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ABSTRACT

This study reports a deep learning approach that utilises message passing neural networks (MPNNs) for predicting chemical shifts in 13C NMR spectra of small
molecules. MPNNs were trained on two distinct datasets: one with approximately 4000 labelled structures and another with over 40,000. To reduce stochastic
variation, an ensemble framework was implemented, which is simple to deploy on multiple nodes of a High-Performance Computing facility.

The results emphasise the critical role of training set size and diversity. While prediction performance was comparable on test sets drawn from each dataset, the
ensemble trained on the larger dataset retained its accuracy when these sets were crossed over, and when applied to a further collection of approximately 12,000
previously unseen structures introduced after all development work had been completed. In contrast, the ensemble trained on the smaller dataset showed a notable
decline in generalisation ability. This difference is attributed to the greater diversity of atomic environments captured in the larger dataset.

The larger dataset also enabled more robust modelling of various error properties, providing a quantitative foundation for spectral assignment and verification.
This was achieved in two ways. First, a clear relationship was observed between prediction errors and the frequency of different node feature vectors in the training
data, allowing error estimates to be associated with individual nodes based on their type. These estimates can be used as weights in a modified cityblock distance
metric when assigning observed to predicted shifts. Second, the mean absolute prediction error calculated at the structure level is well-fitted by a Gaussian kernel
cumulative distribution. This enabled a probabilistic assessment of whether the predicted shifts and assigned observations are consistent with originating from the

same molecular structure.

1. Introduction

Small organic molecules are fundamental building blocks in syn-
thetic chemistry and biochemistry. Despite their small size, the number
of possible molecular structures arising from different combinations of
atoms, bonds, and functional groups is immense. Navigating this vast
search space to discover, identify, or design molecules with desired
properties requires the integration of experimental techniques with
innovative computational methods [1].

High-resolution nuclear magnetic resonance (NMR) spectroscopy is
the gold standard for elucidating molecular structure. However, accu-
rate prediction of chemical shifts, invaluable for automated structural
assignment and verification, remains a significant challenge. Manual
interpretation of NMR spectra is time-consuming, labour-intensive, and
prone to human error. Modern Al methods have clear potential to
mitigate these issues and are the focus of the present study.

Molecular graphs serve as basic representations of molecules. Until
recently, information was typically extracted from such graphs by
analysis of the properties (‘features’) associated with the atoms
(‘nodes’). Whilst successful up to a point, a limitation of this approach is
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its failure to directly exploit the atom connectivity information given by
the graph adjacency matrix.

The emergence of message passing neural networks (MPNNs)
marked a significant advancement [2,3]. A form of convolutional neural
network, MPNNs provide a deep learning architecture for analysing
collections of intact graphs, that utilises the adjacency matrix in tandem
with the feature set, allowing modelling of intricate interactions be-
tween nodes. In the cheminformatics context, this yields more refined
descriptions of atomic environments, potentially improving models of
relationships between structure and experimental observations. The
approach has rapidly gained traction, and a variety of applications of
MPNNs have been reported [4-6].

Recent studies have shown that graph neural networks can improve
the prediction of NMR chemical shifts beyond the capability of con-
ventional approaches [7-9]. In the present work, we disclose an MPNN
approach for predicting high-resolution *3C NMR chemical shifts from
molecular structures. The framework employs ensembles of MPNNs
trained on collections of assigned NMR spectra. By exploiting the power
of MPNNs coupled with ensemble learning, we aim to achieve more
accurate and reliable chemical shift predictions, with the eventual goal
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of improving automated NMR spectral interpretation, assignment and
verification.

2. Material and methods
2.1. Computational facilities

Code development to prepare the training data and establish the
MPNN framework was carried out on a Dell XPS PC (11th Gen Intel(R)
Core (TM) i9-11900H @ 2.50 GHz, 32 Gb RAM). Subsequent ensemble
training was carried out on a High-Performance Computing (HPC)
cluster equipped with GPU arrays (28 nodes, includes Nvidia Quadro
RTX6000s).

