 there is a transfer scheme for any

stable equilibrium with demand-side policy which ensures that all countries benefit from

the transition to the stable grand coalition of the supply-side regime.60 This grand coalition

implements the efficient allocation if the climate coalition acts strategically in the fuel market

and deposit market.

10. Conclusion

This paper compares the fuel price paths, fuel consumption paths and welfare levels in

a dynamic Hotelling model with unilateral demand- and supply-side climate policies. In

our model, the climate coalition ensures that a ceiling on the carbon dioxide concentration

is not violated either by limiting domestic fuel consumption or by buying fuel deposits to

postpone their extraction. In the case of unilateral demand-side policy, the fringe does not

fully internalize the climate costs of emissions. The climate coalition must reduce domestic

fuel consumption to the benefit of the fringe whose consumption is inefficiently high until the

ceiling is no longer binding. The unilateral demand-side policy distorts the intra-temporal

allocation.

The unilateral supply-side policy is also inefficient under the realistic assumption that

59See Propositions 10(iii) and 11(iii), page 38, and Table 5.
60That is,

∑
i∈A

(
W supply

i −W demand
i

)
>
∑

i∈B

(
W demand

i −W supply
i︸ ︷︷ ︸

>0

)
⇐⇒ W supply > W demand.
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the coalition’s budget is limited and the coalition cannot purchase all deposits at the outset,

since the fuel firm does not internalize the climate costs of emissions. Before the ceiling

becomes binding, the coalition has purchased the entire fuel stock and the coalition is from

this time on the sole supplier of fuel. When the ceiling becomes binding, the fuel firm does

not own any deposits and the coalition restricts its fuel extraction so as to guarantee the

ceiling. If the coalition is a price taker, both the fuel price and the fuel consumption paths

are discontinuous when the private fuel stock is exhausted. If the coalition acts strategically,

depending on the strength of the strategic effects the fuel price and the fuel consumption

paths can be continuous or discontinuous. The unilateral supply-side policy distorts the

inter-temporal allocation and is inefficient.

Endogenizing coalition formation and comparing the demand-side policy with the supply-

side policy in an empirically calibrated economy, we find that the stable coalition is medium-

sized and just as large to adhere the ceiling with the demand-side policy. In contrast, with

the supply-side policy the grand coalition forms and is stable. In case of strategic supply-side

policy, the coalition purchases all deposits from the outset, the fuel price and fuel extraction

paths are continuous and the (stable) grand coalition implements the efficient allocation.

The policy conclusion of our paper is a recommendation in favor of the supply-side policy.

The global welfare is higher in the stable equilibrium with supply-side policy than in the

stable equilibrium with demand-side policy. In particular, the climate ambitious European

Union should switch from the demand-side policy to the supply-side policy, or augment the

demand-side policy with the supply-side policy, and begin with purchasing fuel deposits.

In this way, it sets incentives for other countries to participate in an international climate

agreement and reduces the inefficiency of the climate treaty.

In the present paper, we have assumed that the fringe does not pursue any policy. In-

troducing a fuel cap in the fringe or regulating the deposit-demand of fuel producers in the

fringe would not change the results as long as the fringe behaves as price-taker. If the fringe

acts strategically, we expect that it improves and the coalition worsens in terms of welfare.

With the demand-side policy the fringe can increase its welfare lead over the coalition. With

supply-side policy, the fringe can restrain selling deposits or can jack up the deposit price

and reduce the welfare gap to the coalition or overtake the coalition. However, we also as-

44



sumed that the fringe has no climate goals and climate policy. Introducing such goals would

redistribute the climate mitigation burden from the coalition to the fringe with both policies.

Our analysis can be extended in various directions. First, one could replace the CO2

ceiling by a climate-damage function to determine the robustness of the results. Second,

it may be important in the future to check the robustness of our results when deposits are

heterogeneous. Third, one could use subgame-perfect strategies to analyze the strategic

behavior of the coalition.
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A. Appendix

A.1. Microfoundation

The model and social optimum: Let the utility of country i = A,B at time t be given by the

quasi-linear function

(A.1) Ui

(
xi(t) + qi(t)

)
+ gi(t).

Denoting by ℓ a composite production factor, say land or labor, in the economy there are

the (inverse) production functions

ℓgi(t) = gsi (t),(A.2)

ℓqi(t) = Mi(qi(t)),(A.3)

ℓsi(t) = viC(t)s(t),(A.4)

where ℓgi(t) is the input in the consumer good production of country i, ℓqi(t) is the input in

the backstop generation of country i and ℓsi(t) is the input in the fuel extraction in country

i. The resource constraints are

ℓgi(t) + ℓqi(t) + ℓsi(t) = K̄i,(A.5)

gA(t) + gB(t) = gsA(t) + gsB(t),(A.6)

where K̄i is country i’s endowment of land. Land is immobile, whereas the consumption

good is mobile. Inserting (A.2)-(A.6) into (A.1) yields the total welfare

(A.7)
∑

i

[
Ui

(
xi(t) + qi(t)

)
+ gi(t)

]
=
∑

i

[
Ui

(
xi(t) + qi(t)

)
+ K̄i −Mi(qi(t))− viC(t)s(t)

]
.

The laissez-faire economy: Labor is numeraire. The price of the consumer good is also unity

because of the linear production function (A.2). The firms’ profits are

Πgi(t) = gsi (t)− ℓgi(t) = 0,(A.8)

Πi(t) = pqi(t)qi(t)− ℓqi(t) = pqi(t)qi(t)−Mi(qi(t)),(A.9)

viΠF (t) = vi[p(t)sF (t) + py(t)yF (t)]− ℓsi(t)

= vi
[
p(t)sF (t) + py(t)yF (t)− C(t)sF (t)

]
.(A.10)
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The consumer of country i maximizes (A.1) subject to the budget constraint

p(t)xi(t) + pqi(t)qi(t) + gi(t) = K̄i +Πgi(t)︸ ︷︷ ︸
=0

+Πi(t) + viΠF (t).(A.11)

Demand-side policy: Derivation of country A’s welfare: Solving for gA(t) and inserting the

budget constraint (A.11) for i = A into (A.1) yields the welfare

(A.12) UA

(
xA(t) + qA(t)

)
− p(t)xA(t)− pqA(t)qA(t) + K̄A +ΠgA(t)︸ ︷︷ ︸

=0

+ΠA(t) + vAΠF (t).

Supply-side policy: To model governmental extraction we consider the (inverse) production

function61

ℓA(t) = C(t)sA(t).(A.13)

The coalition’s expenditures for purchasing deposits less their profits from selling fuel are

G(t) = py(t)yA(t)− [p(t)sA(t)− ℓA(t)] = py(t)yA(t)− [p(t)− C(t)]sA(t).(A.14)

Consumer A’s budget constraint is then given by

pxA + pqAqA + gA = K̄A −G(t) + ΠgA(t)︸ ︷︷ ︸
=0

+ΠA(t) + vAΠF (t).(A.15)

Derivation of country A’s welfare: Solving for gA and inserting the budget constraint (A.15)

into (A.1) yields the welfare

(A.16) UA

[
xA(t) + qA(t)

]
− p(t)xA(t)− pqA(t)qA(t) + K̄A −G(t) + ΠA(t) + vAΠF (t).

A.2. The social optimum

The current-value Lagrangian reads62

L =
∑

i

[Ui(xi + qi) + K̄i −Mi(qi)]− [C + τ ][xA + xB]− θ[xA + xB − γZ]− ιχC

+ µ[Z̄ − Z] +
∑

i

ζxi
xi +

∑

i

ζqiqi,
(A.17)

61Note that the coalition’s resource constraint (A.5) turns into ℓgA(t) + ℓqA(t) + ℓsA(t) + ℓA(t) = K̄A.
62We apply the direct approach to solve dynamic optimization problems with state space constraints. Cf.

Chiang (1999, chap. 10), Feichtinger and Hartl (1986, chap. 6), Kamien and Schwartz (2012, part II, chap.

17), and Seierstad and Sydsaeter (1987, chap. 5,6).
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where ι is the extraction technology’s costate. From the first-order conditions we get (9)-(11)

and

(A.18) ι̇ = [ρ+ χ]ι+ s.

The complementary slackness conditions are

µ ≥ 0, µ[Z̄ − Z] = 0,(A.19)

(a) : ζxi
≥ 0, ζxi

xi = 0, (b) : ζqi ≥ 0, ζqiqi = 0.(A.20)

(A.19) implies that µ is zero during Phase I, III and IV but positive during Phase II, so that

µ is discontinuous at t1 and t2. Finally, the transversality conditions read63

(a) : lim
t→∞

e−ρtτ(t)[S(t)− Sopt(t)] ≥ 0, (b) : lim
t→∞

e−ρtθ(t)[−Z(t) + Zopt(t)] ≥ 0,(A.21)

lim
t→∞

e−ρtι(t)[C(t)− Copt(t)] ≥ 0.(A.22)

The variables marked with the superscript opt denote optimal values, while the unmarked

variables of (A.21) refer to any feasible path.

Lemma A.1. There is at most one switching time in Phase I, i.e. ts ∈ [0, t1).

Proof of Lemma A.1. We have U̇ ′(t) = ρτ0e
ρt + (ρ + γ)θ0e

(ρ+γ)t − χC0e
−χt and Ü ′(t) =

ρ2τ0e
ρt + (ρ + γ)2θ0e

(ρ+γ)t + χ2C0e
−χt, such that U̇ ′(t) is either positive for t ∈ [0, t1), or it

is positive for t ∈ [0, t̃) and negative for t ∈ (t̃, t1), or it is negative for t ∈ [0, t1). However,

a smooth transition in Phase I and U̇ ′(t) being negative for t ∈ [0, t1) implies s(t) < γZ̄ for

t ∈ [0, t1) and, thus,

Z(t1) =

[
Z0 +

∫ t1

0

s(j)eγj dj

]
e−γt1 <

[
Z0 + Z̄

(
eγt1 − 1

)]
e−γt1 ≤ Z̄ ⇐= Z0 ≤ Z̄,(A.23)

such that the ceiling would bind either from the beginning or never.

Lemma A.2. Suppose that the economy is in Phase II, i.e. t ∈ [t1, t2) and Z̄ = Z(t). τ(t),

θ(t) and ι(t) are continuous for all t ∈ [t1, t2).

63The transversality conditions belong to the sufficient conditions. We write the transversality conditions

in the form used by Feichtinger and Hartl (1986, chapter 7.2). Note that we defined θ as non-negative.
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Proof of Lemma A.2. For t ∈ [t1, t2), the costate-variables may jump according to the con-

dition64

Λc(t
−) = Λc(t

+) + ηΛ(t)
∂[Z̄ − Z(t)]

∂Λ
with ηΛ(t) ≥ 0, ηΛ(t)[Z̄ − Z(t)] = 0,(A.24)

where Λ is an arbitrary state-variable and Λc the corresponding costate-variable. t− and t+

refer to the value just before and just after time t, respectively. Applying (A.24) to S and

C shows that τ and ι are continuous. In case of Z, we get

θ(t−) = θ(t+)− ηZ(t) with ηZ(t) ≥ 0, ηZ(t)[Z̄ − Z(t)] = 0.(A.25)

Suppose that θ jumps at time t, i.e. suppose that ηZ(t) > 0. Then, θ(t+) > θ(t−) implying

an increase of the climate costs of emissions and, therefore, a reduction of fuel extraction.

Since s(t) = s̄ during Phase II, the reduction implies Z̄ > Z(t), which in turns requires

ηZ(t) = 0. The contradiction proves Lemma A.2.

Lemma A.3. There is no switching time ts in Phase III or Phase IV, i.e. ts ∈ [0, t2).

Proof of Lemma A.3. Consider Phase II, such that s(t) = s̄ is fixed for all t ∈ [t1, t2). If

τ̇(t) < −Ċ(t), θ(t) increases to ensure s(t) = s̄. At the end of Phase II, θ(t2) = 0 holds.

According to Lemma A.2, θ(t) is continuous for all t ∈ [t1, t2), so that θ(t2) = 0 requires

θ̇(t) < 0 for some t ∈ [t1, t2). To ensure s(t) = s̄, τ̇ (t) > −Ċ(t) holds at these points in

time. Because τ̂ (t) = ρ and Ĉ(t) = −χ, τ̇ (j) > −Ċ(j) implies that τ̇ (t) > −Ċ(t) holds for

all t ≥ j. θ(t) = 0 for t ≥ t2, so that ts < t2.

A.3. The laissez-faire economy

The current-value Lagrangian of the representative fuel firm reads

L = pF sF + pyyF − CsF − τF [sF + yF ]− ιFχC + ζsF sF + ζS[S − sF − yF ],(A.26)

where ζsF and ζS are the multipliers of the non-negativity conditions sF ≥ 0 and S −

sF − yF ≥ 0. Because (A.26) is linear in both sF and yF , the optimal solution maximizes

64Cf. Chiang (1999, pp. 298) and Feichtinger and Hartl (1986, chap. 6.2).
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H = pFsF + pyyF − CsF − τF [sF + yF ] − ιFχC. The corresponding complete fuel supply

correspondence and complete deposit supply correspondence read

sF (t)





= 0 if p(t) < C + τF (t),

∈ [0, S(t)] if p(t) = C + τF (t),

= S(t) if p(t) > C + τF (t),

(A.27)

and

yF (t)





≤ 0 if py(t) < τF (t),

∈ [0, S(t)] if py(t) = τF (t),

= S(t) if py(t) > τF (t).

(A.28)

The complete Hotelling-rule is

τF (t)





= τF0e
ρt if p(j) ≤ C(j) + τF (j) ∧ py(j) ≤ τF (j) ∀ j ≤ t,

≤ τF0e
ρt otherwise.

(A.29)

The first order condition with respect to C gives

(A.30) ι̇F = [ρ+ χ]ιF + sF .

The transversality conditions read

(a) : lim
t→∞

e−ρtτF (t)[S(t)− Sopt(t)] ≥ 0, (b) : lim
t→∞

e−ρtι(t)[C(t)− Copt(t)] ≥ 0.(A.31)

The first ensures that no fuel is left in situ. Solving (A.30) and making use of the second

transversality condition yield ιF (t) = −
∫ T

t
e−[ρ+χ](j−t)sF (j) dj, so that the firm is not willing

to pay for any exogenous improvement of extraction technology after its resource stock is

exhausted.

A.4. Competitive demand-side policy

Derivation of (21). The current-value Lagrangian of country A reads

L = UA(xA + qA) + K̄A − pxA − pqAqA + υAΠF +ΠA − θA[xA +DB − γZ]

+ µA[Z̄ − Z] + ζxxA.
(A.32)
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From the first-order conditions we get (21) and

θ̇A = [ρ+ γ]θA − µA.(A.33)

The complementary slackness conditions are

µA ≥ 0, µA[Z̄ − Z] = 0,(A.34)

ζx ≥ 0, ζxx = 0.(A.35)

Finally, the transversality condition reads

lim
t→∞

e−ρtθA(t)[−Z(t) + Zopt(t)] ≥ 0.(A.36)

Proof of Proposition 1. The fuel cap of country A is given by (A.38), while the fuel demand

of the fringe is given by (18) with p(t) = C(t) + τF (t). For t ∈ [0, t2) the climate costs

of emissions θA(t) are positive, so that xA(t)
nA

< xB(t)
nB

. For t ≥ t2 the emission costs term

vanishes, i.e. θA(t) = 0, implying xA(t)
nA

= xB(t)
nB

.

Fuel demand of the fringe is given by (18) with p(t) = C(t) + τF (t). Because of τ̂F (t) =

ρ > 0, Ĉ = −χ < 0 and (20), fuel utilization of the fringe increases for t ∈ [0, tsB) and

decreases for t ∈ [tsB, T ). Using U ′
(

xi+qi
ni

)
= M ′

(
qi
ni

)
yields

(A.37)
dqi
dxi

=
U ′′

M ′′ − U ′′
< 0.

Consequently, backstop consumption in the fringe evolves according to q̇B(t) < 0 for t ∈

[0, tsB) and q̇B(t) > 0 for t ∈ [tsB, T ).

For t ∈ [0, T ), an equilibrium on the energy market of country A requires U ′
(

xA(t)+qA(t)
nA

)
=

C(t) + τF (t) + θA(t) = pqA(t) = M ′
(

qA(t)
nA

)
, so that the fuel cap is given by

(A.38) xA(t) = nA[U
′−1(C(t) + τF (t) + θA(t))−M

′−1(C(t) + τF (t) + θA(t))].

Consider Phase I, such that the growth rates τ̂F = ρ, Ĉ = −χ and θ̂A = ρ+ γ are constants.

If the dynamics of C(t)+ τF (t)+θA(t) switch during Phase I, the switching time tsAI
∈ [0, t1)

is unique within Phase I due to the constant growth rates and τ̇F (t) + θ̇A(t) > τ̇F (t) implies

tsAI
< tsB. In this case, ẋA(t) > 0 for t ∈ [0, tsAI

) and ẋA(t) < 0 for t ∈ [tsAI
, t1). Using (A.37)
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implies q̇A(t) < 0 for t ∈ [0, tsAI
) and q̇A(t) > 0 for t ∈ [tsAI

, t1). If the dynamics do not

switch, ẋA(t) > 0 and q̇A(t) < 0 for all t ∈ [0, t1).

Consider Phase II, such that s̄ = xA +DB. If ẋA(t) > 0, ḊB(t) < 0 implying ρτF (t) >

χC(t), and ρτF (t) < χC(t)− θ̇A(t), so that θ̇A(t) < 0. Analogously, if ẋA(t) < 0, ḊB(t) > 0

implying ρτF (t) < χC(t), and ρτF (t) > χC(t) − θ̇A(t), so that θ̇A(t) > 0. Because of

θA(t) > 0 for t ∈ [0, t2), θA(t) = 0 for all t ≥ t2 and Lemma A.2, θ̇A(t) < 0 has to hold

for some t ∈ [t1, t2) ruling out an increasing fuel consumption in the fringe at these points

in time. Due to the constant growth rates τ̂F = ρ and Ĉ = −χ, fuel consumption of the

fringe is constant for only one point in time, so that θ̇A(t) < 0 implies ρτF (t) > χC(t) and,

therefore, tsB < t2. If tsB ∈ [t1, t2), the constant fuel extraction s̄ implies a switch in the

dynamics of C(t) + τF (t) + θA(t) from d[C(t)+τF (t)+θA(t)]
dt

> 0 to d[C(t)+τF (t)+θA(t)]
dt

< 0 at time

tsAII
= tsB. In this case, ẋA(t) < 0 for t ∈ [t1, t

s
AII

) and ẋA(t) > 0 for t ∈ [tsAII
, t2), while

(A.37) implies q̇A(t) > 0 for t ∈ [t1, t
s
AII

) and q̇A(t) < 0 for t ∈ [tsAII
, t2). If t

s
B < t1, ẋA(t) > 0

and q̇A(t) < 0 for all t ∈ [t1, t2).

Consider Phase III, so that θA(t) = 0 ∀ t ≥ t2. Because t
s
B < t2, C(t)+τF (t) monotonically

increases in time for all t ∈ [t2, T ). Consequently, ẋi(t) < 0 and q̇i(t) > 0 for i = A,B and

t ∈ [t2, T ).

The fuel cap path xA(t) is continuous if C(t), τF (t) and θA(t) evolve continuously in time.

In case of C(t), the continuous evolution is ensured by assumption. According to (16), τF (t)

has no discontinuities. For θA(t) we find a continuous evolution during Phase I, Phase III

and Phase IV, because (11) holds in similar manner for θA, and θA(t) = 0 for all t ≥ t2. For

t ∈ [t1, t2) the proof of Lemma A.2 can be applied in a similar manner.

