

1 **Delta sustainability from the Holocene to the Anthropocene and envisioning**
2 **the future**

3

4 **Edward Anthony¹, Jaia Syvitski², Florin Zăinescu^{1,3}, Robert J. Nicholls⁴, Kim M.**
5 **Cohen⁵, Nick Marriner⁶, Yoshiki Saito⁷, John Day⁸, Philip S.J. Minderhoud^{9,10,11},**
6 **Alessandro Amorosi¹², Zhongyuan Chen¹³, Christophe Morhange^{1,14}, Toru**
7 **Tamura^{15,16}, Alfred Vespremeanu-Stroe³, Manon Basset¹⁷, François Sabatier¹,**
8 **David Kaniewski¹⁸, Vittorio Maselli¹⁹**

9

10 ¹Aix Marseille University, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France.

11 ²INSTAAR & Dept. Geol. Sci., University of Colorado, Boulder CO, 80309, USA.

12 ³Faculty of Geography, University of Bucharest, Bucharest 010041, Romania.

13 ⁴Tyndall Centre for Climate Change Research, University of East Anglia, Norwich, NR4 7TJ, UK.

14 ⁵Utrecht University, PO Box 80125, 3508 TC Utrecht, The Netherlands.

15 ⁶CNRS, ThéMA, Université de Franche-Comté, UMR 6049, MSHE Ledoux, 32 rue Mégevand, 25030 Besançon Cedex, France.

17 ⁷Estuary Research Center, Shimane University of Matsue, 690-8504, Japan.

18 ⁸Dept. of Oceanography & Coastal Sciences, College of the Coast & Environment, Louisiana State Univ., Baton Rouge LA, 70803, USA.

20 ⁹Soil Geography and Landscape Group, Wageningen University, Droevedaalsesteeg 3, 6708 PB Wageningen, The Netherlands.

22 ¹⁰University of Padova, Department of Civil, Environmental and Architectural Engineering (ICEA), Via Marzolo, 9 - 35131 Padova, Italy.

24 ¹¹Department of Subsurface and Groundwater Systems, Deltares Research Institute, Daltonlaan 600, 3584 BK Utrecht, the Netherlands.

26 ¹²Department of Biological, Geological, and Environmental Sciences, University of Bologna, Piazza di Porta S. Donato 1, Bologna, Italy.

28 ¹³State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China.

30 ¹⁴Ecole Pratique des Hautes Etudes, PSL-AOROC, Paris, France.

31 ¹⁵Geological Survey of Japan, AIST, Tsukuba, Ibaraki 305-8567, Japan.

32 ¹⁶Graduate School of Frontier Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan.

34 ¹⁷i-Sea, Bordeaux Technowest, 25 rue Marcel Issartier, 33700 Mérignac, France.

35 ¹⁸Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France

37 ¹⁹*Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41124 Modena,
38 Italy.*

39

40 **PREFACE**

41 **River deltas offer numerous ecosystem services and host an estimated global population of
42 350 to >500 million in over 100 countries. To maintain their sustainability into the future,
43 deltas need to withstand sea-level rise from global warming but human pressures and
44 diminishing sediment supplies are exacerbating their vulnerability. We show how deltas
45 served as environmental incubators for societal development over the last 7000 years, and
46 how this tightly interlocked relationship now poses challenges to deltas globally. Without
47 climate stabilization, the sustainability of populous low-to mid-latitude deltas will be
48 difficult to maintain, probably terminating the delta-human relationship we know today.**

49

50 Coastal river deltas (Fig. 1) offer numerous ecosystem services and resources and host
51 growing populations in more than 100 countries, underscoring the need for a better
52 understanding of how these landforms function. This has given rise to a remarkable corpus of
53 studies, reports, and knowledge-driven delta-resilience organizations across a spectrum of
54 evolving geo-, climate, ecological, and social science, and from the individual delta scale to the
55 global scale. The human footprint spans up to 7000 years of the 8000-year evolution of
56 modern deltas across the Holocene. Coastal space, flat topography, rich ecology, and water
57 and other resources have provided a favourable environment for human development, but
58 human activities are leading to global-scale vulnerability of deltas and a need for anticipation
59 and planning¹⁻⁶.

60 One of the largest human migrations in history (in raw numbers) occurred during the
61 20th century with the rapid growth of delta cities and megacities (many now exceed 10 M
62 inhabitants). In 1975, the 86 largest coastal river deltas were home to about 146 million
63 people (Fig. 2), 3.5% of the total global population of 4000 M. In 2020, the global population
64 has almost doubled to 7800 M, but the delta population has disproportionately increased to
65 an estimated 350 to >500 M^{4,7,8}, outpacing at ~4.5% the global population. In 2020, this
66 population is concentrated in ~730,000 km² of deltaic lands⁹, yielding a density (ranging from
67 480 to 680 inhabitants/km²) over eight times that of Earth's habitable landmass. Global delta
68 population is concentrated in Asia (87%). Growth is driven by large cities acting as economic
69 motors¹⁰ across the largest 86 deltas (>1000 km²) that capture 84% of the global human delta

70 population, but small deltas are also often completely urbanized⁹. This rapid urbanization is a
71 product of the Anthropocene¹¹ (taken here as commencing in 1950 CE)¹². Although the
72 Anthropocene is now formally rejected (perhaps only provisionally) as a unit of geological time
73 by the International Union of Geological Sciences¹³, we take the timely opportunity to refer to
74 that decision and point out that the multi-faceted Anthropocene as a concept is here to stay.
75 It lends itself particularly well to describing delta social-ecological systems and gives us an
76 opportunity to conceptualise delta sustainability in a time (if not an epoch) of human
77 dominance of global environmental change. The massive urbanization of deltas that is a
78 product of this human dominance poses challenges to climate-change adaptation^{4,7,8,10,14,15}.
79 The human-delta association has become locked in a quasi-irreversible situation¹⁶ for many
80 deltas, at a time when the Anthropocene planetary transition from nature-dominance to
81 human-dominance implies a sustainability in the balance for deltas¹⁷ due to aggregated
82 human impacts, including sea-level rise (SLR). It is hard enough creating delta megacities to
83 cope with the influx of people, let alone deal with an environment rendered ephemeral by
84 SLR and subject to sinking, a process intrinsic to deltas but which is now exacerbated by human
85 activities^{14,18}. There will be no easy fixing or undoing of this urbanization. We can renourish
86 eroding beaches but can we remove cities from sinking deltas, pour in the sediment, and move
87 the cities back? No, we cannot. Could the future simply consist of 'sustaining' deltas by
88 manipulating sediment and water? Even doing so would not necessarily make deltas
89 sustainable.

90 We review delta sustainability from historical through present to future perspectives
91 conceptualizing the human-environment relationship that started as global sea level stabilized
92 after the rapid post-glacial rise, and the strengthening of which, over time, now challenges
93 this sustainability. We show how changing delta environments in the low- to mid-latitudes
94 served as incubators for the Earth's earliest political entities¹⁹, sustaining transitions in human
95 development. We chart delta resilience over the 7000-year relationship with humans, to the
96 current stage where humans are adversely altering the trajectory of many deltas towards
97 perilous futures. We illustrate the future challenges of global environmental change for delta
98 sustainability. Regarding these challenges, we draw attention to the specificity of deltas as
99 coastal landforms, but also the distinctness of each delta, how we envisage sustainability and
100 the obstacles to this, including what revolves around who 'owns' deltas, and governance and
management, if they exist at all, and the role of planning. Inequalities in political-social actions

102 around delta 'ownership', governance and management will influence resilience and
103 adaptation, creating differences between the world's deltas. All deltas are intrinsically
104 different already, even if humans had not colonized them. But human history and cultural
105 heritage in particular create diversified delta landscapes and their capacity to cope with
106 change. Accessing reliable data, improved modelling, and anticipating sustainability hurdles
107 and tipping points from intensive human occupation, exploitation and alteration of deltas, and
108 from failing sediment supplies, should help to inform delta management and adaptation
109 regarding projected sinking/drowning due to exacerbated subsidence and climate-induced
110 SLR. Our review briefly frames three Holocene phases (inception, expansion, upbuilding-
111 outbuilding deltas) of the delta-human association, hinged on a historical stable sea level with
112 changes limited to $\sim\pm 2$ m, followed by the Anthropocene overprint (delta vulnerability). We
113 then chart pathways of management, planning and anticipation that we confront with an
114 outlook on the sustainability and future of deltas.

115

116 **Delta inception and human encroachment**

117 About 8000 years ago, as post-glacial SLR decelerated²⁰, accommodation space in the
118 vicinity of some large river mouths was filled more completely, stopping their landward
119 retreat and initiating delta formation. Accommodation space is the vertical and lateral space
120 available for clastic sediment filling, organic matter accumulation, and freshwater bodies that
121 counterbalance rising seas²¹. A delta plain traversed by distributary channels gradually
122 developed behind changing beach coastlines up to an inland apex where it graded into the
123 lower river valley (Fig. 1). As deltas started developing, they provided space and resources for
124 humans^{19,22}. The oldest human settlements on these early marshy and swampy delta plains
125 and their coasts date 5000-4000 BCE (Before the Common Era) from radiocarbon ages and
126 archaeological artefacts in the Danube, Rhine, Rhone, Nile, Tigris-Euphrates, Yangtze²², and
127 the Grijalva²³. The early human incursions into developing deltas were motivated by the
128 availability of favourable lands and coastal-zone resources¹⁹, notably from harvesting lagoons
129 and salt pans, but were also conditioned by each delta's geomorphology and sediment-
130 dispersive dynamics, involving risks, but also possibilities for resilience to river floods and
131 marine forces. We briefly describe in the succeeding sections a number of spikes that were to
132 mark this relationship in the course of the 7000 years following the earliest human incursions
133 into deltas (Fig. 3).

134

135 **Deltas become incubators of human progress**

136 **Delta environments and Neolithic occupation.** The start of Neolithic encroachment (Fig. 3)
137 and the shift to sedentary occupation occurred as deltas expanded, providing wetlands for
138 agriculture, thus favouring settlements, sedentary continuity, and food security that had not
139 been experienced before by Mesolithic fishers²⁴. Agricultural subsistence spread from
140 terrestrial uplands to delta wetlands, providing aquatic diets supplemented by wetland plants
141 and fauna. As the deltas became populous and lower river valleys infilled with sediment,
142 hunter-gatherer subsistence was replaced by grains and fibre crops²⁵ supplemented by fish,
143 allowing power centre cities to form, with the Tigris-Euphrates having a head start¹⁹. Within a
144 millennium of sea-level stabilization, the Nile's originally marine flood-prone initial bayhead
145 delta had grown large and protected enough from waves to be exploited by herding
146 communities around 5000 BCE, and agri-cultivated by predynastic Egyptians from around
147 4700 BCE²⁶. This time frame is similar to that from archaeological records in the Yangtze and
148 Yellow (Huang He) deltas^{27,28} where rice farming and exploitation of coastal resources were
149 fostered by a wet monsoon climate²⁹, and in the Grijalva delta where farmers domesticated
150 maize and possibly manioc²³. Neolithic expansion in the Rhine delta began about 4300 BCE³⁰
151 in the wake of cultivation of valley and delta-apex floodplains and loess hillslopes upstream
152 (5500-4500 BCE: Linear Pottery Culture). A subneolithic culture practised farming (crops and
153 cattle) along river channels (5300 and 3400 BCE: Swifterbant Culture) and beach-ridge
154 complexes (after 3500 BCE: Valaardingen Culture).