2.2. Software

Coding on the Dell XPS PC was carried out in Matlab R2023a Update
5 (The Mathworks, Cambridge) making use of its Deep Learning toolbox.
For molecular graph creation and feature set extraction, calls were made
from Matlab to a Python 3.10 environment installed with RDKit version
2023.03.3 [10]. MPNN training carried out on the cluster used Matlab
R2022b Update 1. Ensemble learning carried out on the cluster used a
Python 3.10 virtual environment.

2.3. Datasets

Three datasets were used in the present study. ‘Dataset 1’ comprises a
small subset of records taken from the ‘nmrshiftdb2’ database [11]. This
was used to develop the Al framework and to demonstrate the approach.
The motivation for using publicly available data was to enable others to
easily reproduce our work. ‘Dataset 2’ is an extensive collection taken
from a commercially sensitive, proprietary database held by Mestrelab
Research SL (Santiago de Compostela, Spain). Results are presented
from this collection that highlight the advantage of using a much larger
training set. Finally, a further proprietary collection was made available
to the authors once all model development was complete, from which
‘Dataset 3’ was extracted to serve as an independent test set for pre-
dictive models obtained from the other two sets. Summaries of compo-
sitional aspects of each dataset are given in Supp Fig. S1.

2.3.1. Dataset 1: Extracted from nmrshiftdb

A collection of 3703 records (‘mol files’) were extracted from the
‘nmrshiftdb2’ database. Records were selected by the following criteria
(see Supp Fig. S2 for additional details):

(a) Complete assignments — chemical shift values were present for
all active nuclei.

(b) No organometallics — structures containing any metallic ele-
ments were excluded.

(c) Small molecules only — structures with 100 or more heavy atoms
were excluded.

(d) Data integrity — records were discarded due to miscellaneous
errors (e.g. RDKit import failures, typos, e.g. implausible chemi-
cal shift values).

Using Python RDKit utilities, a molecular graph was generated from
each record, comprising an adjacency matrix to describes the node
connectivities and a 52-element feature vector associated with each
heavy atom in the structure. These matrix-based representations orga-
nise the information in a format suitable for input into the graph neural
network. A descriptive list of the features is provided in Supp Fig. S3,
and an illustration of these concepts in Supp Fig. S4. The node features
were selected through both chemical and mathematical considerations.
Specifically, any features that were linear combinations (or very nearly
so) of others were excluded to prevent them from compromising the
training process. This produced a feature set from the graph collection
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with a matrix rank of 52.

The collection was randomly subdivided into two sets comprising
respectively 2778 and 925 unique structures. The latter were reserved
for use as independent test or ‘holdout’ items. The feature sets and
sparse adjacency matrices for the training and test sets are provided in
the Supp Data (‘Datasetl_Features_Training Set.xlsx’, ‘Data-
setl_Adjacencies_Training Set.xlsx’, ‘Datasetl_Features_Test_Set.xlsx’
and ‘Datasetl_Adjacencies_Test_Set.xIsx’). These files also contain
associated metadata, along with the target variable to be modelled, the
13C ppm values.

2.3.2. Dataset 2: Mestrelab proprietary collection

Dataset 2 comprised a collection of 48,920 records containing
structures with associated °C chemical shift assignments. These were
prepared using the same data cleaning criteria as outlined for Dataset 1
above (except for requiring an analogous record for 'H; the proprietary
databases contain information for 13C only).

As for Dataset 1, Python RDKit utilities were used to extract a mo-
lecular graph and features for each record. The full set was likewise
filtered to contain only linearly independent features; these numbered
60, reflecting the larger collection size which contains greater diversity
at the node level. The collection was also partitioned into training and
test sets, comprising respectively 46,945 and 1975 unique structures.

2.3.3. Dataset 3: additional, post-development proprietary collection

A further proprietary database was made available to the authors
only after the completion of all model development. It contained a
diverse range of molecular structures, each with associated 'C chemical
shift assignments. Dataset 3 was extracted from this database, and
comprised records for 11,780 unique structures, none of which were
present in either Dataset 1 or 2. This allowed Dataset 3 to function as an
independent test set, providing a robust challenge for the predictive
models developed from both other datasets. The graph and feature sets
for Dataset 3 were prepared as described for Dataset 2.

