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PREFACE

River deltas offer numerous ecosystem services and host an estimated global population of
350 to >500 million in over 100 countries. To maintain their sustainability into the future,
deltas need to withstand sea-level rise from global warming but human pressures and
diminishing sediment supplies are exacerbating their vulnerability. We show how deltas
served as environmental incubators for societal development over the last 7000 years, and
how this tightly interlocked relationship now poses challenges to deltas globally. Without
climate stabilization, the sustainability of populous low-to mid-latitude deltas will be

difficult to maintain, probably terminating the delta-human relationship we know today.

Coastal river deltas (Fig. 1) offer numerous ecosystem services and resources and host
growing populations in more than 100 countries, underscoring the need for a better
understanding of how these landforms function. This has given rise to a remarkable corpus of
studies, reports, and knowledge-driven delta-resilience organizations across a spectrum of
evolving geo-, climate, ecological, and social science, and from the individual delta scale to the
global scale. The human footprint spans up to 7000 years of the 8000-year evolution of
modern deltas across the Holocene. Coastal space, flat topography, rich ecology, and water
and other resources have provided a favourable environment for human development, but
human activities are leading to global-scale vulnerability of deltas and a need for anticipation
and planning®®.

One of the largest human migrations in history (in raw numbers) occurred during the
20th century with the rapid growth of delta cities and megacities (many now exceed 10 M
inhabitants). In 1975, the 86 largest coastal river deltas were home to about 146 million
people (Fig. 2), 3.5% of the total global population of 4000 M. In 2020, the global population
has almost doubled to 7800 M, but the delta population has disproportionately increased to
an estimated 350 to >500 M*”8, outpacing at ~4.5% the global population. In 2020, this
population is concentrated in ~730,000 km? of deltaic lands®, yielding a density (ranging from
480 to 680 inhabitants/km?) over eight times that of Earth’s habitable landmass. Global delta
population is concentrated in Asia (87%). Growth is driven by large cities acting as economic

motors®across the largest 86 deltas (>1000 km?) that capture 84% of the global human delta
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population, but small deltas are also often completely urbanized®. This rapid urbanization is a
product of the Anthropocene!! (taken here as commencing in 1950 CE)'2. Although the
Anthropocene is now formally rejected (perhaps only provisionally) as a unit of geological time
by the International Union of Geological Sciences'3, we take the timely opportunity to refer to
that decision and point out that the multi-facetted Anthropocene as a concept is here to stay.
It lends itself particularly well to describing delta social-ecological systems and gives us an
opportunity to conceptualise delta sustainability in a time (if not an epoch) of human
dominance of global environmental change. The massive urbanization of deltas that is a
product of this human dominance poses challenges to climate-change adaptation®7:810.14.15,
The human-delta association has become locked in a quasi-irreversible situation'® for many
deltas, at a time when the Anthropocene planetary transition from nature-dominance to
human-dominance implies a sustainability in the balance for deltas!’ due to aggregated
human impacts, including sea-level rise (SLR). It is hard enough creating delta megacities to
cope with the influx of people, let alone deal with an environment rendered ephemeral by
SLR and subject to sinking, a process intrinsic to deltas but which is now exacerbated by human
activities'*18, There will be no easy fixing or undoing of this urbanization. We can renourish
eroding beaches but can we remove cities from sinking deltas, pour in the sediment, and move
the cities back? No, we cannot. Could the future simply consist of ‘sustaining’ deltas by
manipulating sediment and water? Even doing so would not necessarily make deltas
sustainable.

We review delta sustainability from historical through present to future perspectives
conceptualizing the human-environment relationship that started as global sea level stabilized
after the rapid post-glacial rise, and the strengthening of which, over time, now challenges
this sustainability. We show how changing delta environments in the low- to mid-latitudes
served as incubators for the Earth’s earliest political entities'®, sustaining transitions in human
development. We chart delta resilience over the 7000-year relationship with humans, to the
current stage where humans are adversely altering the trajectory of many deltas towards
perilous futures. We illustrate the future challenges of global environmental change for delta
sustainability. Regarding these challenges, we draw attention to the specificity of deltas as
coastal landforms, but also the distinctness of each delta, how we envisage sustainability and
the obstacles to this, including what revolves around who ‘owns’ deltas, and governance and

management, if they exist at all, and the role of planning. Inequalities in political-social actions
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around delta ‘ownership’, governance and management will influence resilience and
adaptation, creating differences between the world’s deltas. All deltas are intrinsically
different already, even if humans had not colonized them. But human history and cultural
heritage in particular create diversified delta landscapes and their capacity to cope with
change. Accessing reliable data, improved modelling, and anticipating sustainability hurdles
and tipping points from intensive human occupation, exploitation and alteration of deltas, and
from failing sediment supplies, should help to inform delta management and adaptation
regarding projected sinking/drowning due to exacerbated subsidence and climate-induced
SLR. Our review briefly frames three Holocene phases (inception, expansion, upbuilding-
outbuilding deltas) of the delta-human association, hinged on a historical stable sea level with
changes limited to ~+2 m, followed by the Anthropocene overprint (delta vulnerability). We
then chart pathways of management, planning and anticipation that we confront with an

outlook on the sustainability and future of deltas.

