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Summary
To feed an ever-increasing population we must leverage advances in genomics and phenotyping

to harness the variation in wheat breeding populations for traits like photosynthetic capacity

which remains unoptimized. Here we survey a diverse set of wheat germplasm containing elite,

introgression and synthetic derivative lines uncovering previously uncharacterized variation. We

demonstrate how strategic integration of exotic material alleviates the D genome genetic

bottleneck in wheat, increasing SNP rate by 62% largely due to Ae. tauschii synthetic wheat

donors. Across the panel, 67% of the Ae. tauschii donor genome is represented as introgressions

in elite backgrounds. We show how observed genetic variation together with hyperspectral

reflectance data can be used to identify candidate genes for traits relating to photosynthetic

capacity using association analysis. This demonstrates the value of genomic methods in

uncovering hidden variation in wheat and how that variation can assist breeding efforts and

increase our understanding of complex traits.

Introduction

Bread wheat occurred through hybridization of domesticated

emmer with diploid goat grass, Ae. tauschii (D) (Haas et al.,

2019). This event is thought to have occurred very few times in

nature, integrating very few tauschii donors and resulting in a

genetic bottleneck in D genome diversity (Dvorak et al., 1998).

This lack of diversity has been identified in multiple populations,

using capture enrichment (Gardiner et al. 2018) and whole

genome resequencing (Rimbert et al., 2018) where variation

rate in the A/B genomes was >4-fold higher than the D

genome. In an attempt to relieve this genetic bottleneck

CIMMYT has created >1200 synthetic hexaploid wheat lines

through interspecific crosses of durum wheat (T. turgidum ssp.

durum, AABB) and diverse Ae tauschii (=Ae. squarrosa) D

genome donors (Das et al., 2016; Jafarzadeh et al., 2016). Many

have been used as parents in pre-breeding and breeding

programmes, being crossed with elite material producing

synthetic-derived lines (Li et al., 2018; Rosyara et al., 2019).

These lines are attributed to have favourable effects on yield

under irrigated conditions (Manès et al., 2012), drought stress

(Lopes and Reynolds, 2011), heat stress (Cossani and Reynolds,

2015), salinity (Colmer et al., 2006), biofortification (Velu et al.,

2018), pre-harvest sprouting resistance (Imtiaz et al., 2008) and

resistance to several pests and diseases (Kishii, 2019). In

addition, introgression of wild relatives has been used to

introduce novel diversity with well documented examples such

as Rye (Secale cereale) and Thinopyrum ponticum (Niu et al.,

2014; Ren et al., 2009). Despite the broad range of contribu-

tions of both synthetic wheat and introgressions to CIMMYTs

breeding efforts, little work has been done to characterize the

variation in these populations that is hidden to microarray-based

techniques that rely on pre-existing knowledge of the variation

assayed. Leading to much of this novel genetic variation that

has been introduced being overlooked.

In addition to providing diversity for wheat breeders, this

genetic diversity can be used to unpick the genetic basis of the

traits measured at CIMMYT year on year. We demonstrate this by

investigating phenotypic variation in spectral indices that are

related to three classes of traits: (i) thermal/hydration properties

measured in the infrared part of the electromagnetic spectrum,

(ii) pigment related indices assessed in visible bands (Araus and

Cairns, 2014) and (iii) photosynthesis related indices derived from

the whole spectra (Coast et al., 2019; Silva-Perez et al., 2017) in

the High Biomass Association Panel (HiBAP). Few studies have

attempted to determine these traits’ contribution to a plant’s

efficiency in utilization of incident solar radiation (or radiation use

efficiency, RUE), which determines crop productivity (Zhu et al.,

2010). Our mechanistic understanding of the genes and path-

ways involved in RUE is therefore limited, especially under field

conditions (Molero et al., 2019).