155 A protein-rich diet of fatty acids and staple foods fostered increasing population
156 densities within a few hundred years after sea-level stabilization, contributing to the
157 emergence of complex societies with increased social ranking and the construction of
158 monumental architecture¹⁹. In the Nile delta, farming and animal husbandry played a
159 fundamental role in establishing a robust and sustainable food system that supported the
160 construction of the pyramid chain³¹ along a now abandoned river branch^{32,33}. Delta avulsions
161 (a mechanism by which new river branches and delta lobes are created progressively or
162 suddenly, leading to abandonment of older ones) closely conditioned settlement location
163 choices as early as 4000-3300 BCE in the Tigris-Euphrates³⁴. Avulsions were particularly
164 important for the perennity of settlements in the large Pacific and Indian Ocean deltas of East
165 and Southeast Asia, allowing for occupation of abandoned lobes²⁷. In the Indus floodplain and

166 delta, avulsions commonly left settlements and cities without water resources, leading to their
167 abandonment³⁵. As avulsion-exposed deltas became more populous in the Neolithic,
168 population centres could be more easily moved to available arable lands in adjacent river
169 valleys¹⁹ with channels less subject to avulsions.

170

171 **Deltas foster emergence of state societies.** States originated primarily in fluvial and
172 expanding deltaic settings in currently arid areas³⁶, where agricultural communities supported
173 cities that served as precursors for statehood (Fig. 3): Tigris-Euphrates: 4000-3100 BCE³⁷; Nile:
174 3800–3100 BCE³⁸; Indus: 3300-2800 BCE^{39,40}. In Asia, various archaeological cultures in the
175 middle to lower valleys and deltas of the Yellow and Yangtze developed ca. 4000-3000 BCE,
176 but whether these late Neolithic polities are early states remains controversial⁴¹.

177 Delta expansion was favoured by high sediment influx from river basins increasingly
178 affected by human activities, alongside climate fluctuations⁴². These allocyclic (external)
179 controls are well-evidenced by climate proxies, notably the so-called “4.2 ka event” (2150
180 BCE), essentially an Indian Ocean Monsoonal event. This has been identified as the cause of
181 decline of societies in some Asian deltas by affecting rice cultivation²⁹. In the Indus valley, the
182 4.2 ka event overlapped flourishing Harappan urbanism: between 2500 and 1900 BCE
183 aridification may have diminished the intensity of floods, thus allowing inundation agriculture
184 to develop across the region⁴⁰. The swings in the Harappan civilization (3200-1000 BCE), from
185 urban to rural settlements, along with the abandonment of a large number of sites, occurred
186 between 1900 and 1000 BCE as adjustments to climate variations and water availability
187 associated with the Monsoon⁴³.

188

189 **Delta modifications in the Bronze and Iron Ages.** The Bronze Age witnessed an upsurge in
190 human occupation of deltas, notably in the Mediterranean, marked by the establishment of
191 trading harbours in numerous deltas⁴⁴. The hold on deltas, rich in water and food resources
192 in times of changing climate regimes that affected societies, especially in the Mediterranean,
193 was consolidated by waterway engineering transformations to enhance agriculture and
194 mitigate risks in the Iron Age. In the Arno and Serchio deltas in Italy, meandering in expanding
195 swamps strongly influenced early Etruscan (700-500 BCE) settlement patterns, culture and
196 society, while the Roman age (from 100 BCE onwards) saw ascendancy of human influence
197 with wetland drainage as the modern delta plains prograded⁴⁵. In the Rhine delta, clusters of

198 farms practising trade and exchanging ceremonial goods over long distances are identified
199 from middle Bronze Age (1500-800 BCE) sites⁴⁶, as a mature delta plain developed. Rhine delta
200 farm clusters persisted in the Iron Age (800-1 BCE).

201

202 **Humans reinforce their control over deltas**

203 **Delta vicissitudes in Europe.** The first half of the CE witnessed increasing delta instability
204 generated by human activities. The most noteworthy aspect of the early CE on Mediterranean
205 and Black Sea deltas was the impact of the Roman Empire, through direct engineering of
206 deltas, but also through this empire's influence on river sediment supply through
207 deforestation for agriculture, roads and water harnessing. The postulate of an overarching
208 upstream anthropogenic influence on deltas via fluvial sediment loads is embodied here in
209 the concept of 'man-made' deltas⁴⁷. For small deltas, it may be postulated that hinterland
210 deforestation by the Romans led, within a century or so, to a progradational response,
211 whereas the fall of the Roman Empire and the Dark Ages that followed, or the massive
212 population decline caused by the Black Death⁴⁸, all resulted in agricultural regression with
213 forests regaining area, contributing to soil stabilization in catchments and diminished delta
214 growth⁴⁹. For large European deltas (Danube, Rhine, Rhone, Po, Ebro), growth more likely
215 reflected a longer cumulative impact of development spanning the delta expansion and
216 upbuilding-outbuilding phases (Bronze Age, Iron Age).

217

218 **Engineering reinforces the delta-human nexus.** Historical records from courts and
219 monastic/ecclesiastical accounts show, in the course of the Early Middle Ages in Europe, a
220 strategy of delta conquest that was both religious and political, especially in the Rhine⁵⁰,
221 where Roman-age settlement shows relative continuity (despite population and power shifts
222 in the Dark Ages), and new towns and churches built along newly avulsed channels. Dyke
223 systems along all active distributaries emerged between 1050 and 1300 CE, as bishoprics and
224 counties implemented land reclamation campaigns to secure food production for the growing
225 town and city populations. In the central and lower delta, and especially the northern and
226 southern distal coastal-plain sectors, embankments and drainage of areas with organic
227 topsoils and subsoils (peat) caused land-use sustainability problems generated by human-
228 induced subsidence⁵¹. In the Danube catchment, important sediment release from major land-
229 use changes caused several avulsions in the delta that resulted in the development of a

230 southern distributary, the St. George, and the incorporation of the Greek colony of Histria, a
231 former open-coast city, into the delta plain⁵². The northern Chilia branch, the formation of
232 which started in Antiquity, progressively became the largest Danube distributary, attracting
233 new settlements along its course during the Middle Ages⁵³.

234 In Asia, human impacts on channels and dyke-building efforts have been summarized
235 for the Yellow delta⁵⁴, a spectacular example illustrating the impact of humans on delta
236 growth. Between 1580 and 1849, human-accelerated erosion of the Loess Plateau led to a
237 super-elevated lower Yellow River channel bed that facilitated frequent breaching (up to 280
238 times) of the artificial river bank levees, and sediment storage, to the tune of ~312 Gt, on the
239 river's floodplain outside these levees⁵⁵. 90% of the modern delta (i.e. since 1855 CE) is due
240 to farming and gullying of the Loess Plateau.

241 By 1670 CE, and the start of the informal pre-industrial period, global population was
242 about 600 M, and 50 to 70% of GDP was still devoted to basic energy resources (human food,
243 fodder for animals, and wood fuel)¹². By 1850 CE and the start of the global industrial interval
244 (100 yr earlier in Europe), population reached 1250 M (0.8% per year growth), powered by
245 excess energy from the combustion of fossil fuels (coal, oil) and hydroelectric plants, allowing
246 societies to mechanize¹². These changes brought increasing human pressure to bear on deltas
247 and prompted various technological developments, including hydraulic engineering in the
248 Po⁵⁶, and management of embanked fields (polders), wind mills and pumping stations in the
249 Rhine⁵⁷.

250

251 **Globalization of the delta-human nexus.** The industrial/colonial interval (1850–1950 CE)
252 captures the global change in human–nature interactions and widespread occupation and
253 transformation of deltas in North America and South America, and less than 100 years ago in
254 Africa, the Sub-Arctic and Arctic environments, although the human footprint is, in all
255 likelihood, as ancient in African deltas as in New World deltas^{23,58}. The millennial-scale
256 pressures on deltas did not initiate vulnerability as deltas generally benefited from sustained
257 fluvial sediment supplies due to catchment deforestation by growing upland populations.
258 Under these conditions, the relatively stable Holocene sea level (Fig. 3) constituted an
259 important background template for delta sustainability. In Europe, deforestation and soil
260 erosion impacts on deltas are well-documented⁴⁹. In the Danube, rapidly prograding lobes
261 formed after 1800⁵³ led to ~2.5 times higher rates of area increase compared to Middle Ages

262 rates⁵⁹. Channel instability and avulsions caused by high river sediment supply during the Little
263 Ice Age in the Rhone delta were countered by engineering modifications in the late 18th
264 century that were a prelude to massive river-damming after the 1950s⁶⁰. A similar scenario
265 played out in many river systems and their deltas worldwide in the 19th and first half of the
266 20th century.

267

268 **The Anthropocene global pressure on deltas**

269 **More populous and sediment-starved deltas.** The previous sections have shown how deltas
270 progressively served, in the course of their growth, as incubators of human development. As
271 humans consolidated their hold on deltas, they undertook landscape and hydraulic
272 engineering modifications that enabled better harnessing of resources and protection against
273 floods, erosion, and avulsions, encouraging further widespread urbanization, agriculture and
274 engineering. These developments reinforced the 'locked-in' human-delta relationship¹⁶. The
275 already impressive human footprint of the industrial/colonial interval is dwarfed, however, by
276 that of the Anthropocene. Pressure on low- to mid-latitude deltas has occurred through
277 exponential population growth (Fig. 2) that brings with it dramatic changes that strain the
278 sustainability of deltas, whatever the breadth of their Holocene relationship with humans. A
279 now widespread and shared global pattern of delta vulnerability prevails.

280 Humans now dominate the sediment cycle, the nitrogen cycle, the terrestrial
281 hydrological cycle, the geochemical cycles (particularly the chalcophile elements, which have
282 an affinity for sulfide, and more recently the platinum group elements), the planet's forest
283 covers, ocean fish stocks, atmospheric greenhouse gases (H_2O , CO_2 , N_2O , CH_4), and plant and
284 animal density and diversity. The global warming impact of burning fossil fuels results in 20
285 times more heat being retained by our planet than from the original energy produced during
286 combustion¹². As a result, humans have overwhelmed the planetary forcings from orbital
287 variations in insolation, warmed the planet by $>1.2^{\circ}C$, initiated ocean acidification, reduced
288 sea ice volume, glacial ice mass, and permafrost, and global SLR is now at ~ 4 mm/yr. A high-
289 end SSP5-8.5 scenario forecasts a median global-mean SLR of nearly 1.4 m by 2150⁶¹, setting
290 a template for increasing delta vulnerability. Beyond 2150, sea levels will keep rising for
291 centuries even if we stabilize climate⁶².

292 Population growth (Fig. 2), sediment-starvation, and human exploitation of deltas are
293 leading to broad trends of vulnerability involving shoreline erosion and land loss^{63,64}, elevation
294 loss^{18,65,66}, and growing dependence on engineered flood defences and 'lock-in' as defined
295 earlier¹⁶. Humans currently depend so much on long-established uses and infrastructure that
296 it becomes extremely difficult or costly to reverse the situation, weakening resilience and
297 creating conditions of vulnerability. A synthesis of 48 deltas revealed that 46% have a 'lock in'
298 relationship with humans, especially in Europe and Asia, but also in the New World¹⁶. While
299 the Earth's sediment production (supply) from anthropogenic soil erosion, construction
300 activities, mineral mining, aggregate mining, and sand and gravel mining increased by about
301 467% between 1950 and 2010, sediment transport from land to the coastal ocean (the fluvial
302 part of which underpinned 8000 years of delta growth), has decreased by 23%, largely due to
303 sediment trapping behind dams associated with global hydropower development⁶⁷, notably
304 in Asia-Pacific, South America and Africa⁶⁸. Other human activities such as subsurface resource
305 overexploitation, notably water and hydrocarbons, but also surface extractions of aggregates
306 and clay increasingly cause subsidence, particularly affecting delta megacities^{14,18,51,69}. This
307 subsidence is no longer balanced by sedimentation^{3,14,18}, leading to transformation of
308 permanent or seasonal delta drylands into permanent wetlands and to shoreline retreat^{63,64}.
309 Many deltas are no doubt overloaded with nutrients, and, increasingly, microplastics^{e.g.70},
310 leading to rapid deterioration of delta ecology and eco-services⁷¹. Channel deepening caused
311 by sediment mining and fluvial sediment starvation^{e.g.72} exacerbates salt intrusion in many
312 deltas^{73,74}. Although deltas have always been subjected to fluctuations in sediment supply that
313 guided, in part, patterns of human occupation, the current massive diminutions in catchment
314 sediment supply, combined with increased human-driven environmental changes, are
315 rendering many deltas being ranked as in peril¹⁸ or highly vulnerable⁶⁴. SLR, under these
316 conditions, poses a sustainability issue, and ultimately an existential threat to deltas^{18,75}.
317 Similar sustainability issues face the world's estuaries⁷⁶.

