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Abstract

A split system on a multiset M is a multiset of bipartitions of M. Such a
split system S is compatible if it can be represented by a tree in such a way that
the vertices of the tree are labelled by the elements in M, the removal of each
edge in the tree yields a bipartition in S by taking the labels of the two resulting
components, and every bipartition in S can be obtained from the tree in this way.
Compatibility of split systems is a key concept in phylogenetics, and compatible split
systems have applications to, for example, multi-labelled phylogenetic trees. In this
contribution, we present a novel characterization for compatible split systems, and
for split systems admitting a unique representation by a tree. In addition, we show
that a conjecture on compatibility stated in 2008 holds for some large classes of split
systems.

Mathematics Subject Classifications: 03E02,05C05

1 Introduction

Let M be a multiset with underlying set X. For x ∈ X, we denote by M(x)  1
the multiplicity of x in M, and we put ∆(M) =


x∈X(M(x) − 1). To ease notation,

we sometimes write a1a2 . . . an for a multiset {a1, a2, . . . , an}, and if an element ai has
multiplicity k > 1, then we also denote this by writing aki . We denote by M∗ ⊆ X the set
of elements of X with multiplicity 1 in M, that is, M∗ = {x ∈ X : M(x) = 1}. Similarly,
for A ⊆ M, we denote by A∗ the set of elements of A with multiplicity 1 in M, that is,
A∗ = A ∩M∗. Note that set operations and inclusion relations on multisets are defined
in the usual way.

A split (or bipartition) S of M is a pair {A,B} such that A, B are nonempty
sub(multi)sets of M, and the union A ∪ B is precisely M. We usually write S = A|B
(or S = B|A, as the roles of A and B are symmetric). When the set M is clear from the
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context, we also sometimes write A|A instead of A|B, where A = M− A. A non-empty
multiset S of splits A|B of M is called a split system on M.

A labeled tree is a pair T = (T,λ) such that T is a tree (that is, an undirected,
connected acyclic graph), and λ is a map from the vertex set V (T ) of T to P(M), the
power set of M. An M-tree is a labeled tree (T,λ) satisfying the following two properties:

(M1) The union ∪v∈V (T )λ(v) is M.

(M2) All vertices v of T of degree 1 or 2 satisfy λ(v) ∕= ∅.

For v ∈ V (T ), we call λ(v) the label of v, and we say that an element a ∈ M (resp. a
subset A ⊆ M) labels v if a ∈ λ(v) (resp. A ⊆ λ(v)). Abusing terminology, we also
sometimes call a vertex (resp. edge) of T a vertex (resp. edge) of T . For example, the
labeled tree depicted in Figure 1 is an M-tree for M = {a2, b2, c2, x, y}. We say that two
M-trees T = (T,λ) and T ′ = (T ′,λ′) are isomorphic if there exists a graph isomorphism
φ : V (T ) → V (T ′) such that λ′(φ(v)) = λ(v) for all v ∈ V (T ).

ab ac

cx by

Figure 1: AnM-tree representing the split system {ab|ab, ac|ac, cx|cx, abcx|abcy} onM =
{a2, b2, c2, x, y}. The labels of each vertex are indicated next to the vertex. The union
of all labels is M, so (M1) is satisfied. Moreover, all vertices of degree 1 or 2 have a
nonempty label, so (M2) is satisfied.

Let T = (T,λ) be an M-tree. Since T is a tree, the removal of an edge e from T results
in a graph with exactly two connected components T1 and T2. Putting A =


v∈V (T1)

λ(v)

and B =


v∈V (T2)
λ(v), it follows from (M1) that A|B is a split of M, which we call the

split induced by e. The multiset S(T ) of splits obtained by taking the union of the splits
associated to the edges of T is called the split system represented by T . We say that a
split system S on M is compatible if there exists an M-tree T = (T,λ) representing S,
that is, satisfying S = S(T ). Otherwise, we say that S is incompatible. For example, the
split system {ab|ab, ac|ac, cx|cx, abcx|abcy} on M = a2b2c2xy is compatible, and admits
the M-tree depicted in Figure 1 as a representation.

It is not difficult to see that if a split system S is compatible, then it is pairwise
compatible, that is, for any pair of splits S1, S2 ∈ S there is some A ∈ S1 and B ∈ S2 such
that A ∩ B = ∅. In 1971, Buneman proved the following corner-stone result concerning
compatibility [1]:

Theorem 1 ([1]). Let S be a set of splits of a set X. Then S is compatible if and only
if S is pairwise compatible. Moreover, if S is compatible, then there exists a unique (up
to isomorphism) X-tree T representing S.
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However, as was remarked in [8, p.640], the equivalence stated in the last theorem
does not necessarily hold for split systems on multisets. For example, the split system
S = {ab|acd, ac|abd, ad|abc} on M = {a2, b, c, d} is pairwise compatible, but it is not
compatible. Moreover, in [4, Fig. 5] it was shown that the uniqueness condition in the
theorem can also fail to hold in general.

Despite these issues, in [8] it was shown that compatibility of a split system on a
multiset M can in fact be characterised by taking into account the quantity ∆(M):

Theorem 2 ([8], Thm. 4.3). Let S be a split system on a multiset M. Then S is
compatible if and only if every submultiset of S of size at most max{2∆(M),∆(M) + 2}
is compatible.

Note that the last result generalizes the first statement of Theorem 1, since in case
M and S are both sets, ∆(M) = 0. In addition, in [8, Remark 4.7] the authors asked
whether or not the following statement holds:

Conjecture 3. Let S be a split system on a multiset M. Then,

() S is compatible if and only if every submultiset of S of size at most ∆(M) + 2 is
compatible.

Note that in [8, Remark 4.7], the authors remarked that they had checked that this
conjecture holds for every multiset which contains at most three elements that have mul-
tiplicity greater than one.

This contribution is organized as follows. In Section 2, we introduce the
split-containment graph Γ(S) of a split system S. We then use that graph to state
a characterization of compatibility of a split system for the multiset case (Theorem 9).
In addition, we show that Γ(S) can be used to count the number of non-isomorphic tree
representations of a compatible split system. This gives rise to a characterization of com-
patible split systems admitting a unique representation (Corollary 10), thus providing an
answer to the question raised in [8, Remark 4.5 (b)].

In Sections 3 to 5, we turn our attention to Conjecture 3 which remains open. More
specifically, we show that for a split systemS on some multisetM, the equivalence () in
Conjecture 3 holds in case (1) the graph Γ(S) enjoys a sparsity property (Theorem 11),
and (2) all of the splits in S have the same size, where the size of a split A|B equals
min{|A|, |B|} (Theorem 12). In addition, we show that in case all of the splits in a split
system S have size at most 3, then S satisfies a slightly weaker version of (), in which
∆(M) + 2 is replaced by ∆(M) + 3 (Theorem 22).

Before proceeding, we remark that in case M is a set, M-trees and their relationship
with compatible split systems form a fundamental part of the underlying theory for the
area of phylogenetics (see e.g. [14, Chapter 3]). Moreover, M-trees for M a multiset are
closely related to multi-labeled phylogenetic trees (or MUL-trees for short), that arise in
the context of polyploid studies, tree-reconciliation and phylogenetic network theory (see
e.g. [10, 12, 3, 13]).

Roughly speaking, MUL-trees are rooted trees equipped with a (not necessarily injec-
tive) function from their leaf set to some set X. Understanding mathematical properties
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of MUL-trees is an active area of research; for example, see [16] for recent work on the
relationship between MUL-trees with tree shapes, and [9] for interesting connections with
so-called ploidy profiles. In addition, the compatibility problem raises interesting related
algorithmic questions and results; see e.g. [5, 7] for recent work in this area. Other
structures related to MUL-trees include tangled trees [11], introduced as a way to model
host-parasite co-evolution, and area cladograms [4], that are used in biogeographical stud-
ies. The compatibility problem for split systems is also closely related to the so-called
perfect phylogeny haplotyping problem [6] – see for example [2].