Proof of Proposition 2. The fuel price reads p(t) = c+τF (t) for all t. In Phase I and II it does

not internalize the climate costs of emissions. In general, U ′(xA(t) + qA(t)) = p(t) + θA(t) >

p(t) = U ′(xB(t) + qB(t)) and xA(t) + xB(t) = s̄ for t ∈ [t1, t2) imply xB(t) > x∗
B(t) and

xA(t) < x∗
A(t) at the ceiling.

Now suppose τF0 < τ0, such that p(t) < C(t) + τ(t) + θ(t) and, therefore, xB(t) > x∗
B(t)

for all t. U ′
(

xi(t2)+qi(t2)
ni

)
= U ′

(
x∗
i (t

∗
2)+q∗i (t

∗
2)

ni

)
= p̄ = C0e

−χt2 + τF0e
ρt2 = C0e

−χt∗2 + τ0e
ρt∗2 and

M ′
(

qi(T )
ni

)
= M ′

(
q∗i (T

∗)

ni

)
= C0e

−χT + τF0e
ρT = C0e

−χT ∗

+ τ0e
ρT ∗

hold. The first [second]

equality and τF0 < τ0 imply p(t2) > p(t∗2) [p(T ) > p(T ∗)]. Because T > t2 > ts, T ∗ > t∗2 > ts
∗
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and ṗ(t) > 0 for t > ts, ts
∗

, we get t2 > t∗2 and T > T ∗. Then, xB(t) > x∗
B(t) for all

t < T , xA(t) > x∗
A(t) for t ∈ [t∗2, T ] and s(t) = s∗(t) = s̄ for t ∈ [max{t1, t∗1}, t

∗
2) imply

∫ max{t1,t∗1}

0
xA(t) dt <

∫ max{t1,t∗1}

0
x∗
A(t) dt and

∫ max{t1,t∗1}

0
s(t) dt <

∫ max{t1,t∗1}

0
s∗(t) dt. Finally,

θA0 ≤ θ0 implies that the extraction paths do not cut during Phase I, such that the ceiling

is violated. Therefore, θA0 > θ0 holds.

Next suppose τF0 > τ0, such that t2 < t∗2 and T < T ∗ by U ′
(

xi(t2)+qi(t2)
ni

)
= U ′

(
x∗
i (t

∗
2)+q∗i (t

∗
2)

ni

)
=

p̄ = C0e
−χt2 + τF0e

ρt2 = C0e
−χt∗2 + τ0e

ρt∗2 and M ′
(

qi(T )
ni

)
= M ′

(
q∗i (T

∗)

ni

)
= C0e

−χT + τF0e
ρT =

C0e
−χT ∗

+ τ0e
ρT ∗

, respectively. Then, xi(t) < x∗
i (t) for t ∈ [t2, T

∗) and s(t) = s∗(t) = s̄ for

t ∈ [max{t1, t∗1}, t2) imply
∫ max{t1,t∗1}

0
s(t) dt >

∫ max{t1,t∗1}

0
s∗(t) dt. Furthermore, xA(t)

nA
< xB(t)

nB

and
x∗
A(t)

nA
=

x∗
B(t)

nB
during Phase I imply

∫ max{t1,t∗1}

0
xB(t) dt >

∫ max{t1,t∗1}

0
x∗
B(t) dt. Finally,

xA(0) > x∗
A(0) ⇔ τF0 + θA0 ≤ τ0 + θ0 implies that the extraction paths do not cut during

Phase I, such that the ceiling is violated. Therefore, xA(0) < x∗
A(0) ⇔ τF0 + θA0 > τ0 + θ0

holds.

Now consider the quadratic cost functions

Mi(t) =
1

2

ni

m

[
qi(t)

ni

]2
,(A.39)

and the HARA utility functions

Ui(t) = niβ
1−φ1− φ

φ








xi(t)+qi(t)
ni

1− φ
+ α



φ

− αφ





,(A.40)

which yields the demands

Di(t) = ni(φ− 1)
[
α− βU ′

i(t)
1

φ−1

]
− nimU ′

i(t) for φ 6= 1.(A.41)

Lemma A.4. Suppose the coalition applies a demand-side climate policy and is a price

taker in the fuel market. Consider the quadratic cost functions (A.39) and the HARA utility

functions (A.40), which yields the demands (A.41). If φ = 2 (linear demands), then τF0 = τ0,

t1 = t∗1, t2 = t∗2, T = T ∗ and θA0 = θ0/nA, and a marginal increase [decrease] in φ implies

τF0 < [>]τ0, t1 > [<]t∗1, t2 > [<]t∗2, T > [<]T ∗ and θA0 > [<]θ0/nA for γ = ρ and C0 = 0.

If φ = 3/2 (quadratic demands), then τF0 > τ0, t2 < t∗2, T < T ∗ and θA0 ∈ (θ0, θ0/nA) for

γ = ρ and χ = 0 or χ = ρ.
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Proof of Lemma A.4. The equilibrium is characterized by

S(0) =

∫ t1

0

DA

(
C0e

−χt + τF0e
ρt + θA0e

(ρ+γ)t
)
dt+

∫ t1

0

DB

(
C0e

−χt + τF0e
ρt
)
dt

+ [t2 − t1]γZ̄ +

∫ T

t2

D
(
C0e

−χt + τF0e
ρt
)
dt,

(A.42)

Z̄ = Z(0)e−γt1 +

∫ t1

0

DA

(
C0e

−χt + τF0e
ρt + θA0e

(ρ+γ)t
)
eγt dte−γt1

+

∫ t1

0

DB

(
C0e

−χt + τF0e
ρt
)
eγt dte−γt1 ,

(A.43)

γZ̄ = DA

(
C0e

−χt1 + τF0e
ρt1 + θA0e

(ρ+γ)t1
)
+DB

(
C0e

−χt1 + τF0e
ρt1
)
,(A.44)

γZ̄ = D
(
C0e

−χt2 + τF0e
ρt2
)
,(A.45)

0 = D
(
C0e

−χT + τF0e
ρT
)
.(A.46)

Differentiating with respect to nB and using DA(t1)+DB(t1) = γZ̄ = DA(t2)+DB(t2) yields

0 =

{∫ t1

0

[D′
A(t) +D′

B(t)]e
ρt dt+

∫ T

t2

D′(t)eρt dt

}
dτF0

dnB

+

∫ t1

0

D′
A(t)e

(ρ+γ)t dtdθA0

dnB

+

∫ t1

0

[
DB(t)

nB

−
DA(t)

nA

]
dt,

(A.47)

0 =

∫ t1

0

[D′
A(t) +D′

B(t)]e
(ρ+γ)t dte−γt1 dτF0

dnB

+

∫ t1

0

D′
A(t)e

(ρ+2γ)t dte−γt1 dθA0

dnB
+

∫ t1

0

[
DB(t)

nB

−
DA(t)

nA

]
eγt dte−γt1 ,

(A.48)

0 = [D′
A(t1) +D′

B(t1)]e
ρt1 dτF0

dnB
+D′

A(t1)e
(ρ+γ)t1 dθA0

dnB
+

DB(t1)

nB

−
DA(t1)

nA

+
{
[D′

A(t1) +D′
B(t1)][ρτF0e

ρt1 − χC0e
−χt1 ] +D′

A(t1)(ρ+ γ)θA0e
(ρ+γ)t1

}
dt1
dnB

,

(A.49)

0 = D′(t2)
[
eρt2 dτF0

dnB
+ [ρτF0e

ρt2 − χC0e
−χt2 ] dt2

dnB

]
,(A.50)

0 = D′(T )
[
eρT dτF0

dnB

+ [ρτF0e
ρT − χC0e

−χT ] dT
dnB

]
.(A.51)

Using (A.51) in (A.47) and solving (A.47), (A.48) and (A.49) for dτF0

dn
B

, dθA0

dn
B

and dt1
dn

B

yields

dτF0

dnB

=

∫ t1

0
D′

A(t)e
(ρ+γ)t dt

∫ t1

0

[
DB(t)
nB

− DA(t)
nA

]
eγt dt−

∫ t1

0
D′

A(t)e
(ρ+2γ)t dt

∫ t1

0

[
DB(t)
nB

− DA(t)
nA

]
dt

X
∫ t1

0
D′

A(t)e
(ρ+2γ)t dt−

∫ t1

0
[D′

A(t) +D′
B(t)]e

(ρ+γ)t dt
∫ t1

0
D′

A(t)e
(ρ+γ)t dt

,
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dθA0

dnB

=

−
X
∫ t1

0

[
DB(t)
nB

− DA(t)
nA

]
eγt dt−

∫ t1

0
[D′

A(t) +D′
B(t)]e

(ρ+γ)t dt
∫ t1

0

[
DB(t)
nB

− DA(t)
nA

]
dt

X
∫ t1

0
D′

A(t)e
(ρ+2γ)t dt−

∫ t1

0
[D′

A(t) +D′
B(t)]e

(ρ+γ)t dt
∫ t1

0
D′

A(t)e
(ρ+γ)t dt

,

dt1
dnB

= −
[D′

A(t1) +D′
B(t1)]e

ρt1 dτF0

dnB

+D′
A(t1)e

(ρ+γ)t1 dθA0

dnB

+ DB(t1)
nB

− DA(t1)
nA

[D′
A(t1) +D′

B(t1)][ρτF0eρt1 − χC0e−χt1 ] +D′
A(t1)(ρ+ γ)θA0e(ρ+γ)t1

,

where X :=
∫ t1

0
[D′

A(t) +D′
B(t)]e

ρt dt− γZ̄

ρτF0
.

Next, consider the quadratic cost functions (A.39) and the HARA utility functions (A.40),

which yields the demands (A.41). For φ = 2, i.e. linear-quadratic utility functions with

D′′
i = 0, we get

dτF0

dnB
=

∫ t1

0
nAβ̃e

(ρ+γ)t dt
∫ t1

0
β̃θA0e

(ρ+2γ)t dt−
∫ t1

0
nAβ̃e

(ρ+2γ)t dt
∫ t1

0
β̃θA0e

(ρ+γ)t dt

X
∫ t1

0
nAβ̃e(ρ+2γ)t dt−

∫ t1

0
β̃e(ρ+γ)t dt

∫ t1

0
nAβ̃e(ρ+γ)t dt

= 0,

dθA0

dnB

=
X
∫ t1

0
β̃θA0e

(ρ+2γ)t dt−
∫ t1

0
β̃e(ρ+γ)t dt

∫ t1

0
β̃θA0e

(ρ+γ)t dt

X
∫ t1

0
nAβ̃e(ρ+2γ)t dt−

∫ t1

0
β̃e(ρ+γ)t dt

∫ t1

0
nAβ̃e(ρ+γ)t dt

=
θA0

nA

,

dt1
dnB

=
0− nAβ̃e

(ρ+γ)t1 θA0

nA
+ β̃θA0e

(ρ+γ)t1

β̃[ρτF0eρt1 − χC0e−χt1 ] + nAβ̃(ρ+ γ)θA0e(ρ+γ)t1
= 0,

and dt2
dnB

, dT
dnB

= 0 by (A.50) and (A.51), where β̃ := β +m.

Substituting (A.41) into dτF0

dnB

, differentiating with respect to φ, and evaluating at φ = 2,

C0 = 0 and γ = ρ yields

∂

(

dτF0

dnB

)

∂φ

∣∣∣
φ=2,C0=0,γ=ρ

= −
βτ 2F0

(
eρt1 + τF0

θA0

) [
e2ρt1 + eρt1 + 4 + 3

(
eρt1 + 1

)
τF0

θA0

]
A

β̃τF0 (eρt1 − 1)3 + 4 (e2ρt1 + eρt1 + 1) ρZ̄
,

where

A := ln

(
eρt1 + τF0

θA0

1 + τF0

θA0

)
+

(
eρt1 − 1

)3
(
eρt1 + τF0

θA0

) [
e2ρt1 + eρt1 + 4 + 3 (eρt1 + 1) τF0

θA0

] ln
(
1 + τF0

θA0

τF0

θA0

)

−

(
eρt1 − 1

) [
5e2ρt1 + 2eρt1 + 5 + 6

(
eρt1 + 1

)
τF0

θA0

]

2
(
eρt1 + τF0

θA0

) [
e2ρt1 + eρt1 + 4 + 3 (eρt1 + 1) τF0

θA0

] ,

∂A
∂t1

=
ρeρt1

(
eρt1 − 1

)2 (
eρt1 + 2

)
(
eρt1 + τF0

θA0

)2 [
e2ρt1 + eρt1 + 4 + 3 (eρt1 + 1) τF0

θA0

]2

{
e2ρt1 + 2eρt1 − 3

+ 2

(
1 +

τF0

θA0

)(
2eρt1 + 1 + 3

τF0

θA0

)[
ln

(
1 + τF0

θA0

τF0

θA0

)
− 1 +

τF0

θA0

1 + τF0

θA0

]}
> 0.
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Since lim
t1→0

A = 0 holds, ∂A
∂t1

> 0 implies A > 0, such that
∂

(

dτF0

dnB

)

∂φ

∣∣∣
φ=2,C0=0,γ=ρ

< 0. Further-

more,
∂

(

dt2
dnB

)

∂φ

∣∣∣
φ=2,C0=0,γ=ρ

,
∂

(

dT
dnB

)

∂φ

∣∣∣
φ=2,C0=0,γ=ρ

> 0 by (A.50) and (A.51).

Substituting (A.41) into dθA0

dnB

, differentiating with respect to φ, and evaluating at φ = 2,

C0 = 0 and γ = ρ yields

∂

(

dθA0

dnB

)

∂φ

∣∣∣
φ=2,C0=0,γ=ρ

=

6βτF0

[
β̃τF0

(
eρt1 − 1

) (
1 + τF0

θA0

)(
eρt1 + τF0

θA0

)
B1 + ρZ̄B2

]

nAβ̃ (eρt1 − 1)
[
β̃τF0 (eρt1 − 1)3 + 4 (e2ρt1 + eρt1 + 1) ρZ̄

] ,

where

B1 := ln

(
eρt1 + τF0

θA0

1 + τF0

θA0

)
+

(
eρt1 − 1

) [(
eρt1 − 1

)2
− 3

(
eρt1 + 1 + 2 τF0

θA0

)
τF0

θA0

]

6
(
1 + τF0

θA0

)(
eρt1 + τF0

θA0

)
τF0

θA0

,

∂B1

∂t1
=

ρeρt1
(
eρt1 − 1

)2 (
2eρt1 + 1

)

6
(
1 + τF0

θA0

)(
eρt1 + τF0

θA0

)2
τF0

θA0

> 0,

B2 := ln

(
eρt1 + τF0

θA0

1 + τF0

θA0

)(
τF0

θA0

)2

− ln

(
eρt1 + τF0

θA0

τF0

θA0

)
e2ρt1 + ln

(
1 + τF0

θA0

τF0

θA0

)

+

(
eρt1 − 1

) [
4
(
e2ρt1 + eρt1 + 1

)
+ 3

(
eρt1 + 1− 2 τF0

θA0

)
τF0

θA0

]

6 τF0

θA0

,

∂B2

∂t1
= 2ρe2ρt1

[
eρt1 + τF0

θA0

τF0

θA0

− 1− ln

(
eρt1 + τF0

θA0

τF0

θA0

)]
> 0.

Since lim
t1→0

B1 = 0 and lim
t1→0

B2 = 0 hold, ∂B1

∂t1
> 0 and ∂B2

∂t1
> 0 imply B1 > 0 and B2 > 0, such

that
∂

(

dθA0

dnB

)

∂φ

∣∣∣
φ=2,C0=0,γ=ρ

> 0.

Finally, substituting (A.41) into dt1
dnB

, differentiating with respect to φ, and evaluating at

φ = 2, C0 = 0 and γ = ρ yields

∂

(

dt1
dnB

)

∂φ

∣∣∣
φ=2,C0=0,γ=ρ

=

(
eρt1 − 1

)
βτF0

[
β̃τF0

(
1 + τF0

θA0

)(
2eρt1 + 1 + 3 τF0

θA0

)
C1 + 2

(
eρt1 + 2

)
ρZ̄C2

]

ρβ̃ (τF0 + 2nAθA0eρt1)
[
β̃τF0 (eρt1 − 1)3 + 4 (e2ρt1 + eρt1 + 1) ρZ̄

] ,

where

C1 :=

(
eρt1 − 1

) (
eρt1 + 5 + 6 τF0

θA0

)

2
(
1 + τF0

θA0

)(
2eρt1 + 1 + 3 τF0

θA0

) − ln

(
eρt1 + τF0

θA0

1 + τF0

θA0

)
,
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∂C1
∂t1

=
ρeρt1

(
eρt1 − 1

)3
(
1 + τF0

θA0

)(
eρt1 + τF0

θA0

)(
2eρt1 + 1 + 3 τF0

θA0

)2 > 0,

C2 := ln

(
1 + τF0

θA0

τF0

θA0

)
+

e3ρt1 + 2− 3eρt1
(

τF0

θA0

)2

(eρt1 − 1)2 (eρt1 + 2)
ln

(
eρt1 + τF0

θA0

1 + τF0

θA0

)
−

3eρt1
(
eρt1 + 1− 2 τF0

θA0

)

2 (eρt1 − 1) (eρt1 + 2)
,

∂C2
∂t1

=
6ρeρt1

(
e2ρt1 + eρt1 + 1

) (
1 + τF0

θA0

)
C3

(eρt1 − 1)3 (eρt1 + 2)2
,

C3 :=

(
τF0

θA0
− 1

)
ln

(
eρt1 + τF0

θA0

1 + τF0

θA0

)
+

(
eρt1 − 1

) [
e2ρt1 + eρt1 + 4− 3

(
eρt1 − 1 + 2 τF0

θA0

)
τF0

θA0

]

6
(
1 + τF0

θA0

)(
eρt1 + τF0

θA0

) ,

∂C3
∂t1

=
ρeρt1

(
eρt1 − 1

)2 (
eρt1 + 2

)

3
(
1 + τF0

θA0

)(
eρt1 + τF0

θA0

)2 > 0.

Since lim
t1→0

C1 = 0, lim
t1→0

C2 = ln

(
1+

τF0
θA0

τF0
θA0

)
+ 1 −

τF0
θA0

1+
τF0
θA0

> 0 and lim
t1→0

C3 = 0 hold, ∂C1
∂t1

> 0,

∂C2
∂t1

> 0 and ∂C3
∂t1

> 0 imply C1 > 0, C2 > 0 and C3 > 0, such that
∂

(

dt1
dnB

)

∂φ

∣∣∣
φ=2,C0=0,γ=ρ

> 0.

For γ = ρ, χ = 0 and φ = 3
2
, i.e. quadratic demand functions with D′′

i < 0, we get

dτF0

dn
B

= D1

D3
> 0, dθA0

dn
B

= D2

D3
∈ (0, θA0

nA
) and dt2

dn
B

, dT
dn

B

< 0 by (A.50) and (A.51), where

D1 =
nAβθ

2
A0

(
eρt1 − 1

)4

480ρ2

[
4
(
e3ρt1 + 4e2ρt1 + 4eρt1 + 1

)
(m+ βC0)

+
(
e4ρt1 + 4e3ρt1 + 10e2ρt1 + 4eρt1 + 1

)
βτF0

]
> 0,

D2 =
γZ̄

ρτF0

θA0

60ρ

{
20
(
e3ρt1 − 1

)
(m+ βC0) + 15

(
e4ρt1 − 1

)
βτF0 + 6

(
e5ρt1 − 1

)
βθA0

}

+
θA0

(
eρt1 − 1

)4

1440ρ2

{
20nB

(
e2ρt1 + 4eρt1 + 1

)
(m+ βC0) βθA0

+ 3nA

(
e4ρt1 + 4e3ρt1 + 10e2ρt1 + 4eρt1 + 1

)
β2θ2A0 + 120 (m+ βC0)

2

+
[
120

(
eρt1 + 1

)
τF0 +

(
34e2ρt1 − 8eρt1 + 34

)
θA0

]
(m+ βC0)β

+
[
20
(
e2ρt1 + 4e2ρt1 + 1

)
τF0 + 12

(
e3ρt1 + 4e2ρt1 + 4eρt1 + 1

)
θA0

]
β2τF0

}
> 0,

D3 =
γZ̄

ρτF0

nA

60ρ

{
20
(
e3ρt1 − 1

)
(m+ βC0) + 15

(
e4ρt1 − 1

)
βτF0 + 12

(
e5ρt1 − 1

)
βθA0

}
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+
nA

(
eρt1 − 1

)4

1440ρ2

{
20nB

(
e2ρt1 + 4eρt1 + 1

)
(m+ βC0)βθA0

+ 6nA

(
e4ρt1 + 4e3ρt1 + 10e2ρt1 + 4eρt1 + 1

)
β2θ2A0 + 120 (m+ βC0)

2

+
[
120

(
eρt1 + 1

)
τF0 +

(
88e2ρt1 + 64eρt1 + 88

)
θA0

]
(m+ βC0) β

+
[
20
(
e2ρt1 + 4e2ρt1 + 1

)
τF0 + 24

(
e3ρt1 + 4e2ρt1 + 4eρt1 + 1

)
θA0

]
β2τF0

}
>

nA

θA0
D2.