318

319 **Sustainable delta futures?**

320 Humans are now masters (wittingly or unwittingly) of the flow of water (when, where,
321 how much), nutrients, sediment supply and redistribution, land cover and land use, urban and
322 non-urban areas, coastal structures and protection, and energy. Humans caused the SLR, the

323 land subsidence, and the loss of wetlands in deltas. Hence, maintaining future delta
324 sustainability will depend on how humans, as masters of the environment, can efficiently
325 manage, if at all, the complex blend of evolving geological-climate-ecological-social science
326 relationships that has driven the delta-human relationship over the last 7000 years, and
327 rebuild resilience, while scaling all this down locally to individual delta social-ecological
328 systems, each of which is distinct. A relatively stable sea level formed the background for this
329 long relationship which now unfurls in a context of global SLR at rates into the future that are
330 uncertain, and in a time of diminishing sediment supply. Maintaining delta sustainability raises
331 challenging questions around the river-basin-delta governance relationship, delta 'ownership'
332 and management, long-term planning (preferably knowledge- and data-driven and -sharing),
333 delta distinctness, and strategies or imposed approaches into the future (Fig. 4). River basin
334 management is key to understanding the link between climate change, local precipitation,
335 sediment supply to deltas and delta governance.

336

337 **Challenges of delta ownership and management.** The issue of 'ownership' of deltas, and the
338 embedded questions, now and into the future, of who manages/governs a delta's health, how,
339 and with what resources, are fundamental when considering delta sustainability. Ownership
340 is generally defined as 'the fact of owning something'. There is an explicit link between
341 'owning' a delta and being in a position to determine how it evolves, through some form of
342 management, including anticipation and planning, or through no management at all. Most
343 deltas have little or no management structure. Some deltas are managed where political
344 systems recognise them as such, but this varies extensively with engineers, elected
345 government representatives, wildlife/nature interests, etc., having strong roles in different
346 deltas, and sometimes exerting little management at all. When considering the river basin,
347 delta management always involves upstream cross-border planning and management, be it
348 national or federal (internal) boundaries. How are management decisions made? How
349 inclusive is the decision process? How is management funded? We raise questions that merit
350 pondering if society is ready to examine the inequalities in, and realities and challenges of,
351 delta sustainability into the future. But we believe, unfortunately, that society is clearly not
352 ready to do so yet.

353

354 **Towards knowledge-driven long-term planning.** Delta planning should be integrated through
355 a systems approach³, (re)connecting river basins to deltas and rivers to floodplains, and
356 include management of (re)sedimentation and control of human-accelerated subsidence (Fig.
357 4), something that is being attempted in only a few deltas^{77,78}. The feasibility and implications
358 of re-establishing delta-plain connectivity following, for instance, strategic deployment of
359 sedimentation-enhancing strategies^{79,80} and nature-based solutions⁸¹, involving dialogue and
360 knowledge-sharing⁵ from biophysics through to legislation, should be at the forefront of
361 interdisciplinary studies⁸² to back planning (Fig. 4). But even here, we should refrain from
362 over-optimism. In the Mekong delta, for instance, sedimentation-enhancing strategies could
363 be effective against SLR but are limited by the sediment-starved situation of the delta⁸³.
364 Current sedimentation-enhancing strategies collectively comprise only 0.1% of the global
365 delta area⁷⁹. Unlocking the full adaptation potential of nature-based, sedimentation-
366 enhancing strategies will require a fundamental paradigm shift in delta management to
367 surpass biophysical and societal barriers that currently impede their widespread
368 deployability⁸⁰.

369

370 **Subsisting dataset and knowledge challenges.** Insight from big data now permeates delta
371 studies globally. Remote sensing and modelling, in particular, confronted with the
372 global/regional issues of climate change and regional/local anthropogenic pressures, should
373 help us to investigate the challenges and solutions to delta sustainability. Lines of progress
374 include accurate quantifications and projections of sediment fluxes that should provide a
375 scientific basis for basin-wide management directives and planning^{e.g.84}, estimates of
376 sediment connectivity and (re)distribution processes within deltas⁸¹, and natural and human-
377 induced subsidence⁶⁹. There are, however, several areas in delta research where our
378 knowledge is still patchy and datasets too sketchy or challenging to obtain, impacting our
379 possibilities for reliable modeling and forecasting. There is a plethora of land-cover remote-
380 sensing datasets that are used, for instance, to identify anthropogenic delta transformations
381 and human occupation of subaerial delta area (Fig. 2), including megacities, agriculture,
382 aquaculture, infrastructure, land reclamation and polders (all increasingly detrimental to
383 mangroves and mires), engineered distributary channels, engineered coastal barriers, and
384 the impacts of subsidence. These datasets are useful but we still need to progress on
385 resolution, and exert caution in data analysis and interpretation⁸⁵. Standardization of datasets

386 should also be a future goal, especially relevant in the identification of the areal limits of deltas
387 and the distinction of delta sub-environments. Accurate delta-plain elevations and reliable
388 projections of subsidence are also crucial for quantitative assessments of future delta
389 elevation change under SLR. High-resolution data on the elevation of most of the world's
390 deltas, including the 86 largest deltas (Fig. 2), are currently lacking. Recent attempts in tackling
391 this problem show that high-resolution mean delta elevations are lower than estimated using
392 lower-resolution data⁸⁶⁻⁸⁸. The Mekong delta example (with a mean elevation of ~0.8 m above
393 sea level, dramatically lower than the earlier erroneously assumed ~2.6 m) also underscores
394 the fact that the quality of global coastal elevation data is inadequate and the crucial need to
395 convert to local tidal datum is often neglected⁸⁶.

396 Another challenge consists in addressing delta volume change⁹ caused by
397 miscellaneous human actions: organic matter production through rewilding, mangrove
398 replanting, or reforestation, oxidation through soil drainage, empoldering and engineering,
399 groundwater mining, peat mining, sand and gravel mining, clay extraction, deforestation,
400 anthropogenic infrastructure. Some cause surface deformation, resulting in land subsidence
401 in growing delta megacities that can be further exacerbated by earthquake deformation,
402 monsoon flood weight or drought-driven shrink-swell dynamics. We also need to improve our
403 knowledge of the subaqueous domain of deltas which can store large amounts of sediments⁹.
404 Deltas are major Earth sediment sinks. Beyond the need for integration of subaqueous delta
405 erosion into sustainability evaluations, especially under the stormier conditions
406 accompanying climate change⁸⁹, fundamental questions concern the effects of delta sediment
407 load changes on continental margin geological (e.g., volcanic activity) and sea-level feedbacks,
408 hence providing a link between local (river basin-delta) processes and global regulation. Geo-
409 engineering of individual deltas has been ongoing for at least 5000 years. The current global
410 situation suggests that regulating industrial waste outputs is a necessary step in mitigating
411 environmental damage. Managing deltas is an obvious component of such mitigation, at least
412 as a source of data, but also as a means of managing inputs and thresholds in the Earth system.
413

414 **Sustainability uncertainties into the future.** Innovative knowledge-driven delta management
415 and planning strategies, but also data acquisition and modelling^{3,4} are in their infancy but,
416 where feasible, now and into the future, could provide sustainable options for deltas against
417 near future (low-end SSP) projected SLR, including low rates of land subsidence (Fig. 5). There

418 are, however, other potential obstacles here, in addition to those related to datasets and
419 knowledge acquisition. Individual deltas are distinct entities, each with unique boundary
420 conditions, and a unique history of human change and impacts. Large deltas may in fact
421 display physical, cultural and human-history diversity even within their individual boundary
422 conditions. This complicates the deployment of general 'models' of sustainability. Alongside
423 this difficult outlook, management strategies are simply not presently feasible for most deltas,
424 reflecting lack of resources and planning and management capacity (Fig. 4). This raises the
425 question of human capacity-building regarding better knowledge of delta functioning and
426 management³, but also of harnessing better *indigenous knowledge*⁹⁰ and its perspectives.
427 Accessing reliable data is still a problem in many deltas due to geopolitical sensitivities, and
428 yet important not only for management, planning and anticipation, but also for gauging
429 tipping points in the delta-human relationship. The diversity of the Earth's deltas will require
430 high-quality field observations to inform important and often costly environmental decisions,
431 as well as community-level information with citizens conversant with the finer-scale changes
432 that affect their daily livelihoods^{6,9}, especially in the populous deltas. Transferable lessons
433 should also be identified, and, where possible, implemented to improve climate resilience⁵.
434 These include, from the Ganges-Brahmaputra and Mekong deltas, strategic plans to identify
435 risk hotspots, guide decision-making, and enhance grassroots resilience through community
436 livelihood diversification in response to changing risks and land-water conditions, and from
437 the Yangtze and Pearl deltas forecasting and sensing technologies developed to enable
438 effective preparedness for, and response to, hazards⁵.

439 Climate control to mitigate SLR⁶², sustained fluvial sediment supplies, control of
440 human-induced land subsidence, and delta population, set to attain by 2050 an averaged
441 global density⁴ of ~700 inhabitants/km², are, however, sources of future constraints. The
442 sustainability of many low-to-mid-latitude deltas will be severely affected by relative
443 SLR^{3,4,7,8,10,14,75} in the absence of climate stabilization, and compounded by fluvial sediment
444 starvation⁹¹ and accelerated land subsidence^{3,14}. Growing hydropower dam constructions in
445 developing economies⁶⁸ will further negatively impact sediment supply to deltas in the future.
446 Basin-wide planning of sediment releases from dams will need to be thoroughly gauged and
447 calibrated, notably by resorting less to the widespread use of large dead storages (the portion
448 of the reservoirs that cannot be emptied) in dam designs, and designing smaller dead storages
449 that can ease sediment starvation in sinking deltas⁹².

450 In spite of a high loss of fluvial connectivity due to dams and engineering, some deltas
451 associated with Asia-Pacific rivers still continue to gain land⁶⁴, as dams are flushed of sediment
452 to increase the calculated yield^{e.g.93}. Rapid SLR will also outpace marsh and mangrove
453 growth^{21,94}, important components of sedimentation in many deltas. Low-population Arctic
454 deltas with increasing climate-change-induced sediment loads⁹⁵ may be a temporary
455 exception regarding their sediment budgets but could also become increasingly exposed to
456 anthropogenic pressures with climate warming. Sustainability will depend on our capacity to
457 mitigate climate change and global SLR, while differences in current and future anthropogenic
458 pressures on individual deltas and inequalities in political-social actions addressing them will
459 also strongly influence the effectiveness of local mitigation and adaptation measures (Fig. 4).
460 The recent United Nations Convention on Conserving River Deltas (UNCCRD) initiative
461 proposed by engaged scientists at the COP28 in 2023 is an important global endeavour that
462 could consolidate our efforts, but properly enacting this convention could take, at best,
463 several years. The *International Panel on Deltas and Coastal Areas*
464 (<https://www.deltasandcoasts.net>), launched in 2023, could also promote sustainability
465 efforts.

