
The Effect of Liquidity on the Spoofability of Financial Markets
Anri Gu

University of Michigan
United States of America

anrigu@umich.edu

Yongzhao Wang
University of Liverpool

United Kingdom
The Alan Turing Institute

United Kingdom
yongzhao.wang@liverpool.ac.uk

Chris Mascioli
University of Michigan
United States of America
cmasciol@umich.edu

Mithun Chakraborty
University of Michigan
United States of America

dcsmc@umich.edu

Rahul Savani
University of Liverpool

United Kingdom
The Alan Turing Institute

United Kingdom
rahul.savani@liverpool.ac.uk

Theodore L. Turocy
University of East Anglia

United Kingdom
The Alan Turing Institute

United Kingdom
t.turocy@uea.ac.uk

Michael P. Wellman
University of Michigan
United States of America
wellman@umich.edu

Abstract
We investigate the relationship between market liquidity and spoof-
ing, a manipulative practice involving the submission of deceptive
orders aimed at misleading other traders. Utilizing an agent-based
market simulator, we model markets with varying levels of liquidity,
adjusting the spread and intervals of a market maker’s orders to
control liquidity. Within these simulated markets, we evaluate the
effectiveness of two novel spoofing strategies against a benchmark
approach. Our experiments show that in high-liquidity markets,
spoofing is substantially less profitable and less detrimental to other
traders compared to their low-liquidity counterparts. Additionally,
we identify two distinct spoofing behavior regimes based on liq-
uidity, each of which employ drastically different profit-making
strategies. Finally, building on our quantitative findings, we iden-
tify and expound upon the mechanisms through which liquidity
mitigates market manipulation.
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1 Introduction
Electronic trading platforms have reshaped the financial market
landscape, enabling the automation of trading and significantly
increasing transaction volume and speed. Automated traders now
possess an extraordinary ability to gather and exploit market infor-
mation from a plethora of sources, including transactions and order
book data provided by multiple market mechanisms. While these
advancements can improve price discovery and market efficiency,
they may also enable advanced versions of disruptive practices such
as market manipulation. For example, automation could enhance
implementations of spoofing: placing spurious orders to create ap-
parent order book imbalances. This generates false impressions of
relative demand and supply, influencing the behavior of traders
who track the order book as part of their decision-making processes.
Spoofers then exploit the market movements for profit before can-
celing their spurious orders.

One of the most notorious cases of spoofing was that of Navinder
Singh Sarao, an independent high-frequency trader who placed
$200 million worth of orders betting that the market would fall and
then swiftly modified and/or canceled these orders 19,000 times
[22]. This manipulative tactic distorted market prices and created
artificial price fluctuations, allowing Sarao to profit at the expense
of other traders, ultimately netting him $40 million in profit.

Though spoofing has been ruled illegal in the U.S. and many
other countries, it continues to be widespread in practice due to its
profitability and the inherent difficulties of determining manipu-
lative intent behind a trader’s actions [12]. Therefore, thoroughly
understanding spoofing mechanisms and behavior under various
market conditions is essential for aiding regulatory bodies develop
more effective manipulation detection and prevention strategies.

In this study, we investigate the effects of market liquidity on
spoofing within an agent-based simulator, aiming to identify the
types of markets most vulnerable to spoofing and the behaviors
of spoofers in these environments. We control market liquidity by
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introducing amarket maker (MM) who continually maintains offers
to buy and sell. By adjusting the spread and intervals of the MM’s
orders, we can modulate market liquidity. Simulations include two
types of background traders: zero intelligence (ZI) agents, who dis-
regard the order book, and heuristic belief learning (HBL) agents,
who leverage the order book to predict price movements and can
be affected by spoofing. We then examine the performance of three
spoofing strategies under different liquidity levels: a baseline strat-
egy, a reinforcement learning-derived (R-Learned) strategy, and a
static, tuned strategy with optimized parameters. The R-Learned
and tuned strategies, which we developed, show strong profitability
and have a more detrimental impact on the market, whereas the
baseline strategy, as described by Wang et al. [25], only exhibits
moderate profitability.

Through comprehensive experiments, we find that market liq-
uidity significantly influences both the performance and behavior
of spoofers. In highly liquid markets, the environment is more
resilient and background traders are less susceptible to spoofing,
making it difficult for spoofers to profit. Consequently, spoofers
tend to lower their profit expectations and behave more like regular
traders. In contrast, in less liquid markets, spoofers can fully exploit
background traders and achieve significant profits. Additionally,
we observe that the spoofer’s arrival rate is crucial for success-
ful spoofing, especially in high liquidity markets. A slow arrival
rate increases the risk of unintended execution of spoofing orders
and reduces the ability to promptly adjust to market conditions.
Accordingly, we demonstrate how market liquidity affects these
factors and show that the impact of arrival frequency on spoofer
performance varies with market liquidity. Finally, we utilize an
analytical framework to elaborate upon the mechanisms through
which market liquidity inherently mitigates the effects of spoofing.

In summary, the contributions of this work include:
(1) Developing advanced spoofing strategies using RL and pa-

rameter optimization, which surpass existing baseline strate-
gies in both profitability and market impact;

(2) Demonstrating that market liquidity significantly affects the
performance and behavior of spoofers, with highly liquid
markets being more resistant to spoofing while less liquid
markets experience more severe impacts;

(3) Examining the effect of a spoofer’s arrival rate on the market
and the spoofer itself, revealing that frequent arrivals are
critical in highly liquid markets but less significant in low
liquidity markets;

(4) Providing a comprehensive analysis of themechanisms through
which spoofing affects the market and how market liquidity
inherently mitigates the effects of spoofing.