3. Results and discussion
3.1. Dataset 1

3.1.1. Training an MPNN for chemical shift prediction
The training set was used to generate an MPNN through the
following steps:

(i) Load the target values, feature set and adjacency data.

(ii) Randomly split the data into internal training and validation
partitions; scale variables using the training items, retaining
scaling parameters.

(iii) Define the network architecture, comprising message passing and
regression layers, and initialise their weights.

(iv) Using only the training partition, train the MPNN via Adam
optimisation [12], which involves adjusting the weights after
each pass through the network to minimise errors in predicting
chemical shifts. Regularly evaluate the prediction error (‘loss’) on
the validation partition, to monitor convergence and prevent
overfitting.

(v) Save the trained model weights and other parameters for the
current MPNN.

The network architecture defined in step (iii) was informed by
literature reports of similar applications [8,13] and is illustrated in
Fig. 1. The inputs are the concatenated adjacency and feature set
matrices from the training partition. The network outputs are predicted
chemical shifts, which are compared to known target values during
training to compute the model error.

The architecture includes 4 MPNN layers, which iteratively update
the feature set, incrementing the receptive field around each node via
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Fig. 1. Schematic showing the deep learning architecture used in the present work. Coloured heatmaps represent matrices of learnable weights, updated after each
pass through the network. Grayscale heatmaps represent the input variables (adjacency matrix, feature set), the ‘updated feature set’ from the message passing layers,
and the output/target variable (chemical shifts). A binary mask restricts evaluation of the prediction error to active nuclei only. ReLU transfer functions are applied to
the outputs of each layer, except in the [d x r] regression layer, where a tanh function introduces non-linearity.

the connectivity information on each pass. Initial exploratory work
showed that increasing the number of MPNN layers up to 4 gave a clear
advantage, after which there was no additional gain in model
performance.

The MPNN cycles are followed by regression layers. Non-linearity is
introduced into the first of these by application of a tanh (hyperbolic

tangent) ‘transfer’ function to the layer output. ReLu (Rectified Linear
Unit) activation was used for all other layers.

A Matlab function (‘MPNN_Train_Function.m’) is supplied in the
Supp Data for carrying out these steps on the Dataset 1 training set. On
the high-specification Dell PC, convergence of the MPNN is typically
achieved in less than 40 min. Using the randomisation seeds at steps (ii)
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Fig. 2. (a) Validation median absolute error (MAE) vs. the number of completed validation cycles for typical MPNN training, illustrating initial instability and
subsequent stabilisation as the termination criterion is approached. (b) Predicted vs. observed '°C chemical shifts from the MPNN applied to Dataset 1 test set. The
MAE = 1.42 ppm, similar to the validation error for the MPNN and indicating good generalisation to these unseen structures. (c) Validation MAE vs. validation cycles
for an ensemble of 30 MPNNs, highlighting variability due to random partitioning and weight initialisation. (d) Predictions vs. observed '3C chemical shifts from the
ensemble applied to the Dataset 1 test set. The MAE = 1.14 ppm, demonstrating improved accuracy with ensemble learning. (¢) MAE vs. number of MPNNs in

the ensemble.
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and (iii) as given in the script, the results illustrated in Fig. 2(a) and (b)
can be reproduced. Fig. 2(a) shows the median absolute error (MAE) in
chemical shift prediction calculated from the internal validation subset
as a function of the validation intervals. This is typical gradient descent
behaviour: after an initial phase of instability, the network settles, and
the objective function descends relatively smoothly until the termina-
tion criterion is achieved. Here this occurs after 91 validation cycles, at
which point the MAE is 1.42 ppm.