Finally, for γ = ρ, χ = ρ and φ = 3
2
, we get dτF0

dn
B

= E1
E3

> 0, dθA0

dn
B

= E2
E3

∈ (0, θA0

nA
) and

dt2
dnB

, dT
dnB

< 0 by (A.50) and (A.51), where

E1 =
nAβθ

2
A0

(
eρt1 − 1

)4

480ρ2

[
4
(
e3ρt1 + 4e2ρt1 + 4eρt1 + 1

)
m

+ 6
(
3e2ρt1 + 4eρt1 + 3

)
βC0 +

(
e4ρt1 + 4e3ρt1 + 10e2ρt1 + 4eρt1 + 1

)
βτF0

]
> 0,

E2 =
γZ̄

ρτF0

θA0

60ρ

{
20
(
e3ρt1 − 1

)
m+ 30

(
e2ρt1 − 1

)
βC0 + 15

(
e4ρt1 − 1

)
βτF0

+ 6
(
e5ρt1 − 1

)
βθA0

}
+

θA0

(
eρt1 − 1

)4

1440ρ2

{
20nB

(
e2ρt1 + 4eρt1 + 1

)
mβθA0

+ 3nA

(
e4ρt1 + 4e3ρt1 + 10e2ρt1 + 4eρt1 + 1

)
β2θ2A0 + 120m2

+
[
120

(
eρt1 + 1

)
τF0 +

(
34e2ρt1 − 8eρt1 + 34

)
θA0

]
βm

+
[
20
(
e2ρt1 + 4e2ρt1 + 1

)
τF0 + 12

(
e3ρt1 + 4e2ρt1 + 4eρt1 + 1

)
θA0

]
β2τF0

}

+
βC0θA0

(
eρt1 − 1

)

60ρ2 (e4ρt1 + e3ρt1 + e2ρt1 + eρt1 + 1)

{[
ρt1 −

5
(
eρt1 − 1

) (
5e3ρt1 + e2ρt1 + eρt1 + 5

)

12 (e4ρt1 + e3ρt1 + e2ρt1 + eρt1 + 1)

]

·

[
20
(
e2ρt1 + eρt1 + 1

)
m+ 30

(
eρt1 + 1

)
βC0 + 15

(
e3ρt1 + e2ρt1 + eρt1 + 1

)
βτA0

+ 6
(
e4ρt1 + e3ρt1 + e2ρt1 + eρt1 + 1

)
βθA0

]
+

5
(
eρt1 − 1

)3

12

[
12
(
eρt1 + 1

)

·
(
e4ρt1 + e3ρt1 + e2ρt1 + eρt1 + 1

)
nBβθA0 + 4

(
7e3ρt1 + 7e2ρt1 + 7eρt1 + 7

)
m

+ 6
(
e2ρt1 + 8eρt1 + 1

)
βC0 + 3

(
5e4ρt1 + 12e3ρt1 + 6e2ρt1 + 12eρt1 + 5

)
βτA0

]}
> 0,

E3 =
γZ̄

ρτF0

nA

60ρ

{
20
(
e3ρt1 − 1

)
m+ 30

(
e2ρt1 − 1

)
βC0 + 15

(
e4ρt1 − 1

)
βτF0
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+ 12
(
e5ρt1 − 1

)
βθA0

}
+

nA

(
eρt1 − 1

)4

1440ρ2

{
20nB

(
e2ρt1 + 4eρt1 + 1

)
mβθA0

+ 6nA

(
e4ρt1 + 4e3ρt1 + 10e2ρt1 + 4eρt1 + 1

)
β2θ2A0 + 120m2

+
[
120

(
eρt1 + 1

)
τF0 +

(
88e2ρt1 + 64eρt1 + 88

)
θA0

]
βm

+
[
20
(
e2ρt1 + 4e2ρt1 + 1

)
τF0 + 24

(
e3ρt1 + 4e2ρt1 + 4eρt1 + 1

)
θA0

]
β2τF0

}

+
βC0θA0

(
eρt1 − 1

)

60ρ2 (e4ρt1 + e3ρt1 + e2ρt1 + eρt1 + 1)

{[
ρt1 −

5
(
eρt1 − 1

) (
5e3ρt1 + e2ρt1 + eρt1 + 5

)

12 (e4ρt1 + e3ρt1 + e2ρt1 + eρt1 + 1)

]

·

[
20
(
e2ρt1 + eρt1 + 1

)
m+ 30

(
eρt1 + 1

)
βC0 + 15

(
e3ρt1 + e2ρt1 + eρt1 + 1

)
βτA0

+ 12
(
e4ρt1 + e3ρt1 + e2ρt1 + eρt1 + 1

)
βθA0

]
+

5
(
eρt1 − 1

)3

12

[
12
(
eρt1 + 1

)

·
(
e4ρt1 + e3ρt1 + e2ρt1 + eρt1 + 1

)
(1 + nB)βθA0 + 4

(
7e3ρt1 + 7e2ρt1 + 7eρt1 + 7

)
m

+ 6
(
e2ρt1 + 8eρt1 + 1

)
βC0 + 3

(
5e4ρt1 + 12e3ρt1 + 6e2ρt1 + 12eρt1 + 5

)
βτA0

]}
>

nA

θA0
E2,

and where
[
ρt1 −

5
(
eρt1 − 1

) (
5e3ρt1 + e2ρt1 + eρt1 + 5

)

12 (e4ρt1 + e3ρt1 + e2ρt1 + eρt1 + 1)

]

ρ=0

= 0,

∂

[
ρt1 −

5
(
eρt1 − 1

) (
5e3ρt1 + e2ρt1 + eρt1 + 5

)

12 (e4ρt1 + e3ρt1 + e2ρt1 + eρt1 + 1)

]/
∂ρ

= t1

(
eρt1 − 1

)4 (
12e4ρt1 + 27e3ρt1 + 22e2ρt1 + 27eρt1 + 12

)

12 (e4ρt1 + e3ρt1 + e2ρt1 + eρt1 + 1)2
> 0.

A.5. Competitive supply-side policy

Derivation of (25)-(27). The current-value Lagrangian of country A reads

L = UA (xA + qA) + K̄A − pxA − pqAqA − pyyA + [p− C]sA + υAΠF +ΠA

+ τA[yA − sA]− θA[sA + sF − γZ]− ιAχC + µA[Z̄ − Z]

+ ζyAyA + ζsAsA + ζY [S − yA] + ζSA
[SA − sA]

+ ζG
{
K̄A +ΠA + υAΠF − pxA − pqAqA − ḡA + [p− C]sA − pyyA

}
,

(A.52)
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where ζyA, ζsA, ζY , ζSA
and ζG are the multipliers of the non-negativity conditions yA ≥ 0,

sA ≥ 0, S − yA ≥ 0, SA − sA ≥ 0 and ȳA − yA ≥ 0.

The Lagrangian is linear in both sA and yA. The optimal strategies satisfy the first-order

conditions

∂L

∂sA
= p− C − τA − θA + ζsA − ζSA

+ ζG[p− C] = 0,(A.53)

∂L

∂yA
= τA − py + ζyA − ζY − ζGpy = 0.(A.54)

and maximize the Hamiltonian H = UA(xA + qA) + K̄A − pxA − pqAqA − pyyA + [p−C]sA +

υAΠF + ΠA + τA[yA − sA]− θA[sA + sB − γZ]− ιAχC. We get coalition’s fossil fuel supply

and deposit demand correspondence

sA(t)





= 0, if p(t) < C(t) + τA(t) + θA(t),

∈ [0, SA(t)], if p(t) = C(t) + τA(t) + θA(t),

= SA(t), if p(t) > C(t) + τA(t) + θA(t),

(A.55)

yA(t)





= 0, if py(t) > τA(t),

∈
[
0,min{S(t), ȳA(t)}

]
, if py(t) = τA(t),

= min{S(t), ȳA(t)}, if py(t) < τA(t),

(A.56)

If py(t) < τA(t), the coalition either buys the complete remaining fuel stock S(t) or is

constrained by its budget ȳA(t). In the former case, τA(t) = py(t) + ζY (t) and in the later

case τA(t) = [1 + ζG(t)]py(t). The evolution of the coalition’s scarcity rent is governed by

(A.57) τ̇A = ρτA − ζSA
,

which yields the Hotelling-rule

τA(t)





= τA0e
ρt if p(t) ≤ C(t) + τA(t) + θA(t),

≤ τA0e
ρt if p(t) > C(t) + τA(t) + θA(t).

(A.58)

The first order condition with respect to C and Z yield

ι̇A = ι[ρ+ χ] + [1 + ζG]sA,(A.59)
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θ̇A = θA[ρ+ γ]− µA.(A.60)

The transversality conditions read

(a) : lim
t→∞

e−ρtτA(t)[SA(t)− Sopt
A (t)] ≥ 0, (b) : lim

t→∞
e−ρtιA(t)[C(t)− Copt(t)] ≥ 0,(A.61)

where the first ensures that no fuel is left in situ. Solving (A.59) and taking account of the

second transversality condition gives ιA(t) = −
∫ T

t
e−[ρ+χ](j−t)[1 + ζG(j)]sA(j) dj.

Proof of Proposition 3. Suppose that τA > py and Ḡ = ∞, such that ζG = 0 and yA(0) =

S(0). By taking account of U ′ = p, the coalition’s first-order conditions (A.53), (A.57),

(A.59) and (A.60) are identical to the first-order conditions of the social planner (9)-(11)

and (A.18), so that the coalition will implement the efficient solution.

Proof of Proposition 4.

Lemma A.5. The equilibrium on the deposit market at time t ∈ [0, TF ) is given by τA(t) =

py(t) = τF (t) or τA(t) > py(t) = τF (t). In the latter case, yA(t) = ȳA(t) for all t ∈ [0, TF ).

Proof of Lemma A.5. At first, suppose py(t) > max{τA(t), τF (t)} or py(t) < min{τA(t), τF (t)}.

In the former case, the coalition does not buy any deposits, while the firm wants to sell

all deposits. In the latter case, the coalition wants to buy all remaining deposits but

the firm does not sell any deposits. Both cases cannot be an equilibrium. Thus, py(t) ∈

[min{τA(t), τF (t)},max{τA(t), τF (t)}].

Suppose that τA(t) < τF (t). Because the firm only sells deposits if py(t) ≥ τF (t), (A.56)

implies yA(t) = 0. If the coalition has not acquired some deposit at time j < t, yA(t) = 0

implies that fuel is only supplied by the firm and therefore, p(t) = C(t) + τF (t), τ̂A(t) ≤ ρ

and τ̂F (t) = ρ. Consequently, τA < τF holds in the next moment in time. This allows us the

repeat the argument for all following points in time implying yA(t) = 0 ∀t. However, the

ceiling is violated without deposit acquisitions.

If the coalition bought some deposits at time j < t, (A.28) and (A.56) imply τA(j) ≥ τF (j).

Thus, at j̃ ∈ (j, t) the growth rate of τA has to be lower than ρ, which requires that the

coalition sold its complete fuel stock at once. If j̃ ∈ [0, t1) or j̃ ∈ [t2, T ), this is not possible,

because τA(j̃) ≥ τF (j̃), and θA(j̃), θ̂A(j̃) ≥ 0 imply that the coalition’s supply price equals
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or exceeds the firm’s price, so that p(j̃) ≤ C(j̃) + τA(j̃) + θA(j̃) ruling out sA(j̃) = SA(j̃).

If j̃ ∈ [t1, t2), sA(j̃) = SA(j̃) implies that the firm supplies fuel in the next moment of

time. However, the Hotelling-rule (16) and Ċ < 0 are not compatible with a constant

fuel supply of s̄.65 Consequently, τA(t) < τF (t) cannot be part of an equilibrium. Thus,

py(t) ∈ [τF (t), τA(t)].

Suppose τF (t) < py(t) < τA(t), so that the firm wants to sell all remaining deposits. If

the coalition is not constrained by its funds, the firm can increase its deposit price up to

τA(t) without loosing revenues.

Consider now the case with a binding budget constraint. On the fossil fuel market, sF (t) > 0

and sA(t) = 0 holds, because the coalition’s supply price pA(t) = C(t)+τA(t)+θA(t) exceeds

the firm’s price pF (t) = C(t) + τF (t). Consequently, τ̂A = ρ and τ̂F ≤ ρ, so that τF < τA

also holds in the next moment of time implying maximal deposit acquisition by the coalition.

Therefore, the firm can increase its price up to τA(t) without loosing revenues. Consequently,

τF (t) < py(t) < τA(t) cannot be an equilibrium.

The remaining candidates for an equilibrium are

(i) τF (t) = py(t) = τA(t),

(ii) τF (t) = py(t) < τA(t),

(iii) τF (t) < py(t) = τA(t).

Consider case (iii), where the firm wants to sell all remaining deposits, while the coalition is

indifferent with respect to the amount of bought deposits at time t. If the coalition’s funds

are sufficiently high, it can buy all deposits and (iii) is a special case of (i), where both the

coalition and the firm are indifferent. If the coalition’s funds are not high enough, (iii) is not

an equilibrium.

Consider case (ii), where the coalition applies a maximal acquisition regime. Because of

θA ≥ 0, τF (t) < τA(t) implies sA(t) = 0 and sF (t) > 0 and, therefore, τ̂A(t) = τ̂F (t) = ρ.

We can rewrite τA(t) = [1 + ζG(t)]τF (t) as ζG(t) =
τA(0)
τF (0)

− 1 > 0 for all t ∈ [0, TF ), so that

acquisition are maximal for all points in time until TF .

Lemma A.6. The equilibrium on the fossil fuel market is characterized by sF (t) > 0, sA(t) =

65See the proof of Lemma A.6.
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0 for t ∈ [0, TF ) and sF (t) = 0, sA(t) > 0 for t ∈ [TF , T ), and TF ≤ t1.

Proof of Lemma A.6. According to Lemma A.5, τA(t) ≥ τF (t) for all t ∈ [0, TF ). Because

θA(t) > 0 for t ∈ [0, t2) and θA(t) = 0 for t ≥ t2, we find the following relations of the fuel

producer prices pA(t) and pF (t):

pA(t) = C(t) + τA(t) + θA(t) > C(t) + τF (t) = pF (t) for t ∈ [0, t2),(A.62)

pA(t) = C(t) + τA(t) ≥ C(t) + τF (t) = pF (t) for t ≥ t2.(A.63)

pA(t) > pF (t) for t ∈ [0, t2) implies sF (t) > 0 and sA(t) = 0 for t ∈ [0, t2) if S(t) > 0. During

Phase II, s(t) = s̄ implies a constant price p(t) = p̄. Since ṗF = ρτF (t) − χC(t) is zero at

only one point in time and sF (t) > 0 for t ∈ [0, t2) if S(t) > 0, TF ≤ t1 must hold.

Lemma A.7. Fuel and backstop consumption per capita in the coalition is equal to fuel and

backstop consumption per capita in the fringe for all t.

Proof of Lemma A.7. The energy price is given by either pA(t) or pF (t) and equal in both

countries. According to (13) and (17), U ′
(

xi(t)+qi(t)
ni

)
= M ′

(
qi(t)
ni

)
= p(t), i = A,B, so that

per-capita consumptions are identical.

Lemma A.8. Fuel and total energy [backstop] consumption in both countries increase [de-

cline] until ts ∈ [0, t1) and decline [increase] for t ∈ (ts, t1), they are constant during Phase II,

and they decline [increase] during Phase III.

Proof of Lemma A.8. During Phase I, A.62 implies ṗA(t) = −χC(t)+ρτA(t)+(ρ+γ)θA(t) >

−χC(t)+ρτF (t) = ṗF (t). Consequently, if ṗF (t) = 0 during Phase I at t = tsF , then ṗA(t) = 0

during Phase I at t = tsG < tsF . Suppose tsF ≤ TF . Then, ṗF (t) ⋚ 0 for t ⋚ tsF with tsF < t1,

and ṗA(t) > 0 for t ∈ [TF , t1). Next, suppose tsF > TF . Then, ṗF (t) < 0 for t ∈ [0, TF ) and,

applying Lemma A.1 for t ∈ [TF , t1), ṗA(t) ⋚ 0 for t ⋚ tsG with tsG ∈ [TF , t1). Consequently,

ṗ(t) ⋚ 0 for t ⋚ max{TF , t
s
G} with tsG < t1. ṗ(t) = 0 holds during Phase II. Note that

Lemma A.2 and Lemma A.3 hold, so that θA(t) is continuous for t ∈ [t1, t2) and ts < t2.

Consequently, ṗA(t) = −χC(t) + ρτA(t) > 0 holds during Phase III.

Lemma A.9. At t = TF the energy price p(t) is discontinuous and jumps from pF (TF ) to

pA(TF ).
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Proof of Lemma A.9. Because of (A.62), the price jumps upwards when country A becomes

the sole fuel supplier at TF ≤ t1. The fuel firm may try to exploit the jump by withholding

some fuel or by buying some deposits. In the first case, the firm tries to sell the fuel at

pA(TF ). However, perfect competition on the fuel market implies then p(TF ) = pF (TF ).

In the second case, the firm buys deposits at py(t) and sells them at time TF for

τA(TF )+θA(TF )
1+ζG(TF )

. Then, perfect competition implies a deposit price of py(TF ) = τA(TF )+θA(TF )
1+ζG(TF )

,

so that the firm’s fuel price at time t ≤ t1 reads

(A.64) pF (t) = C(t) +
τA0e

ρt + θA0e
ρteγTF

1 + ζG(TF )
> C(t) + τF0e

ρt.

If the new price path implies a violation of the ceiling, the coalition buys deposits implying

a price jump. Thus, the argument can be repeated until a violation is ruled out. However,

the coalition has then no incentive to buy deposits. Then, Lemma A.10 implies that some

fuel is left in situ, which is not optimal.

The Lemmata A.5 to A.8 prove Proposition 4.

Exhaustion date of the private fuel stock. Let TF divide the planning horizon into two periods.

For t ≥ TF , the coalition’s value function is

V S(SA(TF ), Z(TF ), C(TF )) = max
sA

∫ ∞

0

e−ρt
{
UA(xA(t) + qA(t)) + K̄A − p(t)xA(t)

− pqA(t)qA(t) + [p(t)− C(t)]sA(t) + ΠA(t)
}
dt

subject to (3), (4), (5), and (22).