2 The split-containment graph

As we have seen in the introduction, pairwise compatibility of a split system does not
necessarily imply compatibility. However, in this section we show that we can characterize
compatibility in terms of a certain graph that we shall associate to a split system. As we
shall see, this graph also yields a characterization for when a compatible split system is
represented by a unique tree.

We begin by defining the graph. For a split system S = {S1, . . . , Sn}, n  1, we define
the split-containment graph Γ(S) of S as follows. The vertex set of Γ(S) is the multiset
{(A, Si) : A ∈ Si, 1  i  n}, and the arc set of Γ(S) is the multiset of ordered pairs
((A, Si), (B, Sj)) satisfying A ⊊ B (as multisets) and i, j ∈ {1, . . . , n} distinct. Note that
since S is a multiset, Si = Sj may hold.

Clearly the graph Γ(S) is acyclic. Moreover, that graph satisfies the property that
if ((A, Si), (B, Sj)) is an arc of Γ(S), then ((B, Sj), (A, Si)) is an arc of Γ(S). It follows
that for any i, j distinct, Γ({Si, Sj}) either contains no arcs or it is isomorphic to one of
the digraphs D1 or D2, where D1 and D2 are digraphs on four vertices {v, w, p, q} such
that D1 has arcs (v, p), (q, w) and D2 has arcs (v, p), (p, w), (v, q), (q, w) (see Figure 2).

D1 D2

Figure 2: For S = {S1, . . . , Sn} a split system and i, j ∈ {1, . . . , n} distinct, either
Γ({Si, Sj}) has no arcs, or Γ({Si, Sj}) is isomorphic to one of the depicted graphs D1 or
D2.

In view of these observations, we obtain the following lemma:

Lemma 4. Suppose S = {S1, S2} is a split system on M. Then the following are equiv-
alent:

(i) S is compatible.
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(ii) Γ(S) is isomorphic to D1 or D2.

(iii) The arc set of Γ(S) is non-empty.

Moreover, if S is compatible, then there is a unique M-tree representing S if and only if
Γ(S) is isomorphic to D1.

In light of the last lemma, we call a subgraph G of Γ(S) thin if V (G) = V (Γ(S))
and the restriction of G to {(A, Si), (A, Si), (B, Sj), (B, Sj)} is isomorphic to D1 for all
i, j ∈ {1, . . . , n} distinct. We have:

Lemma 5. If G is a thin subgraph of Γ(S), then for any two splits Si = A|A, Sj = B|B,
i ∕= j of S, there exists exactly one arc in G from an element of {(A, Si), (A, Si)} to an
element of {(B, Sj), (B, Sj)}.

Proof. SinceG is thin, the graph induced by G on the set {(A, Si), (A, Si), (B, Sj), (B, Sj)}
is isomorphic toD1. By definition of G as a subgraph of Γ(S), there is no arc in G between
(A, Si) and (A, Si), and no arc between (B, Sj) and (B, Sj). Hence, G contains exactly
one arc from an element of {(A, Si), (A, Si)} to an element of {(B, Sj), (B, Sj)}, and one
arc from an element of {(B, Sj), (B, Sj)} to an element of {(A, Si), (A, Si)}.

We say that S is thin if Γ(S) is a thin subgraph of itself. In particular, if M is a
set, then a split system S on M is thin if and only if S is compatible. Note that there
exist split systems S on multisets that are thin but not compatible, and compatible but
not thin. For example, the split system {xx|xyz, xy|xxz, xz|xxy} on M = {x3, y, z} is
thin but not compatible, and the split system {ab|ab, ac|ac, cx|cx, abcx|abcy} on M =
{a2, b2, c2, x, y} represented by the M-tree depicted in Figure 1 is not thin.

We now consider the structure of thin subgraphs of Γ(S) in more detail. For G a
thin subgraph of Γ(S), we call an arc ((A, Si), (B, Sj)), i ∕= j, of G critical if there does
not exist a directed path from (A, Si) to (B, Sj) in G other than the path formed by the
single arc ((A, Si), (B, Sj)). Note that if ((A, Si), (B, Sj)) is a critical arc of G, then the
corresponding arc ((B, Sj), (A, Si)) is also a critical arc of G. Moreover, we have:

Lemma 6. Let G be a thin subgraph of Γ(S). If two vertices (A, Si), (B, Sj), i ∕= j of
G are joined by a directed arc, then there is a path from (A, Si) to (B, Sj) that contains
only critical arcs.

Proof. If ((A, Si), (B, Sj)) is a critical arc, then the result holds. Otherwise, there exists
a path P from (A, Si) to (B, Sj) that does not contain the arc ((A, Si), (B, Sj)). By the
same argument, each arc of P that is not critical can be replaced by a path, and one
can recursively apply this arc-replacement process until all arcs on the resulting path are
critical.

Note however that the converse of Lemma 6 does not necessarily hold.
Next, we call a thin subgraph G of Γ(S) consistent if



(B,Sj)∈CG((A,Si))

B ⊆ A,
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for all (A, Si) ∈ V (G), where CG((A, Si)) is the set of all vertices (B, Sj) of G such that
((B, Sj), (A, Si)) is a critical arc of G.

Interestingly, consistent thin subgraphs are uniquely determined by their critical arcs.
Indeed, we have:

Lemma 7. Let S = {S1, . . . , Sn}, n  1, be a split system on a multiset M, and let G
be a consistent thin subgraph of Γ(S). Then two vertices (A, Si), (B, Sj), i, j ∈ {1, . . . , n}
distinct, of G are joined by an arc if and only if there is a path in G from (A, Si) to
(B, Sj) that contains only critical arcs.

Proof. One direction comes directly from Lemma 6: If ((A, Si), (B, Sj)) is an arc of G,
then either ((A, Si), (B, Sj)) is a critical arc of G, or there is a path in G from (A, Si) to
(B, Sj) of length two or more, such that all arcs on this path are critical arcs.

Conversely, suppose that there exists a path in G from (A, Si) to (B, Sj) that contains
only critical arcs. In particular, A ⊊ B holds. Since G is thin, Lemma 5 implies that
exactly one of the ordered pairs ((A, Si), (B, Sj)), ((B, Sj), (A, Si)), ((A, Si), (B, Sj)), and
((B, Sj), (A, Si)) must be an arc of G. So it suffices to show that for the last three pairs
this is impossible.

If ((B, Sj), (A, Si)) is an arc of G, then B ⊊ A holds, which is impossible given that
A ⊊ B holds.

If ((A, Si), (B, Sj)) is an arc of G, then in view of Lemma 6, there exists a path P1

from (A, Si) to (B, Sj) in G that contains only critical arcs. By assumption, there also
exists a path P2 in G from (A, Si) to (B, Sj) that contains only critical arcs. Now, let
(C, Sk) be the first vertex that is common to P1 and P2. Such a vertex must exist, since
P1 and P2 have the same end-vertex (B, Sj). Since G is consistent, and the paths from
(A, Si) to (C, Sk) and from (A, Si) to (C, Sk) are vertex-disjoint by choice of (C, Sk), it
follows that M = A ∪ A ⊆ C, which is impossible.

