














Fig. 8. Visualization of output feature maps with the decoder on camel video sequences. The left subfigure (a) shows 16 channels features with the APM,
and the right subfigure (b) shows features with the FPN. The feature map with the APM pays more attention to the foreground.

Fig. 9. Illustration of the sampling locations in cascading alignment. The red points in each image represent five adjacent 3 × 3 regular convolution kernels,
and the receptive fields are plotted by a red dotted rectangle. Black points in each image indicate the learned sampling position for deformable convolution
kernel, relative to the original position (red points).

TABLE I

ABLATION STUDY OF IMCNET ON THE DAVIS16 DATASET WITH

DIFFERENT VARIANTS AND TRAINING STRATEGIES, MEASURED
BY THE MEAN J AND MEAN F . SEE § III-C FOR DETAILS

from results in the sub-table named Cascading Alignment
in Table I. The cascading alignment process can achieve an
absolute gain of 1.2% and 1.1% in mean F and mean J ,
respectively. Fig. 9 shows the visualization of sampling posi-
tions on immediate features in cascading alignment. We use
red points (52 = 25 points in each feature map) to represent
the sampling positions of the regular convolution network, and
black points represent the sampling locations of deformable
convolution in the cascading alignment. We observe that the
sampling positions in the regular convolution are fixed all
over the feature map, while they in APM tend to adaptively

adjust according to objects’ shape and scale. The quantita-
tive evidence of such adaptive deformation is provided in
Table I.

Moreover, we also evaluate the performance of the IMCNet
with a different number of cascading layers of alignment.
We can see from the results in Cascading Alignment of Table I
that the performance gradually improves as the number of
cascading layer l increases, reaching the best at l = 4.
Therefore, the default value of l is set as 4 for the cascading
alignment process.

4) Effectiveness of TSC: To verify the effect of the TSC,
we only add a bridge stage, which is implemented by a
3 × 3 convolutional layer, between the cascading alignment
and segmentation module. As shown in Table I, in the sub-
table TSC, the variant without TSC suffers from a significant
performance drop (−2.2% in mean J and −1.8% in mean F ),
which verifies the effectiveness of TSC.

5) Comparison of Different Training Strategies: In order
to enhance the local dependence during the convergence of
training, we introduce a joint training strategy to capture
intra-frame discriminability. The joint training strategy helps
guarantee our model focuses on mining both local and global
dependence. Our IMCNet is trained with our proposed joint
training strategy in Stage 2. To investigate the efficacy of
joint training strategy on the UVOS task, we train our model
with only Stage 1 and Stage 1&Stage 2 w/o. joint train-
ing. Its comparison results in Training Strategy of Table I
demonstrate the effectiveness of such a joint training method.
In Stage 1, our model is trained with a subset of YouTube-
VOS (annotated one objects mask), it is not reliable for
characterizing objects surrounded by cluttered background
(see breakdance in the second row of Fig. 10), leading to
poor generalization. Especially, it easily fails in the presence
of fast motion (in breakdance and motocross-jump sequences).
However, for intra-frame discriminability, it is better than



Fig. 10. Qualitative results on three sequences for different training strategies. From left to right: breakdance, camel, and motocross-jump from the DAVIS16.
GT and JT denote ground-truth and joint training, respectively.

TABLE II

COMPARISONS WITH KEY PARAMETERS (FRAME NUMBER AND STEP) OF

IMCNET ON THE DAVIS16 DATASET, MEASURED BY THE MEAN J
AND MEAN F . SEE § III-D FOR DETAILS

Stage 1 & Stage 2 without joint training, as shown camel
in the second and third rows of Fig. 10. The IMCNet which is
trained with Stage 1 & Stage 2 (w/o. joint training) is sensitive
to similar surroundings and distracting backgrounds, while
joint training strategy effectively improves the intra-frame dis-
criminability (see breakdance and camel in the fourth row of
Fig. 10).

D. Influence of key Parameters

In this section, we analyze the influence of key parameters in
our IMCNet, including the frame number N , and interval step
�t , for input frames on a densely annotated DAVIS16 dataset.
The networks are evaluated using mean region similarity (J )
and mean boundary accuracy (F ).