Assuming singular deposit acquisitions, the transversality conditions at time TF are

(a) : τA(TF ) =
∂V S

∂SA

, (b) : −θA(TF ) =
∂V S

∂Z
(c) : ιA(TF ) =

∂V S

∂C
,(A.65)

H(TF ) = ρV S(SA(TF ), Z(TF ), C(TF )).(A.66)

Taking account of (A.65), we get

ρV S(SA(TF ), Z(TF ), C(TF )) = UA(xA(T
+
F ) + qA(T

+
F )) + K̄A − p(T+

F )xA(T
+
F )− pqA(T

+
F )qA(T

+
F )

[p(T+
F )− C(TF )]sA(T

+
F ) + ΠA(T

+
F )− τA(TF )sA(T

+
F )

− θA(TF )[sA(T
+
F )− γZ]− ιA(TF )χC(TF ).
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Substituting into (A.66) yields

UA(xA(T
−
F ) + qA(T

−
F ))− [C(TF ) + τF (TF )]xA(T

−
F )−MA(qA(T

−
F ))

− yA(T
−
F )[τF (TF )− τA(TF )] + υAτF (TF )[sF (T

−
F ) + yA(T

−
F )]− θA(TF )sF (T

−
F )

= UA(xA(T
+
F ) + qA(T

+
F ))− [C(TF ) + τA(TF ) + θA(TF )]xA(T

+
F )−MA(qA(T

+
F )),

(A.67)

which determines the optimal TF . If the left-hand side is greater [smaller] than the right-hand

side, we get TF = T [TF = 0].

For ζG = ζY = 0, (A.67) can be written as

UA(DA(T
−
F ) +QA(T

−
F ))− p(T−

F )DA(T
−
F )−MA(QA(T

−
F ))−

[
p(T+

F )− p(T−
F )
]
D(T−

F )

+ υAΠF (T
−
F )−

[
UA(DA(T

+
F ) +QA(T

+
F ))− p(T+

F )DA(T
+
F )−MA(QA(T

+
F ))
]
= 0.

(A.68)

Differentiating the left-hand side of (A.68) with respect to p(T+
F ) yields

−D(T−
F ) +DA(T

+
F )−

[
U ′
A(DA(T

+
F ) +QA(T

+
F ))− p(T+

F )
]

︸ ︷︷ ︸
=0

D′
A(T

+
F )

−
[
U ′
A(DA(T

+
F ) +QA(T

+
F ))−M ′

A(QA(T
+
F ))
]

︸ ︷︷ ︸
=0

Q′
A(T

+
F ) < 0 ⇐= p(T+

F ) > p(T−
F ).

Since the left-hand side of (A.68) equals υAΠF (T
−
F ) > 0 for p(T+

F ) = p(T−
F ) and the left-hand

side of (A.68) decreases with p(T+
F ) for p(T+

F ) > p(T−
F ), TF > 0 with p(T+

F ) > p(T−
F ) can be

an equilibrium. In particular, TF > 0 with p(T+
F ) > p(T−

F ) is an equilibrium if the deposit

acquisitions are constant over time, i.e.

yA(t) =
1

TF

[
S(0)−

∫ TF

0

sF (t) dt

]
,

such that υAΠF (T
−
F ) converges to infinity when TF converges to zero, i.e.

lim
TF→0

υAΠF (T
−
F ) = lim

TF→0
υAτF (TF )



D(T−

F ) +
1

TF

[
S(0)−

∫ TF

0

sF (t) dt

]
 = ∞.

Proof of Proposition 5.

Lemma A.10. Suppose that s(0) > s′(0), that the extraction paths intersect only once until

t = max[t1, t
′
1], and that the extraction paths do not intersect between t = min[t2, t

′
2] and

t = max[T, T ′]. Then, t1 < t′1 and
∫ t′1
0

s(t) dt >
∫ t′1
0

s′(t) dt.
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Proof of Lemma A.10. Suppose that s(0) > s′(0) and that the extraction paths intersect

only once until t = max[t1, t
′
1] at t = t̃. Then, Z(t) > Z ′(t) for all t ∈ [0, t̃] by Z(t) =

Z(0)e−γt +
∫ t

0
s(t)eγt dte−γt. If t2 ≤ t′1, then t1 < t2 ≤ t′1. If t2 > t′1, then s(t) < s′(t) for

all t ∈ (t̃, t′1] and Z(t) ≤ Z ′(t) for some t ∈ (t̃, t′1) would imply Z(t′1) < Z ′(t′1) = Z̄ and,

thus, s(t) > s′(t) for some t ∈ (t′1, t1], so that the extraction paths would intersect twice.

Consequently, Z(t) > Z ′(t) for all t ∈ [0, t′1] and, thus, t1 < t′1 and
∫ t′1
0
[Z(t)− Z ′(t)] dt ≥ 0.

Suppose that the extraction paths do not intersect between t = min[t2, t
′
2] and t =

max[T, T ′]. If t2 ≤ t′1, then
∫ T ′

t′1
[s(t) − s′(t)] dt < 0 and, thus,

∫ t′1
0
[s(t) − s′(t)] dt > 0. If

t2 > t′1, then
∫ t′1
0

Ż(t) dt =
∫ t′1
0

Ż ′(t) dt = Z̄ − Z(0), so that (4) becomes

∫ t′1

0

[s(t)− s′(t)] dt = γ

∫ t′1

0

[Z(t)− Z ′(t)] dt +

∫ t′1

0

[Ż(t)− Ż ′(t)] dt

= γ

∫ t′1

0

[Z(t)− Z ′(t)] dt > 0.

(A.69)

According to Proposition 4, sA(t) = 0, sF (t) > 0 and yA(t) ≥ 0 for t ∈ [0, TF ). Therefore,

the price path is given by p(t) = pF (t) = C(t) + τF (t), with τ̂F = ρ. In the social optimum,

the price path (marginal utility path) in Phase I reads p(t) = C(t) + τ(t) + θ(t), with τ̂ = ρ

and θ̂ = ρ+ γ. First, the social climate costs of emissions θ(t) > 0 are missing under supply

side policy. Second, the growth rates of the price paths are not identical.

Suppose that τA0 ≤ τ0. Then, t2 > t∗2 and T > T ∗, so that D(pA(t)) = sA(t) > s∗(t)

for t ∈ [t∗2, T ). At the ceiling, sA(t) = s∗(t) = s̄ for t ∈ [max{t1, t∗1}, t
∗
2). Consequently,

∫ max{t1,t∗1}

0
[sF (t) + sA(t)] dt <

∫ max{t1,t∗1}

0
s∗(t) dt. However, an equilibrium on the deposit

market requires τF0 ≤ τA0, so that C0+τF0 < C0+τ0+θ0 and Ċ(t)+ τ̇F (t) < Ċ(t)+ τ̇(t)+ θ̇0

hold, which implies sF (t) > s∗(t) for t ∈ [0, TF ). Consequently, sA(t) < s∗(t) must hold

for some t ∈ [TF ,max{t1, t
∗
1}) to ensure

∫ max{t1,t∗1}

0
[sF (t) + sA(t)] dt <

∫ max{t1,t∗1}

0
s∗(t) dt,

which in turn implies θA0 > θ0. Consequently, C(t) + τA(t) + θA(t) ≥ C(t) + τ(t) + θ(t)

implies Ċ(t) + τ̇A(t) + θ̇A(t) > Ċ(t) + τ̇ (t) + θ̇(t), so that the extraction paths intersect only

once until t = max{t1, t∗1}. According to Lemma A.10, this contradicts
∫ max{t1,t∗1}

0
[sF (t) +

sA(t)] dt <
∫ max{t1,t∗1}

0
s∗(t) dt. Consequently, τA0 > τ0, such that t2 < t∗2 and T < T ∗

by p̄ = C0e
−χt2 + τA0e

ρt2 = C0e
−χt∗2 + τ0e

ρt∗2 and M ′
(

qi(T )
ni

)
= M ′

(
qi(T

∗)
ni

)
= C0e

−χT +

τA0e
ρT = C0e

−χT ∗

+ τ0e
ρT ∗

, respectively. Furthermore,
∫ T ∗

t2
s(t) dt <

∫ T ∗

t2
s∗(t) dt, which
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implies
∫ max{t1,t∗1}

0
s(t) dt >

∫ max{t1,t∗1}

0
s∗(t) dt.

Suppose that τA(TF ) + θA(TF ) ≤ τ(TF ) + θ(TF ). Then, τA0 > τ0 implies θA0 < θ0 and,

thus, C(t)+ τA(t)+θA(t) < C(t)+ τ(t)+θ(t) for t ∈ [TF ,max{t1, t∗1})]. If τF0 ≤ τ0+θ0, then

sA(t) + sF (t) > s∗(t) would hold for t ∈ [0,max{t1, t∗1}), and the ceiling would be violated.

If τF0 > τ0 + θ0, then the extraction paths would intersect only once until t = max{t1, t∗1},

and
∫ max{t1,t∗1}

0
[sF (t) + sA(t)] dt >

∫ max{t1,t∗1}

0
s∗(t) dt would be contradicted by Lemma A.10.

Consequently, τA(TF )+θA(TF ) > τ(TF )+θ(TF ). If θA0 ≥ θ0, then τA(t)+θA(t) > τ(t)+θ(t)

for all t ∈ [0,max{t1, t∗1}).

Finally, suppose that τF (TF ) ≥ τ(TF ) + θ(TF ), which implies τF (t) > τ(t) + θ(t) for

all t ∈ [0, TF ). Since τA(TF ) + θA(TF ) > τ(TF ) + θ(TF ), the extraction paths would either

never intersect and the ceiling would never bind, or the extraction paths would intersect

only once until t = max{t1, t∗1}, and
∫ max{t1,t∗1}

0
[sF (t) + sA(t)] dt >

∫ max{t1,t∗1}

0
s∗(t) dt would

be contradicted by Lemma A.10. Consequently, τF (TF ) < τ(TF ) + θ(TF ).

A.6. Strategic demand-side policy

Derivation of (28). The current-value Lagrangian of country A reads

L = UA(xA + qA(xA)) + K̄A − [C + τF ]xA −MA(qA(xA))

+ υAτF [xA +DB(C + τF )] + λρτF − κ[xA +DB(C + τF )]− ιAχC

− θA[xA +DB(C + τF )− γZ] + µA[Z̄ − Z] + ζxxA.

(A.70)

By definition, xA(t) = 0 for all t ≥ TA, so that

V =





∫∞

TA
e−ρ(t−TA)[UA(qA(t)) + K̄A −MA(qA(t))] dt = nA

Ū
ρ

if TA ≥ TB,

nA
Ū
ρ
+ υA

∫ TB

TA
e−ρ(t−TA)τF (t)DB(t) dt if TA < TB.

(A.71)

The first-order conditions give

∂L

∂xA

= U ′
A − C − τF + υAτF − κ− θA + ζx = 0,(A.72)

∂L

∂τF
= −xA + υA[xA +DB] + υAτFD

′
B + ρλ− κD′

B − θAD
′
B = ρλ− λ̇,(A.73)

∂L

∂S
= 0 = ρκ− κ̇,(A.74)

72



∂L

∂Z
= θAγ − µA = −ρθA + θ̇A,(A.75)

∂L

∂C
= −xA + υAτFD

′
B − κD′

B − ιAχ− θAD
′
B = ριA − ι̇A.(A.76)

The complementary slackness conditions are

µA ≥ 0, µA[Z̄ − Z] = 0,(A.77)

ζx ≥ 0, ζxxA = 0.(A.78)

and the transversality conditions read

(a) lim
t→∞

e−ρtκ(t)[S(t)− Sopt(t)] ≥ 0, (b) lim
t→∞

e−ρtθA(t)[−Z(t) + Zopt(t)] ≥ 0,(A.79)

(a) lim
t→∞

e−ρtλ(t)[τF (t)− τ optF (t)] ≥ 0, (b) lim
t→∞

e−ρtιA(t)[C(t)− Copt(t)] ≥ 0.(A.80)

Solving (A.73), (A.74) and (A.76), and taking account of (A.80)(b) yield

λ(t) =

∫ t

0

xA(j) dj +

∫ t

0

κ(j)D′
B(j) dj +

∫ t

0

θA(j)D
′
B(j) dj

− υA

∫ t

0

(xA(j) +DB(j)) dj − υA

∫ t

0

τF (j)D
′
B(j) dj,

(A.81)

κ(t) = κ0e
ρt,(A.82)

ιA(t) = −

∫ T

t

e−[ρ+χ](j−t)
[
xA(j) + κ(j)D′

B(j) + θA(j)D
′
B(j)− υAτF (j)D

′
B(j)

]
dj,(A.83)

where T = max{TA, TB}. T divides the planning horizon into two periods, where the coali-

tion’s value function for t ≥ T reads

V =

∫ ∞

0

e−ρt
[
UA(qA(t)) + K̄A −MA(qA(t))

]
dt =

nAŪ

ρ

By taking account of ι(T ) = 0 and limt→T xA(t) = limt→T DB(t) = 0, the transversality

condition for T gives

H(T ) = UA(qA(T )) + K̄A −MA(qA(T )) + λ(T )ρτF (T ) = ρV

⇔ λ(T )ρτF (T ) = 0.(A.84)

The substitution of (3), (16) and (A.81) - (A.83) and the consideration of S(0) =
∫ T

0
[xA(t)+

DB(t)] dt yield

κ0 = υAτF0 +

∫ TA

0
xA(t) dt− υS(0) +

∫ t2

0
θA(t)D

′
B(t) dt∣∣∣

∫ TB

0
eρtD′

B(t) dt
∣∣∣

.(A.85)

Substituting pF (t) = C(t) + τF (t), (A.82) and (A.85) into (A.72) yields (28).
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Proof of Proposition 6. If SE(t) > [<]0, then U ′
A(t) = C(t) + τF (t) + θA(t) + SEeρt > [<

]C(t) + τF (t) = p(t) in Phase I-III [Phase III], so that xA

nA
< [>] xB

nB
in Phase I-III [Phase III].

Fuel and backstop consumption in both countries are continuous for all points in time

if C(t), τF (t), θA(t) and SE(t) are continuous for all points in time. C(t) is continuous

by assumption, τF (t) is continuous from (16), and SE(t) = SEeρt is continuous. For the

continuous evolution of θA(t), the proof of Proposition 1 can be applied in a similar manner.

Thus, Proposition 1(iv) continues to hold.

Consider Phase I. Applying Lemma A.1 reveals ṡ(t1) < 0. If θA0 +SE ≥ 0, then U̇ ′
A(t)−

ṗ(t) = (ρ+γ)θA0e
(ρ+γ)t+ρSEeρt > 0, so that tsA < tsB holds. Consequently, ẋA R 0 for t ⋚ tsA

with tsA ∈ [0,min{tsB, t1}).

Consider Phase II. If tsB ∈ [0, t1), then xB decreases for t ∈ [t1,min{t2, TB}), so that xA

increases for t ∈ [t1,min{t2, TB}) and is constant for t ∈ [min{t2, TB}, t2). By contrast, if

tsB > t1, then xB increases for t ∈ [t1, t
s
B) and decreases for t ∈ [tsB, TB), so that xA decreases

for t ∈ [t1,min{tsB, t2}). If t
s
B < t2, then xA increases for t ∈ [tsB,min{t2, TB}) and is constant

for t ∈ [min{t2, TB}, t2).

Consider Phase III. Ü ′
A(t) > 0 and p̈(t) > 0 hold, so that U̇ ′

A(t) > 0 or ṗ(t) > 0 must

hold for t ≥ t2 to ensure ṡ(t2) < 0. If SE > [<]0, then U̇ ′
A(t) − ṗ(t) = ρSEeρt > [<]0, so

that U̇ ′
A(t) > 0 [ṗ(t) > 0] must hold for t ≥ t2 implying ẋA < 0 [ẋB < 0] during Phase III.

Consequently, tsB =
ln
(

χC0
ρτF0

)

ρ+χ
∈ [0, TB) [∈ [0, t2)]. Thus, Proposition 1(iv) [iii] continues to

hold.

Suppose SE(t) ≥ 0, such that xA

nA
< xB

nB
in Phase I and II and xA

nA
≤ xB

nB
in Phase III.

If nA ≤ υA, the terms-of-trade effect would then be negative, which contradicts SE(t) ≥ 0.

Consequently, nA ≤ υA implies SE(t) < 0.

Suppose χ = 0, such that ẋB(t) = D′
B(t)ρτF0e

ρt < 0 implies ẋA(t) = D′
A(t)[ρ(τF0 +

SE)eρt+ θ̇A(t)] > 0 in Phase II and, thus, θ̇A(t) < 0 in Phase II, such that θA(t) ≤ θA0e
(ρ+γ)t1 .

Then, we have

SE(t) = ToT(t)− eρt
∫ t2

0
θA(t)D

′
B(t) dt∫ T

0
eρtD′

B(t) dt
> ToT(t)− θA0e

ρt+γt1

∫ t2

0
eρtD′

B(t) dt∫ T

0
eρtD′

B(t) dt
,

where ToT(t) := −
∫ TA
0 xA(t) dt−υAS(0)

∫ T
0 eρtD′

B(t) dt
. Suppose θA(t1) + SE(t1) ≤ 0, such that xA

nA
> xB

nB
in

Phase I-III. If nA ≥ υA, the terms-of-trade effect would then be positive, which contradicts
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θA(t1) + SE(t1) ≤ 0. Consequently, χ = 0 and nA ≥ υA implies θA(t1) + SE(t1) > 0.

Lemma A.11. Suppose the coalition applies a demand-side climate policy, acts strategically

in the fuel market and is committed to its strategy. With quadratic cost functions and linear

demand functions, the climate costs are lower, the switch to Phase II occurs later and the

switch to Phase III occurs earlier than without strategic action. Furthermore, a positive

[negative] strategic effect implies that the scarcity rent is lower [higher], the coalition’s switch

to Phase IV occurs earlier [later] and the fringe’s switch to Phase IV occurs later [earlier]

than without strategic action. Finally, the initial fuel extraction is lower and cumulative

fuel extraction
∫
s(t) dt is lower [higher] than without strategic action for t ∈ [0, t1|SE6=0)

[t ∈ [t2|SE6=0,max{TA, TB})].