Delta inception and human encroachment

About 8000 years ago, as post-glacial SLR decelerated?®, accommodation space in the
vicinity of some large river mouths was filled more completely, stopping their landward
retreat and initiating delta formation. Accommodation space is the vertical and lateral space
available for clastic sediment filling, organic matter accumulation, and freshwater bodies that
counterbalance rising seas?!. A delta plain traversed by distributary channels gradually
developed behind changing beach coastlines up to an inland apex where it graded into the
lower river valley (Fig. 1). As deltas started developing, they provided space and resources for
humans!®?2, The oldest human settlements on these early marshy and swampy delta plains
and their coasts date 5000-4000 BCE (Before the Common Era) from radiocarbon ages and
archaeological artefacts in the Danube, Rhine, Rhone, Nile, Tigris-Euphrates, Yangtze??, and
the GrijalvaZ3. The early human incursions into developing deltas were motivated by the
availability of favourable lands and coastal-zone resources?®, notably from harvesting lagoons
and salt pans, but were also conditioned by each delta’s geomorphology and sediment-
dispersive dynamics, involving risks, but also possibilities for resilience to river floods and
marine forces. We briefly describe in the succeeding sections a number of spikes that were to
mark this relationship in the course of the 7000 years following the earliest human incursions

into deltas (Fig. 3).
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Deltas become incubators of human progress

Delta environments and Neolithic occupation. The start of Neolithic encroachment (Fig. 3)
and the shift to sedentary occupation occurred as deltas expanded, providing wetlands for
agriculture, thus favouring settlements, sedentary continuity, and food security that had not
been experienced before by Mesolithic fishers?®. Agricultural subsistence spread from
terrestrial uplands to delta wetlands, providing aquatic diets supplemented by wetland plants
and fauna. As the deltas became populous and lower river valleys infilled with sediment,
hunter-gatherer subsistence was replaced by grains and fibre crops?> supplemented by fish,
allowing power centre cities to form, with the Tigris-Euphrates having a head start!®. Within a
millennium of sea-level stabilization, the Nile’s originally marine flood-prone initial bayhead
delta had grown large and protected enough from waves to be exploited by herding
communities around 5000 BCE, and agri-cultivated by predynastic Egyptians from around
4700 BCE?®. This time frame is similar to that from archaeological records in the Yangtze and
Yellow (Huang He) deltas?”-?® where rice farming and exploitation of coastal resources were
fostered by a wet monsoon climate??, and in the Grijalva delta where farmers domesticated
maize and possibly manioc?3. Neolithic expansion in the Rhine delta began about 4300 BCE3°
in the wake of cultivation of valley and delta-apex floodplains and loess hillslopes upstream
(5500-4500 BCE: Linear Pottery Culture). A subneolithic culture practised farming (crops and
cattle) along river channels (5300 and 3400 BCE: Swifterbant Culture) and beach-ridge
complexes (after 3500 BCE: Valaardingen Culture).

A protein-rich diet of fatty acids and staple foods fostered increasing population
densities within a few hundred years after sea-level stabilization, contributing to the
emergence of complex societies with increased social ranking and the construction of
monumental architecture®®. In the Nile delta, farming and animal husbandry played a
fundamental role in establishing a robust and sustainable food system that supported the
construction of the pyramid chain3! along a now abandoned river branch3?33, Delta avulsions
(a mechanism by which new river branches and delta lobes are created progressively or
suddenly, leading to abandonment of older ones) closely conditioned settlement location
choices as early as 4000-3300 BCE in the Tigris-Euphrates3*. Avulsions were particularly
important for the perennity of settlements in the large Pacific and Indian Ocean deltas of East

and Southeast Asia, allowing for occupation of abandoned lobes?’. In the Indus floodplain and
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delta, avulsions commonly left settlements and cities without water resources, leading to their
abandonment3®®. As avulsion-exposed deltas became more populous in the Neolithic,
population centres could be more easily moved to available arable lands in adjacent river

valleys'® with channels less subject to avulsions.

Deltas foster emergence of state societies. States originated primarily in fluvial and
expanding deltaic settings in currently arid areas®, where agricultural communities supported
cities that served as precursors for statehood (Fig. 3): Tigris-Euphrates: 4000-3100 BCE3’; Nile:
3800-3100 BCE3%; Indus: 3300-2800 BCE3%4°, In Asia, various archaeological cultures in the
middle to lower valleys and deltas of the Yellow and Yangtze developed ca. 4000-3000 BCE,
but whether these late Neolithic polities are early states remains controversial®®.

Delta expansion was favoured by high sediment influx from river basins increasingly
affected by human activities, alongside climate fluctuations®?. These allocyclic (external)
controls are well-evidenced by climate proxies, notably the so-called “4.2 ka event” (2150
BCE), essentially an Indian Ocean Monsoonal event. This has been identified as the cause of
decline of societies in some Asian deltas by affecting rice cultivation?®. In the Indus valley, the
4.2 ka event overlapped flourishing Harappan urbanism: between 2500 and 1900 BCE
aridification may have diminished the intensity of floods, thus allowing inundation agriculture
to develop across the region®. The swings in the Harappan civilization (3200-1000 BCE), from
urban to rural settlements, along with the abandonment of a large number of sites, occurred
between 1900 and 1000 BCE as adjustments to climate variations and water availability

associated with the Monsoon®3.