Exploiting existing variation in RUE related traits through

identification of the genetic mechanisms responsible could be a

straightforward strategy for increasing RUE. A phenotypic range
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in photosynthetic rates of 33% was observed across 64 winter

wheat varieties in UK field conditions (Driever et al., 2014) and

50% for 55 spring wheat varieties in Mexico and Australia(Silva-

Perez et al., 2019). To understand the genetic causes of this

variation, traits contributing to RUE must be studied. Molero

et al., 2019 proposed the use of exotic material (landrace and

synthetic derivative lines) as a resource to increase RUE. Previous

work using the same panel of wheat as this study has uncovered

multiple marker-trait associations (MTAs) related to RUE and

biomass accumulation at various phenological stages (Molero

et al., 2019) and demonstrated a link between RUE and

photoprotection.

This suggests that photoprotective pigments could contribute

to RUE throughout the crop cycle by preventing the propagation

of free radicals that damage photosynthetic machinery. In

addition, photosynthetic potential may differ depending on the

content of individual leaf pigments (Blackburn, 2006) as the

amount of solar radiation absorbed depends on pigment content

(Filella et al., 1995) which in turn relates to photosynthetic

capacity (Evans and Clarke, 2018). Chlorophyll a (chla) is the

primary pigment of photosynthesis while chlorophyll b (chlb) is an

accessory pigment. In a study of Australian wheat varieties

released through time, a decrease in the Chl a/b ratio was

associated with a decrease in electron transport capacity per unit

of chlorophyll, but because total Chl content per unit leaf area

increased, electron transport capacity per unit leaf area increased

(Watanabe et al., 1994). Assessment of the contribution to RUE

from pigment composition and its underpinning genetic basis is,

therefore, of great interest for enhancing photosynthetic poten-

tial of wheat.

In this study we build on the work of Molero et al. (2019), by

utilizing the same germplasm to assess novel traits including leaf

pigment composition, hydration and model-based prediction of

overall photosynthetic capacity derived from hyperspectral

reflectance measurements taken in field conditions. Here we

also improve on the genotyping of the germplasm through

leveraging enrichment capture sequencing and de novo SNP

discovery we are able to gain an unprecedented insight into the

overall levels of genetic diversity within CIMMYT breeding

material. This methodology does not rely on prior knowledge of

observed variation as is the case for array-based techniques

used previously. We have utilized this novel genetic information

to further investigate the link between photoprotection and

RUE through genome-wide association of leaf pigment compo-

sitions of 149 wheat lines using high-throughput hyperspectral

reflectance measurements taken over 2 growing seasons. This

uncovered novel MTAs for >20 traits relating to leaf pigmen-

tation and water content along with candidate genes contain-

ing possible causative non-synonymous variants that could be

leveraged for trait improvement. We have also leveraged this

data to determine the contribution of Ae. tauschii, S. secale and

T. ponticum donors to increasing diversity in exotic derived

lines, a process which would have been impossible using the

array-based genotyping that has previously been reported for

the panels used in this study.

Results

Genotyping and SNP effects

To investigate genetic variation across the HiBAP panel we used a

de novo SNP discovery strategy using a bespoke target sequence

capture design. We developed a 12-Mb target sequence using

the MyBaits system based on that described by Gardiner et al.,

2018, where underperforming baits were replaced with baits

targeting genes associated with photosynthesis and biomass

accumulation. A schematic of this capture design can be seen in

Figure S1.

In total, 18.6 billion reads were sequenced between 149 lines,

an average of 124 million per line. Of these, 86% mapped

uniquely, covering on average 420 Mbp of the genome to 5x or

greater and 172 Mbp at 10x or greater. A breakdown of mapping

efficiency and variant calling can be found in Table S1. Variant

calling yielded an average of 764 825 homozygous SNPs per line,

producing a marker density of 45 SNPs/Mb. Of these, 96.9% of

SNPs were in intergenic regions and 3.1% in the genic regions. Of

the SNPs in gene bodies, 49% resulted in synonymous substitu-

tions and 51% in non-synonymous substitutions (Table S2). The

average number of SNPs for the panel members containing exotic

pedigree history was 11% higher than that of the elite subpop-

ulation overall. The exotic population showed an increased SNP

rate in all subgenomes, 5%, 10% and 62% for the A, B and D

genomes respectively. A T-test comparing the elite and exotic

subpopulation showed no significant differences between the

number of reads nor the number of bp that were mapped to ≥5x
coverage between populations. After filtering for SNP loci with

<10% missing data for MAF of >5%, 241,907 shared loci were

retained. Overall marker density across the shared variants was 17

SNPs/Mbp with the highest density in the B genome followed by

the A and D with 25, 16 and 9 SNPs/Mbp respectively (Table S3).