2 Related Work
2.1 Spoofing in Financial Markets
The literature on spoofing and its impact on financial markets is
relatively limited, with the majority of existing research relying on
historical market data analysis [21]. Lee et al. [12] conducted one
of the pioneering spoofing studies, modeling spoofing using data
from the Korea Exchange. Their work provided insights into how
spoofing influences market price movements and the scale of the
order-book imbalances that spoofing creates. Wang [27] expanded

upon their work and investigated spoofing in an index futures
market in Taiwan, identifying characteristics of the strategy, its
profitability, and its real-time impact. Cartea et al. [4] utilized a
mathematical framework to derive the optimal spoofing strategy
given a set of historical NASDAQ data. The strategy trades off the
benefits from spoofing and the potential penalties the manipulator
may receive from being caught in executing the nefarious prac-
tice. Cartea et al. [3] further utilized historical data to analyze the
conditions under which learning market makers unintentionally
adopt manipulative behavioral patterns; in contrast, in our model,
we define our spoofing strategies within a predefined manipulative
action space, enabling a direct comparison and characterization of
spoofing behavior across different market conditions.

A few studies have also utilized machine learning to model spoof-
ing [2, 15, 26]. Notably, Martínez-Miranda et al. [13] examined
spoofing through the framework of reinforcement learning, model-
ing the manipulative practice as a Markov Decision Process (MDP).
They determined liquidity to be a favorable condition for spoofing
because it facilitates more rapid trades and thus higher transition
probabilities in the MDP. In contrast, our study investigates the
influence of liquidity on manipulation across all aspects of market
dynamics.

Our work is most closely related to a line of investigation by
Wang et al. [25], which uses an agent-based model (ABM) populated
with diverse trading agents to simulate spoofing and its general
impact on financial markets.

2.2 Other Types of Market Manipulation
Various forms of market manipulation beyond spoofing have been
investigated in existing research. One notable example is bench-
mark manipulation, the practice of intentionally distorting financial
reference rates or indices used to price various summary statistics
[1, 7, 8, 11, 17, 23].

In particular, Shearer et al. [19] employed an augmentation of our
ABM framework to study benchmark manipulation and illustrate
the potential for deep RL agents to find manipulative practices
when given the sole goal of profit-maximization.

Automating market manipulation at scale has also been the
subject of a body of work; for example, Yagemann et al. [28] demon-
strated the feasibility of stock market manipulation via botnet hi-
jacking of brokerage accounts using an ABM that incorporates SEC
data. Stenfors et al. [20] investigated the practice of cross-market
spoofing, the act of exploiting the interconnected nature of different
markets. They demonstrated the viability of this manipulative strat-
egy in some paired currency exchange markets and the significant
challenges related to its detection due to its complex, multi-market
nature.

3 Agent-Based Simulation Environment
3.1 Market Model
Our market model extends those used in previous studies [19, 25].
It employs a continuous limit order book (LOB) mechanism over
a single security. Time progresses in integer timesteps, 𝑡 ∈ [1,𝑇 ].
Agents in the model submit buy (sell) limit orders, specifying the
maximum (minimum) price they are willing to pay (accept) and the
number of units they wish to trade.
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3.1.1 Fundamental Value Process. The dynamic intrinsic value of
the security is determined by a mean-reverting stochastic process:

𝑟𝑡 =𝑚𝑎𝑥{0, 𝜅𝑟 + (1 − 𝜅)𝑟𝑡−1 + 𝑢𝑡 }; 𝑟0 = 𝑟,
where 𝑟𝑡 is the fundamental value at time 𝑡 ; the mean-reversion
rate 𝜅 ∈ [0, 1] captures the tendency of the fundamental to revert
to its mean 𝑟 ; 𝑢𝑡 ∼ N(0, 𝜎2𝑠 ) represents a random shock applied
to the fundamental at each step, 𝜎2𝑠 being the shock variance. The
realized value of the security at the end of the finite horizon 𝑇 is
given by 𝑟𝑇 .

In addition, by observing the current fundamental, agents can
compute 𝑟𝑡 , their estimate of 𝑟𝑇 :

𝑟𝑡 = (1 − (1 − 𝜅)𝑇−𝑡 )𝑟 + (1 − 𝜅)𝑇−𝑡𝑟𝑡 . (1)

3.1.2 Limit Order Book. The market tracks outstanding orders
using a limit order book. The book has two sides organized as priority
queues: the buy (sell) side prioritizes orders by higher (lower) limit
prices and earlier arrival times 𝑡 , further ties being broken uniformly
at random. BID𝑡 (ASK𝑡 ) denotes the highest buy offer (lowest sell)
price at timestep 𝑡 . When orders are transacted or withdrawn, the
order book is updated instantly by appropriate order removals or
quantity adjustments.

3.1.3 Arrival Process. Agents (re-)arrive to the market following a
Poisson process with an agent-specific arrival rate 𝜆𝑎 . Upon each
arrival, an agent first withdraws its previous outstanding orders
from the order book and then submits new limit order(s) based on
its observations and its trading strategy.