The network parameters saved in step (v) can be used to make 3¢
chemical shift predictions for previously unseen structures. As inputs,
this requires only the molecular graph and node feature set, which are
calculable via RDKit for any valid structure. In the present work, the test
set outlined above is used to serve in this way. As well as being unseen
items, these benefit from labelled chemical shift information that en-
ables assessment of the MPNN’s predictive performance. The 925
structures in the test set contain a total of 12,513 nodes, of which 9315
correspond to Carbon atoms. Each has an observed, assigned '°C
chemical shift value, and these are plotted in Fig. 2(b) against the pre-
dictions made by the MPNN. The prediction MAE is 1.42 ppm, which
corresponds well to the internal validation error in panel (a) and in-
dicates that the MPNN is able to generalise to the unseen structures in
the test set. A Matlab script for carrying out this step is provided
(‘MPNN_Apply_To_Test.m’) as well as the parameter set as used to
generate the results in Fig. 2 (‘MPNN_13C_params_20240829155238.
mat’).

3.1.2. Improving prediction performance using an ensemble of MPNNs

The predictive performance of neural networks is strongly influenced
by certain training hyperparameters. In this study, these factors were
determined through a combination of literature review and exploratory
searches of the hyperparameter space. Major sources of stochastic
variability are the validation partitioning and the initialisation of the
network weights. This suggests an ensemble learning approach may
offer an advantage.

To create an ensemble, steps (ii)—(v) are repeated up to the desired
number of MPNNs. Whilst this is feasible on a laptop, it is more practical
on the GPU nodes of the high-performance computer cluster, where

1400 (a) Error histogram and kernel d.f. (Dataset 1)

(b) Error vs feature vector frequency count
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training time reduces to <10 min per MPNN. (Note that the provided
Matlab script requires adapting to exploit GPU functionality.)

A 30-MPNN ensemble was created from the training collection. The
validation error as a function of training cycles for all the MPNNs is
shown in Fig. 2(c) and gives an impression of the variability that arises
from the random partitioning and weight initialisation steps. Chemical
shift predictions were calculated by averaging the values obtained from
application of all MPNNs in the ensemble to the Dataset 1 test set. These
are shown plotted against the observed values in Fig. 2(d). The MAE is
1.14 ppm: this is a substantial improvement compared to typical MAEs
obtained from single MPNNS. It also compares well with values reported
in the literature [8] and with results from a commercially available tool
(illustrated in Supp Fig. S5). Fig. 2(e) illustrates the cumulative effect of
ensemble learning by plotting the MAE against increasing numbers of
MPNNs used in the pooled output. The choice of 30 MPNNss for the final
ensemble size was pragmatic, as diminishing returns were obtained
beyond this value.

The prediction errors are distributed symmetrically about a median
value of —0.04 ppm (Fig. 3(a)). The distribution is fat-tailed compared
with a normal distribution but can be well fitted by a Gaussian kernel
probability density function (pdf). An interesting association is found
between the error magnitude and the frequency count of different atom
environments in the training set; these are represented by the 52-
element node feature vectors, of which there are 5369 unique types.
Fig. 3(b) plots the errors against the corresponding node type’s count.
Unrepresented nodes typically exhibit twice the error as those with the
highest representation in the training set. Further, the relationship be-
tween the median error magnitude at each frequency count can be well-
modelled by a decaying exponential, as shown in Fig. 3(c).

3.2. Dataset 2

An ensemble of MPNNs was trained using the procedure outlined
above, with small adjustments to the network architecture to accom-
modate the larger feature set width. Summary outcomes for Dataset 2
training (analogous to Fig. 2(c)-(e)) are given in Supp Fig. S6. Running
on a single GPU node of the HPC facility, each MPNN took ~3 h to reach
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Fig. 3. (a) Histogram showing the ensemble prediction errors (n = 9315) for Dataset 1 test set. These are symmetrically distributed about a median of —0.04 ppm
and well-fitted by a Gaussian kernel pdf (red line). (b) The errors plotted against the frequency count of their corresponding node feature vectors in the Dataset 1
training set. (c) Median absolute errors plotted vs. the node frequency count. The decaying exponential (red line) shows the fit of the MAE as a function of node
representation. (d) Histogram showing the ensemble prediction errors (n = 39,892) for Dataset 2 test set. The median is 0.04 ppm, and the fitted pdf is shown by the
red line. (e) The errors and (f) the median absolute errors plotted vs. the node frequency count for Dataset 2, with the red line again indicating an exponential fit of

the MAE as a function of node representation.
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the termination criterion, which typically occurs at ~120 iterations.
Note that training time does not scale linearly with the number of
structures but rather the size of the block diagonal adjacency matrix (see
Supp Fig. S4) which in effect defines a single combined training graph.
An ensemble size of 30 was sufficient for the prediction error from the
Dataset 2 test set to stabilise, at an MAE of 1.17 ppm. This is comparable
to the prediction performance obtained for Dataset 1.