Genome-wide SNP subset density can be seen in Figures 1 and S2.

Population structure analysis

Model-based Bayesian clustering methods were used to deduce

the population structure of the panel. The Evanno method

revealed evidence for 2 subpopulations and some evidence for

as many as 8 subpopulations (Figure S3). Where 2 subpopula-

tions are assumed, population 1 and 2 comprise 114 and 35

respectively (Figure S4). Of population 2 members, 88.5% had

synthetic/landrace parents in their pedigree history whereas only

16% of population 1 had any exotic background (Figure 2).

Multiple lines also demonstrated significant admixture between

populations. Admixture was seen to a lesser extent in the elite

backgrounds (4%) compared with exotic backgrounds (25%).

Fst analysis demonstrated genome-wide effects of integration

of exotic material with large regions of chromosomes showing

differences between the elite background and exotic back-

ground panel members. Most notably in chromosomes 2D, 3D,

4B and 7B with regions spanning >300 Mbp (Figures 1/S5-A).

When the elite population was split randomly into two pseudo-

populations, Fst was negligibly small across every chromosome

(Figure S5-B).

Synthetic wheat introduces substantial increase in D
genome variation

Comparison of SNP density in the D genome within the elite and

exotic subpopulations revealed an increase of 62% in variation

in the exotic subpopulation (Table 1). The largest increase was

seen on chromosome 3D, with an increase of ~200%. However,

these increases were not universal, with 1D showing no notable

increase in SNP numbers between populations. Comparison of

the elite and exotic subpopulation members highlights that

these increases in D genome SNP density is localized into blocks

(Figure 3), a result of the low crossover rate of 1-2 per
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chromosome per cross in wheat (Gardiner et al. 2019), with

regions as large as 343Mb showing notable SNP density

increases. Within these regions a large proportion of the SNPs

matched variation called for modern Ae. tauschii, confirming

the origin of this variation is the Ae. tauschii donor used in

synthetic creation (Figure 3b). The overall size of donor regions

varied widely across the synthetic subpopulation, spanning from

43% to as little as 0.5% of the D subgenome and differed from

the theoretical D contribution to pedigree range (1.6–25%)

estimated from a dilution factor associated with the number of

crosses after the original cross with the primary synthetic

(Table S4). In 13 members with synthetic backgrounds negligi-

ble levels of donor were identified (0.5-5%), suggesting donor

loss during subsequent crosses and selections for agronomic

traits/ideotypes. This loss was not necessarily correlated with the

theoretical D pedigree contribution. For example, lines

HiBAP_49 and HiBAP_51 are sister lines derived from the same

cross (SOKOLL//PUB94.15.1.12/WBLL1) with a common selec-

tion history and a theoretical pedigree contribution of 6.3%

from Ae. tauschii, but they contain 12.7% and 26.0%,

respectively of Ae. tauschii regions in their D subgenome

(Figure S6 and Table S4). Elite members showed almost no

Figure 1 Genetic analysis of the HiBAP panel. (From outside to inside) (a) SNP density heatmap across the genome of loci containing < 10% missing data

and >5% MAF within the HiBAP panel in 100 Kbp bins. (b) Fixation index calculated between elite background and exotic background subpopulations. (c)

Genome-wide association of flag leaf chlorophyll b content (c) Genome-wide association of carotenoid content. Significance cut-offs for -log10p of 5 and

FDR correction are shown as blue and red lines respectively. SNPs in an interval above significance thresholds are shown in red.
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regions of increased diversity to the extent seen in those with

synthetic history when compared to the Chinese Spring Refseq

reference genome (CS) (Figure 3a). All D subgenome chromo-

somes are seen to contain regions of greatly increased SNP

density in at least one member of the synthetic history

subpopulation. Across all panel members with synthetic pedi-

gree history 5301 non-redundant 500 kbp bins were identified

with a 5-fold increase in variation when compared to the

average number of SNPs for each bin across the elite subpop-

ulation. This equates to ~2.65 Gbp (67.1%) of D genome

sequence within the synthetic subpopulation that are likely to

originate from donor Ae. tauschii. These regions encompass

22 583 high confidence genes in the CS reference annotation.