Delta modifications in the Bronze and Iron Ages. The Bronze Age witnessed an upsurge in
human occupation of deltas, notably in the Mediterranean, marked by the establishment of
trading harbours in numerous deltas*. The hold on deltas, rich in water and food resources
in times of changing climate regimes that affected societies, especially in the Mediterranean,
was consolidated by waterway engineering transformations to enhance agriculture and
mitigate risks in the Iron Age. In the Arno and Serchio deltas in Italy, meandering in expanding
swamps strongly influenced early Etruscan (700-500 BCE) settlement patterns, culture and
society, while the Roman age (from 100 BCE onwards) saw ascendancy of human influence

with wetland drainage as the modern delta plains prograded®. In the Rhine delta, clusters of
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farms practising trade and exchanging ceremonial goods over long distances are identified
from middle Bronze Age (1500-800 BCE) sites*®, as a mature delta plain developed. Rhine delta

farm clusters persisted in the Iron Age (800-1 BCE).

Humans reinforce their control over deltas

Delta vicissitudes in Europe. The first half of the CE witnessed increasing delta instability
generated by human activities. The most noteworthy aspect of the early CE on Mediterranean
and Black Sea deltas was the impact of the Roman Empire, through direct engineering of
deltas, but also through this empire’s influence on river sediment supply through
deforestation for agriculture, roads and water harnessing. The postulate of an overarching
upstream anthropogenic influence on deltas via fluvial sediment loads is embodied here in
the concept of ‘man-made’ deltas*’. For small deltas, it may be postulated that hinterland
deforestation by the Romans led, within a century or so, to a progradational response,
whereas the fall of the Roman Empire and the Dark Ages that followed, or the massive
population decline caused by the Black Death*, all resulted in agricultural regression with
forests regaining area, contributing to soil stabilization in catchments and diminished delta
growth®. For large European deltas (Danube, Rhine, Rhone, Po, Ebro), growth more likely
reflected a longer cumulative impact of development spanning the delta expansion and

upbuilding-outbuilding phases (Bronze Age, Iron Age).

Engineering reinforces the delta-human nexus. Historical records from courts and
monastic/ecclesiastical accounts show, in the course of the Early Middle Ages in Europe, a
strategy of delta conquest that was both religious and political, especially in the Rhine*,
where Roman-age settlement shows relative continuity (despite population and power shifts
in the Dark Ages), and new towns and churches built along newly avulsed channels. Dyke
systems along all active distributaries emerged between 1050 and 1300 CE, as bishoprics and
counties implemented land reclamation campaigns to secure food production for the growing
town and city populations. In the central and lower delta, and especially the northern and
southern distal coastal-plain sectors, embankments and drainage of areas with organic
topsoils and subsoils (peat) caused land-use sustainability problems generated by human-
induced subsidence®!. In the Danube catchment, important sediment release from major land-

use changes caused several avulsions in the delta that resulted in the development of a
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southern distributary, the St. George, and the incorporation of the Greek colony of Histria, a
former open-coast city, into the delta plain®2. The northern Chilia branch, the formation of
which started in Antiquity, progressively became the largest Danube distributary, attracting
new settlements along its course during the Middle Ages>3.

In Asia, human impacts on channels and dyke-building efforts have been summarized
for the Yellow delta®*, a spectacular example illustrating the impact of humans on delta
growth. Between 1580 and 1849, human-accelerated erosion of the Loess Plateau led to a
super-elevated lower Yellow River channel bed that facilitated frequent breaching (up to 280
times) of the artificial river bank levees, and sediment storage, to the tune of ~312 Gt, on the
river’s floodplain outside these levees®. 90% of the modern delta (i.e. since 1855 CE) is due
to farming and gullying of the Loess Plateau.

By 1670 CE, and the start of the informal pre-industrial period, global population was
about 600 M, and 50 to 70% of GDP was still devoted to basic energy resources (human food,
fodder for animals, and wood fuel)'2. By 1850 CE and the start of the global industrial interval
(100 yr earlier in Europe), population reached 1250 M (0.8% per year growth), powered by
excess energy from the combustion of fossil fuels (coal, oil) and hydroelectric plants, allowing
societies to mechanize!?. These changes brought increasing human pressure to bear on deltas
and prompted various technological developments, including hydraulic engineering in the
Po°%, and management of embanked fields (polders), wind mills and pumping stations in the

Rhine®’.

Globalization of the delta-human nexus. The industrial/colonial interval (1850-1950 CE)
captures the global change in human—nature interactions and widespread occupation and
transformation of deltas in North America and South America, and less than 100 years ago in
Africa, the Sub-Arctic and Arctic environments, although the human footprint is, in all
likelihood, as ancient in African deltas as in New World deltas?®**®. The millennial-scale
pressures on deltas did not initiate vulnerability as deltas generally benefited from sustained
fluvial sediment supplies due to catchment deforestation by growing upland populations.
Under these conditions, the relatively stable Holocene sea level (Fig. 3) constituted an
important background template for delta sustainability. In Europe, deforestation and soil
erosion impacts on deltas are well-documented®. In the Danube, rapidly prograding lobes

formed after 1800°3 led to ~2.5 times higher rates of area increase compared to Middle Ages
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rates>®. Channel instability and avulsions caused by high river sediment supply during the Little
Ice Age in the Rhone delta were countered by engineering modifications in the late 18t
century that were a prelude to massive river-damming after the 1950s%°. A similar scenario
played out in many river systems and their deltas worldwide in the 19t and first half of the

20% century.