3.2.1. Error and generalisation ability dependence on training set diversity

The histogram of the prediction errors and their relationship to the
node frequency counts are shown in Fig. 3(d), (e) and (f). The corre-
spondence with the upper panels from Dataset 1 is striking. The errors
are again characterised by a fat-tailed, symmetric distribution, here with
a median value of 0.04 ppm, and there is an obvious relationship be-
tween error magnitude and node type count in the training set.

An important difference, however, is that the Dataset 2 training set
contains 31,414 unique atom environments, approximately six-fold that
of Dataset 1. This is reflected in the greater point densities with respect
to the x-axis of Fig. 3(e) and (f) compared with (b) and (c). Taking
advantage of the greater number of values available, the behaviour of
additional percentiles including Q1 and Q3 as a function of the node
frequency was also estimated; these are illustrated in Supp Fig. S7. These
percentile curves provide a means of associating an error estimate with
any prediction, based upon its feature vector’s representation in the
training set.

The greater node diversity of Dataset 2 compared to Dataset 1 also
impacts their respective ensembles’ generalisation abilities. This can be
examined by carrying out crossover validation, that is, prediction on the
unseen structures from each other’s test sets. A further, demanding
challenge to both ensembles is provided by the large number of struc-
tures in Dataset 3, none of which are represented in either of the other
datasets; these 11,780 structures yield 244,294 chemical shift pre-
dictions. A summary of the MAEs obtained from application of both
ensembles to each of the test sets is given in Fig. 4. The Dataset 2
ensemble achieves better MAEs throughout, remaining remarkably
consistent at <1.18 ppm irrespective of the test set. In contrast, the
Dataset 1 ensemble performs significantly worse on the larger test col-
lections. The probable explanation for this is Dataset 2’s demonstrably

Comparison of ensemble generalisation abilities
T
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broader coverage of ‘chemical space’ — the vast landscape of possible
structures which numbers in the billions even for small, drug-like mol-
ecules [14,15]. This finding reinforces the importance of a large and
diverse corpus of labelled data in training complex, heavily para-
meterised models, when broad generalisation ability is the primary
requirement. For completeness, error histograms for the crossover and
Dataset 3 predictions made by both ensembles are given in Supp Fig. S8,
along with analogues of Fig. 3(e) and (f) obtained from applying the
Dataset 2 ensemble to Dataset 3.

3.2.2. Structure-level prediction errors

An aggregated error from all predictions for a molecule can be
calculated and is a useful statistic. Fig. 5(a) shows the histogram for the
mean of the absolute errors obtained from Dataset 2 test structures
containing N = 10 carbon atoms, fitted with a Gaussian kernel pdf. Fig. 5
(b) shows the corresponding empirical and fitted cumulative distribu-
tion function (cdf). Strictly speaking, the distribution of this statistic
varies with N, the number of prediction errors used in its calculation.
However, per the central limit theorem, it is found that there is
comparatively little change when N > 10, as shown in Fig. 5(c) and (d).

Fig. 6 presents an illustrative comparison between the observed and
predicted chemical shifts obtained from applying the Dataset 2 ensemble
to a representative Dataset 1 test item, cyclopropyl-phenylmethanone.
Although this compound contains 10 carbons, due to molecular sym-
metries there are only 7 unique predicted shift values. In this case, there
were also only 7 unique observed shifts, but more generally, it is com-
mon for there to be fewer observed than predicted values, especially in
crowded spectra with weakly resolved peaks.