1) Frame Number: Our IMCNet simultaneously takes 2N +
1 frames as inputs and generates the segmentation mask of the
center frame (i = t). It is of interest to assess the influence
of the number of input frames 2N + 1 (N ∈ [1, 3]) on the
final performance. Table II shows the results for this. From
the results, we can see that the performance can deteriorate as
N increases. When N is larger, it means that the information of

TABLE III

ATTRIBUTE-BASED ABLATION STUDY ON THE DAVIS16 DATASET.
WE COMPARE THE MEAN J OF DIFFERENT FRAME INTERVAL STEP

�t UNDER VARIOUS ATTRIBUTES. THE MAXIMUM AND
MINIMUM RESULTS ARE MARKED IN RED AND BLUE. �J IS

THE DIFFERENCE BETWEEN THE MAXIMUM

AND MINIMUM VALUES

frames which are far from the center frame is also considered,
which may lead to noisy information. Based on this analysis,
the IMCNet achieves the best performance of 82.7% in mean
J and 81.1% in mean F when N = 1 on the DAVIS16 dataset.

2) Step �t: Another key parameter is the step of frames
�t , which decides sequential frames as input in an ordered
manner is selected at a fixed-length frame interval �t . �t =
1 represents selecting three consecutive adjacent video frames
in input frames. Step in Table II reports the mean J and mean
F as a function of the frame interval�t . We can see that when
�t increase, the mean J and mean F first increase and then
decrease.



TABLE IV

QUANTITATIVE RESULTS ON THE TEST SET OF DAVIS16 , USING THE REGION SIMILARITY J , BOUNDARY ACCURACY F . THE TOP THREE RESULTS ARE
MARKED IN RED, GREEN, AND BLUE. WE ALSO REPORT THE INPUT MODALITY FOR EACH UVOS METHOD IN THE SECOND COLUMN. OF, RGB

AND MF REPRESENT OPTICAL FLOW, RGB IMAGE AND MULTI-FRAMES INPUT IN TEST TIME, RESPECTIVELY

Moreover, Table III illustrates the performance comparison
of different �t under various video attributes of DAVIS16,
including low resolution (LR), scale variation (SV), shape
complexity (SC), fast motion (FM), camera-shake (CS), inter-
acting objects (IO), dynamic background (DB), motion blur
(MB), deformation (DEF), occlusion (OCC), heterogeneous
object (HO), edge ambiguity (EA), out-of-view (OV), appear-
ance change (AC), and background cluttering (BC). IMCNet
with �t = 4 has the best performance under most attributes.
As a result, in the presence of appearance change (AC),
dynamic background (DB), and low resolution (LR), the model
with �t = 1 is the most robust due to the primary object(s)
undergoing huge appearance change, scale variation, and it is
difficult to capture the similarity between multi-frames when
�t is larger. We can reach the same conclusion from �J in
Table III that dynamic background (DB) and out-of-view (OV)
have the greatest influence on interval step �t .

E. Comparison With State-of-the-Arts

We compare our proposed IMCNet with the state-of-the-art
methods in two densely annotated video segmentation datasets,
i.e., DAVIS16 [50] and YouTube-Objects [51]. We apply the
training strategy mentioned in § III-B. Input frame numbers
and step �t are set as 3 and 4.

1) Evaluation on DAVIS16: Quantitative result.
Table IV shows the detailed results, with several
top-performing UVOS methods, including single-modality

input methods [26], [35]–[43] and multi-modality input
models [24], [25], [29]–[34], [48], [49] taken from the
DAVIS16 benchmark. We can observe that our IMCNet
achieves competitive performance compared to other
methods. As shown in Table IV, our model achieves the
third-best results in terms of mean J &F and we can find
that IMCNet has achieved the best results 95.9% in terms
of recall value of J . Specifically, our IMCNet outperforms
all single-modality-based methods and achieves the results
on the DAVIS16 with 82.6% over mean J &F , and is equal
to the DFNet [43]. In addition, we do not apply CRF
post-processing. The results indicate that our model can
capture motion information and implicitly compensate motion
by the MCM better than the single-modality input method.
Multi-modality methods [48], [49] use the optical flow as
a cue to segment objects and can better capture the motion
information. Therefore, these two multi-modality methods,
i.e., TransportNet [48] and RTNet [49], achieved the best
results in the UVOS task. Although the multi-modality input
methods TransportNet [48] and RTNet [49] have achieved the
best result, due to introducing an additional pre-processing
stage to predict the optical flow, the number of model
parameters is more than our model, and inference time is
slower (See § III-E.3).