3.2 Trading Strategies
We consider four types of market participants: background traders
further divided into zero intelligence (ZI) and heuristic belief learning
(HBL) agents; a market maker (MM); and a spoofer.

3.2.1 Background Agents. The net position 𝑞 (positive for long,
negative for short) of a background trader is an integer representing
the number of units of the security held and is constrained to be at
most𝑞max in magnitude. Each background trader 𝑖 has an individual
private value expressed as a vector Θ𝑖 of length 2𝑞max:

Θ𝑖 = [𝜃−𝑞max+1
𝑖

, . . . , 𝜃−1𝑖 , 𝜃0𝑖 , 𝜃
1
𝑖 , . . . , 𝜃

𝑞max
𝑖

],

where 𝜃𝑞
𝑖
is the incremental private benefit forgone by selling one

unit (alternatively, 𝜃𝑞+1
𝑖

is the marginal private gain from buying
one additional unit) given the current position 𝑞. We construct Θ𝑖

by generating 2𝑞max samples independently from the distribution
N(0, 𝜎2

𝑃𝑉
) and sorting them in descending order, thus ensuring

diminishing marginal returns. That is, 𝜃𝑞
′ ≤ 𝜃𝑞 for all 𝑞′ ≥ 𝑞.

Moreover, upon every arrival, a background trader is designated
to be a buyer or seller with equal probability and places a new
order of unit quantity. ZI and HBL traders differ in their strategy of
determining the limit price.

ZI Agents. The ZI trading strategy was originally introduced by
Gode and Sunder [10]. Upon each arrival, our ZI agent observes
the current fundamental 𝑟𝑡 and uses it to compute an estimate
𝑟𝑡 of the final fundamental via Equation (1). Its limit price is a
combination of this estimate, its private value, and a random offset
𝑜 ∼ U(𝑅min, 𝑅max) where 𝑅min and 𝑅max are lower and upper

bounds on the ZI agent’s demanded surplus. For agent 𝑖 with current
position 𝑞, this price is given by

𝑝𝑖 = 𝑟𝑡 +
{
𝜃
𝑞+1
𝑖

− 𝑜 if buying,
𝜃
𝑞

𝑖
+ 𝑜 if selling.

HBL Agents. Unlike ZI agents, an HBL agent examines historical
order and transaction patterns to estimate the probability of execu-
tion for various limit prices [9]. Upon each arrival, it then updates
its observations and computes the limit price that maximizes the
expected surplus it will earn from a unit-quantity order. Specifically,
based on data collected from the latest L transactions, where L
represents an HBL agent’s memory capacity, the estimated prob-
ability that an order placed at timestep 𝑡 at price 𝑝 will result in
a successful transaction is expressed as a belief function 𝑓𝑡 (𝑝) as
follows:

𝑓𝑡 (𝑝) =


TBL𝑡 (𝑝 )+AL𝑡 (𝑝 )

TBL𝑡 (𝑝 )+AL𝑡 (𝑝 )+RBG𝑡 (𝑝 ) if buying,

TAG𝑡 (𝑝 )+BG𝑡 (𝑝 )
TAG𝑡 (𝑝 )+BG𝑡 (𝑝 )+RAL𝑡 (𝑝 ) if selling.

(2)

In Equation (2), each term in the numerator and denominator
represents the number of orders of a specific type in memory, and
we use abbreviations to denote these types.𝑇 and 𝑅 stand for trans-
acted and rejected orders; 𝐴 and 𝐵 represent sell and buy orders; 𝐿
and𝐺 indicate orders with prices at most and at least 𝑝 , respectively.
The rejected value of an order is equal to min(alive · 𝜆𝑏 , 1), where
𝜆𝑏 is the agent’s arrival rate. The alive time is measured as the
difference between the time of order submission and one of 3 end-
points depending on the corresponding event: the order transaction
time (if transacted), the order withdrawal time (if inactive), or the
current time (if active). For further details, we refer the reader to
Wang et al. [25].

The HBL agent 𝑖 at step 𝑡 then selects a surplus-maximizing limit
price as given by:

𝑝∗𝑖 (𝑡) =
{
argmax𝑝 (𝑟𝑡 + 𝜃𝑞+1𝑖

− 𝑝) 𝑓𝑡 (𝑝) if buying,
argmax𝑝 (𝑝 − 𝜃𝑞𝑖 − 𝑟𝑡 ) 𝑓𝑡 (𝑝) if selling.

If upon arrival an HBL agent finds that fewer than L transactions
have occurred or if either side of the order book (buy or sell) is
empty, it defaults to the ZI strategy. However, these cases are in-
frequent, so the change in strategy does not materially impact the
HBL agent’s overall performance.

