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Plate 2.1 (cont.) (o) PATMOS-x 6.0 cloud fraction annual 
anomalies (%); (p) GloLakes lake water storage anomalies 
(%); (q) GRACE-FO difference in annual-mean terrestrial 
water storage between 2022 and 2023 (cm); (r) Copernicus 
Climate Change Service (C3S) average surface soil moisture 
anomalies (m3 m−3). Data are masked where no retrieval is 
possible or where the quality is not assured and flagged, for 
example due to dense vegetation, frozen soil, or radio fre-
quency interference; (s) Mean self-calibrating Palmer 
Drought Severity Index (scPDSI) for 2021. Droughts are indi-
cated by negative values (brown), wet episodes by positive 
values (green). No calculation is made where a drought 
index is meaningless (gray areas: ice sheets or deserts with 
approximately zero mean precipitation); (t) GLEAM land 
evaporation anomalies (mm yr−1); (u) ERA5 mean sea level 
pressure anomalies (hPa); 
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started the year with strong wet anomalies that persisted for most of the year, while in the central 
and southeast part of the country, severe below-normal conditions started to emerge at the end 
of 2023 (e.g., Clarke et al. 2024; see section 7d2). 

In contrast to these regionally confined wet soil moisture anomalies of 2023, dry condi-
tions were observed in numerous regions (Plate 2.1r). The most pronounced dry anomaly was 
observed in southern South America, especially in the River Plate basin and Patagonia (below 
50% of normal soil moisture in some areas). This region has been suffering from a multi-year 
drought since 2019 (Naumann 2021). Pronounced dry conditions also persisted in the Canadian 
Prairies for the third consecutive year (see section 7b1; van der Schalie et al. 2022; Stradiotti et al. 
2023). Although soil moisture remained below normal, drought conditions in the Great Plains 
of central North America weakened in 2023 compared to 2022. Mexico experienced drier-than-
normal conditions during June–September (Appendix Fig. A2.6). Similarly, below-normal soil 
moisture was observed in southwestern Africa (including South Africa and Namibia), with the 
most pronounced dry anomalies recorded from February to May. Many of the regions around 
the Mediterranean Sea (including Spain, northern Morocco, Algeria, and Tunisia) also experi-
enced moderately dry conditions in 2023. In addition, widespread mild-to-moderate negative 
soil moisture anomalies were observed over much of inland China, southern Central Asia, 
northern Asia, and in the higher latitudes in general. In southeast Australia, the strong positive 
soil moisture anomalies of 2022 (Stradiotti et al. 2023) turned into widespread dry anomalies 
covering most of the southern part of the continent (except for parts of Victoria), but with inter-
mittent periods of wetter-than-normal conditions in January, April, June, and July.

Soil moisture was observed by microwave satellite remote sensing of the surface soil layer 
down to approximately 5-cm depth, as provided by the COMBINED product of the Copernicus 
Climate Change Service (C3S) version 202212 (Dorigo et al. 2023). C3S combines multi-sensor data 
in the 1978–2023 period through statistical merging (Dorigo et al. 2017; Gruber et al. 2017, 2019). 
Wet and dry anomalies here refer to the deviation from the 1991–2020 climatological average. 
Note that changes in spatiotemporal coverage (also between product versions, e.g., resulting 
from the inclusion of additional sensors) can introduce uncertainties in the domain-averaged 
soil moisture time series (e.g., Bessenbacher et al. 2023). 

11. MONITORING GLOBAL DROUGHT USING THE SELF-CALIBRATING PALMER 
DROUGHT SEVERITY INDEX
—J. Barichivich,  T. J. Osborn,  I. Harris,  G. van der Schrier,  and P. D. Jones

The self-calibrating Palmer Drought Severity Index (scPDSI; Wells et al. 2004; van der Schrier 
et al. 2013) over the period 1950–2023 shows that the increasing trend in severity and extent of 
global drought, which has been ongoing since mid-2019 (Barichivich et al. 2020, 2021, 2022), 
reached a new historical peak during the 
second half of 2023 (Fig. 2.43). During 
June–September, extreme drought condi-
tions (scPDSI ≤−4) surpassed 7% of the 
global land area for the first time in the 
record, peaking at a new historical maximum 
of 7.9% in July. Similarly, the extent of severe 
plus extreme drought conditions (scPDSI 
≤−3) in 2023 exceeded 16% of the global land 
area for the first time during the same period, 
reaching a historical maximum of 16.8% in 
July. Moderate or worse drought conditions 
(scPDSI ≤−2) peaked in September at a his-
torical maximum of 29.7% of the global land 
area. 

The global pattern of regional droughts 
seen in 2022 largely persisted through 2023, 
with the most extensive severe-to-extreme 

Fig. 2.43. Percentage of global land area (excluding ice sheets 
and deserts) with self-calibrating Palmer Drought Severity 
Index (scPDSI) indicating moderate (≤−2), severe (≤−3), and 
extreme (≤−4) drought for each month during the period 
1950–2023. Inset: each month of 2023.
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drought conditions occurring over South America, parts of North America, the Mediterranean, 
and the midlatitudes of Asia (Plate 2.1s). Drought severity eased through western North America 
and parts of northern and eastern Europe but worsened in tropical South America and the mid-
latitudes of Asia (Fig. 2.44). In western North America, California experienced a shift from dry to 
wet conditions, but the overall west–east moisture contrast observed across the United States 
since 2017 continued as Arizona and New Mexico were under moderate drought (Plate 2.1s). 
Moderate drought conditions also affected Mexico and Central America. In South America, 
El Niño conditions during the latter half of 2023 led to extremely wet conditions in coastal areas 
of Peru and extreme drought through the Amazon basin to the La Plata basin and central Chile. 
By the end of October, the Rio Negro at Manaus, a major tributary of the Amazon River (Barichivich 
et al. 2018), fell to its lowest water level since records began in 1902. The megadrought of central 
Chile reached its 14th consecutive year in 2023, but an increase in winter rainfall broke the 
drought in the south-central part of the country (section 2d5).