Finally, if ((B, Sj), (A, Si)) is an arc of G, then in view of Lemma 6, there exists a
path P1 from (B, Sj) to (A, Si) in G that contains only critical arcs. Since by assumption,
there exists a path in G from (A, Si) to (B, Sj) that contains only critical arcs, there must
exist a path P2 in G from (B, Sj) to (A, Si) with the same property. Now, let (C, Sk) be
the first vertex that is common to P1 and P2. Such a vertex must exist, since P1 and P2

have the same end-vertex (A, Si). Since G is consistent, and the paths from (B, Sj) to
(C, Sk) and from (B, Sj) to (C, Sk) are vertex-disjoint by choice of (C, Sk), it follows that
M = B ∪B ⊆ C, which is impossible.

In addition, the existence of certain pairs of critical arcs in a consistent thin subgraph
forces the existence of further critical arcs, as summarized in Figure 3:

Lemma 8. Let S = {S1, . . . , Sn}, n  1, be a split system on a multiset M, and let
G be a consistent thin subgraph of Γ(S). If i, j, k ∈ {1, . . . , n} distinct are such that
((A, Si), (B, Sj)) and ((C, Sk), (B, Sj)) are critical arcs of G, then ((A, Si), (C, Sk)) is a
critical arc of G.

the electronic journal of combinatorics 31(4) (2024), #P4.63 6



(A, S1) (B, S2) (C, S3)

(C, S3)(B, S2)(A, S1)

Figure 3: For S1 = A|A, S2 = B|B and S3 = C|C, a thin subgraph G of Γ(S), where
S = {S1, S2, S3}. By Lemma 8, if G is consistent, and the four solid arcs are critical arcs
of G, then the dashed arcs must be critical arcs of G.

Proof. We first show that ((A, Si), (C, Sk)) is an arc of G. Since G is thin, it follows
from Lemma 5 that exactly one of the ordered pairs ((A, Si), (C, Sk)), ((A, Si), (C, Sk)),
((C, Sk), (A, Si)) and ((C, Sk), (A, Si)) must be an arc of G. Clearly, ((A, Si), (C, Sk)) is
not an arc of G, as in this case ((A, Si), (B, Sj)) is not a critical arc of G. By symmetry,
((C, Sk), (A, Si) is not an arc of G either. It is also impossible to have ((C, Sk), (A, Si)) an
arc in G. Indeed, S is consistent, so B contains the union A ∪ C. If C ⊆ A holds, then
it follows that M = C ∪C ⊆ A∪C ⊆ B, which is impossible. Hence, ((A, Si), (C, Sk)) is
an arc of G.

Now, assume for contradiction that the arc ((A, Si), (C, Sk)) is not critical. In view
of Lemma 6, there exists a path from (A, Si) to (C, Sk) that only contains critical arcs.
Let (D,Sl) be the last vertex of that path before (C, Sk). In particular, ((D,Sl), (C, Sk))
is a critical arc of G. Since G is thin, it follows from Lemma 5 that exactly one of
((B, Sj), (D,Sl)), ((D,Sl), (B, Sj)), ((B, Sj), (D,Sl)) and ((D,Sl), (B, Sj)) must be an
arc of G. We next show that none of these arcs can be an arc of G.

Since G is consistent, C contains the multiset union D ∪ B. Hence, B ⊆ D cannot
hold, as this would imply M ⊆ C, so ((B, Sj), (D,Sl)) is not an arc of G.

If ((D,Sl), (B, Sj)) is an arc of G, then this contradicts the assumption that
((D,Sl), (C, Sk)) is critical. Similarly, if ((B, Sj), (D,Sl)) is an arc of G, then this contra-
dicts the assumption that ((B, Sj), (C, Sk)) is critical. So, neither ((D,Sl), (B, Sj)) nor
((B, Sj), (C, Sk)) are arcs of G.

Finally, suppose ((D,Sl), (B, Sj)) is an arc ofG. By choice of (D,Sl), there is a directed
path in G from (A, Si) to (D,Sl). Since Γ(S) is acyclic, this path does not contain the arc
((A, Si), (B, Sj)). But this contradicts the assumption that ((A, Si), (B, Sj)) is critical.
Hence, ((D,Sl), (B, Sj)) is not an arc of G.

In summary, the existence of a path from (A, Si) to (C, Sk), that contains only critical
arcs is impossible if ((A, Si), (C, Sk)) is not critical itself. Hence, ((A, Si), (C, Sk)) is a
critical arc of G.

We are now in a position to give a characterization for when a split system S is
compatible in terms of the existence of consistent thin subgraphs of Γ(S).

Theorem 9. Let S be a split system on a multiset M. Then S is compatible if and only
if there exists a consistent thin subgraph G of Γ(S).
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Proof. Let S = {S1, . . . Sn}, n  1. Assume first that S is compatible. Let T = (T,λ) be
a representation of S. By definition, there exists a bijection e : S → E(T ) such that for
all i ∈ {1, . . . n}, the graph T − e(Si) has two connected components, each labeled with
one part of Si. We construct G from T as follows: The vertices of G are the vertices of
Γ(S). The arcs of G are the arcs ((A, Si), (B, Sj)) such that the connected component of
T − e(Si) labeled with A is a subgraph of the connected component of T − e(Sj) labeled
with B. As T is an M-tree this definition implies that A ⊊ B for all arcs ((A, Si), (B, Sj))
of G, so G is a subgraph of Γ(S). Moreover, for any two i, j ∈ {1, . . . , n} distinct, the
subgraph of G induced by {(A, Si), (A, Si), (B, Sj), (B, Sj)} contains exactly two arcs, so
G is thin.

To see that G is consistent, let (A, Si) be a vertex of G. Let TA be the connected
component of T − e(Si) labelled with A, and let v be the vertex of TA adjacent to e(Si).
We claim that an arc ((C, Sk), (A, Si)), k ∕= i of G is critical if and only if the edge e(Sk)
is adjacent to v.

To see that the claim holds, let ((C, Sk), (A, Si)) be an arc of G. By construction, e(Sk)
is an edge of TA, and the connected component of T−e(Sk) labelled with C is the connected
component that does not contain v. Suppose first that e(Sk) is not adjacent to v. Then
there exists a path in TA from e(Sk) to v. Let e be an edge of that path, and let Sj ∈ S
be the split induced by T − e. Finally, let B be the part of Sj labelling the connected
component of T − e that does not contain v. Then by construction, ((C, Sk), (B, Sj))
and ((B, Sj), (A, Si)) are both arcs of G, so ((C, Sk), (A, Si)) is not critical. Conversely,
suppose that ((C, Sk), (A, Si)) is not critical. By Lemma 6, there exists a path from
(C, Sk) to (A, Si) in G that contains only critical arcs. Let (B, Sj) be the last vertex of
that path before (A, Si). Since ((B, Sj), (A, Si)) is an arc of G, e(Sj) is an edge of TA,
and the connected component of T − e(Sj) labelled with B is the connected component
that does not contain v. Moreover, (C, Sk) is an ancestor of (B, Sj) in G, so e(Sk) belongs
to the connected component of T − e(Sj) labelled with B. Therefore e(Sk) and v belong
to two distinct connected components of T − e(Sj), so e(Sk) is not adjacent to v. This
completes the proof of the claim.

The claim being true, it follows that the label set of TA is (


(C,Sk)∈CG((A,Si))
C)∪ λ(v).

Since the label set of TA is A, it follows that


(C,Sk)∈CG((A,Si))
C = A − λ(v) ⊆ A, which

proves that G is consistent.
Conversely, assume that Γ(S) has a consistent thin subgraph G. We define λG :

V (G) → P(M) by putting, for (A, Si) ∈ V (G), λ(A, Si) = A−


(C,Sk)∈CG((A,Si))
C. Since

G is consistent, the union is contained in A, so λG is well defined.
Next, we define an equivalence relation ∼G on V (G) as follows: for (A, Si), (B, Sj) ∈

V (G), we put (A, Si) ∼G (B, Sj) if and only if (A, Si) and (B, Sj) are the same vertex
of G, or ((A, Si), (B, Sj)) is a critical arc of G. By definition, ∼G is reflexive. It is also
symmetric, as ((A, Si), (B, Sj)) is critical if and only if ((B, Sj), (A, Si)) is critical. Finally,
transitivity is a direct consequence of Lemma 8.