The Anthropocene global pressure on deltas

More populous and sediment-starved deltas. The previous sections have shown how deltas
progressively served, in the course of their growth, as incubators of human development. As
humans consolidated their hold on deltas, they undertook landscape and hydraulic
engineering modifications that enabled better harnessing of resources and protection against
floods, erosion, and avulsions, encouraging further widespread urbanization, agriculture and
engineering. These developments reinforced the ‘locked-in’” human-delta relationship'®. The
already impressive human footprint of the industrial/colonial interval is dwarfed, however, by
that of the Anthropocene. Pressure on low- to mid-latitude deltas has occurred through
exponential population growth (Fig. 2) that brings with it dramatic changes that strain the
sustainability of deltas, whatever the breadth of their Holocene relationship with humans. A
now widespread and shared global pattern of delta vulnerability prevails.

Humans now dominate the sediment cycle, the nitrogen cycle, the terrestrial
hydrological cycle, the geochemical cycles (particularly the chalcophile elements, which have
an affinity for sulfide, and more recently the platinum group elements), the planet’s forest
covers, ocean fish stocks, atmospheric greenhouse gases (H,0, CO3, N,O, CHa), and plant and
animal density and diversity. The global warming impact of burning fossil fuels results in 20
times more heat being retained by our planet than from the original energy produced during
combustion!?. As a result, humans have overwhelmed the planetary forcings from orbital
variations in insolation, warmed the planet by >1.2°C, initiated ocean acidification, reduced
sea ice volume, glacial ice mass, and permafrost, and global SLR is now at ~4 mm/yr. A high-
end SSP5-8.5 scenario forecasts a median global-mean SLR of nearly 1.4 m by 2150, setting
a template for increasing delta vulnerability. Beyond 2150, sea levels will keep rising for

centuries even if we stabilize climate®2.
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Population growth (Fig. 2), sediment-starvation, and human exploitation of deltas are
leading to broad trends of vulnerability involving shoreline erosion and land loss®3%%, elevation
loss'®6>6 and growing dependence on engineered flood defences and ‘lock-in’ as defined
earlier’®. Humans currently depend so much on long-established uses and infrastructure that
it becomes extremely difficult or costly to reverse the situation, weakening resilience and
creating conditions of vulnerability. A synthesis of 48 deltas revealed that 46% have a ‘lock in’
relationship with humans, especially in Europe and Asia, but also in the New World*®. While
the Earth’s sediment production (supply) from anthropogenic soil erosion, construction
activities, mineral mining, aggregate mining, and sand and gravel mining increased by about
467% between 1950 and 2010, sediment transport from land to the coastal ocean (the fluvial
part of which underpinned 8000 years of delta growth), has decreased by 23%, largely due to
sediment trapping behind dams associated with global hydropower development®’, notably
in Asia-Pacific, South America and Africa®8. Other human activities such as subsurface resource
overexploitation, notably water and hydrocarbons, but also surface extractions of aggregates
and clay increasingly cause subsidence, particularly affecting delta megacities**&>69 This
subsidence is no longer balanced by sedimentation3'*'8, |eading to transformation of
permanent or seasonal delta drylands into permanent wetlands and to shoreline retreat®364,
Many deltas are no doubt overloaded with nutrients, and, increasingly, microplastics®&7°,
leading to rapid deterioration of delta ecology and eco-services’!. Channel deepening caused
by sediment mining and fluvial sediment starvation®&’? exacerbates salt intrusion in many
deltas’®74. Although deltas have always been subjected to fluctuations in sediment supply that
guided, in part, patterns of human occupation, the current massive diminutions in catchment
sediment supply, combined with increased human-driven environmental changes, are
rendering many deltas being ranked as in peril*® or highly vulnerable®. SLR, under these
conditions, poses a sustainability issue, and ultimately an existential threat to deltas'®’>.

Similar sustainability issues face the world’s estuaries’®.

Sustainable delta futures?

Humans are now masters (wittingly or unwittingly) of the flow of water (when, where,
how much), nutrients, sediment supply and redistribution, land cover and land use, urban and

non-urban areas, coastal structures and protection, and energy. Humans caused the SLR, the
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land subsidence, and the loss of wetlands in deltas. Hence, maintaining future delta
sustainability will depend on how humans, as masters of the environment, can efficiently
manage, if at all, the complex blend of evolving geological-climate-ecological-social science
relationships that has driven the delta-human relationship over the last 7000 years, and
rebuild resilience, while scaling all this down locally to individual delta social-ecological
systems, each of which is distinct. A relatively stable sea level formed the background for this
long relationship which now unfurls in a context of global SLR at rates into the future that are
uncertain, and in a time of diminishing sediment supply. Maintaining delta sustainability raises
challenging questions around the river-basin-delta governance relationship, delta ‘ownership’
and management, long-term planning (preferably knowledge- and data-driven and -sharing),
delta distinctness, and strategies or imposed approaches into the future (Fig. 4). River basin
management is key to understanding the link between climate change, local precipitation,

sediment supply to deltas and delta governance.