3.2.2 Market Maker. An MM submits limit orders on both sides of
the market simultaneously. Our MM uses a parameterized ladder
strategy [5, 24] described as follows. Upon (re-)arriving and with-
drawing all of its previous orders, the MM submits a new series of
unit-quantity orders arranged in a ladder structure with 𝐾 rungs
spaced 𝜉 ticks apart. The ladder starts at limit price 𝐵𝑡 = 𝑟𝑡 − 𝜔/2
on the buy side and 𝑆𝑡 = 𝑟𝑡 + 𝜔/2 on the sell side, where 𝜔 is the
offset parameter set by the MM. If needed, the ladder is truncated
to ensure that none of the MM orders immediately executes with
the best bid or ask. If truncated, the ladder is given by{
[𝐵𝑡 − 𝐾𝜉, . . . , 𝐵𝑡 − (𝐾 − 𝑥 + 1)𝜉, 𝐵𝑡 − (𝐾 − 𝑥)𝜉] if 𝐵𝑡 > ASK𝑡

[𝑆𝑡 + (𝐾 − 𝑥)𝜉, 𝑆𝑡 + (𝐾 − 𝑥 + 1)𝜉, . . . , 𝑆𝑡 + 𝐾𝜉] if 𝑆𝑡 < BID𝑡 ,
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where the integer 𝑥 > 0 represents the rung immediately above
𝐵𝐼𝐷𝑡 for sell orders and below 𝐴𝑆𝐾𝑡 for buy orders. That is, 𝑥
satisfies 𝐵𝑡 − (𝐾 − 𝑥)𝜉 < 𝐴𝑆𝐾𝑡 < 𝐵𝑡 − (𝐾 − 𝑥 − 1) for buy orders
and 𝑆𝑡 + (𝐾 − 𝑥 − 1)𝜉 < 𝐵𝐼𝐷𝑡 < 𝑆𝑡 + (𝐾 − 𝑥)𝜉 for sell orders.

3.2.3 Spoofer. Our model includes a spoofer that attempts to ma-
nipulate the buy side but can be trivially extended to symmetrically
manipulate the sell side. At each entry, the spoofer places two or-
ders: a large-quantity limit buy and a unit-quantity limit sell. The
large-quantity bid, which we call the spoofing order, creates the
appearance of high demand in the market. As a result, HBL agents
place bids at higher prices, driving the market price up (see Sec-
tion 8.1 for analysis on this mechanism). The sell order then takes
advantage of this artificial interest. In our experiments, we fix the
spoofing order quantity at 200 and its limit price (denoted 𝑝𝑆𝑃 ) at
one tick below the best bid (i.e., BID𝑡 − 1), but we investigate three
spoofing strategies that differ in how they determine the price of
the spoofer’s sell order.

Baseline Spoofer. This strategy, following the spoofing policy
specified by Wang et al. [25], sets a fixed limit price 𝑟𝑡 + 1 for the
sell order.

Tuned Spoofer. In this strategy, the sell price is 𝑟𝑡 + 𝑜 , where
the offset is found through a grid search of values 𝑜 ∈ [1, 200]
in multiples of 10. Each offset performance is evaluated as the
average spoofer surplus over 4×104 simulations in the experimental
test environment. The best performing offset for each liquidity
environment is then chosen as the optimal.

R-Learned Spoofer. This spoofer uses an RL-derived policy (trained
over 2.5 × 103 simulations) to decide the optimal offset 𝑜 ∈ [1, 200]
from the estimated fundamental 𝑟𝑡 given current market observa-
tions. The underlying RL algorithm utilized was Proximal Policy
Optimization (PPO) [18] with default parameters1 as specified in
Stable-Baseline3 [16]. The observation space for the spoofer con-
sists of:

• Time left in simulation: (𝑇 − 𝑡 )
• Best bid at current timestep: BID𝑡

• Best ask at current timestep: ASK𝑡

• Estimated final fundamental at time 𝑡 : 𝑟𝑡
• Midprice movement from 𝑡 − 1 to t: Indication of direction
of market price movement

• Volume Imbalance: The ratio of the difference in quantity of
the buy and sell sides of the order book

• Queue Imbalance: The ratio of the difference between the
number of buy and sell orders

• Volatility: Variation in asset market value determined by
historical returns

• Relative Strength Index (RSI): A technical indicator used
in momentum trading that measures the speed of a secu-
rity’s recent price changes to assess whether the security is
overvalued or undervalued

As the spoofer’s surplus is only realized at the end of the simula-
tion, we utilize a period-by-period reward function that calculates
rewards as changes in valuation between two consecutive spoofer

1Hyperparameter tuning could potentially improve the performance of the RL-derived
spoofer, but we kept the default.

orders at timesteps 𝑡 and 𝑡 + 𝑘 . In essence, this reward represents
the incremental impact (in hindsight) on final spoofer surplus of
the action taken at time 𝑡 + 𝑘 :

𝑢𝑡+𝑘 = (𝑟𝑇 · 𝑞𝑡+𝑘 + 𝑐𝑎𝑠ℎ𝑡+𝑘 ) − (𝑟𝑇 · 𝑞𝑡 + 𝑐𝑎𝑠ℎ𝑡 ) .

3.3 Realized Surplus
At the end of each simulation, the surplus for each background
agent 𝑖 is computed as the sum of their net cash (cash𝑖 ) and the
valuation final_val𝑖 of their final net position 𝑞𝑇𝑖 :

surplus𝑖 = final_val𝑖 + cash𝑖 ,

where the final valuation is determined by the final fundamental,
𝑟𝑇 , and the agent-specific cumulative private value of the position:

final_val𝑖 = 𝑟𝑇 · 𝑞𝑇𝑖 +


∑𝑘=𝑞𝑇

𝑖

𝑘=1 𝜃𝑘
𝑖

if 𝑞𝑇
𝑖
> 0,

−∑𝑘=0
𝑘=𝑞𝑇

𝑖
+1 𝜃

𝑘
𝑖

if 𝑞𝑇
𝑖
< 0.