We claim that for all pairs (A, Si), (B, Sj) of vertices of G with (A, Si) ∼G (B, Sj), we
have λG(B, Sj) = λG(A, Si). To see that, note that by Lemma 8, if ((C, Sk), (B, Sj)) is a
critical arc of G distinct from ((A, Si), (B, Sj)), then ((C, Sk), (A, Si)) is a critical arc of
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G. Since the roles of A and B are symmetric in this argument it follows that the sets

{(C, Sk) ∈ V (G)− {(A, Si)} : (C, Sk) ∈ CG((B, Sj))}

and
{(C, Sk) ∈ V (G)− {(B, Sj)} : (C, Sk) ∈ CG((A, Si))}

are equal. Denoting this set by C, we have λG((A, Si)) = (A − B) −


(C,Sk)∈C C and

λG((B, Sj)) = (B−A)−


(C,Sk)∈C C. Since A−B = B−A, it follows that λG((A, Si)) =

λG((B, Sj)) as claimed.
Now, we denote by T the undirected graph whose vertex set is the set of equivalence

classes of ∼G, where two equivalence classes u, v are joined by an edge if and only if there
exists i ∈ {1, . . . , n} such that (A, Si) ∈ u and (A, Si) ∈ v. Note that by construction,
the degree of a vertex u of T is precisely the size of the equivalence class u. In view of
the above, λG trivially induces a map λ : V (T ) → P(M).

We next show that T (G) = (T,λ) is a representation of S. We do this by induction
on n = |S|. If n = 1, this is trivial, as T is a single edge {u, v} with λ(u) = A and
λ(v) = A, where A|A is the unique element of S. Assume then that n  2, and that the
property holds for all split systems S′ with |S′| < |S|.

Let (A, Si) be a vertex of indegree 0 in G (which exists as Γ(S) is acyclic), and let
G′ be the graph obtained from G by removing the vertices (A, Si) and (A, Si) and their
adjacent arcs. Clearly, G′ is a consistent thin subgraph of Γ(S− {Si}). By our induction
hypothesis T (G′) = (T ′,λ′) is a representation of S− {Si}. Since (A, Si) has indegree 0
in G, (A, Si) is the unique element of its equivalence class under ∼G. In particular, there
exists a leaf u of T such that λ(u) = A. Moreover, (A, Si) has outdegree at least 1 in G,
so there exists a vertex (B, Sj) of G such that ((A, Si), (B, Sj)) is a critical arc of G. So,
(A, Si) ∼G (B, Sj) holds. Finally, since (A, Si) has indegree 0 in G (and by symmetry,
(A, Si) has outdegree 0 in G), it follows that an arc ((C, Sk), (B, Sj)) of G

′ is a critical arc
of G′ if and only if ((C, Sk), (B, Sj)) is a critical arc of G. Hence, the equivalence classes
of ∼G are exactly the equivalence classes of ∼G′ , plus the equivalence class of (A, Si).
In particular, V (T ) = V (T ′) ∪ {u}, and T is obtained from T ′ by adding leaf u to the
vertex w of T ′ corresponding to the equivalence class of (A, Si) under ∼G. Moreover, we
have λ(v) = λ′(v) for all v ∈ V (T ) distinct from u, w, and, as already stated, λ(u) = A.
Finally, we have λ(w) = B −


(C,Sk)∈CG((B,Sj))

C and λ′(w) = B −


(C,Sk)∈CG′ ((B,Sj))
C, so

λ(w) = λ′(w)− A. In particular, A ⊆ λ′(w) holds.
Putting these observations together, it follows that T (G) is obtained from T (G′) by

(i) attaching a new leaf labeled with A to the vertex w, and (ii) removing A from the
label of w. Since T (G′) is an M-tree by our induction hypothesis, it follows that T (G)
is an M-tree if and only if w is not a leaf of T (G′) with λ′(w) = A. To see that this is
the case, we remark that the degree of w in T (G′) is precisely the size of the equivalence
class of ∼G′ corresponding to w. In particular, if w is a leaf, then (B, Sj) is the unique
element of its equivalence class under ∼G′ , and λ′(w) = B. Since ((A, Si), (B, Sj)) is an
arc of Γ(S), we have A ⊊ B, so λG′(w) ∕= A as claimed.

So, T (G) is an M-tree, and by construction S(T (G)) = S(T (G′)) ∪ {Si} = S. So,
T (G) is a representation of S.
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If S is a compatible split system and G is a consistent thin subgraph of Γ(S), we
denote by T (G) the M-tree constructed from G as in the proof of Theorem 9. As
shown in that proof, T (G) is a representation of S. For example, for the split system
S = {a|abbcd, abc|abd, b|aabcd} on M = {a2, b2, c, d}, the graph Γ(S) has four distinct
consistent thin subgraphs, two of which we depict in Figure 4.

(a, S1) (abc, S2) (b, S3)

(aabcd, S3)(abd, S2)(abbcd, S1)

(a, S1) (abc, S2) (b, S3)

(aabcd, S3)(abd, S2)(abbcd, S1)

(i) (ii)

a

b

abd

ba

bd ac

(iii) (iv)

G : G0 :

T (G) : T (G0) :c

Figure 4: (i) and (ii) Two consistent thin subgraphs of Γ(S), where S =
{a|abbcd, abc|abd, b|aabcd}. The other two consistent thin subgraphs of Γ(S) can be ob-
tained by swapping the vertices (abc, S2) and (abd, S2) in G and in G′. (iii) and (iv) The
M-trees T (G) and T (G′) constructed from G and G′ respectively, as in the proof of The-
orem 9. Both T (G) and T (G′) are representations of S. The other two representations
of S can be obtained by swapping labels c and d in T (G) and in T (G′).

Note that there are compatible split systemsS for which Γ(S) has two or more distinct
consistent thin subgraphs G,G′ such that T (G) is isomorphic to T (G′). In particular,
the map assuciating a tree T (G) to each thin subgraph G of Γ(S) is, in general, not a
bijection.

The last example motivates the final result in this section. Suppose that S is a
compatible split system. We call two distinct thin subgraphs G and G′ of S isomorphic
if there is a digraph isomorphism between G and G′ which maps each vertex of the form
(A, Si) to one of the form (B, Sj), where A = B.

Corollary 10. Let S be a compatible split system on a multiset M. Then the non-
isomorphic representations T of S are in bijective correspondence with the non-isomorphic
consistent thin subgraphs of Γ(S). In particular, S has a unique representation if and
only if Γ(S) has a unique consistent thin subgraph up to isomorphism.

Proof. Let S = {S1, . . . , Sn}, n  1. As seen in the proof of Theorem 9, a representation
T of S trivially induces a consistent thin subgraph G of Γ(S). It is straightforward to
see that T = T (G) in that case.