466

467 **Expected outcomes without climate mitigation.** In the crucial battle against the inevitable
468 SLR, three end-member strategies^(e.g.96), alongside a ‘laissez-faire’ (a term borrowed from
469 economists) approach, are currently deployed and/or envisaged for coasts in general.
470 However, we need to recognize the biophysical specificities of deltas (Box 1) which go beyond
471 just the coastline fringe. These strategies/approaches are not mutually exclusive. ‘Protect’ and
472 ‘accommodate’ strategies are costly, impact delta biophysics, and larger and larger areas are
473 threatened with deeper floods if protection fails, especially for the higher-emission scenarios
474 (SSP3-7.0 and SSP5-8.5) (Box 1). Even for wealthy economies, dedicated to containing the
475 effects of SLR, such as the Netherlands with the Rhine delta^{97,98}, or the United States with the
476 Mississippi⁹⁹, this outcome is undesirable (Fig. 5) and protection that works with delta
477 processes are more desirable. Both absolute SLR and the annual rate of rise pose challenges,
478 the latter being susceptible to reduce, for instance, the lifetime of defence constructions when
479 the rate of SLR rise increases beyond projected values⁹⁸. Assuming no protection measures,
480 deltas globally might lose 5% (35,000 km²) of their area by 2100 and 50% by 2300 due to SLR
481 under the high-emission scenarios⁷⁵. Large-scale marine inundation, scaled against prohibitive

482 adaptation costs^{10,99}, will impose generalized give-up and human retreat (Fig. 5). Drastic
483 wholesale urban migrations and landward redeployments from sinking and marine-inundated
484 deltas may become more frequent in the future: the population of New Orleans has never
485 recovered post-Katrina. Djakarta, 40% of which is now below present sea level on the sinking
486 Ciliwung-Citarum delta, 4th in world conurbation population ranking (30 M), and Bangkok 13th
487 (18 M) on the sediment-starved Chao Phraya delta, are considering moving their city rather
488 than engaging in costly engineering for their survival. In some delta areas subject to extremely
489 high subsidence rates (>10 cm/yr) that threaten sustainability, such as the Semarang-Demak
490 in northern Java or the Pampanga in the Philippines, reports show that entire drowning
491 villages have simply become abandoned in 5-10 years. Significant movements of people away
492 from deltas may be anticipated, and retreat managed in delta zones likely to be most exposed
493 to sea-level rise and/or subsidence.

494

495 The 7000-year relationship of deltas with humans fostered technological
496 developments geared at water control and the fight against subsidence, erosion and the sea.
497 These developments, together with new technologies, strategies, and data, will be
498 instrumental in the battle of sustaining our deltas, and maintaining sustainable, if not entirely
499 habitable deltas with SLR. Pathways of sustainability and survival in the populous low-to-mid-
500 latitude deltas will need to be confronted with paradigms and tough challenges revolving
501 around dedicated and coordinated governance, management, planning, at both river-basin
502 and delta levels, and subsidence control, without losing sight of the distinctness of each delta,
503 but also of the diversity within some large deltas. Without climate control, an extreme SLR
504 scenario (rising up to and >2 m) over the next two centuries will lead to progressive delta
505 drowning, imposing untenable conditions from both environmental and economic
506 standpoints for human occupation, leading to global-scale human retreat from deltas. This
507 would terminate the 7000-year mutual relationship of humans with deltas as we know and
508 live it today, and establish a future of living with drowning and drowned deltas.

509

510 **References**

- 511 1. Brondizio E.S. *et al.* Catalyzing action towards the sustainability of deltas. *Current Opinion*
512 *in Environmental Sustainability*, **19**, 182-194 (2016).
513 <https://doi.org/10.1016/j.cosust.2016.05.001>
- 514 2. Loucks, D.P. Developed river deltas: are they sustainable? *Environ. Res. Lett.* **14**, 113004
515 (2019). DOI 10.1088/1748-9326/ab4165

516 3. Schmitt, R.J.P. & Minderhoud, P. Data, knowledge, and modeling challenges for science-
517 informed management of river deltas. *One Earth* **6**, 3 (2023).
518 <https://doi.org/10.1016/j.oneear.2023.02.010>

519 **Review of knowledge and data needed to better promote sustainable delta management**

520 4. Scown, M.W. *et al.* Global change scenarios in coastal river deltas and their sustainable
521 development implications. *Global Environmental Change*, **82**, 102736 (2023).
522 <https://doi.org/10.1016/j.gloenvcha.2023.102736>

523 **Scenarios of delta change in the near future and implications for delta sustainability**

524 5. Chan, F.K.S. *et al.* Building resilience in Asian mega-deltas. *Nat. Rev. Earth Environ.* (2024).
525 <https://doi.org/10.1038/s43017-024-00561-x>

526 **Review of challenges and transferable lessons among five Asian megadeltas to enhance
527 resilience**

528 6. Cremin, E. *et al.* Causes and consequences of tipping points in river delta social-ecological
529 systems. *Ambio* (2024). <https://doi.org/10.1007/s13280-023-01978-2>

530 7. Edmonds, D.A., Caldwell, R.L., Brondizio, E.S. & Siani, S.M.O. Coastal flooding will
531 disproportionately impact people on river deltas. *Nat. Commun.* **11**, 4741 (2020).
532 <https://doi.org/10.1038/s41467-020-18531-4>

533 **Global analysis of the potential impacts of flooding from sea-level rise on delta populations**

534 8. Nicholls, R.J., Adger, W.N., Hutton, C.W. & Hanson, S.E. (eds.). *Deltas in the Anthropocene*
535 (Springer, 2020).

536 9. Syvitski, J. *et al.* Large deltas, small deltas: Towards a more rigorous understanding of
537 marine deltas. *Global & Planetary Change* **103958** (2022).
538 <https://doi.org/10.1016/j.gloplacha.2022.103958>

539 10. Hauer, M.E. *et al.* Sea-level rise and human migration. *Nat. Rev. Earth Environ.* **1**, 28–39
540 (2020). <https://doi.org/10.1038/s43017-019-0002-9>

541 **Analysis of drivers and determinants of human migration to coasts subject to sea-level rise**

542 11. Wallenhorst, N. & Wulf, C. (eds.) *Handbook of the Anthropocene: Humans between
543 Heritage and Future*. Springer (2020).

544 **Exhaustive analysis of the multi-faceted Anthropocene from all angles**

545 12. Syvitski, J. *et al.* Extraordinary human energy consumption and resultant geological
546 impacts beginning around 1950 CE initiated the proposed Anthropocene Epoch. *Commun.
547 Earth Environ.* **1**, 32 (2020). <https://doi.org/10.1038/s43247-020-00029-y>.

548 13. Witze, A. Geologists reject the Anthropocene as Earth's new epoch — after 15 years of
549 debate. *Nature* **627**, 249–250 (2024). doi: <https://doi.org/10.1038/d41586-024-00675-8>

550 14. Nicholls, R.J. *et al.* A global analysis of subsidence, relative sea-level change and coastal
551 flood exposure. *Nat. Clim. Chang.* **11**, 338–342 (2021). [https://doi.org/10.1038/s41558-021-00993-z](https://doi.org/10.1038/s41558-
552 021-00993-z)

553 **Global analysis of coastal and delta exposure to flooding from sea-level rise and subsidence**

554 15. McGranahan, G., Balk, D., Colenbrander, S., Engin, H., & MacManus, K. Is rapid
555 urbanization of low-elevation deltas undermining adaptation to climate change? A global
556 review. *Environment and Urbanization*, **35** (2), 527–559 (2023).
557 <https://doi.org/10.1177/09562478231192176>

558 **Global review of obstacles to climate change adaptation due to rapid delta urbanization**

559 16. Santos, M.J. & Dekker, S.C. Locked-in and living delta pathways in the Anthropocene. *Sci.
560 Rep.* **10** (1), 19598 (2020). <https://doi.org/10.1038/s41598-020-76304-x>

561 **Analysis of the intertwined Anthropocene relationship between many deltas and humans**

562 17. Day, J.W. *et al.* Approaches to defining deltaic sustainability in the 21st century. *Estuarine,
563 Coastal and Shelf Science*, **183**, 275-291 (2016).
564 <https://doi.org/10.1016/j.ecss.2016.06.018>.

565 18. Syvitski, J. *et al.* Sinking deltas due to human activities. *Nat. Geosci.* **2**, 681–686 (2009).
566 <https://doi.org/10.1038/ngeo629>

567 19. Day, J.W., Gunn, J.D., Folan, W.J., Yáñez-Arancibia, A. & Horton, B.P. The influence of
568 enhanced post-glacial coastal margin productivity on the emergence of complex societies.
569 *The Journal of Island and Coastal Archaeology*, **7** (1), 23-52 (2012).
570 <http://dx.doi.org/10.1080/15564894.2011.650346>

571 20. Lambeck, K., Rouby, H., Purcell, A., Sun, Y. & Cambridge, M. Sea level and global ice
572 volumes from the Last Glacial Maximum to the Holocene. *Proc. Natl. Acad. Sci. U.S.A.* **111**,
573 15296–15303 (2014). <https://doi.org/10.1073/pnas.1411762111>

574 21. Osland, M.J. *et al.* Migration and transformation of coastal wetlands in response to rising
575 seas. *Sci. Adv.* **8**, eab05174 (2022). DOI: 10.1126/sciadv.ab05174

576 22. Stanley, D.J. & Warne, A.G. Holocene sea-level change and early human utilization of
577 deltas. *GSA Today* **7**, 1–7 (1997).

578 **An early analysis of the first links between deltas and human encroachment globally**

579 23. Pope, K.O. *et al.* Origin and environmental setting of ancient agriculture in the low-lands
580 of Mesoamerica. *Science* **292**, 1370–1373 (2001). DOI: 10.1126/science.292.5520.1370

581 24. Zong, Y. *et al.* Fire and flood management of coastal swamp enabled first rice paddy
582 cultivation in east China. *Nature* **449**, 459–462 (2007).
583 <https://doi.org/10.1038/nature06135>

584 25. Scott, J.C. *Against the Grain: A Deep History of the Earliest States*. (Yale University Press,
585 2017).

586 26. Stanley, D.J. & Warne, A.G. Sea level and initiation of Predynastic culture in the Nile delta.
587 *Nature* **363**, 435–438 (1993). <https://doi.org/10.1038/363435a0>

588 27. Chen, Z., Zong, Y., Wang, Z., Wang, H., & Chen, J. Migration patterns of Neolithic
589 settlements on the abandoned Yellow and Yangtze River deltas of China. *Quaternary
590 Research*, **70** (2), 301-314 (2008). doi:10.1016/j.yqres.2008.03.011

591 28. Wang, Z., Zhuang, C., Saito, Y., Chen, J. & Zhan, Q. Early mid-Holocene sea-level change
592 and coastal environmental response on the southern Yangtze delta plain, China: implications
593 for the rise of Neolithic culture. *Quaternary Science Reviews*, **35**, 51-62 (2012).
594 <https://doi.org/10.1016/j.quascirev.2012.01.005>

595 29. Deng, L.J. *et al.* New archaeobotanical evidence reveals synchronous rice domestication
596 7600 years ago on south Hangzhou Bay coast, eastern China. *Anthropocene*, **33**, 100280
597 (2021). 10.1016/j.ancene.2021.100280

598 30. Louwe Kooijmans, L.P., van den Broeke, W., Fokkens, H. & van Gijn, A.I. *The Prehistory of
599 the Netherlands*. (Amsterdam University Press, 2005), 844 pp.

600 31. Sheisha, H. *et al.* Feeding the pyramid builders: Early agriculture at Giza in Egypt.
601 *Quaternary Science Reviews*, **312**, 108172.
602 <https://doi.org/10.1016/j.quascirev.2023.108172>.