Challenges of delta ownership and management. The issue of ‘ownership’ of deltas, and the
embedded questions, now and into the future, of who manages/governs a delta's health, how,
and with what resources, are fundamental when considering delta sustainability. Ownership
is generally defined as ‘the fact of owning something’. There is an explicit link between
‘owning’ a delta and being in a position to determine how it evolves, through some form of
management, including anticipation and planning, or through no management at all. Most
deltas have little or no management structure. Some deltas are managed where political
systems recognise them as such, but this varies extensively with engineers, elected
government representatives, wildlife/nature interests, etc., having strong roles in different
deltas, and sometimes exerting little management at all. When considering the river basin,
delta management always involves upstream cross-border planning and management, be it
national or federal (internal) boundaries. How are management decisions made? How
inclusive is the decision process? How is management funded? We raise questions that merit
pondering if society is ready to examine the inequalities in, and realities and challenges of,
delta sustainability into the future. But we believe, unfortunately, that society is clearly not

ready to do so yet.
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Towards knowledge-driven long-term planning. Delta planning should be integrated through
a systems approach?, (re)connecting river basins to deltas and rivers to floodplains, and
include management of (re)sedimention and control of human-accelerated subsidence (Fig.
4), something that is being attempted in only a few deltas’”/’8. The feasibility and implications
of re-establishing delta-plain connectivity following, for instance, strategic deployment of
sedimentation-enhancing strategies’?#° and nature-based solutions®, involving dialogue and
knowledge-sharing® from biophysics through to legislation, should be at the forefront of
interdisciplinary studies®? to back planning (Fig. 4). But even here, we should refrain from
over-optimism. In the Mekong delta, for instance, sedimentation-enhancing strategies could
be effective against SLR but are limited by the sediment-starved situation of the delta®3,
Current sedimentation-enhancing strategies collectively comprise only 0.1% of the global
delta area’. Unlocking the full adaptation potential of nature-based, sedimentation-
enhancing strategies will require a fundamental paradigm shift in delta management to
surpass biophysical and societal barriers that currently impede their widespread

deployability®.

Subsisting dataset and knowledge challenges. Insight from big data now permeates delta
studies globally. Remote sensing and modelling, in particular, confronted with the
global/regional issues of climate change and regional/local anthropogenic pressures, should
help us to investigate the challenges and solutions to delta sustainability. Lines of progress
include accurate quantifications and projections of sediment fluxes that should provide a
scientific basis for basin-wide management directives and planning®&%, estimates of
sediment connectivity and (re)distribution processes within deltas®!, and natural and human-
induced subsidence®. There are, however, several areas in delta research where our
knowledge is still patchy and datasets too sketchy or challenging to obtain, impacting our
possibilities for reliable modeling and forecasting. There is a plethora of land-cover remote-
sensing datasets that are used, for instance, to identify anthropogenic delta transformations
and human occupation of subaerial delta area (Fig. 2), including megacities, agriculture,
aquaculture, infrastructure, land reclamation and polders (all increasingly detrimental to
mangroves and marses), engineered distributary channels, engineered coastal barriers, and
the impacts of subsidence. These datasets are useful but we still need to progress on

resolution, and exert caution in data analysis and interpretation®. Standardization of datasets
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should also be a future goal, especially relevant in the identification of the areal limits of deltas
and the distinction of delta sub-environments. Accurate delta-plain elevations and reliable
projections of subsidence are also crucial for quantitative assessments of future delta
elevation change under SLR. High-resolution data on the elevation of most of the world’s
deltas, including the 86 largest deltas (Fig. 2), are currently lacking. Recent attempts in tackling
this problem show that high-resolution mean delta elevations are lower than estimated using
lower-resolution data®®8. The Mekong delta example (with a mean elevation of ~0.8 m above
sea level, dramatically lower than the earlier erroneously assumed ~2.6 m) also underscores
the fact that the quality of global coastal elevation data is inadequate and the crucial need to
convert to local tidal datum is often neglected®®.

Another challenge consists in addressing delta volume change® caused by
miscellaneous human actions: organic matter production through rewilding, mangrove
replanting, or reforestation, oxidation through soil drainage, empoldering and engineering,
groundwater mining, peat mining, sand and gravel mining, clay extraction, deforestation,
anthropogenic infrastructure. Some cause surface deformation, resulting in land subsidence
in growing delta megacities that can be further exacerbated by earthquake deformation,
monsoon flood weight or drought-driven shrink-swell dynamics. We also need to improve our
knowledge of the subaqueous domain of deltas which can store large amounts of sediments®.
Deltas are major Earth sediment sinks. Beyond the need for integration of subaqueous delta
erosion into sustainability evaluations, especially under the stormier conditions
accompanying climate change®’, fundamental questions concern the effects of delta sediment
load changes on continental margin geological (e.g., volcanic activity) and sea-level feedbacks,
hence providing a link between local (river basin-delta) processes and global regulation. Geo-
engineering of individual deltas has been ongoing for at least 5000 years. The current global
situation suggests that regulating industrial waste outputs is a necessary step in mitigating
environmental damage. Managing deltas is an obvious component of such mitigation, at least

as a source of data, but also as a means of managing inputs and thresholds in the Earth system.