Since spoofers and MMs do not have preferences for holding a
certain position on the security, they do not have private values.
Therefore, their surplus is calculated as (𝑟𝑇 · 𝑞𝑇

𝑖
+ cash𝑖 ).

4 Environment Settings
4.1 Simulation Setup
In our experiments, we use PyMarketSim, an efficient Python im-
plementation [14] of the agent-based market simulator described
in Section 3.2 Each simulation runs for 𝑇 = 1 × 104 timesteps and
includes 26 agents: 24 background traders (12 ZI and 12 HBL), 1
MM, and 1 spoofer.

The following market parameters remain constant across all
simulations: the fundamental mean 𝑟 = 1× 105, the mean-reversion
parameter 𝜅 = 5 × 10−2, and the fundamental shock 𝑢𝑡 at each
timestep is drawn independently from distribution N(0, 1 × 104).

The Poisson arrival rate for background traders is 𝜆𝑏 = 0.002,
that is, once every 500 timesteps on average, resulting in some
background agent arriving roughly every 20 timesteps.

Background traders have a maximum position of 𝑞max = 10,
surplus offset bounds of [250, 500], and private values are drawn
from a zero-mean normal distribution with variance 𝜎2

𝑃𝑉
= 5 × 106.

The HBL memory window is L = 4. The MM enters the market at
a rate of 𝜆𝑀𝑀 = 0.035, corresponding to an arrival approximately
every 29 timesteps. The spoofer has an arrival rate of 𝜆𝑆𝑃 = 0.02,
which translates to arrivals approximately every 50 timesteps. The
spoofer arrives in the market only after timestep 𝑡 = 1000 to allow
for market warm-up. To account for the stochastic nature of the
simulations, including fluctuations in market fundamentals, vari-
ations in agent arrival rates, and diverse private valuations, we
average the results over 40,000 simulations.

4.2 Market Liquidity Configurations
According to Chordia et al. [6], high market liquidity refers to “the
ability to buy or sell large quantities of an asset quickly and at low
cost”. In our setting, we define liquidity in terms of parameters
2The code for our experiments is publicly available through the PyMarketSim
repository.



The Effect of Liquidity on the Spoofability of Financial Markets ICAIF ’24, November 14–17, 2024, Brooklyn, NY, USA

A1 A2 A3 B1 B2 B3 C1 C2 C3

𝝃 10 50 100 10 50 100 10 50 100
𝝎 16 16 16 64 64 64 256 256 256
𝑲 8 8 8 8 8 8 8 8 8

Table 1: Market maker configurations for each environment.

governing our liquidity provider: the MM. Specifically, we control
liquidity by setting MM rung size 𝜉 and spread 𝜔 . We consider nine
distinct configurations as shown in Table 1.

• Low 𝝃 , Low 𝝎: Highest liquidity (e.g., A1). Price ladders are
densely concentrated near 𝑟𝑡 , creating a thick market around
the fundamental, enabling larger volumes to be traded with
minimal price movement.

• High 𝝃 , Low 𝝎: High/mid liquidity (e.g., A3). Price ladders
start close to 𝑟𝑡 but have large gaps between the rungs. Some
of the MM orders offer attractive prices, but the sparse rungs
increase the probability of large market price movements.

• Low 𝝃 , High 𝝎: Mid/low liquidity (e.g., C1). Price ladders
are dense but placed further from 𝑟𝑡 . Depending on how
large 𝜔 is, the ladder may begin so far from 𝑟𝑡 that even
dense rungs have little effect in increasing market liquidity.

• High 𝝃 , High 𝝎: Lowest liquidity (e.g., C3). Price ladders
start far from 𝑟𝑡 and have large gaps between rungs, reducing
trading activity and increasing the market impact of large
orders.

Note that these scenarios outline key parameter combinations;
the rest of the simulated market configurations denote incremental
changes within this spectrum.

By fixing one of the two MM parameters, we can easily compare
the liquidities of the markets. For example, A1 is more liquid than
B1, which is more liquid than C1. However, when altering both
parameters, such as in B3 and C1, the relative liquidities can be less
obvious.

To characterize the joint effect of 𝜉 and 𝜔 , we plot the bid-ask
spread (ASK𝑡 − BID𝑡 ). In Figure 1, we see that in high-liquidity
markets, the bid-ask spread is smaller compared to markets with
low liquidity (e.g., compare A1, B1, and C1 or A1, A2, and A3).
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Figure 1: Average bid-ask spread in each market configura-
tion (with no spoofer). Error bars are omitted, as they are
significantly smaller than marker size.

5 Experimental Results
We quantify the performance and impact of our spoofing strategies
along four dimensions: the spoofer’s realized profit (i.e., surplus),
and the effects of spoofing on the ZI agents’ surplus, the HBL agents’
surplus, and the market midprice.

5.1 Spoofer’s Surplus
In Figure 2a, we compare our three different spoofing strategies with
respect to spoofer surplus. We observe that all strategies achieve
positive surplus in all environments. However, the baseline spoofer
achieved significantly lower surplus compared to the other strate-
gies, especially in low liquidity markets. This underperformance
is attributed to the low-priced sell order submitted by the spoofer,
placed at a price of only one tick above 𝑟𝑡 , resulting in extremely low
profit per transaction. In contrast, both the R-Learned and tuned
spoofers performed significantly better as their sell limit prices
were strictly higher than one tick above 𝑟𝑡 for all environments
and thus, were either learned or optimized to be more effective at
generating profits. We delve deeper into the importance of the sell
price in Section 6.