As this is a test set item, observed shifts are available, thus the mean
of the absolute errors in prediction can be calculated and is found to be
1.54 ppm. From the cdfs of Fig. 5, it is seen that predictions with com-
parable levels of accuracy are obtained from almost 50 % of structures
with N > 10. This provides a straightforward route to a probabilistic
score (p-value) for assessing whether the sample of prediction errors
obtained for a structure could plausibly be drawn from the error dis-
tribution of Fig. 3(d); this idea is explored further in the following
section.
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Fig. 4. A summary of the Dataset 1 and Dataset 2 ensembles’ abilities to generalise to unseen structures. The Dataset 2 ensemble gives the best performance on all

test sets, but this is most notable for the larger test sets.
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(b) Empirical and kernel c.d.f.s
(n=72 Dataset 2 test structures with N=10 carbons)
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Fig. 5. (a) Histogram showing the structure-level mean of the absolute prediction errors for Dataset 2 test structures that contain N = 10 carbon atoms. The fitted
Gaussian kernel pdf is marked (red line). (b) The corresponding cdf (red line) with the empirical cdf shown for comparison (blue). Panels (c) and (d) show analogous

figures for structures with N > 10.
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Fig. 6. Shows the observed and predicted chemical shifts obtained from an unseen structure, cyclopropyl-phenylmethanone, using the Dataset 2 ensemble. This is a
representative item from the Dataset 1 test set. Observed and predicted shifts are indicated on the chemical shift scale in blue or red respectively, and are also
tabulated along with the absolute error for each carbon nucleus as indicated alongside the structure diagram. The (known) assignment of observed to predicted

values is indicated by black dotted lines. For nuclei 7/8 and 9/10 these lines are crossed,

meaning that simple rank-matching assignment would be incorrect.
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3.2.3. Using the predictions: Assignment and verification

Chemical shift prediction is the foundation of both spectral assign-
ment and structural verification [16,17]. Predictions are generally used
in tandem with additional information such as molecular formulas and
2-D NMR experiments. However, in combination with advanced
computational tools, single nucleus 1-D spectra can be effective for
assignment, verification and even elucidation [18].

In assignment, experimentally observed shifts are matched with
predicted shifts for each active nucleus. In verification, the annotation is
assessed qualitatively or by some numerical score to confirm a com-
pound’s identity. Observed shifts may also be compared with pre-
dictions from more than one structure, to identify the most likely
candidate.

In the interests of conciseness, the discussion here will be confined to
the special case where the number of experimentally observed shifts
equals the number of unique predictions made for a proposed structure.
In such scenarios, annotation can proceed by sorting the observed and
predicted chemical shifts by value and matching up these vectors ele-
mentwise. A natural score for such an assignment is the cityblock dis-
tance, which is the sum of the absolute differences between the two
vectors, but there are some caveats. First, although the cityblock dis-
tance is minimised by this assignment approach, there will generally be
multiple tied solutions with no way of distinguishing between them.
Further, assignments made in this way may not necessarily be correct:
returning to the illustration in Fig. 6, it will be seen that matching by
ranked values would not correspond to the a priori known assignment
marked on the figure (evident from the crossed annotation lines for
nuclei 7,8 and 9,10).

In the present work, an alternative approach is implemented in
which observations are assigned to predictions to minimise a modified
cityblock metric that incorporates a cost function. The weights are
provided by error estimates for the predictions, extracted from the fitted
curves for error versus node representation described in section 3.2.1
above. The effect of this modification is that predictions with larger
estimated errors can be matched to more distant observations with
comparatively less penalty. These workings are detailed using toy ex-
amples in Supp Figs. S9 and S10. A corresponding real-world example is
the compound used in Fig. 6: the modified method is found to give an
assignment that exactly matches the known annotation shown in the
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figure.

Once obtained, the assigned observations and predictions can be
used to calculate the conventional cityblock distance. Dividing this value
by N gives the mean absolute error for the structure, a statistic whose cdf
is characterised in Fig. 5, that can provide a probabilistic score by which
to assess the assignment. This approach is demonstrated for a collection
of 16 structures taken from the Dataset 1 test collection. These were
selected by the mutual Jaccard similarity of their SMILES strings. All
contained either 10 or 11 carbon nuclei and yielded exactly 10 unique
predictions and observed shifts to be assigned. For larger structures and
numbers of predictions, combinatorial explosion means a metaheuristic
method is required to find the optimal assignment. However, for N < 10,
an exhaustive search of the solution space is feasible, as in the present
example.