Proof of Lemma A.11. The equilibrium is characterized by

S(0) =

∫ t1

0

DA

(
C0e

−χt + τF0e
ρt + θA0e

(ρ+γ)t + SEeρt
)
dt

+

∫ t1

0

DB

(
C0e

−χt + τF0e
ρt
)
dt + (t2 − t1)γZ̄(A.86)

+

∫ TA

t2

DA

(
C0e

−χt + τF0e
ρt + SEeρt

)
dt+

∫ TB

t2

DB

(
C0e

−χt + τF0e
ρt
)
dt,

Z̄ = Z(0)e−γt1 +

∫ t1

0

DA

(
C0e

−χt + τF0e
ρt + θA0e

(ρ+γ)t + SEeρt
)
eγt dte−γt1

+

∫ t1

0

DB

(
C0e

−χt + τF0e
ρt
)
eγt dte−γt1 ,

(A.87)

γZ̄ = DA

(
C0e

−χt1 + τF0e
ρt1 + θA0e

(ρ+γ)t1 + SEeρt1
)
+DB

(
C0e

−χt1 + τF0e
ρt1
)
,(A.88)

γZ̄ = DA

(
C0e

−χt2 + τF0e
ρt2 + SEeρt2

)
+DB

(
C0e

−χt2 + τF0e
ρt2
)
,(A.89)

0 = DA

(
C0e

−χTA + τF0e
ρTA + SEeρTA

)
,(A.90)

0 = DB

(
C0e

−χTB + τF0e
ρTB

)
.(A.91)

Differentiating with respect to SE and using DA(t1) +DB(t1) = DA(t2) +DB(t2) = γZ̄ and

DA(TA) = DB(TB) = 0 yields

0 =

{∫ t1

0

[
D′

A(t) +D′
B(t)

]
eρt dt+

∫ TA

t2

D′
A(t)e

ρt dt+

∫ TB

t2

D′
B(t)e

ρt dt

}
dτF0

dSE

+

∫ t1

0

D′
A(t)e

(ρ+γ)t dtdθA0

dSE
+

∫ t1

0

D′
A(t)e

ρt dt +

∫ TA

t2

D′
A(t)e

ρt dt,

(A.92)
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0 =

∫ t1

0

[
D′

A(t) +D′
B(t)

]
e(ρ+γ)t dte−γt1 dτF0

dSE
+

∫ t1

0

D′
A(t)e

(ρ+2γ)t dte−γt1 dθA0

dSE

+

∫ t1

0

D′
A(t)e

(ρ+γ)t dte−γt1 ,

(A.93)

0 = D′
A(t1)

[
dτF0

dSE
+ 1 + ρ(τF0 + SE) dt1

dSE

]
eρt1 +D′

B(t1)
[
dτF0

dSE
+ ρτF0

dt1
dSE

]
eρt1

+D′
A(t1)

[
dθA0

dSE
+ (ρ+ γ)θA0

dt1
dSE

]
e(ρ+γ)t1 −

[
D′

A(t1) +D′
B(t1)

]
χC0

dt1
dSE

e−χt1 ,
(A.94)

0 = D′
A(t2)

[
dτF0

dSE
+ 1 + ρ(τF0 + SE) dt2

dSE

]
eρt2 +D′

B(t2)
[
dτF0

dSE
+ ρτF0

dt2
dSE

]
eρt2

−
[
D′

A(t2) +D′
B(t2)

]
χC0

dt2
dSE

e−χt2 ,
(A.95)

0 = D′
A(TA)

[
dτF0

dSE
+ 1 + ρ(τF0 + SE)dTA

dSE

]
eρTA −D′

A(TA)χC0
dTA

dSE
e−χTA ,(A.96)

0 = D′
B(TB)

[
dτF0

dSE
+ ρτF0

dTB

dSE

]
eρTB −D′

B(TB)χC0
dTB

dSE
e−χTB .(A.97)

Solving (A.92)-(A.97) for dτF0

dSE
, dθA0

dSE
, dt1
dSE

, dt2
dSE

, dTA

dSE
and dTB

dSE
and usingD′

A(t1)[ρ(τF0+SE)eρt1+

(ρ+γ)θA0e
(ρ+γ)t1 −χC0e

−χt1 ]+D′
B(t1)[ρτF0e

ρt1 −χC0e
−χt1 ] = ṡ(t−1 ), D

′
A(t2)[ρ(τF0+SE)eρt2 −

χC0e
−χt2 ]+D′

B(t2)[ρτF0e
ρt2 −χC0e

−χt2 ] = ṡ(t+2 ), ρ(τF0+SE)eρTA −χC0e
−χTA = U ′

A(T
−
A ) and

ρτF0e
ρTB − χC0e

−χTB = U ′
B(T

−
B ) yields

dτF0

dSE
= −

∫ t1

0
D′

A(t)e
(ρ+2γ)t dt

[∫ t1

0
D′

A(t)e
ρt dt+

∫ TA

t2
D′

A(t)e
ρt dt

]
−
[∫ t1

0
D′

A(t)e
(ρ+γ)t dt

]2

X
∫ t1

0
D′

A(t)e
(ρ+2γ)t dt−

∫ t1

0

[
D′

A(t) +D′
B(t)

]
e(ρ+γ)t dt

∫ t1

0
D′

A(t)e
(ρ+γ)t dt

,

dθA0

dSE
= −

X
∫ t1

0
D′

A(t)e
(ρ+γ)t dt−

∫ t1

0

[
D′

A(t) +D′
B(t)

]
e(ρ+γ)t dt

[∫ t1

0
D′

A(t)e
ρt dt+

∫ TA

t2
D′

A(t)e
ρt dt

]

X
∫ t1

0
D′

A(t)e
(ρ+2γ)t dt−

∫ t1

0

[
D′

A(t) +D′
B(t)

]
e(ρ+γ)t dt

∫ t1

0
D′

A(t)e
(ρ+γ)t dt

,

dt1
dSE

= −
D′

A(t1)[1 + eγt1 dθA0

dSE
] + [D′

A(t1) +D′
B(t1)]

dτF0

dSE

ṡ(t−1 )e
−ρt1

,

dt2
dSE

= −
D′

A(t2) + [D′
A(t2) +D′

B(t2)]
dτF0

dSE

ṡ(t+2 )e
−ρt2

,

dTA

dSE
= −

1 + dτF0

dSE

U̇ ′
A(T

−
A )e−ρTA

,

dTB

dSE
= −

dτF0

dSE

U̇ ′
B(T

−
B )e−ρTB

,
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where X :=
∫ t1

0

[
D′

A(t) +D′
B(t)

]
eρt dt +

∫ TA

t2
D′

A(t)e
ρt dt +

∫ TB

t2
D′

B(t)e
ρt dt. For quadratic

cost functions and linear demand functions, we have

dτF0

dSE
= −

nA

{[∫ t1

0
eρt dt +

∫ TA

t2
eρt dt

] ∫ t1

0
e(ρ+2γ)t dt−

[∫ t1

0
e(ρ+γ)t dt

]2}

[∫ t1

0
eρt dt+ nA

∫ TA

t2
eρt dt+ nB

∫ TB

t2
eρt dt

] ∫ t1

0
e(ρ+2γ)t dt−

[∫ t1

0
e(ρ+γ)t dt

]2 ∈ (−1, 0),

(A.98)

dθA0

dSE
= −

nB
eρTB−eρTA

ρ

∫ t1

0
e(ρ+γ)t dt

[∫ t1

0
eρt dt+ nA

∫ TA

t2
eρt dt+ nB

∫ TB

t2
eρt dt

] ∫ t1

0
e(ρ+2γ)t dt−

[∫ t1

0
e(ρ+γ)t dt

]2 ,

(A.99)

dt1
dSE

= −

nAnBβ

ṡ(t−1 )e−ρt1

eρTB−eρTA

ρ

∫ t1

0
e(ρ+γ)t[eγt1 − eγt] dt

[∫ t1

0
eρt dt+ nA

∫ TA

t2
eρt dt+ nB

∫ TB

t2
eρt dt

] ∫ t1

0
e(ρ+2γ)t dt−

[∫ t1

0
e(ρ+γ)t dt

]2 ,

(A.100)

dt2
dSE

=

nAnBβ

ṡ(t+2 )e−ρt2

eρTB−eρTA

ρ

∫ t1

0
e(ρ+2γ)t dt

[∫ t1

0
eρt dt+ nA

∫ TA

t2
eρt dt+ nB

∫ TB

t2
eρt dt

] ∫ t1

0
e(ρ+2γ)t dt−

[∫ t1

0
e(ρ+γ)t dt

]2 ,

(A.101)

dTA

dSE
= −

1 + dτF0

dSE

U̇ ′
A(T

−
A )e−ρTA

< 0,

(A.102)

dTB

dSE
= −

dτF0

dSE

U̇ ′
B(T

−
B )e−ρTB

> 0.

(A.103)

The numerator and the denominator of dτF0

dSE
are positive by the Cauchy-Schwarz inequality.

The continuous evolution of s(t) implies ṡ(t+2 ) < 0 and U̇ ′
A(T

−
A ), U̇ ′

B(T
−
B ) > 0. Consequently,

dθA0

dSE
, dt2
dSE

⋚ 0 if and only if TB R TA ⇔ SE R 0. Finally,

ds(0)
dSE

= −β
[
nA + dτF0

dSE
+ nA

dθA0

dSE

]

= −
nAnBβ

eρTB−eρTA

ρ

[∫ t1

0
e(ρ+2γ)t dt−

∫ t1

0
e(ρ+γ)t dt

]

[∫ t1

0
eρt dt+ nA

∫ TA

t2
eρt dt+ nB

∫ TB

t2
eρt dt

] ∫ t1

0
e(ρ+2γ)t dt−

[∫ t1

0
e(ρ+γ)t dt

]2 .(A.104)

Consequently, ds(0)
dSE

⋚ 0 if and only if TB R TA ⇔ SE R 0. Since the extraction paths

for SE = 0 and SE 6= 0 intersect only once during Phase I with quadratic cost func-

77



tions and linear demand functions, s(0)|SE=0 > s(0)|SE 6=0 implies t1|SE=0 < t1|SE 6=0 and
∫ t1|SE 6=0

0
s(t)|SE=0 dt >

∫ t1|SE6=0

0
s(t)|SE 6=0 by Lemma A.10 and, thus,

∫ max{TA,TB}

t2|SE6=0
s(t)|SE=0 dt <

∫ max{TA,TB}

t2|SE6=0
s(t)|SE 6=0.

Time consistency. Suppose that the strategic effects in (28) are negative. Then, for all

t ∈ [TB, TA) country A uses fuel although the fuel price p(t) = C(t) + τF (t) exceeds the

marginal backstop costs of q̃A given by M ′
(

q̃A
nA

)
. If country A cannot commit to its strategy,

it has an incentive to reevaluate its policy and abandon fuel use for t ≥ TB. If the strategic

effects are positive, country A abandons fuel use at TA < TB. However, for t ∈ [TA, TB) fuel

consumption would reduce energy costs below M ′
(

q̃A
nA

)
, so that country A has an incentive

to extend its fuel utilization period.

A.7. Strategic supply-side policy

Derivation of (30)-(34). The current-value Lagrangian of country A reads

L = UA(DA(p) +QA(p)) + K̄A − pDA(p)−MA(QA(p)) + [p− C]sA

+ υA[p− C][D(p)− sA]− [1− υA]pyyA + λρτF + τA[yA − sA]− ιAχC

− κ[D(p) + yA − sA]− θA[D(p)− γZ] + µA[Z̄ − Z]

+ ζyAyA + ζsAsA + ζY [S − yA] + ζSA
[SA − sA] + ζG

[
K̄A −MA(QA(p))

− pDA(p)− ḡA + [p− C]sA + υA[p− C][D(p)− sA]− [1− υA]pyyA

]
.

(A.105)

By definition, p(T ) = M ′
(

qi(T )
ni

)
and xA(t) = xB(t) = 0 for all t ≥ T , so that the

coalition’s value function for t ≥ T reads

(A.106) V =

∫ ∞

0

e−ρt
[
UA(qA(t)) + K̄A −MA(qA(t))

]
dt = nA

Ū

ρ
.

The Lagrangian (A.105) is linear in yA, so that the bang-bang solution satisfies

(A.107)
∂L

∂yA
= −[1 − υA]py + τA − κ+ ζyA − ζY − ζG[1− υA]py = 0,

and maximizes H = UA(DA(p) +QA(p)) + K̄A + pDA(p)−MA(QA(p)) + [p−C]sA + υA[p−

C][D(p)−sA]− [1−υA]pyyA+λρτF +τA[yA−sA]−κ[D(p)+yA−sA]−θA[D(p)−γZ]−ιAχC,
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which gives the deposit demand correspondence

yA(t)





= 0 if py >
τA(t)−κ(t)

1−υA
,

∈ [0,min{S(t), ȳA(t)}] if py =
τA(t)−κ(t)

1−υA
,

= min{S(t), ȳA(t)} if py <
τA(t)−κ(t)

1−υA
.

(A.108)

The first-order conditions with respect to S, SA and Z yield

∂L

∂S
= ζY = ρκ− κ̇,(A.109)

∂L

∂SA

= ζSA
= ρτA − τ̇A,(A.110)

∂L

∂Z
= θAγ − µA = −ρθA + θ̇A,(A.111)

while the corresponding transversality conditions read

(a) lim
t→∞

e−ρtκ(t)[S(t)− Sopt(t)] ≥ 0, (b) lim
t→∞

e−ρtτA(t)[SA(t)− Sopt
A (t)] ≥ 0,(A.112)

lim
t→∞

e−ρtθA(t)[−Z(t) + Zopt(t)] ≥ 0.(A.113)

The complementary slackness conditions are

ζY ≥ 0, ζY [S − yA] = 0,(A.114)

ζSA
≥ 0, ζSA

[SA − sA] = 0,(A.115)

ζsA ≥ 0, ζsAsA = 0,(A.116)

ζyA ≥ 0, ζyAyA = 0,(A.117)

ζG ≥ 0,

ζG

[
K̄A −MA(QA)− pDA + [p− C]sA + υA[p− C][D − sA]− [1− υA]pyyA

]
= 0.

(A.118)

Consider the case sF (t) > 0, so that p(t) = pF (t) = C(t) + τF (t). The first-order

conditions with respect to sA , τF and C yield

∂L

∂sA
= [1− υA]τF − τA + κ+ ζsA − ζSA

+ ζG[1− υA]τF = 0,(A.119)

∂L

∂τF
= −DA + sA + υA[D − sA] + υAτFD

′ − [1− υA]yA + ρλ− κD′ − θAD
′

+ ζG

{
− p[Q′

A +D′
A]−DA + sA + υA[D − sA] + υAD

′τF − [1− υA]yA

}

= ρλ− λ̇

(A.120)
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⇔ λ̇ = [1 + ζG]
[
DA − sA − υAsF − υAτFD

′ + [1− υA]yA
]
+ [κ+ θA]D

′

+ ζG[C + τF ][Q
′
A +D′

A]
(A.121)

∂L

∂C
= −DA + υAτFD

′ − ιAχ− κD′ − θAD
′

+ ζG

{
− p[Q′

A +D′
A]−DA + υAτFD

′
}
= ριA − ι̇A

(A.122)

⇔ ι̇A = [ρ+ χ]ιA + [1 + ζG][DA − υAτFD
′] + [κ+ θA]D

′

+ ζG[C + τF ][Q
′
A +D′

A]
(A.123)

Because (A.105) is linear in sA if p(t) = pF (t), the optimal sA(t) is given by the coalition’s

fuel supply correspondence

sA(t)





= 0 if τF (t) <
τA(t)−κ(t)

1−υA
,

∈ [0, SA(t)] if τF (t) =
τA(t)−κ(t)

1−υA
,

= SA(t) if τF (t) >
τA(t)−κ(t)

1−υA
.

(A.124)

Consider the case sF (t) = 0. The first-order conditions with respect to sA, τF and C

yield

∂L

∂sA
= −DA

dp

dsA
+ sA

dp

dsA
+ p− C − τA − θA + ζsA − ζSA

+ ζG

{
− p[Q′

A +D′
A]

dp

dsA
−DA

dp

dsA
+ sA

dp

dsA
+ p− C

}
= 0

(A.125)

∂L

∂τF
= − [1− υA]yA + ρλ− ζG[1− υA]yA = ρλ− λ̇(A.126)

⇔ λ̇ = [1 + ζG][1− υA]yA,(A.127)

∂L

∂C
= − [1 + ζG]sA − ιAχ = ριA − ι̇A(A.128)

⇔ ι̇A = [ρ+ χ]ιA + [1 + ζG]sA,(A.129)

where dp
dsA

= 1
D′ . From (A.125) we get the coalition’s supply price

(A.130) pA =
[1 + ζG]C + τA + θA − [1 + ζG]

DB

D′

1 + ζG − ζG
Q′

A+D′
A

D′

.

Using (20) yields (30) and (34). Suppose S(t) > 0. Then, the coalition can only sell fuel at

the price pA(t), if pA(t) < C(t)+τF (t) ≤ C(t)+ τA(t)−κ(t)
1−υA

, which yields C(t)ζG(t)
Q′

A(t)+D′
A(t)

D′(t)
+
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τA(t) + θA(t)− [1 + ζG(t)]
DB(t)
D′(t)

<
[τA(t)−κ(t)]

[

1+ζG(t)−ζG(t)
Q′
A(t)+D′

A(t)

D′(t)

]

1−υA
. For υA → 1 and τA(t)−

κ(t) > 0, the inequality holds.

For both cases sF (t) > 0 and sF (t) = 0, the remaining transversality conditions read

(a) lim
t→∞

e−ρtλ(t)[τF (t)− τ optF (t)] ≥ 0, (b) lim
t→∞

e−ρtιA(t)[C(t)− Copt(t)] ≥ 0.(A.131)

Solving (A.121) and (A.127) yields

λ(T ) = [1− υA]

∫ T

0

[1 + ζG(t)]yA(t) dt+
∑

i=I,III

∫ tib

tia

{
θA(t)D

′(t)

+ κ(t)D′(t) + [1 + ζG(t)][DA(t)− sA(t)]− [1 + ζG(t)]υAτF (t)D
′(t)

− [1 + ζG(t)]υAsF (t) + ζG(t)[C(t) + τF (t)][Q
′
A(t) +D′

A(t)]

}
dt,

(A.132)

Solving (A.123) and (A.129), and taking account of (A.131) yields

ιA(t) = −

∫ T

t

e−[ρ+χ](j−t)[1 + ζG(j)]sA(j) dj(A.133)

for t > tIIIb , so that ιA(T ) = 0. Taking advantage of T > t2 ⇒ θA(T ) = 0 and limt→T sA(T ) =

limt→T sF (T ) = limt→T yA(T ) = 0, the optimal T is determined by

H(T ) = UA(QA(T )) + K̄A −MA(QA(T )) + λ(T )ρτF (T ) = ρV

⇔ λ(T )ρτF (T ) = 0.(A.134)

Substituting (A.132) and taking account of DA(t)− sA(t) = sF (t)−DB(t), ζG(t) = ζG[0] for

t < [≥]TF , and
∑

i=I,III

∫ tib
tia
sF (t) dt = S(0)−

∫ T

0
yA(t) dt yield

κ0 = υAτF0 +
[1 + ζG]

[
υBS(0)−

∑
i=I,III

∫ tib
tia
DB(t) dt

]
+
∫ tIb
tIa

θA(t)D
′(t) dt

∣∣∑
i=I,III

∫ ti
b

tia
eρtD′(t) dt

∣∣

+ ζG



vAτF0 +

∑
i=I,III

∫ ti
b

tia

[
C(t) + τF (t)

]
nA

U ′′(t)
dt

∣∣∑
i=I,III

∫ tib
tia
eρtD′(t) dt

∣∣



 .

(A.135)

Substituting into (A.108) and (A.124) and using (20) yield (31) and (32), where we haven

taken account of Proposition 8.

81



Proof of Proposition 7. Suppose that τA−κA

1−υA
> py and Ḡ = ∞, such that ζG = 0 and

yA(0) = S(0). Because of S(t) = 0 for all points in time, sF (t) = 0 and sA(t) > 0 for all

t ∈ [0, T ). Because of the monopoly effect, the first-order conditions (9) and (A.125) are not

identical, so that the coalition does not implement the social optimum.

The coalition’s fuel supply price is given by (30), so that U ′
i = U ′

(
xi+qi
ni

)
= M ′

(
qi
ni

)
= pA

implies xA(t)
nA

= xB(t)
nB

and qA(t)
nA

= qB(t)
nB

for all t ∈ [0, T ). For t ≥ T , M ′
(

qi(t)
ni

)
= M ′

(
q̃i
ni

)

implies qA(t)
nA

= qB(t)
nB

.

C(t) is continuous by definition. Applying the proof of Lemma A.2 to τA and θA shows that

these costates are continuous. Finally, the monopoly effect is a function of the price path

pA(t). Thus, all elements of (30) which depend on time are continuous implying a continuous

evolution of pA(t) and, therefore, of fuel and backstop consumption.

Consider Phase I. Differentiating (30) yields ṗA = −χC(t)+ρτA+[ρ+γ]θA

1−
nB
ǫ

[

1− ∂ǫ
∂p

p
ǫ

] . The denominator is

positive because ∂ǫ
∂p

≥ 0 and pA(t) > 0 implies 1 − nB

ǫ
> 0. The nominator is negative

[positive] if the technology effects dominates [is dominated]. Applying Lemma A.1 implies

ts < t1. During Phase II, fuel consumption is constant. During Phase III, fuel consumption

declines, because of ts < t1 and the constant growth rates of τA(t) and C(t).

Proof of Proposition 8.

Lemma A.12. The equilibrium on the deposit market at time t ∈ [0, t2) [t ∈ [0, TF )] is given

by τF (t) = py(t) =
τA(t)−κ(t)

1−υA
or τF (t) = py(t) <

τA(t)−κ(t)
1−υA

[, if ζSA
(t) = 0 ∀t].