Wild relative introgressions can be tracked using de
novo SNP calls

To identify introgressions from Rye (Secale cereale), SNPs from

each line were separated into 500 kbp bins for all subgenomes

and the number of variants that match Rye in both position and

allele were counted. SNPs between Rye and CS were generated

by mapping and variant calling Lo7 Rye Illumina sequencing reads

(ERS446995) against the CS reference genome. This revealed the

1B/1Rs introgressions in 6 panel members spanning the first

239 Mb in each line (Figure S7). This region contains 1507 high

confidence genes in the CS reference genome annotation (v1.1).

An introgression on the long arm of chromosome 7D was also

identified in 3 panel members that spans a 300 Mb region from

344 Mb to the end of the chromosome (Figure S8); this interval

contains 2563 genes in the CS reference annotation. The

pedigree history of these lines suggests this is an introgression

Figure 2 Enrichment capture reveals hidden variation contributed by exotic material. Distribution of D genome polymorphic SNP markers in the HiBAP

panel from (a) The 35K wheat breeders’ array and (b) PCA demonstrating the identified genetic variation using the 35K array SNPs (c) De novo SNP

distribution from enrichment capture data after filtering the combined panel data for <10% missing data and a minor allele frequency (MAF) of >5%. (d)

PCA demonstrating the identified genetic variation using the de novo called enrichment capture genotyping SNPs.

Table 1 The average number of de novo SNP calls per chromosome

for the elite and exotic subpopulations

Elite Exotic background Percentage difference†

chr1A 45734 47865 4.66%

chr1B 49306 55034 11.62%

chr1D 9372 9423 0.54%

chr2A 46243 53899 16.56%

chr2B 60874 62237 2.24%

chr2D 9284 12458 34.19%

chr3A 33536 35550 6.01%

chr3B 97429 97734 0.31%

chr3D 7892 23853 202.24%

chr4A 35341 34540 -2.27%

chr4B 12840 30796 139.84%

chr4D 3597 4099 13.96%

chr5A 36687 38698 5.48%

chr5B 56866 57567 1.23%

chr5D 5850 8960 53.16%

chr6A 40510 41888 3.40%

chr6B 63171 65299 3.37%

chr6D 5684 8218 44.58%

chr7A 53058 54033 1.84%

chr7B 44757 55862 24.81%

chr7D 7872 13268 68.55%

A Genome 291110 306473 5.28%

B Genome 385242 424530 10.20%

D Genome 49550 80280 62.02%

†
where difference = (exotic-elite)/elite.
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from Thinopyrum ponticum. Panel members containing S. secale/

T. ponticum introgressions can be seen in Table S5.

Phenotypic variation for N content, and spectral indices

The results from analysis of variance (ANOVA) for N content,

vegetation indices, pigment composition, senescence, water

indices and traits estimated from wheat physiology predictor

indicated significant variation among genotypes, environments,

and genotype × environment interactions with few exceptions

(Table 2). Broad sense heritability (H2) was high for NLamA7,

medium for SPADA7, low to medium for vegetation indices,

pigment composition and senescence/degradation indices, high

to medium for water indices and low for LMA and RDM

(Table 2). Broad phenotypic variation among genotypes in

spectral reflectance between the visible spectrum and the

distribution of values for carotenoid, chla/b content was

observed (Figure 4).