603 32. Sheisha, H. *et al.* Nile waterscapes facilitated the construction of the Giza pyramids during
604 the 3rd millennium BCE. *Proceedings of the National Academy of Sciences*, **119**,
605 e2202530119 (2022). <https://doi.org/10.1073/pnas.2202530119>

606 33. Ghoneim, E. *et al.* The Egyptian pyramid chain was built along the now abandoned
607 Ahramat Nile Branch. *Commun. Earth Environ.* **5**, 233 (2024).
608 <https://doi.org/10.1038/s43247-024-01379-7>

609 34. Morozova, G. A review of Holocene avulsions of the Tigris and Euphrates rivers and
610 possible effects on the evolution of civilizations in lower Mesopotamia. *Geoarchaeology*,
611 **20** (4), 401-423 (2005). <https://doi.org/10.1002/gea.20057>

612 35. Syvitski, J., Overeem, I., Brakenridge, G.R. & Hamon, M. Floods, floodplains, delta plains:
613 A satellite imaging approach. *Sedimentary Geology* **267–268**, 1–14 (2012).
614 <https://doi.org/10.1016/j.sedgeo.2012.05.014>

615 36. Macklin, M.G. & Lewin, J. The rivers of civilization. *Quaternary Science Reviews* **114**, 228–
616 244 (2015). <https://doi.org/10.1016/j.quascirev.2015.02.004>

617 37. Marchetti, N. *et al.* Long-Term urban and population trends in the Southern
618 Mesopotamian floodplains. *J. Archaeol. Res.* (2024). <https://doi.org/10.1007/s10814-024-09197-3>

620 38. Dee, M. *et al.* An absolute chronology for early Egypt using radiocarbon dating and
621 Bayesian statistical modelling. *Proc. R. Soc. A. Math. Phys. & Eng. Sci.* **469** 20130395,
622 (2013). <http://doi.org/10.1098/rspa.2013.0395>

623 39. Meadow, R.H. & Kenoyer, J.M. Excavations at Harappa 2000-2001: new insights on
624 chronology and city organization. *South Asian Archaeology*, CNRS, Paris 207-225 (2001).

625 40. Wright, R.P. *The Ancient Indus: Urbanism, Economy, and Society*. Case Studies in Early
626 Societies, Series Number 10, 418 pp. (Cambridge University Press, 2010).

627 41. Liu, L. State emergence in Early China. *Annual Reviews of Anthropology* **38**, 217–32 (2009).
628 <https://doi.org/10.1146/annurev-anthro-091908-164513>

629 42. Walsh, K. *et al.* Holocene demographic fluctuations, climate and erosion in the
630 Mediterranean: A meta data-analysis. *The Holocene* **29** (5) 864–885 (209).
631 <https://doi.org/10.1177/0959683619826637>

632 43. Coningham, R., Young, R. *The Archaeology of South Asia: From the Indus to Asoka, c. 6500*
633 *BCE – 200 CE* (Cambridge University Press, 2015).

634 44. Giaime, M. *et al.* Evolution of ancient harbours in deltaic contexts: A geoarchaeological
635 typology. *Earth-Science Reviews* **191**, 141-167 (2019).
636 <https://doi.org/10.1016/j.earscirev.2019.01.022>

637 45. Amorosi, A. *et al.* Middle to late Holocene environmental evolution of the Pisa coastal
638 plain (Tuscany, Italy) and early human settlements. *Quat. Int.* **303**, 93–106 (2013).
639 <https://doi.org/10.1016/j.quaint.2013.03.030>

640 46. Fontijn, D. Land at the other end of the sea? Metalwork circulation, geographical
641 knowledge and the significance of British/Irish imports in the Bronze Age of the Low
642 Countries. In *Bronze Age Connections: Cultural Contact in Prehistoric Europe* (ed. Clark, P.),
643 129–148. (Oxbow Books, 2009).

644 47. Maselli, V., Trincardi, F. Man-made deltas. *Sci. Rep.* **3**, 1926 (2013).
645 <https://doi.org/10.1038/srep01926>

646 48. Kelly, J. *The Great Mortality. An Intimate History of the Black Death, the most devastating*
647 *Plague of all Time* (New York, Harper Collins, 2006).

648 49. Anthony, E.J., Marriner, N. & Morhange, C. Human influence and the changing
649 geomorphology of Mediterranean deltas and coasts over the last 6000 years: from
650 progradation to destruction phase? *Earth-Science Reviews* **139**, 336-361 (2014).
651 <https://doi.org/10.1016/j.earscirev.2014.10.003>

652 50. van Dinter, M. The Roman Limes in the Netherlands: how a delta landscape determined
653 the location of the military structures. *Netherlands Journal of Geosciences* **92** (1), 11-32
654 (2013). <https://doi.org/10.1017/S0016774600000251>

655 51. Erkens, G. van der Meulen, M.J. & Middelkoop, H. Double trouble: subsidence and CO₂
656 respiration due to 1,000 years of Dutch coastal peatlands cultivation. *Hydrogeology
657 Journal* **24**, 551 (2016). DOI: 10.1007/s10040-016-1380-4

658 52. Vespremeanu-Stroe, A. *et al.*, 2013. The impact of the Late-Holocene coastal changes on
659 the rise and decay of the ancient city of Histria (Southern Danube delta). *Quaternary
660 International* **293**, 245–256 (2013). <https://doi.org/10.1016/j.quaint.2012.11.039>

661 53. Preoteasa, L. *et al.* Late-Holocene landscape evolution and human presence in the
662 northern Danube delta (Chilia distributary lobes). *The Holocene* **31** (9), 1459–1475 (2021).
663 <https://doi.org/10.1177/09596836211019121>

664 54. Chen, Y., Syvitski, J., Gao, S. Overeem, I. & Kettner, A.J. Socio-economic impacts on
665 flooding: a 4000-year history of the Yellow River, China. *AMBIO* **41** (7), 682–698 (2012).
666 doi: 10.1007/s13280-012-0290-5

667 55. Chen, Y. *et al.* Quantifying sediment storage on the floodplains outside levees along the
668 lower Yellow River during the years 1580–1849. *Earth Surf. Proc. & Landf.* **44** (2), 581–594.
669 <https://doi.org/10.1002/esp.4519>

670 56. Simeoni, U. & Corbau, C. A review of the Delta Po evolution (Italy) related to climatic
671 changes and human impacts. *Geomorphology* **107**, 64–71 (2009).
672 <https://doi.org/10.1016/j.geomorph.2008.11.004>

673 57. van Koningsveld, M., Mulder, J.P.M., Stive, M.J.F., van der Valk, L. & van der Weck,
674 A.W. Living with sea-level rise and climate change: a case study of the Netherlands. *Journal
675 of Coastal Research*, **24** (2), 367–379 (2008). <https://doi.org/10.2112/07A-0010.1>

676 58. Chamberlain, E.L., Mehta, J.M., Reimann, T. & Wallinga, J. A geoarchaeological perspective
677 on the challenges and trajectories of Mississippi Delta communities. *Geomorphology* **360**,
678 107132 (2020). <https://doi.org/10.1016/j.geomorph.2020.107132>

679 59. Vespremeanu-Stroe A. *et al.* Holocene evolution of the Danube delta: An integral
680 reconstruction and a revised chronology. *Marine Geology* **388**, 38–61 (2017).
681 <https://doi.org/10.1016/j.margeo.2017.04.002>

682 60. Provansal, M. *et al.* The geomorphic evolution and sediment balance of the Lower Rhône
683 River (southern France) over the last 130 years: hydropower dams versus other control
684 factors. *Geomorphology* **219**, 27–41 (2015).
685 <https://doi.org/10.1016/j.geomorph.2014.04.033>

686 61. Fox-Kemper, B. *et al.* Ocean, Cryosphere and Sea Level Change. In *Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change* (eds. Masson-Delmotte, V. *et al.*). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1211–1362 (2021). doi:10.1017/9781009157896.011.

687 62. Nicholls, R.J. *et al.* Stabilization of global temperature at 1.5°C and 2.0°C: implications for
688 coastal areas. *Phil. Trans. R. Soc. A* **376**, 20160448 (2018).
689 <http://dx.doi.org/10.1098/rsta.2016.0448>

690 63. Anthony, E.J. *et al.* Linking rapid erosion of the Mekong River delta to human activities. *Scientific Reports*, **5**, 14745 (2015). <https://www.nature.com/articles/srep14745>

691 64. Basset, M., Anthony, E.J. & Bouchette, F. Multi-decadal variations in delta shorelines and
692 their relationship to river sediment supply: An assessment and review. *Earth-Science
693 Reviews* **193**, 199–219. <https://doi.org/10.1016/j.earscirev.2019.04.018>

694 65. Minderhoud, P. S. J. *et al.* The relation between land use and subsidence in the Vietnamese
695 Mekong delta. *Science of The Total Environment*, **634**, 715–726 (2018).
696 <https://doi.org/10.1016/j.scitotenv.2018.03.372>

66. Anthony, E.J., Basset, M., Zăinescu, F. & Sabatier, F. Multi-decadal deltaic land-surface changes: Gauging the vulnerability of a selection of Mediterranean and Black Sea river deltas. *J. Mar. Sci. Eng.* **9** (5) 512 (2021). <https://doi.org/10.3390/jmse9050512>

67. Syvitski, J. *et al.* Earth's sediment cycle during the Anthropocene. *Nat. Rev. Earth Environ.* **3**, 179–196 (2022). <https://www.nature.com/articles/s43017-021-00253-w>.

68. Gernaat, D.E.H.J. *et al.* High-resolution assessment of global technical and economic hydropower potential. *Nat. Energy* **2**, 821–828 (2017). <https://doi.org/10.1038/s41560-017-0006-y>

69. Ao, Z. *et al.* A national-scale assessment of land subsidence in China's major cities. *Science* **384**, 301–306 (2024). DOI: 10.1126/science.adl4366

70. Leslie, H.A., Brandsma, S.H., van Velzen, M.J.M., Vethaak, A.D. Microplastics en route: Field measurements in the Dutch river delta and Amsterdam canals, wastewater treatment plants, North Sea sediments and biota. *Environment International*, **101**, 133-142 (2017). <https://doi.org/10.1016/j.envint.2017.01.018>.

71. Nicholls, R.J. *et al.* (eds.). *Ecosystem services for well-being in deltas: integrated assessment for policy analysis* (Springer Nature, 2018).

72. Yuen, K.W. *et al.* Extent of illegal sand mining in the Mekong Delta. *Commun. Earth Environ.* **5**, 31 (2024). <https://doi.org/10.1038/s43247-023-01161-1>

73. Eslami, S. *et al.* Projections of salt intrusion in a mega-delta under climatic and anthropogenic stressors. *Commun. Earth Environ.* **2**, 142 (2021). <https://doi.org/10.1038/s43247-021-00208-5>

74. Rahman, M.M. *et al.* Salinization in large river deltas: Drivers, impacts and socio-hydrological feedbacks. *Water Security* **6**, 100024 (2019). <https://doi.org/10.1016/j.wasec.2019.100024>

75. Nienhuis, J.H. *et al.* River deltas and sea-level rise. *Annual Review of Earth and Planetary Sciences* **51**, 1, 79-104 (2023). <https://doi.org/10.1146/annurev-earth-031621-093732>

76. Jung, N.W. *et al.* Economic development drives massive global estuarine loss in the Anthropocene. *Earth's Future*, **12**, e2023EF003691. <https://doi.org/10.1029/2023EF003691>

77. Seijger, C. *et al.* 2017. An analytical framework for strategic delta planning: negotiating consent for long-term sustainable delta development. *Journal of Environmental Planning and Management* **60**(8), 1485-1509 (2017). <https://doi.org/10.1080/09640568.2016.1231667>

78. Zevenbergen, C., Khan, S.A., van Alphen, J., Terwisscha van Scheltinga, C. & Veerbeek, W. Adaptive delta management: a comparison between the Netherlands and Bangladesh Delta Program. *International Journal of River Basin Management* **16** (3), 299-305 (2018). <https://doi.org/10.1080/15715124.2018.1433185>

79. Cox, J.R. *et al.* A global synthesis of the effectiveness of sedimentation-enhancing strategies for river deltas and estuaries. *Global and Planetary Change* **214**, 103796 (2022). <https://doi.org/10.1016/j.gloplacha.2022.103796>

80. Dunn, F.E. *et al.* Sedimentation-enhancing strategies for sustainable deltas: An integrated socio-biophysical framework. *One Earth*, **6**(12), 1677–1691 (2023). <https://doi.org/10.1016/j.oneear.2023.11.009>

81. Moodie, A.J. & Nittrouer, J.A. Optimized river diversion scenarios promote sustainability of urbanized deltas. *Proceedings of the National Academy of Sciences*, **118** (27) e2101649118 (2021). <https://doi.org/10.1073/pnas.2101649118>

748 82. Du, H *et al.* Enriching the concept of solution space for climate adaptation by unfolding
749 legal and governance dimensions. *Environmental Science and Policy* **127**, 253–262 (2022).
750 <https://doi.org/10.1016/j.envsci.2021.10.021>

751 83. Dunn, F.E. & Minderhoud, P.S.J. Sedimentation strategies provide effective but limited
752 mitigation of relative sea-level rise in the Mekong delta. *Communications Earth and*
753 *Environment*, **3**(1) (2022). <https://doi.org/10.1038/s43247-021-00331-3>

754 84. Kondolf, G. M. *et al.* Save the Mekong Delta from drowning. *Science* **376** (6593), 583–585
755 (2022). <https://doi.org/10.1126/science.abm5176155>

756 85. Zăinescu, F., Anthony, E., Vespremeanu-Stroe, A., Basset, M. & Tatui, F. Concerns about
757 data linking delta land gain to human action. *Nature* **614**, E20–E25 (2023).
758 <https://doi.org/10.1038/s41586-022-05624-x>

759 86. Minderhoud, P.S.J., Coumou, L., Erkens, G., Middelkoop, H., & Stouthamer, E. Mekong
760 delta much lower than previously assumed in sea-level rise impact assessments. *Nature*
761 *Communications* **10** (1), 3847 (2019). <https://doi.org/10.1038/s41467-019-11602-1105>.