Sustainability uncertainties into the future. Innovative knowledge-driven delta management
and planning strategies, but also data acquisition and modelling®* are in their infancy but,
where feasible, now and into the future, could provide sustainable options for deltas against

near future (low-end SSP) projected SLR, including low rates of land subsidence (Fig. 5). There
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are, however, other potential obstacles here, in addition to those related to datasets and
knowledge acquisition. Individual deltas are distinct entities, each with unique boundary
conditions, and a unique history of human change and impacts. Large deltas may in fact
display physical, cultural and human-history diversity even within their individual boundary
conditions. This complicates the deployment of general ‘models’ of sustainability. Alongside
this difficult outlook, management strategies are simply not presently feasible for most deltas,
reflecting lack of resources and planning and management capacity (Fig. 4). This raises the
question of human capacity-building regarding better knowledge of delta functioning and
management?, but also of harnessing better indigenous knowledge®® and its perspectives.
Accessing reliable data is still a problem in many deltas due to geopolitical sensitivities, and
yet important not only for management, planning and anticipation, but also for gauging
tipping points in the delta-human relationship. The diversity of the Earth’s deltas will require
high-quality field observations to inform important and often costly environmental decisions,
as well as community-level information with citizens conversant with the finer-scale changes
that affect their daily livelihoods®®, especially in the populous deltas. Transferable lessons
should also be identified, and, where possible, implemented to improve climate resilience®.
These include, from the Ganges-Brahmputra and Mekong deltas, strategic plans to identify
risk hotspots, guide decision-making, and enhance grassroots resilience through community
livelihood diversification in response to changing risks and land-water conditions, and from
the Yangtze and Pearl deltas forecasting and sensing technologies developed to enable
effective preparedness for, and response to, hazards>.

Climate control to mitigate SLR®?, sustained fluvial sediment supplies, control of
human-induced land subsidence, and delta population, set to attain by 2050 an averaged
global density* of ~700 inhabitants/km?, are, however, sources of future constraints. The
sustainability of many low-to-mid-latitude deltas will be severely affected by relative
SLR347810,1475 in the absence of climate stabilization, and compounded by fluvial sediment
starvation®! and accelerated land subsidence®!*. Growing hydropower dam constructions in
developing economies®® will further negatively impact sediment supply to deltas in the future.
Basin-wide planning of sediment releases from dams will need to be thoroughly gauged and
calibrated, notably by resorting less to the widespread use of large dead storages (the portion
of the reservoirs that cannot be emptied) in dam designs, and designing smaller dead storages

that can ease sediment starvation in sinking deltas®?.
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In spite of a high loss of fluvial connectivity due to dams and engineering, some deltas
associated with Asia-Pacific rivers still continue to gain land®*, as dams are flushed of sediment
to increase the calculated yield®&9. Rapid SLR will also outpace marsh and mangrove
growth?>%4, important components of sedimentation in many deltas. Low-population Arctic
deltas with increasing climate-change-induced sediment loads®® may be a temporary
exception regarding their sediment budgets but could also become increasingly exposed to
anthropogenic pressures with climate warming. Sustainability will depend on our capacity to
mitigate climate change and global SLR, while differences in current and future anthropogenic
pressures on individual deltas and inequalities in political-social actions addressing them will
also strongly influence the effectiveness of local mitigation and adaptation measures (Fig. 4).
The recent United Nations Convention on Conserving River Deltas (UNCCRD) initiative
proposed by engaged scientists at the COP28 in 2023 is an important global endeavour that
could consolidate our efforts, but properly enacting this convention could take, at best,
several years. The International Panel on Deltas and Coastal Areas

(https.//www.deltasandcoasts.net), launched in 2023, could also promote sustainability

efforts.

Expected outcomes without climate mitigation. In the crucial battle against the inevitable
SLR, three end-member strategies(®&% | alongside a ‘laisser-faire’ (a term borrowed from
economists) approach, are currently deployed and/or envisaged for coasts in general.
However, we need to recognize the biophysical specificities of deltas (Box 1) which go beyond
just the coastline fringe. These strategies/approaches are not mutually exclusive. ‘Protect’ and
‘accommodate’ strategies are costly, impact delta biophysics, and larger and larger areas are
threatened with deeper floods if protection fails, especially for the higher-emission scenarios
(SSP3-7.0 and SSP5-8.5) (Box 1). Even for wealthy economies, dedicated to containing the
effects of SLR, such as the Netherlands with the Rhine delta®’%, or the United States with the
Mississippi®®, this outcome is undesirable (Fig. 5) and protection that works with delta
processes are more desirable. Both absolute SLR and the annual rate of rise pose challenges,
the latter being susceptible to reduce, for instance, the lifetime of defence constructions when
the rate of SLR rise increases beyond projected values®®. Assuming no protection measures,
deltas globally might lose 5% (35,000 km?) of their area by 2100 and 50% by 2300 due to SLR

under the high-emission scenarios’”. Large-scale marine inundation, scaled against prohibitive
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adaptation costs!®%, will impose generalized give-up and human retreat (Fig. 5). Drastic
wholesale urban migrations and landward redeployments from sinking and marine-inundated
deltas may become more frequent in the future: the population of New Orleans has never
recovered post-Katrina. Djakarta, 40% of which is now below present sea level on the sinking
Ciliwung-Citarum delta, 4™ in world conurbation population ranking (30 M), and Bangkok 13t
(18 M) on the sediment-starved Chao Phraya delta, are considering moving their city rather
than engaging in costly engineering for their survival. In some delta areas subject to extremely
high subsidence rates (>10 cm/yr) that threaten sustainability, such as the Semarang-Demak
in northern Java or the Pampanga in the Philippines, reports show that entire drowning
villages have simply become abandoned in 5-10 years. Significant movements of people away
from deltas may be anticipated, and retreat managed in delta zones likely to be most exposed

to sea-level rise and/or subsidence.