Proof of Lemma A.12. The proof applies arguments used for the proof of Lemma A.5. There-

fore, we give only a sketch, where identical arguments are used.

Neither py(t) < min
{

τA(t)−κ(t)
1−υA

, τF (t)
}

nor py(t) > max
{

τA(t)−κ(t)
1−υA

, τF (t)
}

can be an equi-

librium, because minimal demand meets maximal supply or vice versa. Thus, py(t) ∈

[min{τA(t),
τA(t)−κ(t)

1−υA
},max{ τA(t)−κ(t)

1−υA
, τF (t)}].

Suppose τF (t) > τA(t)−κ(t)
1−υA

. Because py(t) ≥ τF (t) for positive deposit supply, (A.108)

implies yA(t) = 0. If the coalition has not bought any deposits before t, (A.28), (A.109) and

(A.110) imply τF (j) >
τA(j)−κ(j)

1−υA
and, therefore, yA(j) = 0 for all j > t, so that the ceiling is

violated.

If the coalition has bought some deposit before t, (A.108) and (A.110) imply sA(j̃) = SA(j̃)
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at some j̃ < t and yA(j) = 0 for all j > j̃. However, s(t) = s̄ for t ∈ [t1, t2) and ṗF (t) 6= 0

for all t but one moment in time rule out j̃ < t2. If ζSA
(t) = 0 ∀t, sA(j̃) = SA(j̃) is generally

ruled out. Thus, py(t) ∈ [τF (t),
τA(t)−κ(t)

1−υA
].

Suppose τA(t)−κ(t)
1−υA

> py(t) > τF (t). If S(t) < ȳA(t), the fuel firm can increase τF (t) up

to τA(t)−κ(t)
1−υA

without loosing revenues. If the budget constraint binds, the firm can increase

τF (t) up to τA(t)−κ(t)
[1−υA][1+ζG(t)]

. Then, either τA(t+)−κ(t+)
1−υA

> τF (t
+) or SA(t) = sA(t) holds, so that

yA(t
+) = ȳA(t

+) or the firm sells fuel at the price pF (t
+) = C(t+) + τF (t

+). Consequently,

τF (t) =
τA(t)−κ(t)

[1−υA][1+ζG(t)]
does not imply a loss of revenues.

τF (t) = py(t) =
τA(t)−κ(t)

1−υA
, τF (t) = py(t) <

τA(t)−κ(t)
1−υA

and τF (t) < py(t) =
τA(t)−κ(t)

1−υA
remain

as possible equilibria, where yA(t) ∈ [0,min{S(t), ȳA(t)}] and yF (t) ∈ [0, S(t)] in the first

case, and yA(t) = S(t) ∈ [0,min{S(t), ȳA(t)}] in the third case, so the latter is a special case

of the former.

Lemma A.13. ζSA
(t) = 0 ∀t.

Proof of Lemma A.13. Suppose that sF (t) = 0. Then, the fuel price is given by (A.130)

implying an interior solution. Suppose that sF (t) > 0. Then, (A.124) and (A.135) require

τF (t) > τA(t) − SE(t) for sA(t) = SA(t). However, yA(t) > 0 for some t < t2, Lemma A.12

and (A.108) imply τF (t) ≤ τA(t)− SE(t). Finally, τ̂F (t) ≤ ρ, ŜE = ρ and τ̂A = ρ as long as

τF (t) ≤ τA(t)− SE(t) holds or the fuel price is given by (A.130).

Lemma A.14. ζG(t) > [=] 0 for some t ∈ [0, TF ) implies that ζG(t) is a constant [zero] for

all t ∈ [0, TF ).

Proof of Lemma A.14. For t ∈ [0, TF ), (A.28) and (A.109) imply τ̂F = κ̂ = ρ, and (A.110)

yields τ̂A = ρ. If yA(t) = ȳA(t), (A.107), (A.108) and Lemma A.12 imply τF (t) =
τA(t)−κ(t)

[1−υA][1+ζG(t)]

and, therefore

(A.136) ζG(t) =
τA0 − κ0

[1− υA]τF0
− 1,

which is a constant for all t ∈ [0, TF ). If yA(t) < ȳA(t), we get τF0 =
τA0−κ0

1−υA
.

Lemma A.15. The coalition’s supply side policy is not efficient.
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Proof of Lemma A.15. From Lemmata A.12 and A.13 we know that yA(t) = sF (t) = 0 for

all t ≥ TF , so that the fuel price is governed by (A.125). Due to the monopoly effect, the

equation deviates from (9), so that the coalition’s supply side policy is not efficient.

Lemma A.16. Suppose that p(t) = pF (t) and sA(t) ∈ [0, SA(t)]. Then, yA(t) < ȳA(t).

Proof of Lemma A.16. sA(t) ∈ [0, SA(t)] requires τF (t) = τA(t)−κ(t)
1−υA

, while (A.119) yields

τF (t) =
τA(t)−κ(t)

[1−υA][1+ζG(t)]
. The equality of both terms implies ζG(t) = 0.

Lemma A.17. Fuel and backstop consumption per capita in both countries coincide for all

points in time. Fuel and backstop consumption in both countries is constant during Phase II.

Suppose χ = 0 and ζG = 0 or U ′′′ ≥ 0,M ′′′ ≤ 0. Then, fuel and total energy [backstop]

consumption in both countries declines [increases] over time during Phase I and III. Suppose

χ > 0 and ζG = 0 or U ′′′ ≥ 0,M ′′′ ≤ 0. Then, there is at most one switching time tsG during

Phase I and III.

Proof of Lemma A.17. The fuel demand per capita D(p(t)) and the fuel price p(t) are the

same in both countries, which proves xA(t)
nA

= xB(t)
nB

. During Phase II, p(t) = p̄ to adhere the

ceiling, which proves ẋi(t) = 0 during Phase II.

For sF > 0 and χ = 0, the price path is given by pF (t) = c+τF0e
ρt and ṗF (t) = ρτF0e

ρt >

0, which proves ẋi(t) < 0 for sF > 0 and χ = 0. During Phase I and III for sF = 0, the price

path from (34) and ǫ = −D′(p)p
D(p)

is given by

pA(t) =
τA0e

ρt + θA0e
(ρ+γ)t + [1 + ζG]

[
C0e

−χt − nB
D(pA(t))

D′(pA(t))pA(t)
pA(t)

]

1 + ζG − ζGnA
D′(t)+Q′(t)

D′(t)

=
τA0e

ρt + θA0e
(ρ+γ)t + [1 + ζG]C0e

−χt

1 + ζG − ζGnA
D′(t)+Q′(t)

D′(t)
− [1 + ζG]

nB

ǫ(t)

.(A.137)

Differentiating with respect to t yields

ṗA(t) =
ρτA0e

ρt + (ρ+ γ)θA0e
(ρ+γ)t − [1 + ζG]

[
χC0e

−χt + nB
[D′(t)]2−D(t)D′′(t)

[D′(t)]2
ṗA

]

1 + ζG − ζGnA
D′(t)+Q′(t)

D′(t)

+
ζGnA

Q′′(t)D′(t)−Q′(t)D′′(t)
[D′(t)]2

pAṗA

1 + ζG − ζGnA
D′(t)+Q′(t)

D′(t)
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=
ρτA0e

ρt + (ρ+ γ)θA0e
(ρ+γ)t − [1 + ζG]χC0e

−χt

1 + ζG − ζGnA
D′(t)+Q′(t)

D′(t)
− [1 + ζG]

nB

ǫ(t)

[
1− ∂ǫ(t)

∂p

pA
ǫ(t)

]
− ζGnA

Q′′(t)D′(t)−Q′(t)D′′(t)
[D′(t)]2

pA
,

(A.138)

where

Q′′(t)D′(t)−Q′(t)D′′(t) = n2
i

[
M ′′(t)

]2
U ′′′(t)−

[
U ′′(t)

]2
M ′′′(t)

[
M ′′(t)

]3 [
U ′′(t)

]3 ≤ 0 ⇐= U ′′′ ≥ 0,M ′′′ ≤ 0

from (20). The denominator of (A.137) must be positive by pA(t) > 0, and the denominator

of (A.138) is then positive if ζG = 0 or U ′′′ ≥ 0,M ′′′ ≤ 0 by ∂ǫ(t)
∂p

≥ 0, which proves

ṗA(t) > 0 and, thus ẋi(t) < 0 during Phase I and III for sF = 0 , χ = 0 and ζG = 0 or

U ′′′ ≥ 0,M ′′′ ≤ 0. Furthermore, the numerator of (A.138) increases with t, such that ṗA(t)

is either always positive, first negative and then positive, or always negative during Phase I

and III for sF = 0, χ > 0 and ζG = 0 or U ′′′ ≥ 0,M ′′′ ≤ 0.

Lemma A.18. Suppose ζG = 0 or U ′′′ ≥ 0,M ′′′ ≤ 0. Then, the equilibrium is characterized

by sF (t) = 0 and sA(t) > 0 for t ∈ [t1, T ), and by sF (t) > 0 for some t < t1. Fuel and total

energy [backstop] consumption in both countries decline [increase] over time during Phase

III.

Proof of Lemma A.18. During Phase II, p(t) = p̄ to adhere the ceiling, such that sF (t) > 0

with pF (t) = C0e
−χt + τF0e

ρt and ṗF (t) = −χC0e
−χt + ρτF0e

ρt ≷ 0 cannot hold. Suppose

S(t2) > 0. Then, pF (t2) < pA(t2) would imply a violation of the ceiling. Furthermore,

pF (t2) = pA(t2) and ṗF (t2) > ṗA(t2) would imply pF (t) < p̄ = pA(t) for some t ∈ [t1, t2)

and, thus, a violation of the ceiling. Consequently, pF (t2) > pA(t2) or pF (t2) = pA(t2) and

ṗF (t2) < ṗA(t2) must hold. From (A.137) and (A.138) for θA0 = 0 we get

pF (t)− pA(t) = τF0e
ρt + C0e

−χt −
τA0e

ρt + [1 + ζG]C0e
−χt

N1
,(A.139)

ṗF (t)− ṗA(t) = ρτF0e
ρt − χC0e

−χt −
ρτA0e

ρt − [1 + ζG]χC0e
−χt

N2

= ρ[pF (t)− pA(t)] +

[
ρτA0e

ρt − [1 + ζG]χC0e
−χt
]
[N2 −N1]

N1N2

+
(ρ+ χ)C0e

−χt
[
ζGnA

D′(t)+Q′(t)
D′(t)

+ [1 + ζG]
nB

ǫ(t)

]

N1
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= ρ[pF (t)− pA(t)] +
ṗA(t) [N2 −N1]

N1

+
(ρ+ χ)C0e

−χt
[
ζGnA

D′(t)+Q′(t)
D′(t)

+ [1 + ζG]
nB

ǫ(t)

]

N1
,

(A.140)

where

N1 = 1 + ζG − ζGnA

D′(t) +Q′(t)

D′(t)
− [1 + ζG]

nB

ǫ(t)
,

N2 = 1 + ζG − ζGnA

D′(t) +Q′(t)

D′(t)
− [1 + ζG]

nB

ǫ(t)

[
1−

∂ǫ(t)

∂p

pA
ǫ(t)

]

− ζGnA

Q′′(t)D′(t)−Q′(t)D′′(t)

[D′(t)]2
pA.

ζG = 0 or U ′′′ ≥ 0,M ′′′ ≤ 0 implies N2 ≥ N1(> 0).

ṗA(t2) > 0 to leave the ceiling implies ρτA0e
ρt − [1 + ζG]χC0e

−χt > 0 for t ∈ [t2, T )

and, therefore, ṗA(t) > 0 for t ∈ [t2, T ). Thus, pF (t2) ≥ pA(t2) implies ṗF (t) > ṗA(t) for

t ∈ [t2, T ), such that pF (t2) > pA(t2) must hold to adhere the ceiling. pF (t2) > pA(t2) and

ṗF (t) > ṗA(t) for t ∈ [t2, T ) then imply pF (t) > pA(t) for t ∈ [t2, T ), such that sF (t) = 0 for

t ∈ [t2, T ).

If sF (t) = 0 holds for all t < t1, then sF = 0 during Phase III, λ(T )ρτF (T ) = 0 and

(A.132) would imply
∫ T

0
yA(t) dt = 0, which contradicts yA(t) > 0 for some t.

Lemma A.19. The price path jumps upwards at t = TF if sF (T
−
F ) > 0, is continuous at

t = TF if sF (T
−
F ) = 0 and ζG(T

−
F ) = 0, and is continuous for all other points in time.

Proof of Lemma A.19. Suppose sF (T
−
F ) > 0. Then, pF (TF ) < pA(TF ) implying a price jump

when the firm’s fuel stock becomes exhausted. Suppose sF (T
−
F ) = 0 and ζG(T

−
F ) = 0. Then,

pF (TF ) ≥ pA(TF ) and the coalition’s producer price is given by (30). Applying the proof of

Lemma A.2 to τA, λ, κ, ι and θA shows that the costates are continuous, so that all elements

of (30) are continuous functions. From Lemma A.14, ζG(t) > 0 for some t ∈ [0, TF ) implies

ζG(t) = ζG > 0 for all t ∈ [0, TF ), so that all elements of (34) are continuous functions for

t ∈ [0, TF ). Finally, all elements of the firm’s fuel price pF (t) = C(t) + τF (t) are continuous

functions. Consequently, the price path is continuous for t ∈ [0, T )\TF .

Lemma A.20. Suppose θA0 + SE ≥ 0. Then, the equilibrium is characterized by sF (t) > 0

and sA(t) ≥ [=]0 for t ∈ [0, TF ) and ζG = [>]0, and by sF (t) = 0 and sA(t) > 0 for
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t ∈ [TF , T ), where TF ≤ t1. Fuel and total energy [backstop] consumption in both countries

increase [decline] until ts ∈ [0, t1) and decline [increase] for t ∈ (ts, t1). Suppose θA0e
γTF +

SE ≥ 0 (nA ≥ υA and ζG = 0 are sufficient). Then, the price path jumps upwards at t = TF .

Proof of Lemma A.20. For sF (t) = 0, we get

pA(t)− pF (t) =
τA(t) + θA(t) + [1 + ζG]

[
C(t) + ME(t)

]

1 + ζG − ζGnA
D′(t)+Q′(t)

D′(t)

−
[
τF (t) + C(t)

]

=
θA(t) + SEeρt + [1 + ζG]

[
τF (t) + C(t) + ME(t)

]

1 + ζG − ζGnA
D′(t)+Q′(t)

D′(t)

−
[
τF (t) + C(t)

]

=
θA(t) + SEeρt + [1 + ζG]ME(t) + ζGnA

D′(t)+Q′(t)
D′(t)

[
τF (t) + C(t)

]

1 + ζG − ζGnA
D′(t)+Q′(t)

D′(t)

(A.141)

during Phase I, which is positive if θA0 +SE ≥ 0. Thus, sF (t) > 0 during Phase I, and since

private fuel supply is ruled out at the ceiling, S(t1) = 0 implies TF ≤ t1. If ζG = 0, (31), (32)

and Lemma A.12 imply sA(t) ≥ 0 for t ∈ [0, TF ). If ζG > 0, Lemma A.16 implies sA(t) = 0

for t ∈ [0, TF ). Note that Lemma A.8 holds for θA0 + SE ≥ 0 and ζG = 0, which proves the

third sentence of Lemma A.20. Finally, pA(TF ) > pF (TF ) holds if θA0e
γTF +SE ≥ 0, and the

price path jumps upwards at t = TF . Substituting (33) into (A.141) yields

pA(t)− pF (t) =

θA0

[
eγt −

∫ tb
ta

e(ρ+γ)tD′(t)
∫ tb
ta

eρtD′(t) dt

]
+ [1 + ζG]

υBS(0)−
∫ tb
ta

DB(t) dt∣∣ ∫ tb
ta

eρtD′(t) dt

∣∣
1 + ζG − ζGnA

D′(t)+Q′(t)
D′(t)

eρt

+
BEeρt + [1 + ζG]ME(t) + ζGnA

D′(t)+Q′(t)
D′(t)

[
τF (t) + C(t)

]

1 + ζG − ζGnA
D′(t)+Q′(t)

D′(t)

.

(A.142)

The environmental part is positive if t ≥ tb, and the terms-of-trade part is positive if

υBS(0) >
∫ tb
ta
DB(t) dt ⇐ nA

∫ T

0
D(t) ≥ υAS(0) ⇔ nA ≥ υA. Thus, pA(TF ) > pF (TF )

holds if nA ≥ υA and ζG = 0 ⇒ BE = 0, and the price path jumps upwards at t = TF .

The Lemmata A.12 to A.20 prove Proposition 8.

Exhaustion date of the private fuel stock. Time TF divides the planning horizon into two

periods, where the coalition’s value function for t ≥ TF is given by

V S(SA(TF ), C(TF ), Z(TF )) = max
sA

∫ ∞

0

e−ρt
{
UA(DA(t) +QA(t)) + K̄A − p(t)DA(t)
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−MA(QA(t)) + [p(t)− C(t)]sA(t)
}
dt

subject to (3), (4), (5), and (22).

Assuming singular deposit acquisitions, the transversality conditions at time TF are

(a) : τA(TF ) =
∂V S

∂SA

, (b) : −θA(TF ) =
∂V S

∂Z
, (c) : ιA(TF ) =

∂V S

∂C
,(A.143)

H(TF ) = ρV S(SA(TF ), C(TF ), Z(TF )).(A.144)

Taking account of (A.143), we get

ρV S(SA(TF ), C(TF ), Z(TF )) =UA(DA(T
+
F ) +QA(T

+
F )) + K̄A − p(T+

F )DA(T
+
F )−MA(QA(T

+
F ))

+ [p(T+
F )− C(TF )]sA(T

+
F )− τA(TF )sA(T

+
F )− ιA(TF )χC(TF )

− θA(TF )[D(T+
F )− γZ(TF )].

Substituting into (A.144), and taking λ(TF ) = λ(T ) = 0 and p(T+
F ) = C(TF ) + τA(TF ) +

θA(TF ) + ME(TF ) into account yields

UA(DA(T
−
F ) +QA(T

−
F ))− p(T−

F )DA(T
−
F )−MA(QA(T

−
F ))

+ [p(T−
F )− C(TF )]sA(T

−
F ) + υA[p(T

−
F )− C(TF )][D(T−

F )− sA(T
−
F )]

− [1− υA]py(T
−
F )yA(T

−
F ) + τA(TF )[yA(T

−
F )− sA(T

−
F )]

− κ(TF )[D(T−
F ) + yA(T

−
F )− sA(T

−
F )]− θA(TF )D(T−

F )

= UA(DA(T
+
F ) +QA(T

+
F ))− p(T+

F )DA(T
+
F )−MA(QA(T

+
F )) + ME(T+

F )sA(T
+
F ),

(A.145)

which determines the optimal TF . If the left-hand side is greater [smaller] than the right-hand

side, we get TF = T [TF = 0].

For sF (T
−
F ) > 0 ∨ ζG = 0, (A.145) can be written as

UA(DA(T
−
F ) +QA(T

−
F ))− p(T−

F )DA(T
−
F )−MA(QA(T

−
F ))

−
[
p(T+

F )− p(T−
F )−ME(T+

F )
]
D(T−

F )−
[
UA(DA(T

+
F ) +QA(T

+
F ))

− p(T+
F )DA(T

+
F )−MA(QA(T

+
F )) + ME(T+

F )D(T+
F )
]
= 0.