Now, suppose that G1 and G2 are two distinct consistent thin subgraphs of Γ(S). If
G1 and G2 are isomorphic, then it is straight-forward to check that T (G1) is isomorphic
to T (G2).
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So, suppose that G1 and G2 are not isomorphic. By Lemma 7, G1 and G2 are uniquely
determined by their sets of critical arcs. Since G1 and G2 are not isomorphic, there must
exist a vertex (A, Si) of Γ(S) such that (i) the sets CG1((A, Si)) and CG2((A, Si)) are
distinct, and (ii) no further vertex (B, Sj) of Γ(S) satisfies B = A and CG2((B, Sj)) =
CG1((A, Si)). For k ∈ {1, 2}, we denote by vk the vertex of T (Gk) corresponding to the
equivalence class of (A, Si) under ∼Gk

. By definition of T (G1) and T (G2), the set of splits
induced by edges adjacent to v1 in T (G1) is CG1((A, Si)) and the set of splits induced by
edges adjacent to v2 in T (G2) is CG2((A, Si)), which by (i) is distinct from CG1((A, Si)).
Moreover, (ii) implies that there is no further vertex w of T (G2) such that the multiset
of splits induced by edges adjacent to w in T (G2) is precisely CG1((A, Si)). In summary,
T (G1) contains a vertex, such that the multiset of splits induced by its adjacent edges
is precisely CG1((A, Si)). Conversely, no vertex of T (G2) satisfies this property. Thus,
T (G1) and T (G2) are not isomorphic.

The rest of the proof follows from the observation that G1 (resp. G2) is precisely the
graph obtained from T (G1) (resp. T (G2)) using the construction described in the first
part of the proof of Theorem 9.

Note that by Corollary 10, if Γ(S) is a thin and consistent subgraph of itself, then
S has a unique representation. However, there exist non-thin split systems S such that
Γ(S) has a unique (up to isomorphism) thin and consistent subgraph, and so it is not
necessary for S to be thin in order for S to have a unique representation. For example,
the split system S on M = {a2, b2, c2, x, y} represented by the M-tree T depicted in
Figure 1 is not thin. However, Γ(S) has only one consistent thin subgraph, so T is the
unique representation of S.

3 Thin split systems

In this section we shall show that Conjecture 3 holds for thin split systems and that, as a
corollary, this is also the case for split systems S in which min{|A|, |A|} = min{|B|, |B|}
holds for all pairs of splits in A|A,B|B in S.

Theorem 11. Suppose that S is a thin split system on a multiset M. Then S is com-
patible if and only if every subset of S of size at most ∆(M) + 2 is compatible.

Proof. One direction is trivial: if S is compatible, then all submultisets of S are compat-
ible.

To see the opposite direction, we show that if S is thin and not compatible, then
there exists a submultiset S′ of S of size ∆(M) + 2 or less that is not compatible. So,
suppose that S is thin and not compatible. Since S is thin, the only thin subgraph of
Γ(S) is Γ(S). By Theorem 9, Γ(S) is not consistent. Thus, there exists k + 1  3 splits
S = A|A, S1 = A1|A1, . . . , Sk = Ak|Ak in S such that ((Ai, Si), (A, S)) is a critical arc

of Γ(S) for all i ∈ {1, . . . , k}, and
k

i=1

Ai ⊈ A. Note that since the arcs ((Ai, Si), (A, S)),

i ∈ {1, . . . , k} are critical, the sets A1, . . . , Ak satisfy:
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(i) Ai ⊆ A for all i ∈ {1, . . . , k}, and

(ii) there are no i, j ∈ {1, . . . , k} such that Ai ⊊ Aj.

Put S′ = {S, S1, . . . , Sk}. Clearly, S′ is a submultiset of S such that Γ(S′) is thin and
not consistent. Without loss of generality, we may assume that all proper submultisets
S′′ of S′ are such that Γ(S′′) is consistent.

Now, let A′ =
k

i=1

Ai. Since, A′ ⊈ A, there exists x ∈ M such that mA′(x) > mA(x).

Note that mA′(x) =
k

i=1

mAi
(x). By minimality of S′, we have mAi

(x)  1 for all i ∈

{1, . . . , k}.
Property (ii), together with the fact thatS′ is thin, implies that for all i, j ∈ {1, . . . , k}

distinct, we have Ai ⊊ Aj and Aj ⊊ Ai. In particular, ((Ai, Si), (Aj, Sj)) and
((Aj, Sj), (Ai, Si)) are arcs of Γ(S′), and these arcs are critical in Γ(S′). Moreover, the

graph Γ({S1, . . . , Sk}) is consistent by choice of S′. Thus, we have
k−1
i=1

Ai ⊆ Ak. In

particular, we have
k−1
i=1

mAi
(x)  mAk

(x). Since mAi
(x)  1 for all i ∈ {1, . . . , k}, we

have
k−1
i=1

mAi
(x)  k − 1, and mAk

(x)  mM(x)− 1. Putting these inequalities together,

k  mM(x) follows. In particular, we have |S′| = k + 1  mM(x) + 1. Moreover, we
have ∆(M)  mM(x) − 1 by definition of ∆(M). Combining the last two inequalities,
we obtain |S′|  ∆(M) + 2.

In summary, if S is not compatible, then S contains a submultiset S′ with
|S′|  ∆(M) + 2 such that Γ(S′) is not consistent. Since S is thin, S′ is thin, so
Γ(S′) is the only thin subgraph of itself. By Theorem 9, S′ is not compatible, which
concludes the proof.

Note that the bound given in the last theorem is tight, as there exist thin split systems
S such that every subset of size at most ∆(M)+1 is compatible but S is not compatible.
For example, let n > m  1 and consider the split systemS = {ai,1 . . . ai,mx|ai,1 . . . ai,mx :
i ∈ {1, . . . , n}} on M = {ai,j : 1  i  n, 1  j  m}∪ {xn−1}, where all ai,j are pairwise
distinct and distinct from x. Clearly, S is thin and |S| = n. It is straight-forward to check
thatS is not compatible, but all proper subsets ofS are compatible. Since∆(M) = n−2,
we have in particular that all subsets of S of size ∆(M) + 1 are compatible.

Suppose that S = A|A is a split on M. We say that A (resp. A) is the small part of S
if |A|  |A| (resp. |A|  |A|). We define the size of S as the size of its small part, that is,
min{|A|, |A|} and we call a split of size k  1 a k-split . As a consequence of Theorem 11
we immediately obtain the following generalization of [8, Lemma 4.6 (ii)].

Theorem 12. Suppose that S is a split system on a multiset M in which every split has
the same size. Then S is compatible if and only if every submultiset of S of size at most
∆(M) + 2 is compatible.
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Proof. Suppose that every submultiset of S of size at most ∆(M)+2 is compatible. Then
every pair of splits in S is compatible. Since every split in S has the same size it follows
that S is thin. Now we can apply Theorem 11 to see that S is compatible.

4 Superterminal sets

In this section, we shall introduce the concept of a superterminal set of a split system.
We then use this concept to prove a technical result concerning such sets (Theorem 15)
which, in turn, we will use to help prove the main result of the next section (Theorem 22).

For a split system S = {S1, . . . , Sn}, n  1 on a multiset M, we say that a set A ⊆ M
is a terminal set of S if A|A = Si for some i ∈ {1, . . . , n}, and the indegree of the vertex
(A, Si) in Γ(S) is 0. Equivalently, A is a terminal set of S if for all splits Sj = B|B , with
j ∈ {1, . . . , n} distinct from i, neither B ⊊ A nor B ⊊ A holds. We denote by St the
(multi)set of terminal sets ofS. Note that since Γ(S) is finite and acyclic, St is nonempty.
As an example, for the split system S = {ab|ab, ac|ac, cx|cx, abcx|abcy} represented by
the tree in Figure 1, we have St = {ab, ac, cx}. Terminal sets have a special place in
representations of compatible split systems, as the following, straightforward to prove
result shows:

Lemma 13. Let S be a split system on M. If S is compatible and T = (T,λ) is a
representation of S, then for all A ∈ St, there exists a leaf x of T such that λ(x) = A.