Fig. 7 shows heatmaps of cross-verification matrices containing
different forms of verification score for each possible pairwise assign-
ment of observed to predicted shifts for the 16 items; structure diagrams
for each of these compounds are given in Supp Fig. S11. In Fig. 7(a), each
row contains the mean cityblock distance between observations from
‘actual’ structures (per the y-axis label) and predictions from ‘proposed’
structures (per the x-axis label). The minimum value of each row occurs
on the diagonal, which shows that, for the actual structures under
consideration, the predictions from the same proposed structure in all
cases yielded the lowest cityblock assignment score.

Fig. 7(b) maps the cityblock values into p-values via application of
the cdf of Fig. 5. Although this is a monotonic transformation, the
heatmap is visually quite different and is effective at conveying certain
information. The p-values indicate whether the absolute errors between
observed and predicted values calculated from an assignment are
plausible given the expected error distribution for correctly proposed
structures. Less credible assignments are flagged by p-values less than
some desired threshold (typically 0.05). In the present case, the diagonal
contains values between 0.28 and 0.91. This indicates that the pre-
dictions from proposed structures are all consistent with observations
from the same structure. Further, almost all the off-diagonal elements
are close to 0. Just six of the p-values exceed 0.05, and these arise from
pairwise assignments amongst three compounds, with SMILES strings
Nclcec2ceecec2cl, Oclecc2eccec2cel and Oclecec2ec(Br)cec2el. Howev-
er, it is notable that even for these similar structures, the p-values on the
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Fig. 7. (a) Heatmap showing the mean cityblock distance between observations from ‘actual’ structures (y-axis) and predictions from ‘proposed’ structures (x-axis).
For information, the molecular formula is also included in the y-axis labels. The minimum value in each row occurs on the diagonal, indicating that predictions from
the same proposed structure yield the lowest cityblock assignment score for the actual structures. (b) Heatmap showing the cityblock values transformed into p-
values via the cdf of Fig. 4(b). The diagonal values range from 0.28 to 0.91, indicating consistency between predictions and observations from the same structure. Six
p-values exceed 0.05; these arise from pairwise assignments among three similar compounds.
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diagonal are the highest values in each row, demonstrating high veri-
fication specificity for this collection of items.

4. Conclusions

This work presented a deep learning approach for predicting NMR
chemical shifts of small molecules. Graph convolutional neural networks
with four message-passing layers were trained on large numbers of
molecular structures, fully annotated with *3C chemical shifts. To reduce
stochastic variation, an ensemble framework was employed, which is
straightforward to implement across multiple nodes of an HPC cluster.

Two distinct data collections were used in the modelling work, one
comprising approximately 4000 labelled structures, the other exceeding
40,000. Separate ensembles were trained from each dataset, and were
challenged with multiple test sets containing collections of mutually
unseen structures. The results demonstrate the crucial importance of
training set size and diversity. While prediction performance was similar
for the holdout sets from within each collection, the ensemble trained on
the larger dataset maintained its prediction accuracy for all test sets,
including a third data collection (11,780 structures, 243,955 chemical
shifts) made available to the authors after all development work was
complete. In contrast, the performance of the ensemble from the smaller
dataset declined notably. This discrepancy is attributed to the greater
diversity of atomic environments in the larger dataset: examination of
the prediction errors showed these to be clearly linked to the frequency
count of different node feature vectors present in the training sets.

Further, the larger dataset allowed for more robust modelling of
various error properties. These models provide a quantitative founda-
tion for spectral assignment and verification in two ways. First, an
estimated error can be associated with each prediction for a structure
using the modelled relationship between error magnitude and node
representation. These estimates are used as weights in a modified city-
block distance metric during the assignment of observed to predicted
shifts, which seeks the annotation that minimises this metric. Second,
the mean absolute prediction error at the structure level is well fitted by
a Gaussian kernel cdf. This allows for a probabilistic assessment of the
assignment, evaluating whether the predicted shifts and assigned ob-
servations are consistent with originating from the same molecular
structure.
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