(A.146)

Differentiating the left-hand side of (A.146) with respect to p(T+
F ) yields

−D(T−
F ) +DA(T

+
F )−ME(T+

F )D′(T+
F )︸ ︷︷ ︸

=−DB(T+
F )

+
∂ME(T+

F )

∂p

[
D(T−

F )−D(T+
F )
]
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−
[
U ′
A(DA(T

+
F ) +QA(T

+
F ))− p(T+

F )
]

︸ ︷︷ ︸
=0

D′
A(T

+
F )

−
[
U ′
A(DA(T

+
F ) +QA(T

+
F ))−M ′

A(QA(T
+
F ))
]

︸ ︷︷ ︸
=0

Q′
A(T

+
F )

= −
[
D(T−

F )−D(T+
F )
] [

1−
∂ME(T+

F )

∂p

]
⋚ 0 ⇐⇒





p(T+
F ) R p(T−

F ) if 1− ∂ME
∂p

> 0,

p(T+
F ) ⋚ p(T−

F ) if 1− ∂ME
∂p

< 0.

Since the left-hand side of (A.146) equals zero for p(T+
F ) = p(T−

F ), and the left-hand side

of (A.146) decreases [increases] with p(T+
F ) for p(T+

F ) > [<]p(T−
F ), TF = 0 [TF = T ] is an

equilibrium if 1− ∂ME
∂p

> [<]0. Note that

1− ∂ME
∂p

= 1 + nB

[D′]2 −DD′′

[D′]2
= 1 +

nB

ǫ

[
1−

∂ǫ

∂p

p

ǫ

]
,

such that nB = 0 or D′′ ≤ 0 ⇐= U ′′′ ≤ 0,M ′′′ ≤ 0 is sufficient for 1− ∂ME
∂p

> 0.

Finally, for sF (T
−
F ) = 0 =⇒ ζG = 0, (A.145) can be written as

UA(DA(T
−
F ) +QA(T

−
F ))− p(T−

F )DA(T
−
F )−MA(QA(T

−
F )) + ME(T−

F )D(T−
F ) =

UA(DA(T
+
F ) +QA(T

+
F ))− p(T+

F )DA(T
+
F )−MA(QA(T

+
F )) + ME(T+

F )D(T+
F ).

(A.147)

Since sF (T
−
F ) = 0 implies p(T+

F ) = p(T−
F ), and the left-hand side of (A.147) equals the

right-hand side for p(T+
F ) = p(T−

F ), TF ∈ [0, T ] is an equilibrium.

A.8. Coalition formation

The coalition’s welfare and the fringe’s welfare, respectively, are given by

WA =

∫ TA

0

e−ρt

{
nAU

(
xA(t) + qA(t)

nA

)
− [C(t) + τF (t)]xA(t)− nAM

(
qA(t)

nA

)

+ K̄A

}
dt+

e−ρTA

ρ
nAŪ + τF0υAS(0)

+

∫ T

0

e−ρt[p(t)− C(t)− τF (t)][sA(t) + υAsF (t)− xA(t)] dt,

(A.148)
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WB =

∫ TB

0

e−ρt

{
nBU

(
xB(t) + qB(t)

nB

)
− [C(t) + τF (t)]xB(t)− nBM

(
qB(t)

nB

)

+ K̄B

}
dt +

e−ρTB

ρ
nBŪ + τF0υBS(0)

+

∫ T

0

e−ρt[p(t)− C(t)− τF (t)][υBsF (t)− xB(t)] dt.

(A.149)

In the demand-side regime, p(t) − C(t) − τF (t) = 0 for all t. In the supply-side regime,

p(t)−C(t)− τF (t) = 0 for t ∈ [tia, t
i
b) with i = I, III. For t /∈ [tia, t

i
b), p(t) = pA(t), sF (t) = 0,

and sA(t)− xA(t) = xB(t).

Lemma A.21. In the competitive demand-side regime with quadratic cost functions and

linear demand functions, an increase in the coalition size raises per-capita welfare of the

coalition countries and global welfare, and it does not affect per-capita welfare of the fringe

countries.

Proof of Lemma A.21. In the competitive demand-side regime, global welfare from (A.148)

and (A.149) is given by

W =

∫ T

0

e−ρt

{
nAU

(
xA(t) + qA(t)

nA

)
+ nBU

(
xB(t) + qB(t)

nB

)

− C(t)[xA(t) + xB(t)]− nAM

(
qA(t)

nA

)
− nBM

(
qB(t)

nB

)}
dt+

e−ρT

ρ
Ū .

(A.150)

Differentiating with respect to nA yields

dW
dnA

=

∫ T

0

e−ρt

[
U

(
xA(t) + qA(t)

nA

)
− U

(
xB(t) + qB(t)

nB

)
−M

(
qA(t)

nA

)
+M

(
qB(t)

nB

)

−
xA(t) + qA(t)

nA

U ′

(
xA(t) + qA(t)

nA

)
+

xB(t) + qB(t)

nB

U ′

(
xB(t) + qB(t)

nB

)

+
qA(t)

nA

M ′

(
qA(t)

nA

)
−

qB(t)

nB

M ′

(
qB(t)

nB

)]
dt

+

∫ T

0

e−ρt

{[
U ′

(
xA(t) + qA(t)

nA

)
− C(t)

]
dxA

dnA

+

[
U ′

(
xB(t) + qB(t)

nB

)
− C(t)

]
dxB

dnA

+

[
U ′

(
xA(t) + qA(t)

nA

)
−M ′

(
qA(t)

nA

)]
dqA
dnA

+

[
U ′

(
xB(t) + qB(t)

nB

)
−M ′

(
qB(t)

nB

)]
dqB
dnA

}
dt
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=

∫ t2

0

e−ρt

{
U

(
xA(t) + qA(t)

nA

)
− U

(
xB(t) + qB(t)

nB

)
−M

(
qA(t)

nA

)
+M

(
qB(t)

nB

)

−

[
DA(t)

nA

−
DB(t)

nB

]
[C(t) + τF (t) + θA(t)]

}
dt

+

∫ t2

0

e−ρtθA(t)

{
DA(t)

nA

−
DB(t)

nB

+D′
A(t)

d[τF (t)+θA(t)]
dnA

}
dt.

(A.151)

For t ∈ [t1, t2),
d[τF (t)+θA(t)]

dn
A

is given by

s̄ = nAD(C(t) + τF (t) + θA(t)) + nBD(C(t) + τF (t))

⇒ 0 =
DA(t)

nA

−
DB(t)

nB

+D′
A(t)

d[τF (t)+θA(t)]
dnA

+D′
B(t)

dτF (t)
dnA

⇔ d[τF (t)+θA(t)]
dnA

=
1

D′
A(t)

[
DB(t)

nB

−
DA(t)

nA

−D′
B(t)

dτF (t)
dnA

]
.(A.152)

Using (A.152) in (A.151) yields

dW
dnA

=

∫ t2

0

e−ρt

{
U

(
xA(t) + qA(t)

nA

)
− U

(
xB(t) + qB(t)

nB

)
−M

(
qA(t)

nA

)
+M

(
qB(t)

nB

)

−

[
DA(t)

nA

−
DB(t)

nB

]
[C(t) + τF (t) + θA(t)]

}
dt

+

∫ t1

0

e−ρtθA(t)

{
DA(t)

nA

−
DB(t)

nB

+D′
A(t)

d[τF (t)+θA(t)]
dnA

}
dt−

∫ t2

t1

e−ρtθA(t)D
′
B(t)

dτF (t)
dnA

dt.

(A.153)

For quadratic cost functions and linear demand functions, we have dτF (t)
dnA

= 0 and dθA(t)
dnA

=

−θA(t)
nA

< 0 for t ∈ [0, t1) from the proof of Lemma A.4. Using this in (A.153) yields

dW
dnA

=
β̃

2

∫ t2

0

e−ρtθA(t)
2 dt > 0.(A.154)

Proof of Proposition 9. Consider the competitive demand-side regime with quadratic cost

functions and linear demand functions. From Lemma A.21, the per-capita welfare of any

country increases [decreases] if it leaves [joins] the coalition because the per-capita welfare

outside the coalition is independent of the coalition size and greater than the per-capita
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welfare inside the coalition for a given coalition size. Consequently, all coalitions that cannot

ensure the ceiling and coalitions that can just ensure the ceiling are internally stable, and

all coalitions that can ensure the ceiling are externally stable. Thus, coalitions that can just

ensure the ceiling are the only stable coalitions in the competitive demand-side regime with

quadratic cost functions and linear demand functions.

B. Calibration

In this section, we calibrate the model to the world coal market in the year 2015. From

IPCC (2013, p. 491), the natural CO2 stock is 278ppm (parts per million), and from

Department of Commerce (2021), the current CO2 stock is 400ppm. Following IPCC (2013,

p. 471), we set the conversion factor 1ppm = 2, 120MtC (million tonnes of carbon), and

following EIA (2020b), we set the conversion factor 1C = two units of coal. The current

excess CO2 stock can then be expressed as (400 − 278)ppm · 2, 120MtC/ppm · 2coal/C =

517, 280Mtcoal. For the the ceiling, we apply (468− 278)ppm · 2, 120MtC/ppm · 2coal/C =

805, 600Mtcoal, which limits the temperature increase below 2◦C with a probability of 66%

(Rogelj et al., 2011, p. 4). Since coal is responsible for about 1/3 of total CO2 emissions

(IPCC, 2013, p. 487), we assume that each unit of CO2 from coal is accompanied by two

units of CO2 from oil, gas, cement and land use change.66

According to Joos et al. (2013, pp. 2801), the fraction of CO2 emitted at t = 0 that will

remain in the atmosphere at t ∈ [0, 1000] is equal to 0.2173+0.2240e−0.0025t+0.2824e−0.0274t+

0.2763e−0.2323t. Since the ceiling is typically reached within 50 years, we set γ = 1.44% such

that the fraction of CO2 emitted at t = 0 that will remain in the atmosphere at t = 50 is

the same in Joos et al. (2013) and our calibration.67

For the recoverable reserves of coal, we take S(0) = 1, 030, 859Mt from EIA (2020b).68

The current extraction costs of coal are on average 100$/t for about 90% of the recov-

66In fact, we equivalently assume that the current excess CO2 stock and the ceiling are 1/3 of the values

above.
67We thank an anonymous reviewer for this suggestion. A comparison of the fraction of CO2 that will

remain in the atmosphere between Joos et al. (2013) and our calibration can be found in Appendix B.2.

There we also carry out a sensitivity analysis on the natural regeneration rate.
68The actual coal resources are about twenty times as high (IEA, 2013, pp. 42). However, the extraction
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erable reserves (IEA, 2013, pp. 232), such that the initial marginal extraction costs are

C0 = 100, 000, 000$/Mt. According to McKinsey & Company (2020), the global mining

productivity has increased by 2.6% per year from 2013 to 2018, such that we set χ = 2.6%.

The backstop cost functions are specified by the quadratic functions Mi =
1
2
ni

m

(
qi
ni

)2
, which

yields the linear supplies qi = nimp for i = A,B.69 The utility functions are specified

by the quadratic functions Ui =
ni

β

[
αxi+qi

ni
− 1

2

(
xi+qi
ni

)2]
, which yields the linear demands

xi = ni(α − βp) − qi = ni(α − β̃p) for i = A,B with β̃ := β + m, and an increasing price

elasticity of coal demand, ǫ(p) = 1
α

β̃p
−1

.

The model is calibrated to the laissez-faire economy, whereby we choose ρ = 2.5% and

take ǫ(p(0)) = 0.5,70
∑

i qi(0)
∑

i[xi(0)+qi(0)]
= 14%71 and s(0) = 7734Mt (EIA, 2020b) from the

literature. Solving the equation system

S(0) =

∫ T

0

[
α− β̃[C0e

−χt + τF0e
ρt]
]
dt,(B.1)

0 = α− β̃[C0e
−χT + τF0e

ρT ],(B.2)

ǫ(p(0)) =
1

α

β̃[C0+τF0]
− 1

,(B.3)

s(0) = α− β̃[C0 + τF0],(B.4)
∑

i qi(0)∑
i[xi(0) + qi(0)]

=
m[C0 + τF0]

α− β[C0 + τF0]
,(B.5)

with respect to α, β,m, τ0 and T yields α = 11601, β = 0.000023653, m = 0.000011419, τF0 =

10.26$/t and T = 139. Next, we consider the five countries with the greatest coal reserves

and divide the rest of the world into four regions with comparable coal reserves. Using

costs of these resources are greater than 350$/t (IEA, 2013, pp. 232), which is above the prohibitive price in

our calibration (309$/t). In other words, it is not reasonable to extract any coal resources, so that we focus

on the coal reserves.
69The exponent of 2 is close to the exponent of 2.6 in Nordhaus’s (2017) abatement cost function.
70The price elasticity of coal demand is in the range of 0.5–1.6 in China (Hang and Tu, 2007; Ma et al.,

2008; Bloch et al., 2015; Burke and Liao, 2015), about 0.22 in the US (Serletis et al., 2010) and about 0.13

in selected OECD countries (Serletis et al., 2011). Since China’s consumption share is greater than 50%

(EIA, 2020a) and its price elasticity seems to be an upper bound for the global price elasticity, we set the

global price elasticity equal to the lower bound of China’s price elasticity.
71The global share of fossil fuels in primary energy consumption was 86% in 2015 (BP, 2021).
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data on coal reserves and coal consumption from EIA (2020b) and data on GDP from

The World Bank (2022), Table 1 summarizes these word regions. Finally, we compute the

social optimum, the competitive climate policies and the strategic climate policies in Ap-

pendix B.1.

Figure 3 depicts the social optimum, Figure 4 depicts the competitive demand-side regime

with the largest stable coalition (China, India, USA), Figure 5 depicts the competitive

supply-side regime with the grand coalition being stable, and Figure 6 depicts the strategic

demand-side regime with the largest stable coalition (China, USA, Russia, Australia). In

the strategic supply-side regime, the grand coalition is stable and the allocation is efficient,

so that we choose an exogenous coalition for Figure 7. Note that the extraction and, thus,

the switches to Phases II-IV coincide in the social optimum and in the competitive demand

side-regime.72 Furthermore, the extraction is antedated and the switches to Phases III and

IV occur earlier in the supply-side regime.73 Finally, the extraction is postponed and the

switches to Phase II and IV [III] occur later [earlier] in the strategic demand-side regime

than in the social optimum or in the competitive demand-side regime.74

B.1. Equilibria characterization

The social optimum is characterized by

S(0) =

∫ t1

0

{
α− β̃

[
C0e

−χt + τ0e
ρt + θ0e

(ρ+γ)t
]}

dt + [t2 − t1]γZ̄

+

∫ T

t2

{
α− β̃

[
C0e

−χt + τ0e
ρt
]}

dt,

(B.6)

Z̄ = Z(0)e−γt1 +

∫ t1

0

{
α− β̃

[
C0e

−χt + τ0e
ρt + θ0e

(ρ+γ)t
]}

e−γ(t1−t) dt,(B.7)

γZ̄ = α− β̃
[
C0e

−χt1 + τ0e
ρt1 + θ0e

(ρ+γ)t1
]
,(B.8)

γZ̄ = α− β̃
[
C0e

−χt2 + τ0e
ρt2
]
,(B.9)

72See the discussion on linear demand functions and quadratic cost functions after Proposition 2. In

particular, we find τF0 = 0.57$/t, t1 = 37, t2 = 238 and T = 254.
73See Proposition 5. In particular, we find τF0 = 0.59$/t, t1 = 33, t2 = 237 and T = 253.
74See the discussion on linear demand functions and quadratic cost functions after Proposition 6. In

particular, we find τF0 = 21.61$/t, t1 = 37, t2 = 231 and T = 259.
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0 = α− β̃
[
C0e

−χT + τ0e
ρT
]
,(B.10)

which can be solved for τ0, θ0, t1, t2 and T .

The competitive demand-side policy is characterized by

S(0) =

∫ t1

0

{
α− β̃

[
C0e

−χt + τF0e
ρt + nAθA0e

(ρ+γ)t
]}

dt+ [t2 − t1]γZ̄

+

∫ T

t2

{
α− β̃

[
C0e

−χt + τF0e
ρt
]}

dt,

(B.11)

Z̄ = Z(0)e−γt1 +

∫ t1

0

{
α− β̃

[
C0e

−χt + τF0e
ρt + nAθA0e

(ρ+γ)t
]}

e−γ(t1−t) dt,(B.12)

γZ̄ = α− β̃
[
C0e

−χt1 + τF0e
ρt1 + nAθA0e

(ρ+γ)t1
]
,(B.13)

γZ̄ = α− β̃
[
C0e

−χt2 + τF0e
ρt2
]
,(B.14)

0 = α− β̃
[
C0e

−χtt + τF0e
ρT
]
,(B.15)

which can be solved for τF0, θA0, t1, t2 and T .

The competitive supply-side policy is characterized by

S(0) =

∫ TF

0

{
α− β̃

[
C0e

−χt + τF0e
ρt
]}

dt

+

∫ t1

TF

{
α− β̃

[
C0e

−χt + (1 + ζG)τF0e
ρt + θA0e

(ρ+γ)t
]}

dt

+ [t2 − t1]γZ̄ +

∫ T

t2

{
α− β̃

[
C0e

−χt + (1 + ζG)τF0e
ρt
]}

dt,

(B.16)

Z̄ = Z(0)e−γt1 +

∫ TF

0

{
α− β̃

[
C0e

−χt + τF0e
ρt
]}

e−γ(t1−t) dt

+

∫ t1

TF

{
α− β̃

[
C0e

−χt + (1 + ζG)τF0e
ρt + θA0e

(ρ+γ)t
]}

e−γ(t1−t) dt

(B.17)

γZ̄ = α− β̃
[
C0e

−χt1 + (1 + ζG)τF0e
ρt1 + θA0e

(ρ+γ)t1
]
,(B.18)

γZ̄ = α− β̃
[
C0e

−χt2 + (1 + ζG)τF0e
ρt2
]
,(B.19)

0 = α− β̃
[
C0e

−χT + (1 + ζG)τF0e
ρT
]
,(B.20)
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and, from (A.67), by

− 0.5nAβ̃
[
ζGτF0e

ρTF + θA0e
(ρ+γ)TF

]2

+

{
nA

[
ζGτF0e

ρTF + θA0e
(ρ+γ)TF

]
− θA0e

(ρ+γ)TF

}{
α− β̃

[
C0e

−χTF + τF0e
ρTF

]}

+ ζGτF0e
ρTF yA(T

−
F ) + υAτF0e

ρTF

{
α− β̃

[
C0e

−χTF + τF0e
ρTF

]
+ yA(T

−
F )

}
= 0.

(B.21)

With a non-binding budget constraint and constant deposit acquisitions over time, we have

ζG = 0 and

yA(t) =
1

TF

{
S(0)−

∫ TF

0

{
α− β̃

[
C0e

−χt + τF0e
ρt
]}

dt

}

for t ∈ [0, TF ), and the equation system can be solved for τF0, θA0, TF , t1, t2 and T . With a

binding budget constraint, we have
∫ TF

0

ȳA(t) dt = S(0)−

∫ TF

0

{
α− β̃

[
C0e

−χt + τF0e
ρt
]}

dt(B.22)

and

ȳA(t) =
K̄A + υAΠF (t)− p(t)xA(t) + ΠA(t)− pqA(t)qA(t)

py(t)

=
1

(1− υA)τF0eρt

{
K̄A −

{
nA

[
C0e

−χt + τF0e
ρt
]
− υAτF0e

ρt
}

·
{
α− β̃

[
C0e

−χt + τF0e
ρt
]}

− 0.5nAm
[
C0e

−χt + τF0e
ρt
]2
}

for t ∈ [0, TF ) from (24), and the equation system can be solved for ζG, τF0, θA0, TF , t1, t2 and

T . However, for coalitions of eight world regions, the budget constraint is non-binding since

ζG < 0. For the grand coalition, the initial budget is unlimited and deposit acquisitions could

be maximal. Then, the grand coalition would implement the social optimum and Table 2

would become Table B.6. The second lines and the last columns of these tables differ only

quantitatively, such that Proposition 10 would still hold.