Proof. Since A ∈ St, we have A|A ∈ S, so there exists a leaf x of T such that λ(x) ⊆ A.
In particular, λ(x)|λ(x) is a split of S. Since A ∈ St, by definition of St, there is no split
A′|A′ of S such that A′ ⊊ A. Therefore, the inclusion λ(x) ⊆ A cannot be strict, that is,
λ(x) = A must hold.

Note that if S is compatible with representation T = (T,λ), the injection St → L(T )
given by Lemma 13 is not necessarily a bijection. For example, the split system S =
{ab|abcd, abc|abd} is compatible and St = {ab}, but any representation T = (T,λ) of S
has two leaves, so one leaf of T has a label that is not in St.

Motivated by this fact, for a split system S = {S1, . . . , Sn}, n  1, on a multiset
M, we call a terminal set A of S a superterminal set of S if indegree(A, Si) = 0 and
outdegree(A, Si) = |S| − 1 in Γ(S). Equivalently, A is a superterminal set of S if
and only if for all splits Sj = B|B, j ∕= i ∈ {1, . . . , n}, of S, neither B ⊊ A nor
B ⊊ A hold, and exactly one of A ⊊ B or A ⊊ B holds. For example, the split system
S = {ab|cxabcy, ac|bxabcy, cx|ababcy, abcx|abcy} has precisely one superterminal set, that
is cx. We denote by S×

t ⊆ St the (multi)set of all superterminal sets of S. Moreover,
for A ∈ S×

t and S = B|B ∈ S distinct from A|A we denote by S(A) the unique element
in {B,B} satisfying A ⊆ S(A). To extend this notation to S, we also put S(A) = A
for S = A|A. Interestingly, for thin split systems, the collections of terminal sets and
superterminal sets coincide.

Lemma 14. If S is thin, then S×
t = St ∕= ∅.
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Proof. As already remarked above, St ∕= ∅ always holds. To see that S×
t = St, let

A ∈ St, and let B|B ∈ S distinct from A|A. Since S is thin, exactly one of B ⊊ A,
B ⊊ A, A ⊊ B, A ⊊ B holds. That A ∈ St implies that the first two inclusions cannot
hold. Hence, exactly one of A ⊊ B or A ⊊ B holds, so A ∈ S×

t follows.

Now, suppose that S is a split system, and that it has a superterminal set A0. Our
general aim is to remove the split S0 = A0|A0 from S in a controlled manner, so that key
properties of S are preserved in the resulting split system.

To this end, we let a0 be a new element that is not in M and define the split system
S− = S−

A0
on M− = M−

A0
= (M−A0)∪{a0} as follows. For all S ∈ S−{S0}, we add to

S− the split (S(A0)−A0)∪ {a0}|S(A0) in case S ∕= S0, and the split A0|(A0−A0)∪ {a0}
in case S = S0. Note that the latter may indeed hold, since, if S0 has multiplicity 2 or
more in S, then we have S0 ∈ S − {S0}. In that case, the split system {S0, S0} ⊊ S
is compatible, so A0 ⊊ A0 must hold. Roughly speaking, S− is obtained by merging, in
all splits S ∈ S − {S0}, the elements of A0 in S(A0) (in case S ∕= S0) or in A0 (in case
S = S0) into a single element a0. By definition, the multiset S− is a multiset of n − 1
splits on M−. Note that by definition, a0|(M− − {a0}) is not a split of S−.

We now prove the main result of this section, which shows that if A0 is a superterminal
set of an incompatible split system S in which all proper subsets of S are compatible,
then S−

A0
has the same properties.

Theorem 15. Let S be an incompatible split system on M of size k  3 with S×
t ∕= ∅, and

such that all proper subsets of S are compatible. If A0 ∈ S×
t , then S−

A0
is incompatible,

and all proper subsets of S−
A0

are compatible. Moreover, ∆(M−) < ∆(M).

Proof. We begin by making a claim which is of independent interest:

Claim 16. Let S be a split system on M of size n  3 such that all proper subsets of S
are compatible. If there is a split S = A|A ∈ S such that A ⊆ M∗, then S is compatible.

Proof. Assume that there exists a split S = A|A in S such that A ⊆ M∗. We can choose
S in S such that A is minimal with respect to set inclusion. Note that the split system
{S, S} is not compatible. Indeed, if it were the case, then by Lemma 4, one of A ⊊ A or
A ⊊ A would hold. However, since A ⊆ M∗ both are impossible. Therefore, S must have
multiplicity one in S. Thus, because S− {S ′} is compatible for all S ′ distinct from S, it
follows that for all B|B ∈ S, precisely one of A ⊆ B, A ⊆ B holds.

It follows that in any representation T = (T,λ) of S − {S}, there exists a vertex v
of T with A ⊆ λ(v). Otherwise, there exists an edge e in T and two elements x, y ∈ A
distinct such that the split Se = B|B of S associated to e satisfies (up to permutation)
x ∈ B and y ∈ B. Since x and y have multiplicity one in M, neither A ⊆ B nor A ⊆ B
holds, a contradiction.

Thus we can add a vertex u and edge {u, v} to T , labelling u with A and removing A
from the label of v. Because S has multiplicity 1 in S, v cannot be a leaf of T satisfying
λ(v) = A, so the labeled tree T ′ obtained this way is an M-tree. By construction, T ′ is
a representation of S, so S is compatible.
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Now, note that if A0 is as in the statement of the theorem, it follows by Claim 16 that
A0 contains at least one element of multiplicity two or more in M, and so ∆(M−) <
∆(M).

To show that all subsets of S− of size n − 2 are compatible, let S− ∈ S− and let S
be the corresponding split in S (S is the split obtained from S− by “replacing” a0 with
A0). Since S − {S} is compatible by assumption, there is a representation T = (T,λ)
of S − {S}. Moreover, we have S0 ∈ S − {S}, and A0 ∈ S×

t ⊆ St, so by Lemma 13,
there exists a leaf x of T with λ(x) = A0. Thus it is not difficult to see that the tree T ′

obtained from T by changing the label of x from A0 to a0, and then collapsing the edge
adjacent to x, is a representation of S− − {S−}.

To show that S− is not compatible, assume by contradiction that this is not the case,
and let T = (T,λ) be a representation of S−. Then there must exist a vertex v0 of T such
that a0 ∈ λ(v0). By definition of S−, the split a0|(M+− {a0}) does not belong to S−, so
if v0 is a leaf, λ(v0)− {a0} is nonempty. By removing a0 from the label of v0 and adding
a leaf x adjacent to v0 labeled with A0, we then obtain a representation of S. However,
this is impossible, as S is not compatible by assumption. So, S− is not compatible.

5 2,3-split systems

In Theorem 12, we showed that Conjecture 3 holds for split systems in which every split
has the same size. In this section we consider splits systems in which every split has size 2
or 3, which we shall call 2,3-split systems. In particular we will prove in Theorem 22 that
2,3-split systems in which ever split has multiplicity 1 satisfy a slightly weaker version of
().

We first investigate the structure of labelled trees T such that all splits in S(T ) have
size 2 or 3.

Lemma 17. Let T = (T,λ) be a M-tree for some multiset M and let S = S(T ). If
all splits in S have size 2 or 3, and at least one split of S has size 3, then there exists a
vertex v∗ of T such that:

(i) v∗ is adjacent to all edges of T that correspond to 3-splits of S.

(ii) All vertices of T distinct from v∗ have degree 2 or less.

Proof. We first show that there exists a vertex v∗ such that (i) holds. IfS contains exactly
one split S of size 3, then (i) is true for both ends of the edge e of T associated to S in
T . In this case, and for the purpose of showing (ii) later on, we choose v∗ in such a way
that the connected component of T − e that does not contain v∗ is labelled with the part
of S of size 3.