Although precipitation was above normal in parts of northern, central, and eastern Europe 
in 2023 (section 2b5), most of the southern part of the continent, particularly countries around 
the Mediterranean, continued under severe-to-extreme drought (Plate 2.1s). In northern Africa, 
previous extreme drought conditions along 
the Mediterranean coast from Morocco to 
Tunisia continued through 2023 (Plate 2.1s). 
Most of the Middle East from eastern Türkiye 
to Pakistan also saw a continuation of 
severe-to-extreme drought conditions.

Although uncertain due to sparse in situ 
data, moisture patterns in Africa did not 
change much in 2023 (Plate 2.1s). Tropical 
Africa saw a continuation of moderate wet 
conditions that were observed since 2019. 
Southern Africa saw a continuation of 
drought conditions that began in 2018, and 
its severity remained mostly as moderate. In 
Australia, drought eased in many northern 
regions, was sustained in the southwest, and 
worsened in the easternmost parts during 
2023; some parts of the country continued 
under moderate drought (Plate 2.1s). Wet 
conditions seen through most of India and 
southeast Asia in 2022 continued during 2023. 
In contrast, severe-to-extreme drought conditions extended farther through China, Mongolia, 
and Kazakhstan. Previous severe-to-extreme drought continued through part of northeastern 
Siberia (Plate 2.1s). 

Hydrological drought results from a period of abnormally low precipitation, sometimes exac-
erbated by a concurrent increase in evapotranspiration (ET). Its occurrence can be apparent in 
reduced river discharge, soil moisture, and/or groundwater storage, depending on the season 
and duration of the event. Here, the scPDSI is calculated, using gridded global precipitation 
and Penman-Monteith Potential ET from an early update of the CRU TS 4.08 dataset (Harris 
et al. 2020). A simple water balance at the core of the scPDSI estimates actual evapotranspira-
tion, soil moisture content, and runoff based on the input precipitation and potential loss of 
moisture to the atmosphere. Estimated soil moisture categories are calibrated over the complete 
1901–2023 period to ensure that “extreme” droughts and pluvials (wet periods) relate to events 
that do not occur more frequently than in approximately 2% of the months. This calibration 
affects direct comparison with other hydrological cycle variables in Plate 2.1s that use a different 
baseline period.

Fig. 2.44. Change in drought categories from 2022 to 2023 
(mean self-calibrating Palmer Drought Severity Index 
[scPDSI] for 2023 minus mean scPDSI for 2022). Increases in 
drought severity are indicated by negative values (brown) 
and decreases by positive values (green). No calculation 
is made where a drought index is meaningless (gray 
areas: ice sheets or deserts with approximately zero mean 
precipitation).
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Sub-
section

General Variable or 
Phenomenon Specific dataset or variable Source

2d11 Drought
Climatic Research Unit 
gridded Time Series (CRU 
TS) 4.07

https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.07/

2d12 Land Evaporation
Climatic Research Unit 
gridded Time Series (CRU 
TS) 4.07

https://www.gleam.eu/

2d1 Modes of Variability Southern Oscillation Index https://crudata.uea.ac.uk/cru/data/soi/

Section 2e Atmospheric circulation

Sub-
section

General Variable or 
Phenomenon Specific dataset or variable Source

2e1 Modes of Variability
Antarctic Oscillation 
(AAO)/Southern Annular 
Mode (SAM)

https://ftp.cpc.ncep.noaa.gov/cwlinks/norm.daily.aao.index.b790101.
current.ascii

2e1 Pressure, Sea Level or 
Near-Surface ERA5 https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5

2e2 Modes of Variability
Antarctic Oscillation 
(AAO)/Southern Annular 
Mode (SAM)

https://ftp.cpc.ncep.noaa.gov/cwlinks/norm.daily.aao.index.b790101.
current.ascii

2e2 Wind, [Near] Surface ERA5 https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5

2e2 Wind, [Near] Surface HadISD v3.3.0.2022f https://hadleyserver.metoffice.gov.uk/hadisd/v330_2022f/index.html

2e2 Wind, [Near] Surface

Modern-Era Retrospective 
Analysis for Research and 
Applications version 2 
(MERRA-2)

http://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/

2e2 Wind [Near Surface]
Remote Sensing System 
(RSS) Merged 1-deg 
monthly radiometer winds

https://www.remss.com/measurements/wind/

2e2 Wind [Near Surface]
Remote Sensing 
System (RSS) Advanced 
Scatterometer (ASCAT)

https://www.remss.com/missions/ascat/

2e2 Wind [Near Surface] Remote Sensing System 
(RSS) QuickScat4 https://www.remss.com/missions/qscat/

2e3 Wind [Upper Atmosphere] Quasi biennial Oscillation 
(QBO) https://www.atmohub.kit.edu/data/singapore2023.dat

2e3 Modes of Variability
Antarctic Oscillation (AAO), 
Southern Annular Mode 
(SAM)

https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_
index/aao/aao.shtml,  
http://www.nerc-bas.ac.uk/icd/gjma/sam.html
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