762 87. Seeger, K. *et al.* Assessing land elevation in the Ayeyarwady Delta (Myanmar) and its
763 relevance for studying sea level rise and delta flooding. *Hydrol. Earth Syst. Sci.* **27**, 2257–
764 2281 (2023). <https://doi.org/10.5194/hess-27-2257-2023>

765 88. Hooijer, A. & Vernimmen, R. Global LiDAR land elevation data reveal greatest sea-level rise
766 vulnerability in the tropics. *Nat. Commun.* **12**, 3592 (2021).
767 <https://doi.org/10.1038/s41467-021-23810-9>

768 89. Zhu, Q. *et al.* Hidden delta degradation due to fluvial sediment decline and intensified
769 marine storms. *Science Advances*, **10** (18) (2024). DOI: 10.1126/sciadv.adk1698

770 90. Schipper, E.L.F. *et al.* Climate resilient development pathways. In *Climate Change 2022: Impacts, Adaptation and Vulnerability* (eds. Pörtner H-O *et al.*). Contribution of Working
771 Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.
772 Cambridge, UK and New York, NY, USA: Cambridge University Press, pp. 2655–2807 (2022).

773 91. Dunn, F.E. *et al.* Projections of declining fluvial sediment delivery to major deltas
774 worldwide in response to climate change and anthropogenic stress. *Environ. Res. Lett.* **14**,
775 084034 (2019). DOI 10.1088/1748-9326/ab304e.

776 92. Chua, S.D.X. *et al.* Can restoring water and sediment fluxes across a mega-dam cascade
777 alleviate a sinking river delta? *Sci. Adv.* **10** (18), eadn9731 (2024). DOI:
779 10.1126/sciadv.adn9731

780 93. Wang, H. J. *et al.* Impacts of the dam-orientated water-sediment regulation scheme on the
781 lower reaches and delta of the Yellow River (Huanghe): a review. *Glob. Planet. Change* **157**,
782 93–113 (2017). <https://doi.org/10.1016/j.gloplacha.2017.08.005>

783 94. Saintilan, N. *et al.* Widespread retreat of coastal habitat is likely at warming levels above
784 1.5 °C. *Nature* **621**, 112–119 (2023). <https://doi.org/10.1038/s41586-023-06448-z>

785 95. Zhang, T. *et al.* Warming-driven erosion and sediment transport in cold regions. *Nature*
786 *Reviews Earth & Environment* **3** (12), 832-851 (2022). 10.1038/s43017-022-00362-0

787 96. Oppenheimer, M. *et al.* Sea Level Rise and Implications for Low-Lying Islands, Coasts and
788 Communities. In *IPCC Special Report on the Ocean and Cryosphere in a Changing*
789 *Climate* (eds., Pörtner, H-O *et al.*). Cambridge University Press, Cambridge, UK and New
790 York, NY, USA, pp. 321-445. <https://doi.org/10.1017/9781009157964.006>.

791 97. Timmermans, J. & Storms, J. (eds.) Panorama New Netherlands. (2023)
792 <https://flowsplatform.nl/#/panorama-new-netherlands-1581327249675>

793 98. van Alphen, J., Haasnoot, M. & Diermanse, F. Uncertain accelerated sea-Level rise,
794 potential consequences, and adaptive strategies in The Netherlands. *Water* **14**, 1527
795 (2022). <https://doi.org/10.3390/w14101527>

796 99. Tessler, Z.D. *et al.* Profiling risk and sustainability in coastal deltas of the world. *Science*
797 **349**, 638–643 (2015). doi: 10.1126/science.aab3574

798 100. Karra, K. *et al.* Global land use/land cover with Sentinel 2 and deep learning. In *2021 IEEE*
799 *International Geoscience and Remote Sensing Symposium IGARSS* (pp. 4704-4707). IEEE
800 (2021).

801 101. Marconcini, M., Metz-Marconcini, A., Esch, T., & Gorelick, N. Understanding current
802 trends in global urbanisation—the world settlement footprint suite. *GI_Forum* **9** (1), 33-38
803 (2021).

804

805 **Correspondence**

806 Correspondence should be addressed to Edward Anthony (anthony@cerege.fr)

807

808 **Online content**

809 Source data and Python codes for Fig. 2 are available at
810 <https://github.com/FlorinZai/DeltaHumans>.

811

812 **Acknowledgements**

813 Patrick Pentsch assisted in drawing figures 1,3,5, and Sarah Anthony drew the adaptation
814 strategies on the delta in Box 1. Florin Zăinescu benefited from a Centre National d'Etudes
815 Spatiales (CNES) post-doc during the course of this review.

816

817 **Author contributions**

818 All the authors contributed to the ideas, discussions and illustrations that formed the basis for
819 this Review, and to the writing and editing of the manuscript.

820

821 **Competing interests**

822 The authors declare no competing interests.

823

824 **FIGURE CAPTIONS**

825

826 **Figure 1. Simplified sketch of a river delta.** (A) Deltas result from a river feeding sediment into
827 a standing body of water at a rate that exceeds dispersal processes, leading, especially in large
828 deltas, to the accumulation of a considerable sediment mass both on land and in the
829 subaqueous zone⁹. The largest deltas started developing about 8000 years ago (covering much
830 of the Holocene, i.e., the last 10,000 years of Earth's history). Delta existence has hinged on
831 abundant sediment supply from river catchments. (B) Idealized delta. Deltas expanded and
832 built up and out from initial bay-head settings. Their growth was favoured by a relatively stable
833 global sea level, and most of the world's deltas have a mean elevation below 2 m above
834 present mean sea level⁸⁸ although precise elevation data are lacking. Deltas undergo natural
835 subsidence (sinking) due to sediment, including organic matter, compacting under its own
836 weight. Deltas are ecologically diverse with subtle elevation variations, subject to floods,

837 channel switches (avulsions) and meandering, marine incursions during storms, and localized
838 erosion. Deltas have provided space and resources for the development and thriving of human
839 society despite these hazards. Humans progressively adapted across the past 7000 years to
840 deltas, building up a highly imbricated relationship but also generating profound delta
841 biophysical modifications. Low- to mid-latitude deltas are increasingly subjected to sediment
842 starvation from river-basin hydropower development involving dams and reservoirs, from
843 aggregate mining, and from aggravated subsidence caused by delta population growth and
844 resource exploitation, all culminating in vulnerability to global sea-level rise.

845
846
847 **Figure 2. Anthropocene delta demography and land changes.** (A) Population over a total area
848 of approximately 730,000 km² covered by the largest 86 global deltas⁹, with concentric circles
849 representing 1975, 2020, and projected for 2030. (B) Anthropogenic footprint: combined
850 fractions of built-up and cropland areas within delta plains, with juxtaposed regional averages.
851 (C) Breakdown of delta area, population, natural area regionally, and global land cover
852 emphasizing the disproportionate anthropogenic influences across different regions. (D)
853 Urban development highlighted by Shanghai (Yangtze delta), one of the world's largest
854 conurbations and cities with respectively 80 M and 22.3 M inhabitants in 2018. (E) Land-use
855 patterns in the Mekong delta. (F) Temporal trends illustrating population growth dynamics
856 within deltas over the decades, underscoring the increasing anthropogenic pressures.
857 Population data (plots A,C,F) from the GHS-POP R2023A population grid multitemporal (1975-
858 2030) of the European Commission available at: <http://data.europa.eu/89h/2ff68a52-5b5b-4a22-8f40-c41da8332cfe>; land cover data (plots B, E, C) from the ESRI 2020 Land Cover
859 dataset¹⁰⁰ with the original 10 classes simplified into four classes: Cropland, Settlement, Water
860 and Natural, and settlement area (plot D) from World Settlement Footprint: 1985-2015 and
861 2019¹⁰¹, and from the samapriya-awesome-gee community-dataset hosted at
862 <https://doi.org/10.5281/zenodo.8223455> retrieved via Earth Engine[©].
863

864
865
866 **Figure 3. Human intersection with delta geomorphological development over the last 7000**
867 **years in the wake of stabilization of the postglacial SLR.** (A) Smoothed global mean sea level
868 over the last 8000 years²⁰. The strong association between sea level and deltas has been
869 reviewed recently⁷⁵. (B) Idealized geomorphic phases of Holocene delta development
870 comprising inception following sea-level stabilization, expansion over much of the Neolithic
871 and the Bronze Age, notably through active avulsions, resulting in the broad fan shape of
872 modern deltas downstream of the apex (Fig. 1), and upbuilding-outbuilding especially in the
873 Common Era that has, over the last three thousand years, led to burial of anthropogenic
874 artefacts along nameless (and no doubt numerous) former delta river branches, long
875 abandoned in classic to modern times. (C) Global population in billions (b) (sources are
876 referenced in¹²) since 1670 CE (taken as the start of the informal pre-industrial period),
877 showing the significant Anthropocene spike that also saw the creation of numerous delta
878 cities and megacities. (D) Timeline showing significant phases and spikes in the 7000 year-long
879 delta-human relationship from the earliest human occupation, through the Neolithic and
880 formation of the world's first city states and important expansion of settlements in the Bronze
881 Age, followed by increasing human engineering and transformation during the Common Era,
882 accompanied by strong human influence on river catchment sediment supply. This culminated
883 with globalization of human occupation of deltas during the industrial era that has resulted in

884 many deltas being locked into anthropogenic transformations that have become irreversible
885 in the Anthropocene¹⁶.

886

887

888 **Figure 4. Coordinated river and delta planning and management strategies to reduce**
889 **vulnerability and maintain delta sustainability.** Thriving deltas in the past have done so in the
890 framework of a complex balanced geological-climate-ecological-social science relationship.
891 Coordinated river-basin planning and management, and delta planning and management,
892 revolving around this blend, should be at the forefront of future delta sustainability, as they
893 will be determinant, in assuring or not, vulnerability reduction and in maintaining delta
894 sustainability at low-end near-future SLR scenarios (SSP1-1.9/1-2.6). River basins are
895 fundamental to the link between climate change, local precipitation and sediment supply to
896 deltas. Important areas of river-basin management are water and sediment fluxes to minimize
897 river fragmentation and delta subsidence, and assure connectivity, notably through rethinking
898 of alternative solutions to hydropower and irrigation dams where feasible, and where dams
899 are inevitable, their optimal design and operation to minimize sediment trapping by enabling
900 sediment routing through reservoirs via sluices, sediment-drawdown gates, bypass tunnels,
901 dredging and downstream relocation of dredged sediment. Other aspects include controlled
902 aggregate mining, and population mobility from upland basin areas to deltas. Hence the
903 importance of considering knowledge- and data-backed aspects revolving around what delta
904 'ownership' implies, and how governance, management and adaptation are deployed.
905 Anticipation is of equal importance at a time when most deltas have no known management
906 structure. Differences in the extent to which these actions are taken, or not, will generate
907 inequalities among deltas and their vulnerability to global/regional SLR. Both the river-basin
908 and delta spheres face social-ecological, political and funding challenges that will generate
909 variability among deltas in the capacity to act. Sustainability will decline for all deltas under
910 high SLR scenarios, underlining the overarching condition of urgent climate stabilization.