5.2 Spoofing Effects on HBL Agents
In Figure 2b, we illustrate the impact of each spoofer on the average
surplus of HBL agents across market configurations. Each vertical
bar represents the difference between the average realized surplus
of HBL agents in an environment with a spoofer (of one of the
three types indicated in the legend) relative to that achieved in
an otherwise identical environment with no spoofer; individual
surpluses are computed as described in Section 3.3. We observed
that HBL agents generally experienced losses in the presence of
spoofers except in markets with the baseline spoofer. The base-
line spoofer places extremely low-priced sell orders, allowing HBL
agents to accumulate inventory at a lower cost. Although themanip-
ulation occasionally leads HBL agents to trade at higher prices and
earn lower profits, the gains from transactions with the spoofer’s
low-priced sell orders still outweigh these losses, resulting in a
relatively strong net positive effect on HBL agent profits. However,
in low liquidity markets (e.g., the C markets), the spoofing effect
is more powerful and pushes HBL agents to buy at even higher
prices, neutralizing the high profits from the baseline spoofer’s
low-priced sell orders. Moreover, a more powerful spoofer does
not provide low sell orders (see the tuned offsets in Table 2) and
significantly manipulates the HBL agents’ beliefs, resulting in sub-
stantially lower surplus for the HBL agents relative to achieved
surplus in equivalent non-spoofed environments.

5.3 Spoofing Effects on ZI agents
In Figure 2c, we demonstrate the effects of spoofing strategies on
the average surplus of ZI agents. Each vertical bar represents the
difference between the average realized surplus of ZI agents in an
environment with a spoofer (of one of the three types indicated in
the legend) relative to that achieved in an otherwise identical envi-
ronment with no spoofer. We observed that the spoofer increased
average ZI agent surplus across all market settings. This was primar-
ily due to the spoofer’s manipulation causing HBL agents to place
higher-priced buy orders, which in turn increased the likelihood
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(b) Impact of spoofing on HBL agent surplus
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(c) Impact of spoofing on ZI agent surplus

Figure 2: Spoofer surplus and effect of spoofing on background traders. For each background trader type, bars represent average
surplus difference between spoofed and non-spoofed markets that otherwise have identical experimental parameters. Error
bars represent standard errors.

of high-priced ZI agent sell orders transacting. Additionally, the
baseline spoofer strategy yielded the highest increase in ZI agent
surplus among the three strategies. This was due to the baseline
spoofer’s low-priced sell orders, which enabled ZI agents to make
high profit transactions, similar to the baseline strategy’s effect on
HBL agents. As sell prices were set to be higher in the R-Learned
and tuned spoofing strategies, the increase in surplus for ZI agents
was significantly lower under those strategies. Furthermore, in less
liquid markets, spoofing orders had a more pronounced effect on
HBL agents, inducing higher bid prices (e.g., compare midprices of
C3 and A1 markets in Figures 3b and 3c). This further increased the
probability of higher-priced ZI agent sell orders executing, resulting
in higher profit transactions and greater overall surplus relative to
more liquid markets.

5.4 Spoofing Effects on Market Price
In our model, the spoofer aims to profit by creating the perception
of high demand in the market, which is represented by an upward
trend in market price, potentially followed by a dip if and when
the spoofer’s sell order is executed. With this in mind, we plot the
volatility in the market midprice (i.e., midpoint between BID𝑡 and
ASK𝑡 ) under each spoofing strategy in Figure 3. As evident from
Figure 3a, the baseline spoofer had the least manipulative impact. In
all environments with a baseline spoofer, midprices barely fluctuate
and, in particular, do not have the strong initial upward trends
exhibited in the presence of the two more powerful spoofing strate-
gies, as seen in Figures 3b and 3c. In fact, Figure 3a shows a sharp
initial decrease in the midprice from the fundamental mean in the
presence of the baseline spoofer. This is because the spoofer’s sell
order and spoofing buy order jointly influence the beliefs of HBL
agents. We elaborate upon this mechanism in Section 8.1.

Furthermore, we found that liquidity levels significantly impact
spoofing-induced market midprice movements. For instance, Fig-
ures 3b and 3c show insignificant upward trends in midprice in
highly liquid markets (e.g., A1) compared to a substantial increase

in less liquid markets (e.g., C3). These upward trends are then fol-
lowed by declines due to the spoofers capitalizing on the artificial
price increase and pushing the market price back down. A detailed
analysis of the mechanisms behind the effects of market liquidity
on spoofing is provided in Section 8.

6 Liquidity-Induced Spoofing Behavior Regimes
Experimental observations indicate that market liquidity influences
a spoofer’s ability to manipulate the market. Consequently, spoofers
adjust their strategic approach based on market liquidity. Our study
identified two distinct spoofing regimes in markets with varying
liquidity levels. In highly liquid markets, spoofers placed sell orders
that yielded lower profit-per-transaction but achieved a higher
transaction rate. Conversely, in low liquidity markets, spoofers
aimed for higher profit per sale with lower transaction rates.

A1 A2 A3 B1 B2 B3 C1 C2 C3

Optimal Offset 10 40 100 40 80 110 100 110 140
Table 2: Experimentally-derived optimal sell offset 𝑜 for the
tuned spoofer in eachmarket configuration. See Section 3.2.3
for details.