Suppose now that S contains at least two splits S1 = A|A and S2 = B|B of size 3.
Without loss of generality, we can choose A and B such that |A| = |B| = 3. For i ∈ {1, 2},
let ei be the edge of T associated to Si in T , and let vi be the vertex of ei that belongs
to the connected component of T − ei labelled with A or B, respectively. We now claim
that v1 = v2 must hold.
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Since S1, S2 ∈ S, {S1, S2} is compatible, and so Lemma 4 implies that A ⊊ B and
B ⊊ A, since all other inclusions are forbidden due to the respective size of the sets. In
particular, e1 belongs to the connected component of T − e2 labelled with B, since the
converse would imply that one of A ⊆ B or A ⊆ B held. In particular, v1 belongs to
the connected component of T − e2 labelled with B, and by symmetry, v2 belongs to the
connected component of T − e1 labelled with A. Now, suppose for contradiction that
v1 ∕= v2, and let e be an edge on the path between v1 and v2 in T . Clearly, v1 and v2
belong to distinct connected component of T − e. In view of the above observation, the
connected component of T − e containing v1 has A in its label set, and the connected
component containing v2 has B in its label sets. Therefore, the split S = C|C ∈ S
induced by e satisfies (up to permutation), A ⊆ C and B ⊆ C. By assumption, S has size
at most three, so one of A = C or B = C must hold. However, if A = C, then λ(v1) = ∅,
and v1 must have degree 2 in T . This is impossible by definition of a M-tree. Also, one
can show using similar arguments that B = C cannot hold either. Hence, v1 = v2 must
hold as claimed.

It follows that any two edges of T associated to a 3-split of S must share a vertex.
Since T is a tree, and therefore acyclic, it also follows that there exists a unique vertex v∗

of T that is adjacent to all such edges. We thus pick this vertex v∗, as (i) clearly holds
for this choice of v∗.

To see that (ii) holds, it suffices to remark that for either of the two choices of v∗

above, after removal of v∗ from T , all connected components have label set of size 2 or 3.
In particular, if v is a vertex of T distinct from v∗, and e is the edge adjacent to v on the
path between v and v∗, then the connected component of T − e containing v has label set
of size 2 or 3. If there exists two edges e1 and e2 adjacent to v and distinct from e, then
this implies that (at least) one of the splits associated to e1 or e2 must have size 1. Since
S does not contain any split of size 1, this is impossible. Hence, v has degree at most 2
so (ii) holds.

Next, we prove a useful technical lemma.

Lemma 18. Let M be a multiset with underlying set X and let A1, . . . , Ak, k  2 be a
partition of M. Let G be a graph whose vertex set is the set {Ai : 1  i  k}, such that
each edge {Ai, Aj}, i ∕= j, of G satisfies Ai ∩ Aj ∕= ∅. Then, we have ∆(M)  k − c,
where c is the number of connected components of G.

Proof. Let F be the disjoint union of spanning trees with one taken in each component
of G. Since F is acyclic, we have |E(F )| = |V (F )|− c = k − c, so it suffices to show that
∆(M)  |E(F )|.

To each edge e = {A,B} of F , we can associate one element p(e) in A ∩ B. For x an
element of X, we denote by π(x) the number of edges e ∈ E(F ) such that p(e) = x. Since
F is acyclic, the number of vertices A of F satisfying x ∈ A is at least π(x) + 1. Since
the vertices of F form a partition of M, it follows that M(x)  π(x) + 1. This implies
∆(M) = Σx∈X(M(x)− 1)  Σx∈Xπ(x) = |E(F )|, as required.

We now prove the first of two key propositions.
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Proposition 19. Suppose F is an incompatible 2,3-split system on M containing k  3
splits, in which every split has multiplicity 1 such that all proper subsets of F are compat-
ible. If F×

t = ∅, then ∆(M)  k − 3.

Proof. First, note that if all splits in F have the same size, then F is thin, so Ft = F×
t ∕= ∅

holds by Lemma 14. Therefore, F contains at least one 2-split and at least one 3-split.
We begin by showing that F enjoys the following property:

(*) If A|A ∈ F such that |A| = 3, then there exists some B|B,C|C ∈ F with B ∕= C,
|B| = |C| = 2 and B,C ⊆ A.

To see this, first note that for all splits B|B of F with |B|  |B| and B ∕= A, we have
|B|  |A| = 3  |B|. Therefore, neither A ⊊ B nor B ⊊ A can hold. Since any two
splits of F are pairwise compatible, it follows from Lemma 4 that at least one of A ⊊ B
or B ⊊ A holds. Since F×

t = ∅, A ∈ F×
t is impossible, so there must exist some B|B ∈ F

with |B| = 2 and B ⊊ A. Now, suppose there does not exist some C|C in addition to
B|B. Then since F − {B|B} is compatible, there is some tree representing F − {B|B}
with a leaf having label set A. But then F is compatible, a contradiction.

Now, let S∗ be a 2-split of F, and let {x, y} be the part of S∗ of size 2. LetS = F−{S∗}.
Since S is compatible, there is some M-tree T = (T,λ) which represents S. Moreover,
S contains at least one 3-split, so Lemma 17 implies that T has a “central vertex” v∗ that
is adjacent to all edges that correspond to 3-splits of S, and all other vertices in T have
degree 1 or 2. Let M′ = M − λ(v∗). Since M′ ⊆ M, it follows that ∆(M′)  ∆(M).
We next proceed to show that ∆(M′)  k − 3.

Denote by V0 (resp. V1) the set of leaves of T (resp. the set of vertices of degree 2 of
T , excluding v∗). We also denote by λ(V0) (resp. λ(V1)) the union of the multisets λ(v),
v ∈ V0 (resp. v ∈ V1). These sets form a partition λ(V0) ∪ λ(V1) of M′. Note also that
for all v ∈ V1, we have |λ(v)| = 1, and that |V0|+ |V1| = |S|.

Now, let v ∈ V1 and let zv be the unique element in λ(v). If zv /∈ {x, y}, then by
(*), there exists a leaf l of T such that zv ∈ λ(l). Otherwise, if zv ∈ {x, y}, say zv = x,
then by (*), either there exists a leaf l such that x ∈ λ(l), or the leaf lv adjacent to v
satisfies y ∈ λ(lv) (note that these two cases are not mutually exclusive). Put together,
these observations imply that there is at most one element in M (which must be either x
or y) that belongs to the label of some vertices in V1 but does not belong to the label of
any vertex of V0. This means that ∆(M′) = ∆(λ(V0))+ |V1| if there exists lx and ly in V0

(necessarily distinct) such that x ∈ λ(lx) and y ∈ λ(ly), and ∆(M′) = ∆(λ(V0))+ |V1|− 1
otherwise.

We next focus our attention on the elements in the set V0. We define the undirected
graph G(V0) to be the graph with vertex set {λ(v) : v ∈ V0}, in which two distinct sets
λ(u),λ(v), u, v ∈ V0 are joined by an edge if λ(u)∩ λ(v) ∕= ∅. We claim that G(V0) has at
most two connected components, and has two connected components only if there exists
lx and ly in V0 (necessarily distinct) such that x ∈ λ(lx) and y ∈ λ(ly).

To prove this claim, we first remark that since all vertices v of V0 are leaves of T ,
we have λ(v0)|λ(v0) ∈ S, where λ(v0) is the small part of λ(v0)|λ(v0). Hence, G(V0) is a
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subgraph of the graph G(S) with vertex set {A ⊆ M : A is the small part of a split S ∈
S}, and in which two sets A and B are joined by an edge if A ∩ B ∕= ∅. More precisely,
G(V0) is obtained from G(S) by removing the set {x, y} from V (G(S)), and all sets of
size three that do not label leaves of T .