The 7000-year relationship of deltas with humans fostered technological
developments geared at water control and the fight against subsidence, erosion and the sea.
These developments, together with new technologies, strategies, and data, will be
instrumental in the battle of sustaining our deltas, and maintaining sustainable, if not entirely
habitable deltas with SLR. Pathways of sustainability and survival in the populous low-to-mid-
latitude deltas will need to be confronted with paradigms and tough challenges revolving
around dedicated and coordinated governance, management, planning, at both river-basin
and delta levels, and subsidence control, without losing sight of the distinctness of each delta,
but also of the diversity within some large deltas. Without climate control, an extreme SLR
scenario (rising up to and >2 m) over the next two centuries will lead to progressive delta
drowning, imposing untenable conditions from both environmental and economic
standpoints for human occupation, leading to global-scale human retreat from deltas. This
would terminate the 7000-year mutual relationship of humans with deltas as we know and

live it today, and establish a future of living with drowning and drowned deltas.
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FIGURE CAPTIONS

Figure 1. Simplified sketch of a river delta. (A) Deltas result from a river feeding sediment into
a standing body of water at a rate that exceeds dispersal processes, leading, especially in large
deltas, to the accumulation of a considerable sediment mass both on land and in the
subaqueous zone®. The largest deltas started developing about 8000 years ago (covering much
of the Holocene, i.e., the last 10,000 years of Earth’s history). Delta existence has hinged on
abundant sediment supply from river catchments. (B) Idealized delta. Deltas expanded and
built up and out from initial bay-head settings. Their growth was favoured by a relatively stable
global sea level, and most of the world’s deltas have a mean elevation below 2 m above
present mean sea level® although precise elevation data are lacking. Deltas undergo natural
subsidence (sinking) due to sediment, including organic matter, compacting under its own
weight. Deltas are ecologically diverse with subtle elevation variations, subject to floods,
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channel switches (avulsions) and meandering, marine incursions during storms, and localized
erosion. Deltas have provided space and resources for the development and thriving of human
society despite these hazards. Humans progressively adapted across the past 7000 years to
deltas, building up a highly imbricated relationship but also generating profound delta
biophysical modifications. Low- to mid-latitude deltas are increasingly subjected to sediment
starvation from river-basin hydropower development involving dams and reservoirs, from
aggregate mining, and from aggravated subsidence caused by delta population growth and
resource exploitation, all culminating in vulnerability to global sea-level rise.

Figure 2. Anthropocene delta demography and land changes. (A) Population over a total area
of approximately 730,000 km? covered by the largest 86 global deltas®, with concentric circles
representing 1975, 2020, and projected for 2030. (B) Anthropogenic footprint: combined
fractions of built-up and cropland areas within delta plains, with juxtaposed regional averages.
(C) Breakdown of delta area, population, natural area regionally, and global land cover
emphasizing the disproportionate anthropogenic influences across different regions. (D)
Urban development highlighted by Shanghai (Yangtze delta), one of the world’s largest
conurbations and cities with respectively 80 M and 22.3 M inhabitants in 2018. (E) Land-use
patterns in the Mekong delta. (F) Temporal trends illustrating population growth dynamics
within deltas over the decades, underscoring the increasing anthropogenic pressures.
Population data (plots A,C,F) from the GHS-POP R2023A population grid multitemporal (1975-
2030) of the European Commission available at: http://data.europa.eu/89h/2ff68a52-5b5b-
4a22-8f40-c41da8332cfe; land cover data (plots B, E, C) from the ESRI 2020 Land Cover
dataset!® with the original 10 classes simplified into four classes: Cropland, Settlement, Water
and Natural, and settlement area (plot D) from World Settlement Footprint: 1985-2015 and
20191 and from the samapriya-awesome-gee community-dataset hosted at
https://doi.org/10.5281/zenodo.8223455 retrieved via Earth Engine®.

Figure 3. Human intersection with delta geomorphological development over the last 7000
years in the wake of stabilization of the postglacial SLR. (A) Smoothed global mean sea level
over the last 8000 years??. The strong association between sea level and deltas has been
reviewed recently’>. (B) ldealized geomorphic phases of Holocene delta development
comprising inception following sea-level stabilization, expansion over much of the Neolithic
and the Bronze Age, notably through active avulsions, resulting in the broad fan shape of
modern deltas downstream of the apex (Fig. 1), and upbuilding-outbuilding especially in the
Common Era that has, over the last three thousand years, led to burial of anthropogenic
artefacts along nameless (and no doubt numerous) former delta river branches, long
abandoned in classic to modern times. (C) Global population in billions (b) (sources are
referenced in'?) since 1670 CE (taken as the start of the informal pre-industrial period),
showing the significant Anthropocene spike that also saw the creation of numerous delta
cities and megacities. (D) Timeline showing significant phases and spikes in the 7000 year-long
delta-human relationship from the earliest human occupation, through the Neolithic and
formation of the world’s first city states and important expansion of settlements in the Bronze
Age, followed by increasing human engineering and transformation during the Common Era,
accompanied by strong human influence on river catchment sediment supply. This culminated
with globalization of human occupation of deltas during the industrial era that has resulted in
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many deltas being locked into anthropogenic transformations that have become irreversible
in the Anthropocene?®,