6.1 Low-Profit High-Frequency Regime
In high liquidity markets, a spoofer’s ability to significantly influ-
ence market prices is limited. Consequently, their optimal strategy
shifts towards prioritizing high transaction volume at the expense
of profit-per-transaction. This behavior can be seen by examining
the optimal sell offsets in Table 2. In the most liquid market, A1,
the optimal tuned sell price for the spoofer was found to be 10
ticks above 𝑟𝑡 , much lower than the offsets in less liquid markets
(e.g., 140 ticks for C3). Consequently, the spoofer’s sell orders are
transacted more frequently, resulting in a lower (i.e., shorter) final
position at the end of the simulation, as shown in Figure 4. We refer
to this behavior as low-profit, high-frequency trading.
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(b) R-Learned Spoofer
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Figure 3: Average midprice evolution post-spoofer entry at 𝒕 = 1000. Plotted values are an offset from the fundamental mean,
1 × 105.

Notably, the baseline spoofer is an extreme implementation of
this behavior. Each unit-sell order is placed so as to achieve min-
imal profit but with an extremely high probability of execution.
While it generates significantly lower surplus in non-liquid envi-
ronments compared to the R-Learned and tuned spoofing strategies,
the baseline spoofer achieves decent surplus in high liquidity mar-
kets relative to the other spoofing strategies because it utilizes the
same low-profit high-frequency trading regime. In addition, in high
liquidity markets, the spoofer’s behavior (i.e., placing low sell limit
prices) is less harmful to background traders as these low sell prices
help counteract the effects of the spoofing orders. Therefore, high
liquidity in a market is considered beneficial for both deterring
spoofing and creating more stability in the market.

6.2 High-Profit Low-Frequency Regime
In contrast, in lower liquidity environments, the effect of spoofing
orders is more significant in manipulating the market midprice.
Therefore, the spoofer prefers to place sells at higher price levels, as
shown in Table 2, because the sells maintain a reasonable probability
of transaction. Although the transactions are less frequent with
this behavior, the profit-per-transaction is much higher. We refer
to this behavior as high-profit, low-frequency trading. When the
market allows spoofers to exhibit this high-profit, low-frequency
behavior, the midprice is manipulated to a much higher degree;
in turn, learning traders (i.e., HBL agents) in the market suffer
significant losses to their surplus. This can be seen through the
R-Learned and tuned spoofer’s negative effects on HBL surplus in
the low liquidity markets shown in Figure 2b.

As illustrated in Figure 4, we observed a substantial difference in
final positions for the tuned spoofer in high liquidity markets (A1,
A2, and B1) and low liquidity environments because of the different
spoofing regimes. In high liquidity markets, spoofers adopted a low-
profit, high-frequency approach, selling significantly more units at
lower prices. In contrast, spoofers in lower liquidity markets utilized
a high-profit, low-frequency approach. This pattern and substantial
difference in units sold (≈ 1.5 units as shown in Figure 4) and tuned
limit prices (≥ 40 as detailed in Table 2) between markets above and

below B1’s liquidity level suggests the existence of a critical liquidity
threshold. When market liquidity reaches this threshold, it seems
to prompt spoofers to switch between these two behaviors. This
observation suggests that maintaining adequate market liquidity
could serve as an inherent defense mechanism against spoofing,
potentially informing financial regulation approaches.
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Figure 4: Average position of the tuned spoofer over the
course of the simulation in each market configuration.

7 The Effects of Arrival Rate on Spoofing
A spoofer’s rate of arrival to the market affects the frequency of
modifying its previous sell and spoofing buy orders. A low arrival
rate can increase the risk of unintended execution of spoofing or-
ders and reduce the ability to adjust to current market conditions
promptly, whereas a high arrival rate can help mitigate these risks.
To understand the impact of the arrival rate on spoofing, we exper-
imentally compare the performance of spoofing under two selected
arrival rates 𝜆𝑆𝑃 = 0.02 (fast) and 𝜆𝑆𝑃 = 0.006 (slow).

In Figure 5, we illustrate the difference in the volume of buy
spoofing orders transacted by the slow and fast tuned spoofers,
along with the corresponding differences in surplus loss due to
the buy spoofing orders transacting. From Figure 5a, as expected,
we observed that, in all markets, the slower spoofer had more of
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(a) Difference in spoofing order trans-
action volume.
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(b) Difference in magnitude of sur-
plus loss due to transacted volume
of spoofing orders.

Figure 5: Average difference between slow (𝝀𝑺𝑷 = 0.006)
spoofer and fast (𝝀𝑺𝑷 = 0.02) spoofer. Error bars represent
standard errors.

its spoofing orders transact, with a higher number of units being
transacted in less liquid markets. In high liquidity markets, the MM
frequently places orders near the fundamental, often establishing
the best bid. Even if these orders execute, they are quickly replaced,
shielding spoofing orders and reducing their transaction probability.
Conversely, in low liquidity markets, MM bids typically fall below
the best bid due to largerMMorder spreads/offsets and the spoofer’s
more effective inflationary effect on the buy side. Thus, with slower
order replacement of the best bid by background agents, spoofing
orders lack the same protection, and thus, face higher transaction
probabilities. Accordingly, we noticed that the negative effect on re-
alized surplus increased proportionately to the transaction volume
of the spoofing orders, as illustrated in Figure 5b.