We next show that G(S) is connected. Assume for contradiction that this is not the
case. Then there exists a partition S1,S2 of S such that for any two splits S1 ∈ S1,
S2 ∈ S2, the small parts of S1 and S2 do not intersect. Since S1 and S2 are nonempty
proper subsets of S, it follows that there exist two M-trees T1 = (T1,λ1), T2 = (T2,λ2)
representing S1 and S2, respectively. Moreover, there exist two vertices v1 ∈ V (T1),
v2 ∈ V (T2) such that for i, j ∈ {1, 2} distinct,


v∈V (Ti)−{vi} λi(v) ⊆ λj(vj). By identifying

vertices v1 and v2, and defining the label of the newly created vertex as λ1(v1) ∩ λ2(v2),
we obtain a representation of S, which is impossible since S is not compatible. Hence,
G(S) is connected.

To complete the proof of the claim, we now further consider the relationship between
G(V0) and G(S). First, let G− be the graph obtained from G(S) by removing all sets
of size three that are not of the form λ(v0), v0 ∈ V0. In view of (*), removing sets of size
three from the vertex set of G(S) does not modify the number of connected components
of the resulting graph, so G− is connected. Recall that G(V0) is obtained from G− by
removing the vertex {x, y}. In particular V0 = V (G−)− {{x, y}}. By definition, each set
adjacent to {x, y} in G− contains exactly one of x or y. Note that no vertex in G(V0)
contains both x and y, as otherwise there exists a leaf l of T with {x, y} ⊊ λ(l), which
is impossible since S is not compatible. Since all vertices of G(V0) containing x (resp.
all vertices of G(V0) containing y) form a clique in G(V0), it follows that G(V0) has at
most two connected components. Moreover, if G(V0) has two connected components, then
there exists at least one vertex adjacent to {x, y} containing x, and one vertex adjacent
to {x, y} in G− containing y. This means that there exists two leaves lx, ly of T such that
λ(lx) contains x and λ(ly) contains y, which completes the proof of the claim.

To conclude the proof of the proposition, we distinguish between the cases where G(V0)
has one and two connected components.

If G(V0) has one connected component, then it follows by Lemma 18 that ∆(λ(V0)) 
|V0| − 1. Since by the above we have ∆(M′)  ∆(λ(V0)) + |V1| − 1, it follows that
∆(M′)  |V0|+ |V1|− 2 = |S|− 2 = k − 3, which concludes the proof.

If G(V0) has two connected components, then it follows by Lemma 18 that ∆(λ(V0)) 
|V0|− 2. Moreover, the fact that G(V0) has two connected components also implies that
there exists lx and ly in V0 such that x ∈ λ(lx) and y ∈ λ(ly). By the above, this in turn
implies that ∆(M′) = ∆(λ(V0)) + |V1|. Putting these two relationships together, we get
∆(M′)  |V0|+ |V1|− 2 = |S|− 2 = k − 3, which concludes the proof.

Remark 20. There are examples of 2,3-split systems F that satisfy the conditions of Propo-
sition 19. For example, take

F = {ab|ab, ac|ac, bc|bc, cd|cd, ce|ce, de|de, abc|abc, cde|cde}

on M = {a2, b2, c5, d2, e2}. Note that in this example, 8 = ∆(M) > |F|− 3 = 5.
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We will also need the following proposition.

Proposition 21. Suppose F is an incompatible 2,3-split system on M containing k  3
splits, in which every split has multiplicity 1 such that all proper subsets of F are compat-
ible. If F×

t ∕= ∅, then ∆(M)  k − 3.

Proof. Note first that since ∆(M)  1 always holds, the proposition trivially holds for
split systems of size k = 3.

Suppose now that F has size k  4, and assume that the result holds for all k′ < k.
Let A0 ∈ F×

t . In particular, 2  |A0|  3 must hold. Put F− = F−
A0

and M− = M−
A0
. By

Theorem 15, F− is incompatible, and every subset of S− of size k − 2 is compatible.
We now show that S− is a 2,3-split system on M− in which every split has multiplicity

1. For S ∈ F − {A0|A0}, we denote by S− the split of S− corresponding to S, that
is, S− = (S(A0) − A0) ∪ {a0}|S(A0). By definition, we have S− = S ′− if and only if
S = S ′. Thus, since every split of F has multiplicity 1, every split of F− has multiplicity 1.
Moreover S is distinct from A0|A0, so we have 2  |(S(A0)−A0)∪{a0}|  S(A0)−|A0|+1.
Since |S(A0)| > |A0|, |S(A0)| > 2 must hold, it follows that if |S(A0)| = 3, then |A0| = 2.
Moreover, the latter inequality implies |(S(A0)−A0)∪{a0}| = 2. If otherwise, |S(A0)| > 3,
then since S has size 2 or 3, 2  |S(A0)|  3 must hold. In both cases, if follows that S−

has a part of size 2 or 3, and so S− is a 2,3-split system.
To conclude the proof, note that if (S−)×t = ∅, then we can use Proposition 19, to

conclude that∆(M−)  k−4. Otherwise, if (S−)×t ∕= ∅, then by our induction hypothesis,
we have ∆(M−)  k − 3. In both cases, since ∆(M−) < ∆(M) holds by definition of
M−, ∆(M)  k − 3 follows.

We now prove the main result of this section.

Theorem 22. Suppose that S is a 2,3-split system on a multiset M in which every split
has multiplicity 1 (i.e. S is a set). Then S is compatible if and only if every submultiset
of S of size at most ∆(M) + 3 is compatible.

Proof. The ‘only if’ direction is trivial. To see the ‘if’ direction, assume for contradiction
that S is not compatible. Let S′ be an incompatible subset of S that is minimal with
respect to set inclusion, that is, all proper subsets of S′ are compatible. Denoting by k
the size of S′, we have by assumption that k > ∆(M) + 3. On the other hand, applying
Proposition 19 or Proposition 21 to S′ implies that ∆(M)  k − 3, a contradiction.

6 Discussion

In this paper, we have shown that Conjecture 3 holds for some special classes of split
systems, and that a slightly weaker version holds for 2, 3-split systems. In the special case
of 2, 3-split systems, the arguments not only rely on the particular structure of the tree
T representing such a split system (Lemma 17), but also on the fact that, for a 2, 3-split
system S, the split system S− as defined in Section 4 is also a 2, 3-split system. These
two properties make it impractical to easily extend the current proof in order to generalize
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Theorem 22 to other classes of split systems with restricted split sizes. This being said,
future work on trying to prove Conjecture 3 might start by considering other special types
of split systems (for example, maybe it could be possible to somehow define and study
split systems that are close to being thin).

Even though we would ideally like to show that Conjecture 3 holds in general, we
note that for multisets M where ∆(M) is large, there is a substantial difference between
the bound 2∆(M) guaranteed by Theorem 2, and the bound ∆(M) + 2 postulated by
Conjecture 3. It might therefore be interesting to find ways to improve the former bound,
even if such an improvement might not go as far as ∆(M) + 2 (such as the bound in
Theorem 22).

Finally, as mentioned in the introduction, the work that we have presented has some
links to the perfect phylogeny problem. With regards to that problem, a quite complex
counterexample was recently found to a long-standing conjecture that is somewhat similar
in nature to Conjecture 3 [15]. Bearing this in mind, it might also be worth to look into
ways to systematically construct a counterexample to Conjecture 3. Indeed, even if there
is no such counterexample, this approach might yield new ideas for tackling this intriguing
problem.
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