The strategic demand-side policy is characterized by

S(0) =

∫ t1

0

{
α− β̃

{
nAU

′
A(t) + nB

[
C0e

−χt + τF0e
ρt
]}}

dt + [t2 − t1]γZ̄

+ nA

∫ TA

t2

[
α− β̃U ′

A(t)
]
dt+ nB

∫ TB

t2

{
α− β̃

[
C0e

−χt + τF0e
ρt
]}

dt,

(B.23)
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Table B.6: Large coalitions with the competitive supply-side policy and TF = 0 for nA = 100%
(υA, nA in %; τF0, θA0 in $/t; W |K̄=0,∆

Wi

ni
in $trillion).

υA nA t1 t2 T τF0 θA0 W |K̄=0 ∆Wi

ni

WORLD 100 100 37 238 254 0.57 42.4 78.1 –
WORLD-Aus 86.0 98.5 34 237 253 0.59 46.8 77.8 16.6
WORLD-Rus 84.4 97.3 34 237 253 0.59 46.5 77.8 18.9
WORLD-ROE 94.3 97.0 34 237 253 0.59 46.8 77.8 21.1
WORLD-ROW 93.7 96.2 34 237 253 0.59 46.6 77.8 21.3
WORLD-EU 92.8 91.6 35 237 253 0.59 45.8 77.8 22.1
WORLD-USA 77.6 90.6 35 237 254 0.58 45.1 77.9 21.4
WORLD-ROA 93.4 90.4 35 237 253 0.59 45.6 77.8 22.2
WORLD-Ind 90.8 89.7 35 237 253 0.58 45.4 77.9 22.2
WORLD-Chi 87.0 48.7 36 238 254 0.58 43.4 78.0 23.3

Note: υA is the coalition’s share of global coal reserves, nA is the coalition’s share of global coal

consumption, t1, t2 and T is the end of Phase I, II and III, respectively, τF0 is the initial private

scarcity rent, θA0 is the coalition’s initial cost of emissions, W |K̄=0 is global energy welfare, and

∆Wi

ni
is the fringe country’s increase in per-capita welfare by joining the coalition.

Z̄ = Z(0)e−γt1 +

∫ t1

0

{
α− β̃

{
nAU

′
A(t) + nB

[
C0e

−χt + τF0e
ρt
]}}

e−γ(t1−t) dt,(B.24)

γZ̄ = α− β̃
{
nAU

′
A(t1) + nB

[
C0e

−χt1 + τF0e
ρt1
]}

,(B.25)

γZ̄ = α− β̃
{
nAU

′
A(t2) + nB

[
C0e

−χt2 + τF0e
ρt2
]}

,(B.26)

0 = α− β̃U ′
A(TA),(B.27)

0 = α− β̃
[
C0e

−χTB + τF0e
ρTB

]
,(B.28)

where

U ′
A(t) = C0e

−χt + τF0e
ρt + θA(t) + SEeρt

from (28). Thereby, θA(t) = θA0e
(ρ+γ)t for t ∈ [0, t1),

γZ̄ = α− β̃
{
C0e

−χt + τF0e
ρt + nA

[
θA(t) + SEeρt

]}

⇔ θA(t) = −
DB(t)− nBγZ̄

nAD′
B(t)

− SEeρt

for t ∈ [t1, t2), and θA(t) = 0 for t ≥ t2. Furthermore,

SE =
υBS(0)−

∫ TB

0
DB(t) dt+

∫ t1

0
θA0e

(ρ+γ)tD′
B(t) dt+

∫ t2

t1
θA(t)D

′
B(t) dt∣∣∣

∫ TB

0
eρtD′

B dt
∣∣∣
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=
υBS(0)−

∫ TB

0
DB(t) dt+

∫ t1

0
θA0e

(ρ+γ)tD′
B(t) dt−

1
nA

∫ t2

t1

[
DB(t)− nBγZ̄

]
dt∣∣∣

∫ TB

0
eρtD′

B dt
∣∣∣−
∣∣∣
∫ t2

t1
eρtD′

B dt
∣∣∣

.

The equation system can then be solved for τF0, θA0, t1, t2, TA and TB.

Our nine world regions imply 512 possible coalitions. We first analyze which coalitions

without China adhere the ceiling ({World - China}, {World - China - ROW}, {World -

China - ROE}, {World - China - Russia}, {World - China - Australia}), and find these

coalitions to be externally unstable because China has an incentive to join. Consequently,

any stable coalition comprises China and we are left with 256 possible coalitions. We then

analyze the grand coalition, the eight n = 8 coalitions, the twenty-eight n = 7 coalitions,

the fifty-six n = 6 coalitions and the seventy n = 5 coalitions, and find these coalitions to be

internally unstable because, e.g., India, ROA, USA, EU or ROW have an incentive to leave.

Next, we analyze which of the eight n = 2 coalitions adhere the ceiling and find that this is

the case for {China + India}, {China + ROA} and {China + USA}. {China + India} and

{China + ROA} turn out to be internally and externally stable, whereas {China + USA} is

externally unstable because Australia has an incentive to join. Concerning the twenty-eight

n = 3 coalitions, we find that only those with India, ROA, USA or EU adhere the ceiling.

{China + USA + Australia} is externally unstable because Russia has an incentive to join,

whereas the remaining coalitions with India, ROA or USA are internally unstable. {China

+ EU + ROW}, {China + EU + ROE} and {China + EU + Australia} are internally

and externally stable to adhere the ceiling, whereas {China + EU + Russia} is externally

unstable because Australia has an incentive to join. Finally, we analyze the fifty-six n = 4

coalitions and find that all coalitions without India, ROA, USA and EU are internally and

externally stable to adhere the ceiling ({China + ROW + ROE + Russia}, {China + ROW

+ ROE + Australia}, {China + ROW + Russia + Australia}, {China + ROE + Russia +

Australia}). Furthermore, {China + USA + Russia + Australia} is internally and externally

stable, whereas all other coalitions are internally unstable.

The strategic supply-side policy with dominating positive strategic effects, i.e. pA(t) ≥
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pF (t) for t ∈ [0, t1), is characterized by

S(0) =

∫ TF

0

{
α− β̃

[
C0e

−χt + τF0e
ρt
]}

dt +

∫ t1

TF

[
α− β̃pA(t)

]
dt

+ [t2 − t1]γZ̄ +

∫ T

t2

[
α− β̃pA(t)

]
dt,

(B.29)

Z̄ = Z(0)e−γt1 +

∫ TF

0

{
α− β̃

[
C0e

−χt + τA0e
ρt
]}

e−γ(t1−t) dt

+

∫ t1

TF

[
α− β̃pA(t)

]
e−γ(t1−t) dt,

(B.30)

γZ̄ = α− β̃pA(t1),(B.31)

γZ̄ = α− β̃pA(t2),(B.32)

0 = α− β̃pA(T ),(B.33)

and, from (A.145), by

− (1− 0.5nA)β̃
[
pA(TF )− C0e

−χTF − τF0e
ρTF

]2

+
[
pA(TF )− C0e

−χTF − τF0e
ρTF − θA0e

(ρ+γ)TF − SEeρTF −ME(TF )− ζGυAτF0e
ρTF

]

·

{
α− β̃

[
C0e

−χTF + τF0e
ρTF

]}
+ ζGυByA(T

−
F ) = 0,

(B.34)

where

pA(t) =
(1 + ζG)

[
C0e

−χt + τF0e
ρt +ME(t)

]
+ θA(t) + SEeρt

1 + ζG − ζGnA
β

β̃

=
(1 + ζG)

[
C0e

−χt + τF0e
ρt + nB

α

β̃

]
+ θA(t) + SEeρt

(1 + ζG)(1 + nB)− ζGnA
β

β̃

from (A.141). Thereby, θA(t) = θA0e
(ρ+γ)t for t ∈ [0, t1),

γZ̄ = α− β̃pA(t)

⇔ θA(t) =
α− γZ̄

β̃
−

(1 + ζG)
[
C0e

−χt + τF0e
ρt + nB

α

β̃

]
+ SEeρt

(1 + ζG)(1 + nB)− ζGnA
β

β̃

for t ∈ [t1, t2), and θA(t) = 0 for t ≥ t2. Furthermore,

SE =
(1 + ζG)

[
υBS(0)−

∫ TF

0
DB(t) dt

]
+
∫ TF

0
θA0e

(ρ+γ)tD′(t) dt
∣∣ ∫ TF

0
eρtD′(t) dt

∣∣
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+
ζG
∫ TF

0
[C0e

−χt + τF0e
ρt]
[
D′

A(t) +Q′
A(t)

]
dt

∣∣ ∫ TF

0
eρtD′(t) dt

∣∣ .

With a non-binding budget constraint, we have ζG = 0 and TF = 0, since the left-hand side

of (B.34) then equals −(1 − 0.5nA)β̃{pA(TF ) − C0e
−χTF − τF0e

ρTF }2 < 0, and the equation

system can be solved for τF0, θA0, t1, t2 and T . Consequently, the budget constraint is non-

binding if and only if the coalition’s initial budget is unlimited. With a binding budget

constraint, we have (B.22), and the equation system can be solved for ζG, τF0, θA0, TF , t1, t2

and T .

B.2. Sensitivity analysis

γ = 0.65%

γ = 0.89%

γ = 1.44%

Joos et al. (2013)

Figure B.8: Fraction of CO2 emitted at t = 0 that will remain in the atmosphere at t ∈ [0, 200]

in Joos et al. (2013) (dotted) and our calibration (solid) for different values of γ.

In Section B, we set γ = 1.44% such that the fraction of CO2 emitted at t = 0 that will

remain in the atmosphere at t = 50 is the same in Joos et al. (2013) and our calibration.

In this section, we use γ = 0.89% and γ = 0.65% such that the fraction of CO2 emitted at

t = 0 that will remain in the atmosphere at t = 100 or t = 150 is the same in Joos et al.

(2013) and our calibration. Figure B.8 illustrates the fraction of CO2 emitted at t = 0 that

will remain in the atmosphere at t ∈ [0, 200] in Joos et al. (2013) and our calibration for

γ = 1.44%, γ = 0.89% and γ = 0.65%.
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Table B.7: Large coalitions with the competitive supply-side policy (υA, nA in %; W |K̄=0,∆
Wi

ni

in $trillion).

γ = 0.89% γ = 0.65%

υA nA W |K̄=0 ∆Wi

ni
W |K̄=0 ∆Wi

ni

WORLD 100 100 69.691 – 65.357 –
WORLD-Aus 86.0 98.5 69.694 22.417 65.357 20.580
WORLD-Rus 84.4 97.3 69.695 22.475 65.357 20.581
WORLD-ROE 94.3 97.0 69.694 22.531 65.357 20.583
WORLD-ROW 93.7 96.2 69.695 22.537 65.357 20.583
WORLD-EU 92.8 91.6 69.697 22.557 65.357 20.583
WORLD-USA 77.6 90.6 69.714 22.526 65.357 20.583
WORLD-ROA 93.4 90.4 69.716 22.541 65.357 20.584
WORLD-Ind 90.8 89.7 69.715 22.543 65.357 20.584
WORLD-Chi 87.0 48.7 69.710 22.585 65.357 20.585

Note: υA is the coalition’s share of global coal reserves, nA is the coalition’s share of global coal

consumption, W |K̄=0 is global energy welfare, and ∆Wi

ni
is the fringe country’s increase in per-capita

welfare by joining the coalition.

In the competitive demand-side regime, any stable coalition is just large enough to ensure

the ceiling (nA ≥ 0.793 for γ = 0.89% and nA ≥ 0.849 for γ = 0.65%). Closer inspection

of Table 1 reveals that any stable coalition comprises four to seven [six or seven] world

regions including China, the smallest stable coalition consists of China, India, USA, Rest

of the World, Rest of Europe, and Australia (nA = 0.793) [China, India, Rest of Asia, EU,

Rest of Europe, Russia (nA = 0.849)], and the largest stable coalition consists of China,

Rest of Asia, USA, EU, and Rest of the World (nA = 0.825) [China, India, Rest of Asia,

USA, Rest of World, Rest of Europe (nA = 0.874)] for γ = 0.89% [γ = 0.65%]. In the

smallest and largest stable coalition, global energy welfare amounts to 63.6$trillion and

64.7$trillion [60.4$trillion and 61.3$trillion], respectively, each coalition country’s per-capita

energy welfare net of its fuel firm’s profit share amounts to 55.8$trillion and 58.6$trillion

[54.5$trillion and 56.7$trillion], respectively, and each fringe country’s per-capita energy

welfare net of its fuel firm’s profit share amounts to 93.3$trillion [93.3$trillion] for γ = 0.89%

[γ = 0.65%].

Table B.7 provides information about coalitions of eight or nine world regions in the
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competitive supply-side regime.75 It is always beneficial to join the coalition since ∆Wi

ni
> 0

holds. Consequently, the grand coalition is stable. In this coalition, global energy welfare

amounts to 69.691$trillion [65.358$trillion], and each coalition country’s per-capita energy

welfare net of its fuel firm’s profit share amounts to 69.676$trillion [65.357$trillion] for γ =

0.89% [γ = 0.65%].76 Thus, Proposition 10 holds for γ = 1.44%, γ = 0.89% and γ = 0.65%

except that in the competitive demand-side regime the stable coalition gets larger as the

natural regeneration rate gets smaller to ensure the ceiling.

In the strategic demand-side regime, no world region has an incentive to join any coalition

unless the ceiling would otherwise be violated. For γ = 0.89%, no coalition of three or fewer

word regions and no coalition without China can adhere the ceiling, whereas each coalition

of seven or more world regions with China can adhere the ceiling. Consequently, the grand

coalition and the n = 8 coalitions are unstable. Furthermore, we find that the n = 7

coalitions are unstable, because some world region can leave any of these coalitions without

violating the ceiling. The three stable n = 6 coalitions are {Chi + Ind + ROW + ROE +

Rus + Aus}, {Chi + ROA + EU + ROW + Rus + Aus} and {Chi + ROA + ROW + ROE

+ Rus + Aus}, the twenty-three stable n = 5 coalitions are {Chi + Ind + ROA + ROW +

ROE}, {Chi + Ind + ROA + ROW + Rus}, {Chi + Ind + ROA + ROW + Aus}, {Chi +

Ind + ROA + ROE + Rus}, {Chi + Ind + ROA + ROE + Aus}, {Chi + Ind + ROA +

Rus + Aus}, {Chi + Ind + USA + ROW + ROE}, {Chi + Ind + USA + ROW + Aus},

{Chi + Ind + USA + ROE + Aus}, {Chi + Ind + EU + ROW + ROE}, {Chi + Ind +

EU + ROW + Aus}, {Chi + Ind + EU + ROE + Aus}, {Chi + ROA + USA + ROW +

ROE}, {Chi + ROA + USA + ROW + Rus}, {Chi + ROA + USA + ROW + Aus}, {Chi

+ ROA + USA + ROE + Rus}, {Chi + ROA + USA + ROE + Aus}, {Chi + ROA + EU

+ ROW + ROE}, {Chi + USA + EU + ROW + ROE}, {Chi + USA + EU + ROW +

Rus}, {Chi + USA + EU + ROW + Aus}, {Chi + USA + EU + ROE + Rus} and {Chi +

USA + EU + ROE + Aus}, and the five stable n = 4 coalitions are {Chi + Ind + ROA +

75For coalitions of eight world regions, the budget constraint does not bind in the competitive supply-side

regime.
76Note that the scarcity rent and, thus, the per-capita profit of the fuel firm is smaller in the demand-side

regime than in the supply-side regime.
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USA}, {Chi + Ind + ROA + EU}, {Chi + Ind + USA + EU}, {Chi + Ind + USA + Rus}

and {Chi + ROA + USA + EU}. The smallest stable coalition consists of China, Rest of

Asia, Rest of the World, Rest of Europe, Russia and Australia (nA = 0.726), and the largest

stable coalition consists of China, India, Rest of Asia and USA (nA = 0.806).

For γ = 0.65%, no coalition of four or fewer word regions and no coalition without China

can adhere the ceiling, whereas each coalition of eight or more world regions with China can

adhere the ceiling. Consequently, the grand coalition is unstable. Furthermore, we find that

the n = 8 coalitions are unstable, because some world region can leave any of these coalitions

without violating the ceiling. The four stable n = 7 coalitions are {Chi + Ind + ROA +

ROW + ROE + Rus + Aus}, {Chi + Ind + EU + ROW + ROE + Rus + Aus}, {Chi +

ROA + EU + ROW + ROE + Rus + Aus} and {Chi + USA + EU + ROW + ROE + Rus

+ Aus}, the sixteen stable n = 6 coalitions are {Chi + Ind + ROA + EU + ROW + ROE},

{Chi + Ind + ROA + EU + ROW + Rus}, {Chi + Ind + ROA + EU + ROW + Aus},

{Chi + Ind + ROA + EU + ROE + Rus}, {Chi + Ind + ROA + EU + ROE + Rus}, {Chi

+ Ind + ROA + EU + Rus + Aus}, {Chi + Ind + USA + ROW + ROE + Rus}, {Chi +

Ind + USA + ROW + Rus + Aus}, {Chi + Ind + USA + ROE + Rus + Aus}, {Chi +

ROA + USA + EU + ROW + ROE}, {Chi + ROA + USA + EU + ROW + Rus}, {Chi +

ROA + USA + EU + ROW + Aus}, {Chi + ROA + USA + EU + ROE + Rus}, {Chi +

ROA + USA + EU + ROE + Aus}, {Chi + ROA + USA + EU + Rus + Aus} and {Chi +

ROA + USA + ROW + Rus + Aus}, and the eight stable n = 8 coalitions are {Chi + Ind

+ ROA + USA + EU}, {Chi + Ind + ROA + USA + ROW}, {Chi + Ind + ROA + USA

+ ROE}, {Chi + Ind + ROA + USA + Rus}, {Chi + Ind + ROA + USA + Aus}, {Chi +

Ind + USA + EU + ROW}, {Chi + Ind + USA + EU + ROE} and {Chi + Ind + USA

+ EU + Rus}. The smallest stable coalition consists of China, India, USA, Rest of Europe,

Russia and Australia (nA = 0.782), and the largest stable coalition consists of China, India,

Rest of Asia, USA and EU (nA = 0.890).

Table B.8 provides information about coalitions of eight or nine world regions in the

strategic supply-side regime.77 It is always beneficial to join the coalition since ∆Wi

ni
> 0

77For coalitions of eight world regions, the budget constraint binds in the strategic supply-side regime.
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Table B.8: Large coalitions with the strategic supply-side policy (υA, nA in %; W |K̄=0,∆
Wi

ni
in

$trillion).

γ = 0.89% γ = 0.65%

υA nA W |K̄=0 ∆Wi

ni
W |K̄=0 ∆Wi

ni

WORLD 100 100 69.706 – 65.357 –
WORLD-Aus 86.0 98.5 69.706 22.730 65.357 20.641
WORLD-Rus 84.4 97.3 69.705 22.765 65.356 20.683
WORLD-ROE 94.3 97.0 69.705 22.753 65.356 20.693
WORLD-ROW 93.7 96.2 69.703 22.786 65.355 20.721
WORLD-EU 92.8 91.6 69.692 22.969 65.345 20.874
WORLD-USA 77.6 90.6 69.688 23.022 65.342 20.907
WORLD-ROA 93.4 90.4 69.688 23.015 65.342 20.913
WORLD-Ind 90.8 89.7 69.685 23.043 65.339 20.935
WORLD-Chi 87.0 48.7 69.282 24.388 65.017 22.020

Note: υA is the coalition’s share of global coal reserves, nA is the coalition’s share of global coal

consumption, W |K̄=0 is global energy welfare, and ∆Wi

ni
is the fringe country’s increase in per-capita

welfare by joining the coalition.

holds. Consequently, the grand coalition is stable. Thus, Propositions 11(i) and (iii) hold

for γ = 1.44%, γ = 0.89% and γ = 0.65% except that in the strategic demand-side regime

the stable coalition gets larger as the natural regeneration rate gets smaller to ensure the

ceiling.
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