In Table 3, we present the differences between the fast and slow
spoofers in terms of average units sold, surplus, and tuned optimal
offsets. As expected, we observed that the fast spoofer sold more
units across all environments compared to the slow spoofer, result-
ing in a significant increase in surplus achieved. These differences
are especially pronounced in highly liquid markets (A1, A2, and B1)
because optimal spoofing behavior (i.e., low-profit, high-frequency)
in these conditions depend on executing a high volume of transac-
tions. As market liquidity decreases, the gap in units sold and the
surplus difference diminish, suggesting that the advantage of arriv-
ing quickly is less pronounced in less liquid markets. This is because
the optimal manipulation behavior (i.e., high-profit, low-frequency)
relies on generating surplus through high-profit-per-transaction as
opposed to transaction rate. Finally, we observed that the optimal
offsets for the fast spoofer are higher than, or occasionally equal
to, those of the slow spoofer. This is because a spoofer that arrives
more frequently can manipulate the market more effectively, and
thus can set higher offsets while maintaining a viable probability
of execution for its sell orders.

8 Mitigating Spoofing with Liquidity
In addition to our experimental results quantifying how liquidity
mitigates spoofing, in this section, we identify the two key mech-
anisms through which market maker orders reduce the effects of
spoofing on the market.

𝚫 Units Sold % Surplus Increase 𝚫 Offset

A1 +1.47 +34.5 0
A2 +0.69 +26.5 +10
A3 +0.30 +20.6 +20
B1 +0.89 +32.7 0
B2 +0.58 +21.1 +10
B3 +0.54 +16.4 +10
C1 +0.58 +14.2 +10
C2 +0.58 +18.7 +10
C3 +0.53 +12.6 +10

Table 3: Increase in units sold, percent increase in sur-
plus, and change in optimal offset values from the slow
(𝝀𝑺𝑷 = 0.006) to the fast (𝝀𝑺𝑷 = 0.02) tuned spoofer.

8.1 HBL Belief Stabilization
First, we describe the mechanism through which spoofing induces
HBL agents to place higher-priced bids. When HBL agents arrive,
they interpret unexecuted buy orders as rejected orders. Conse-
quently, the large quantity buy spoofing order with price 𝑝SP =

BID𝑡 − 1 significantly inflates the RBG term in the agents’ belief
function 𝑓𝑡 (𝑝) (i.e., Equation (2)) for bids below 𝑝SP . This inflation
diminishes 𝑓𝑡 (𝑝) towards zero for bid prices 𝑝 < 𝑝SP , meaning that
these lower limit prices are unlikely to be optimal for maximizing
expected surplus. Thus, HBL agents place bids at higher limit prices
and see a corresponding reduction in their surplus.

In high liquidity markets, the array of MM sell orders near 𝑟𝑡 can
counteract the inflationary effect of the spoofing order. Specifically,
the low-priced MM asks increase the AL term for buying in Equa-
tion (2) for prices - even slightly - higher than the MM’s sell orders.
This balances the relative scale of AL and RBG for those bid prices,
increasing HBL beliefs for lower bid prices and thereby reducing
the inflationary effect of RBG. Furthermore, the MM’s sell orders
have a symmetric effect to the spoofing buy orders. When these
sell orders remain unexecuted, they contribute to the RAL term for
sell prices above the spoofer’s sell order price in Equation (2). This
induces HBL agents to place their sell orders at prices lower than
the MM’s sell orders, creating deflationary pressure on the market
price, counteracting the effect of the spoofing order.

Notably, the baseline spoofer’s low-priced sell order has the same
effect as the MM’s sell orders. However, because the sell price is
extremely low in the baseline spoofer strategy, the deflationary
effect is much stronger, and thus, we observe a decrease in market
midprice as shown in Figure 3a.

8.2 MM Order Competition
In high liquidity markets, another way a MM can counteract manip-
ulation is by engaging in direct price competition with the spoofer’s
sell order. SuchMMorders are, by definition, densely packed around
the fundamental. Hence, these orders often occupy the top of the
order book, particularly on the sell side.

As a result, even if the market price rises, the MM’s sell orders
have priority and will execute first with the higher-priced bids,
undercutting the spoofer’s sell order. Consequently, for the spoofer
to profit from its manipulation, it must place sell orders at lower
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prices. This negatively impacts the spoofer in two ways: (1) the
spoofer will earn less profit from the manipulation, and (2) the
lower-priced sell order will counteract the inflationary pressure
created by the spoofing order, as explained above in Section 8.1.

9 Conclusion
This study employs a MM to maintain consistent market liquidity,
enabling an investigation into liquidity’s role as a natural deter-
rent to spoofing. Our key finding is that high liquidity markets
significantly reduce the effectiveness of spoofing across all tested
manipulation strategies.We evaluate a spoofer’s success using three
metrics: achieved surplus, impact on market price, and impact on
background traders, particularly the adverse effect on HBL agents.
While the baseline spoofing strategy showed minimal success, our
novel R-Learned and tuned strategies caused substantial losses to
HBL agents and yielded significantly higher profits. Furthermore,
we identified the existence of distinct, optimal spoofing regimes in
high and low liquidity markets respectively. We also investigated
the interplay between liquidity and the role of the spoofer’s arrival
frequency on its profitability. Finally, supported by these observa-
tions, we provide a detailed analysis of the mechanisms through
which market liquidity counteracts spoofing.
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