911

912 **Figure 5. SLR and delta sustainability.** Sustainability is scaled against projected likely ranges
913 of global SLR under different shared socio-economic pathways (SSP) from⁶¹, assuming mean
914 delta-plain elevations below 2 m above present mean sea level^{86,88}: (1) progressively
915 imperiled, notably sediment-starved deltas, with no river basin-delta management or
916 planning, even under a near-future low-end (SSP1-1.9) scenario; (2) deltas with good
917 adaptation through basin-delta planning and management and sustainable at low-end (SPP1-
918 1.9) and moderately-low (SPP1-2.6) scenarios; (3) increasing marine inundation and costlier
919 and unsustainable adaptation at a moderately-high scenario (SPP2-4.5) likely to affect most
920 world deltas; (4) large-scale inundation and drowning of world deltas at high-end scenarios
921 (SSP3-7.0 and SPP 5-8.5) of 1-1.4 m above present mean sea-level. Action perspectives will
922 strongly diverge between deltas, and while stronger economic means and governance may
923 provide larger space for solution, adaptation will (rapidly) decline for all deltas under high SLR
924 scenarios. Projection uncertainties constitute a challenge for investment planning in Protect
925 and Accommodate strategies (Box 1). In the Netherlands, at the forefront in battling SLR⁵⁷, a
926 1 m-rise is factored into defences to 2100, following the Delta Commission Plan, and defences
927 will continue to be raised to withstand another metre by 2200. Residual risks like storm surges
928 and unforeseeable extremely rapid SLR cause, however, concern and raise questions about

929 which strategy to adopt. Retreat could be selective, letting, for instance, Friesland become
930 flooded, but protecting the Rhine delta provinces hosting most people and economic
931 activities. Note that subsidence is as important as global SLR in any individual delta.

932

933 **Box 1. Adaptation strategies and approaches to SLR in deltas**

934

935 **BOX FIGURE**

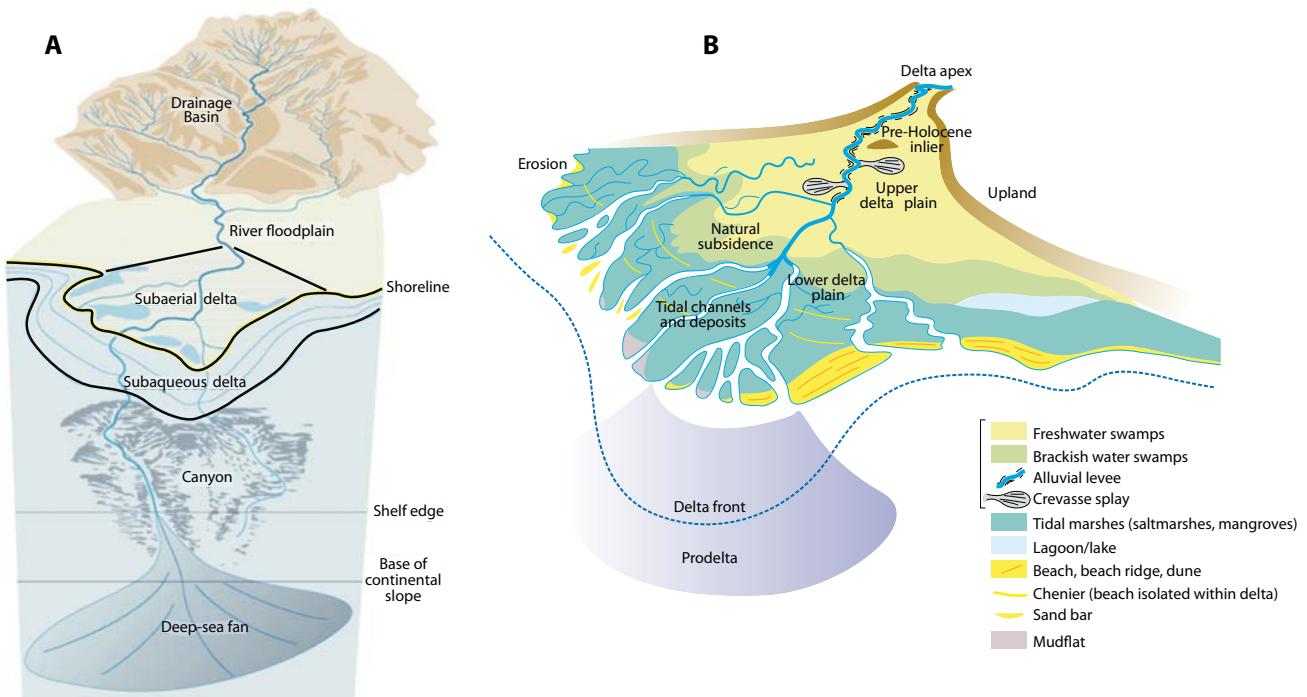
936

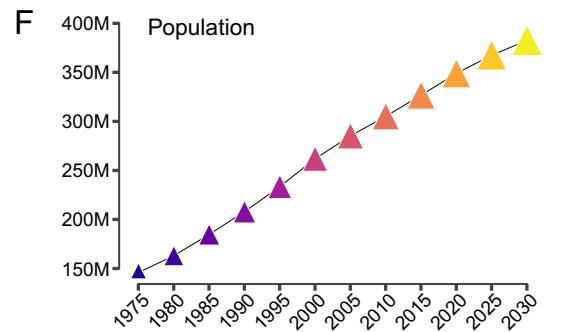
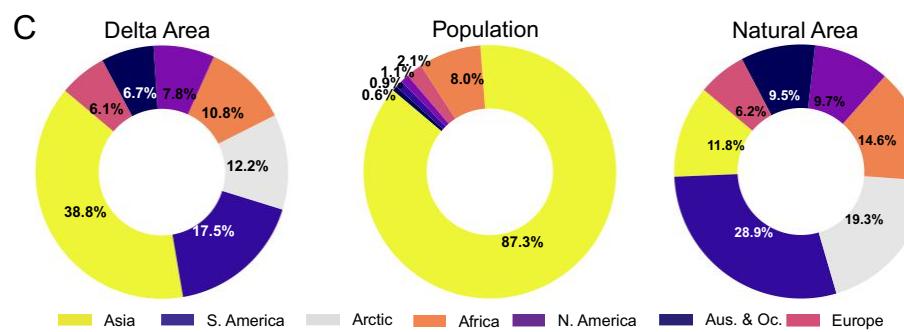
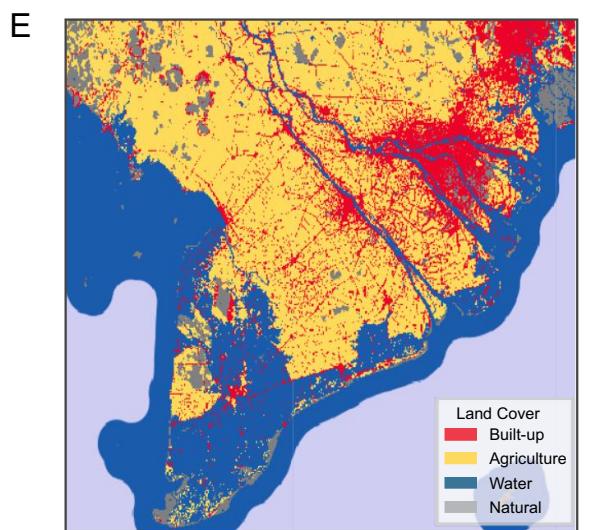
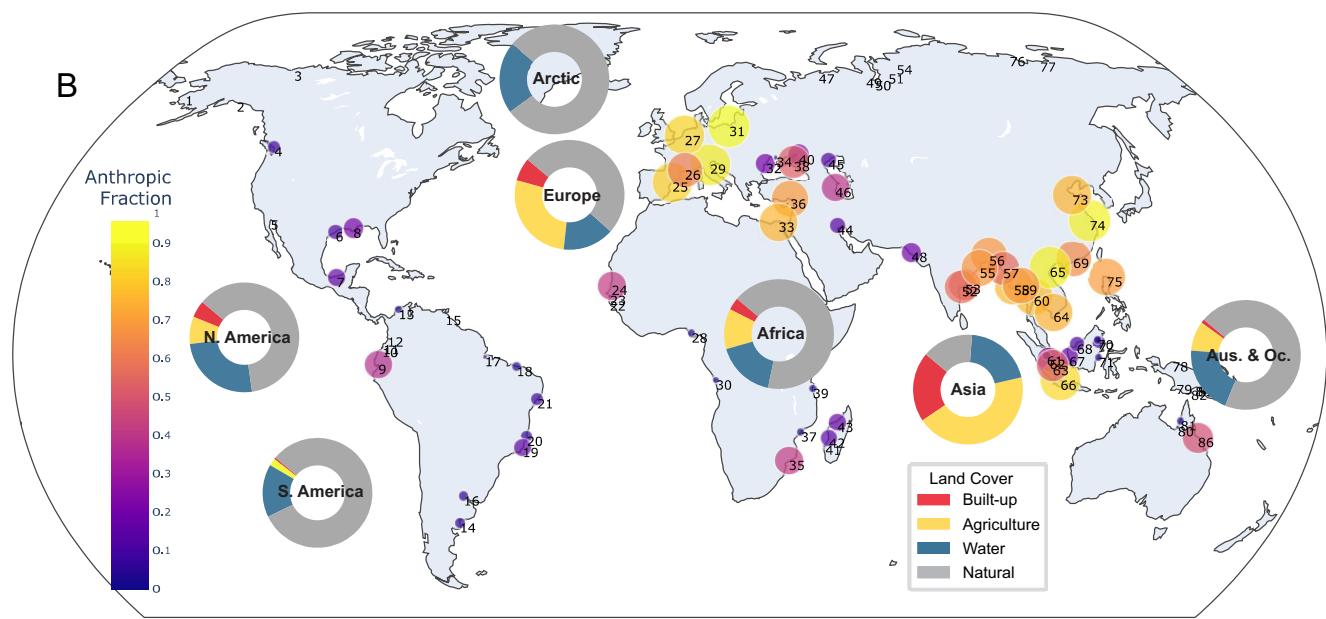
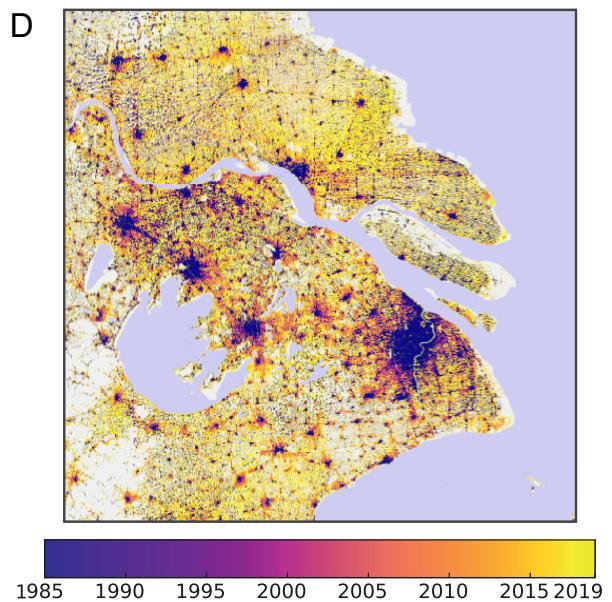
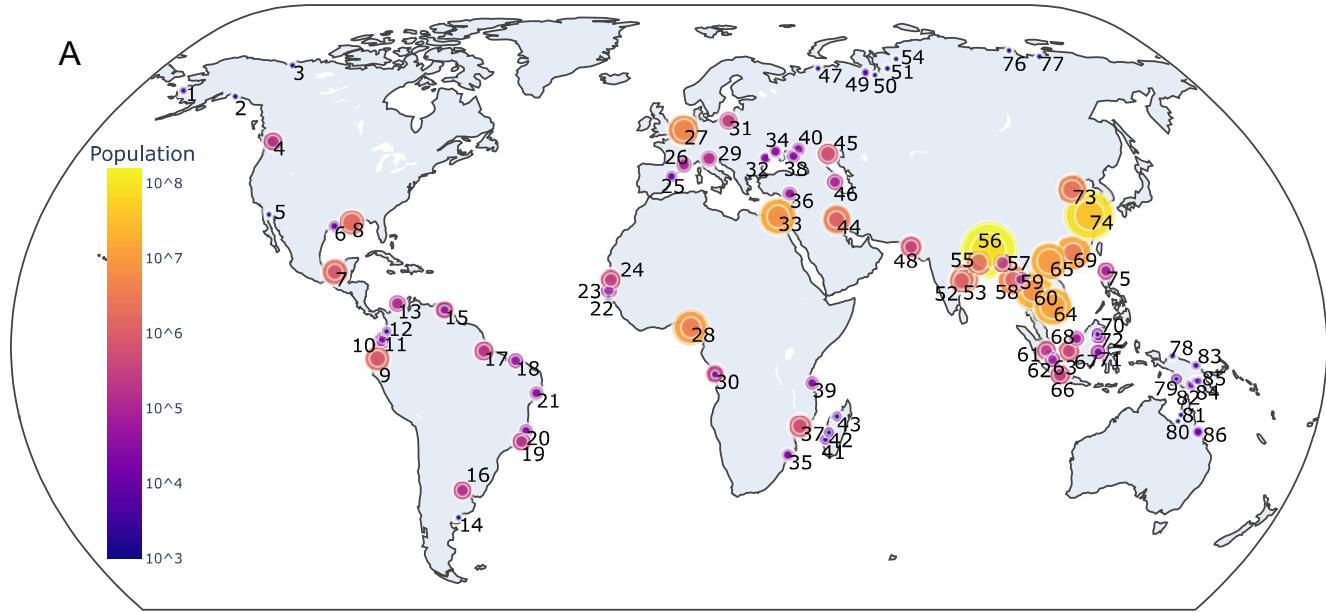
937 **Protect.** Levees, dikes, seawalls, and storm-surge barriers offer straightforward, but costly,
938 protection in populous deltas, sometimes with land reclamation (termed 'advance'⁹⁷).
939 Addressing SLR necessitates a strong commitment, and mass construction and ongoing raising
940 of dikes as in the Ganges-Brahmaputra delta. As sea levels rise and land levels sink so the costs
941 to hold the line and the consequences of failure (residual risk) increase, ultimately
942 representing an existential disaster for the delta inhabitants. Leveed deltas buy time, but are
943 probably not tenable in the long run⁹⁸.