Figure 4. Coordinated river and delta planning and management strategies to reduce
vulnerability and maintain delta sustainability. Thriving deltas in the past have done soin the
framework of a complex balanced geological-climate-ecological-social science relationship.
Coordinated river-basin planning and management, and delta planning and management,
revolving around this blend, should be at the forefront of future delta sustainability, as they
will be determinant, in assuring or not, vulnerability reduction and in maintaining delta
sustainability at low-end near-future SLR scenarios (SSP1-1.9/1-2.6). River basins are
fundamental to the link between climate change, local precipitation and sediment supply to
deltas. Important areas of river-basin management are water and sediment fluxes to minimize
river fragmentation and delta subsidence, and assure connectivity, notably through rethinking
of alternative solutions to hydropower and irrigation dams where feasible, and where dams
are inevitable, their optimal design and operation to minimize sediment trapping by enabling
sediment routing through reservoirs via sluices, sediment-drawdown gates, bypass tunnels,
dredging and downstream relocation of dredged sediment. Other aspects include controlled
aggregate mining, and population mobility from upland basin areas to deltas. Hence the
importance of considering knowledge- and data-backed aspects revolving around what delta
‘ownership’ implies, and how governance, management and adaptation are deployed.
Anticipation is of equal importance at a time when most deltas have no known management
structure. Differences in the extent to which these actions are taken, or not, will generate
inequalities among deltas and their vulnerability to global/regional SLR. Both the river-basin
and delta spheres face social-ecological, political and funding challenges that will generate
variability among deltas in the capacity to act. Sustainability will decline for all deltas under
high SLR scenarios, underlining the overarching condition of urgent climate stabilization.

Figure 5. SLR and delta sustainability. Sustainability is scaled against projected likely ranges
of global SLR under different shared socio-economic pathways (SSP) from®?, assuming mean
delta-plain elevations below 2 m above present mean sea level®®8; (1) progressively
imperiled, notably sediment-starved deltas, with no river basin-delta management or
planning, even under a near-future low-end (SSP1-1.9) scenario; (2) deltas with good
adaptation through basin-delta planning and management and sustainable at low-end (SPP1-
1.9) and moderately-low (SPP1-2.6) scenarios; (3) increasing marine inundation and costlier
and unsustainable adaptation at a moderately-high scenario (SPP2-4.5) likely to affect most
world deltas; (4) large-scale inundation and drowning of world deltas at high-end scenarios
(SSP3-7.0 and SPP 5-8.5) of 1-1.4 m above present mean sea-level. Action perspectives will
strongly diverge between deltas, and while stronger economic means and governance may
provide larger space for solution, adaptation will (rapidly) decline for all deltas under high SLR
scenarios. Projection uncertainties constitute a challenge for investment planning in Protect
and Accommodate strategies (Box 1). In the Netherlands, at the forefront in battling SLR>’, a
1 m-rise is factored into defences to 2100, following the Delta Commission Plan, and defences
will continue to be raised to withstand another metre by 2200. Residual risks like storm surges
and unforeseeable extremely rapid SLR cause, however, concern and raise questions about
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which strategy to adopt. Retreat could be selective, letting, for instance, Friesland become
flooded, but protecting the Rhine delta provinces hosting most people and economic
activities. Note that subsidence is as important as global SLR in any individual delta.

Box 1. Adaptation strategies and approaches to SLR in deltas
BOX FIGURE

Protect. Levees, dikes, seawalls, and storm-surge barriers offer straightforward, but costly,
protection in populous deltas, sometimes with land reclamation (termed ‘advance’®).
Addressing SLR necessitates a strong commitment, and mass construction and ongoing raising
of dikes as in the Ganges-Brahmaputra delta. As sea levels rise and land levels sink so the costs
to hold the line and the consequences of failure (residual risk) increase, ultimately
representing an existential disaster for the delta inhabitants. Leveed deltas buy time, but are
probably not tenable in the long run®.

Accommodate. This strategy integrates adaptive living solutions in wetlands and
sedimentation-enhancing approaches. It appears sustainable in the face of near-future SLR,
aligns with historical human-delta co-existence and is favoured by some local communities®.
It poses challenges in densely populated deltas, requiring alterations in planning and lifestyle.
Retreat. Managed or as realignment®® (eventually orchestrated under delta governance) or
unmanaged (spontaneous), this approach involves community relocation from high-risk zones
to safer terrain, underscores classic climate adaptation, but is fraught with sociocultural and
economic considerations'®, particularly regarding community integrity, heritage loss, and
funding. It is an alternative to costlier Protect and Accommodate strategies in urbanized deltas
and suited to low-population deltas (Mississippi, Danube).

‘Laisser-faire’. This ‘give-up’ approach may be cost-effective but only really workable where
populationislow. It implies minimal human intervention, and whether adopted in resignation
or deliberately, aligns with preserving natural delta processes and ecological integrity. It is
currently implemented to varying degrees in the Mississippi, Danube, and Rhone, and is
pertinent to Arctic deltas.
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Coordinated
governance

River basin planning and management

e Basin water and sediment management

(dams/dam storage; aggregate extraction) — controlled fragmentation
e Source-to-sink (basin-to-delta) sediment connectivity
e Controlled population migration to deltas

Delta planning and management

e Population, settlement and infrastructure management

e Knowledge/data collection, and anticipation (tipping points)
e Sediment connectivity and redistribution

e Sedimentation-enhancing strategies

e Curbed aggregate and fine-grained sediment extraction

e Subsidence control

e Nature-based solutions



ANTHROPOCENE
Large-scale global destabilization of populous and sediment-starved deltas

Global climate change and global/regional sea-level rise (plus ocean warming
and acidification, ocean waves, storms and surge, heat waves)

Delta sustainability

Progressively imperiled deltas
with no basin or delta planning:
onset of rampant shoreline
retreat marine inundation
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