Qualitative results. Fig. 11 depicts the qualitative results on
DAVIS16 which contains some challenges like cluttered back-
ground, deformation, and motion blur, e.g., breakdance, dance-
twirl, and horsejump-high. As seen, our IMCNet is robust



Fig. 11. Qualitative results on three videos from the DAVIS16 dataset. From top to bottom: breakdance, dance-twirl, and horsejump-high.

TABLE V

QUANTITATIVE PERFORMANCE OF EACH CATEGORY ON THE Youtube-Objects WITH THE REGION SIMILARITY (MEAN J ). WE SHOW THE AVERAGE

RESULT FOR EACH OF THE 10 CATEGORIES FROM THE Youtube-Objects AND THE FINAL ROW SHOWS AN AVERAGE OVER ALL CATEGORIES. THE

TOP THREE FINAL RESULTS ARE MARKED IN RED, GREEN, AND BLUE

Fig. 12. Qualitative results on three videos from the YouTube-Objects dataset. From top to bottom: car-0009, dog-0022, and horse-0011.

to these challenges and precisely extracts primary objects(s)
with accurate boundaries. The breakdance and dance-twirl
sequences from the DAVIS16 contain similar surroundings and
large deformation. We can find that our method can effectively
discriminate the target from those background distractors,
thanks to the ACM and APM. Besides, through implicit
learned and compensating motion by the MCM, our IMCNet
can accurately segment some sequences (e.g., horsejump-
high), where there is fast motion and suffer from motion blur.

2) Evaluation on YouTube-Objects: Quantitative result.
Table V reports the results of several compared methods

[24]–[26], [31], [36]–[38], [40]–[42] for different categories on
the YouTube-Objects dataset. Our method achieves promising
performance in most categories and the second-best over-
all results on mean J . It is slightly worse than COS†

(−0.5%) in terms of mean J and achieves the second-
best results. However, we emphasize that the COS† is more
computationally expensive. Compared with COS, our IMCNet
is superior to the COS without group attention mecha-
nisms. It is indicated that COS obtains a precise segmen-
tation mask by capturing richer structure information of
videos, but our IMCNet can achieve sufficient segmentation



TABLE VI

THE NUMBER OF MODEL PARAMETERS AND INFERENCE TIME
COMPARISON WITH STATE-OF-THE-ART METHODS. THE

ABBREVIATION ‘M’ IN THE ‘#PARAM.’ CELL

REPRESENTS A MILLION

Fig. 13. Trade-off between inference time (x-axis) and segmentation accuracy
(y-axis) on DAVIS16. Our approach demonstrates compelling performance
with high efficiency.

accuracy through three frames without damaging inference
speed.

Qualitative results. Fig. 12 shows the qualitative results on
YouTube-Objects. We can observe that the target object suf-
fering some challenging scenarios like fast motion (e.g., car-
0009 and horse-0011) and large deformation (e.g., dog-0022
and horse-0011). Our model can deal with such challenges
well, it verifies the effectiveness of the MCM.

3) Runtime Comparison: To further investigate the com-
putation efficiency of our IMCNet, we report the number of
network parameters and inference time comparisons on the
DAVIS16 datasets with a 480p resolution. We do not count
data loading and only focus on the segmentation time of the
models. We compare the IMCNet with state-of-the-art methods
which share their codes or include the corresponding experi-
mental results, including AGNN [40], AnDiff [39], COS [37],
MAT [31] DFNet [43], TransportNet [48], and RTNet [49]. For
the inference time comparison, we run the public code of other
methods and our code on the same conditions with NVIDIA
TITAN RTX GPU. The analysis results are summarized in
Table VI.

Table VI shows that our IMCNet reduces the model com-
plexity with fewer parameters than the other methods. For
the inference comparison, we can observe that our method
shows a faster speed than other competitors. Fig. 13 depicts a
visualization of the trade-off between accuracy and efficiency
of representative methods on the validation set of DAVIS16.
As can be seen, our IMCNet achieves the best trade-off.

IV. CONCLUSION

In this paper, we proposed a novel framework, IMCNet,
for the UVOS. The proposed IMCNet mines the long-term

correlations from several input frames by a light-weight affin-
ity computing module. In addition, an attention propagation
module is proposed to transmit global correlation in a top-
down manner. Finally, a novel motion compensation module
aligns motion information from temporally adjacent frames to
the current frame which achieves implicit motion compensa-
tion at the feature level. Experimental results demonstrated that
the proposed IMCNet achieves favorable performance against
other methods while running at a faster speed and using much
fewer parameters.
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