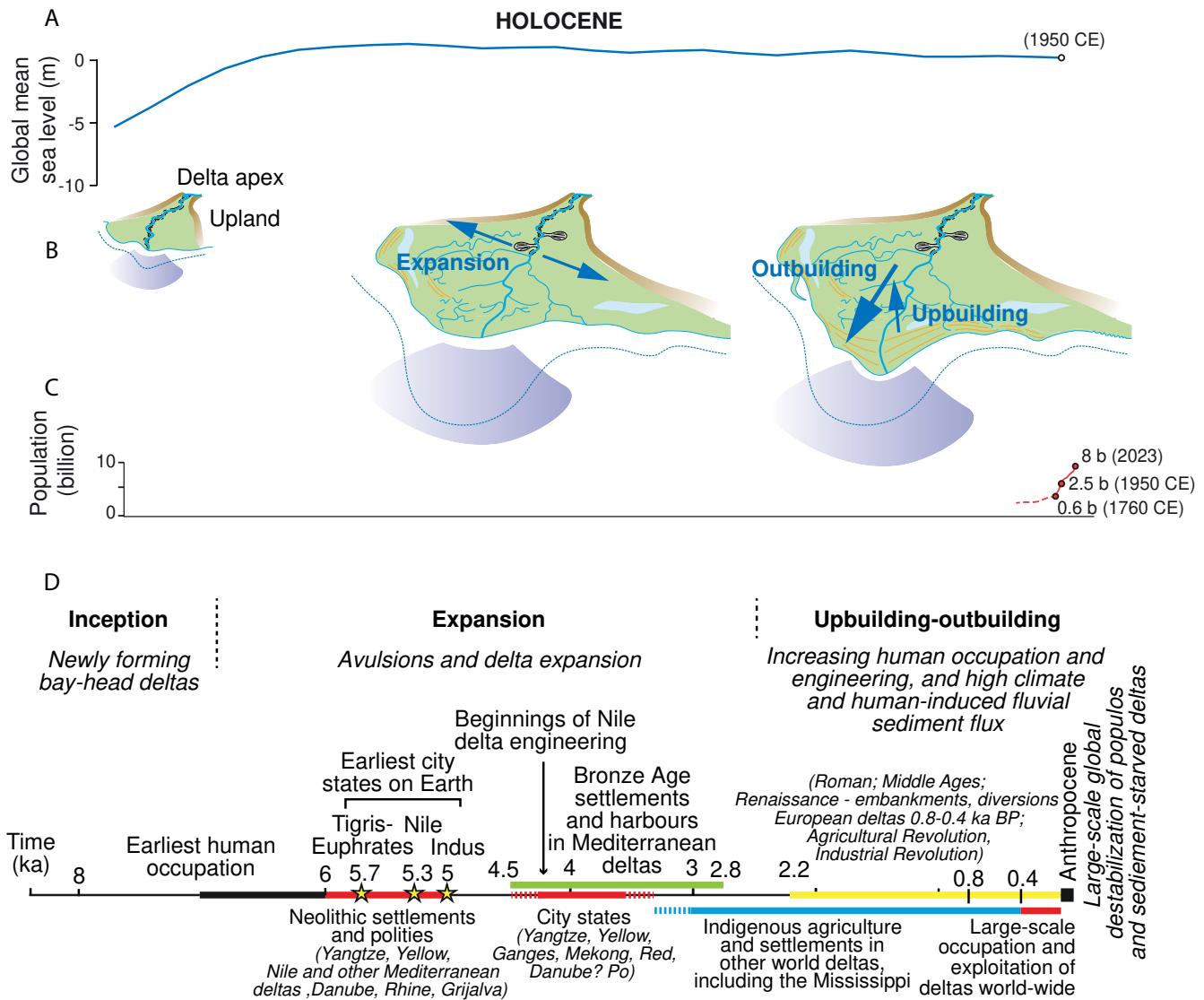
944 **Accommodate.** This strategy integrates adaptive living solutions in wetlands and
945 sedimentation-enhancing approaches. It appears sustainable in the face of near-future SLR,
946 aligns with historical human-delta co-existence and is favoured by some local communities⁹⁰.
947 It poses challenges in densely populated deltas, requiring alterations in planning and lifestyle.

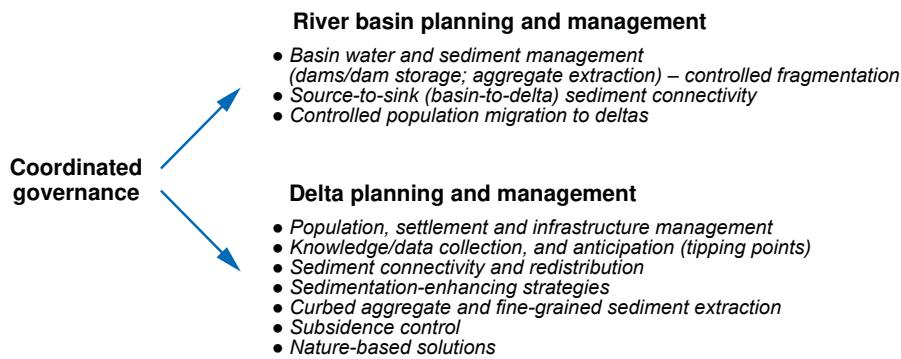
948 **Retreat.** Managed or as realignment⁹⁶ (eventually orchestrated under delta governance) or
949 unmanaged (spontaneous), this approach involves community relocation from high-risk zones
950 to safer terrain, underscores classic climate adaptation, but is fraught with sociocultural and
951 economic considerations¹⁰, particularly regarding community integrity, heritage loss, and
952 funding. It is an alternative to costlier Protect and Accommodate strategies in urbanized deltas
953 and suited to low-population deltas (Mississippi, Danube).

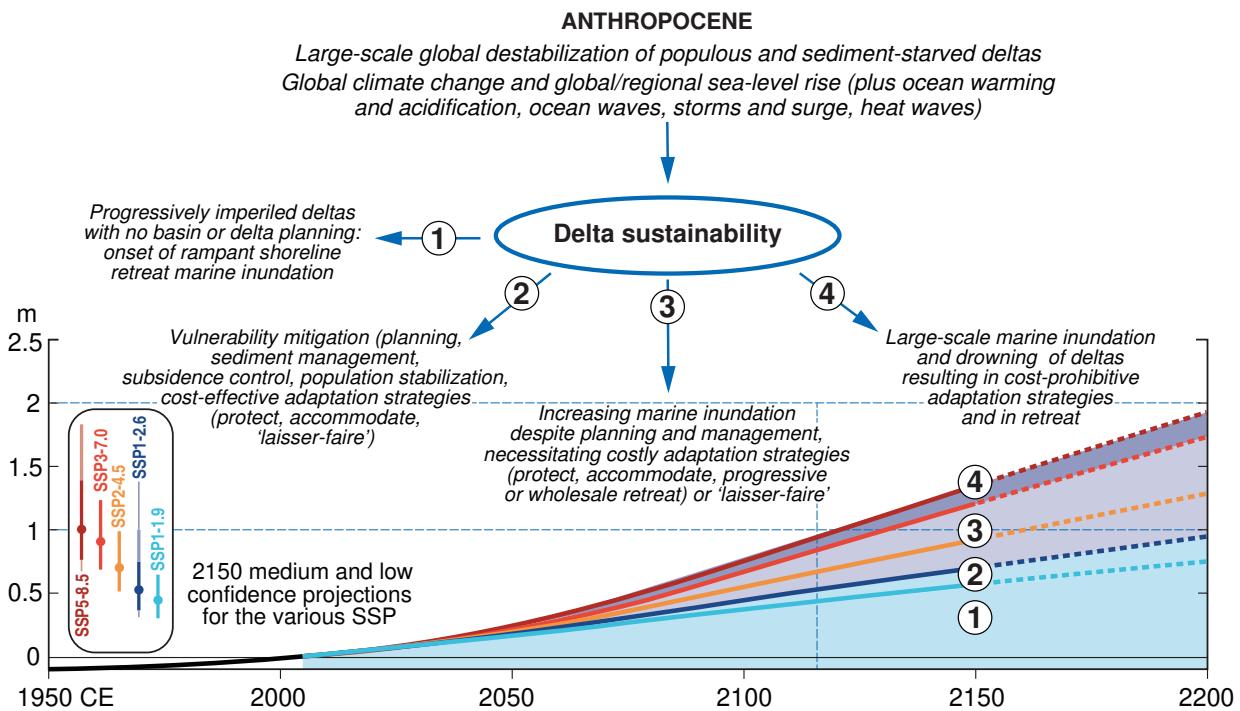
954 **'Laisser-faire'.** This 'give-up' approach may be cost-effective but only really workable where
955 population is low. It implies minimal human intervention, and whether adopted in resignation
956 or deliberately, aligns with preserving natural delta processes and ecological integrity. It is
957 currently implemented to varying degrees in the Mississippi, Danube, and Rhone, and is
958 pertinent to Arctic deltas.


959







960


961


962


963