Association between spectral indices and agronomic
traits

Multiple regression analysis (stepwise) was conducted to deter-

mine if the combination of traits presented in Table 2 (excluding

phenology) were able to explain a percentage of variation of

BM_PM, HI, TGW, GM2, RUE_E40InB, RUE) InBA7, RUE_GF and

RUET (Table 3). In total, 13.2% of the variation in final biomass

(BM_PM) was explained by the combination of water index 2

(WI_2) and plant senescence reflectance index (PRSI). For HI, 18%

of the variation was explained by the combination of LMA and

chla (RARSa) and 27.7% of the variation was explained when the

model also considered chlbb (RARSb) and total chlorophyll

content (R750_700.) In the case of TGW and GM2, the

combination of enhanced vegetation index (EVI) and Plant

Senescence Reflectance Index (PSRI) explained 13.3% and

16.5% of the variation, respectively, with opposite effects.

RARSb explained 7.7% of the total variation observed in

RUE_E40InB. However, the combination of LMA, Green Normal-

ized Difference Vegetation Index (GNDVI), R750_700 and PSRI

explained 25.6% of the variation in RUE_E40InB. For RUE_In-

BA7and RUE_GF, only 8.3% and 4% of the variation was

explained by the combination of chlorophyll content in the flag

leaf (SPAD_A7) and water index 4 (WI_4) or WI_2, respectively.

Carotenoid content (RARSc) was the first component selected in

the model and explained 3% of the variation in RUET. When

structural independent pigment index (SIPI), WI_2 and NLamA7

were added to the model, 13.5% of RUET was explained.

Genome-wide association

Marker-trait association analyses carried out using best linear

unbiased estimators (BLUEs) from two repetitions for each

measured trait over two years. From across 23 traits 47 MTAs

were identified with a -Log P value of 5 (P < 0.00001) of which

10 passed FDR threshold determined in GAPIT (-Log P 7.12) for

traits including total chlorophyll content (Figure 5), chlorophyll b

content and carotenoid content (Figure 1). A full list of MTAs and

plots can be found in Table 4 and Figure S9 respectively.

Subgenome B had the most MTAs with 24 followed by the A

and D genome with 11 found on each. The highest number of

MTAs on a single chromosome were seen on 2B and 3B. The size

of associated intervals varied greatly, ranging from less than

1 Mbp to greater than 100 Mbp with associations towards the

centromere often being larger, consistent with the increase in

centromeric linkage group size in wheat.

Putative Candidate Genes and Haplotype Phased
Non-Synonymous Variation

Candidate gene searches were carried out using Knetminer

(Hassani-Pak et al. 2020) to identify genes within MTA intervals

with phenotype/ontology terms associated with each trait

Figure 3 Synthetic wheat donor introgression identification in the D genome. D genome SNP density plots for (a) a representative example of HiBAP elite

population and (b) an example of a member of the synthetically derived subpopulation. SNPs were binned into 500 kbp bins, demonstrating the number of

SNPs that matched in position and allele of those seen in Ae. Tauschii against Chinese Spring reference genome (red) and the number of SNPs that did not

match (blue).
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alongside literature searches. Candidates were identified with

ontology terms relating chlorophyll content and chlorophyll

biosynthesis within multiple MTA intervals including Genome

Uncoupled 5 (GUN5) in SPAD-2B, Early Chloroplast Biogenesis 2

(ECB1)/Vanilla Cream 1 (VAC1) in the shared interval RARSa-2b,

RARSb-2b, R750/700-2B and R750/500-2B, SWEET4/5 bi-direc-

tional sugar transporter and Ethylene-responsive element binding

factor 1 (ERF1) within 1Mbp of the MTA in RARSa-2A and PSSRa-

2A. We also identified multiple candidates chlorophyll breakdown

and senescence: protein phosphatase 2A (PP2A) and HY5 a bZIP

transcription factor that binds to the promoters of light-inducible

genes in NPQI-7A, TCP20 and HK3 cytokinin receptor in PSRA-3B.

Along with candidates that link to carotenoid biosynthesis and

distribution: SYTF and TRAESCS3B02G039600 in RARSc-3B,

TRAESCS7D02G503400 in RARSc-7D and also Small ubiquitin-

related modifier 1 (SUMO1) in SIPI-3B and KNAT3/KNOTTED1-like

in SIPI-7D, both of which have also been implicated in chlorophyll

levels in the leaf.

The SWEET bi-directional sugar transporter was identified in

the interval for chla content (RARSa) on chromosome 2A, whose

closest orthologues are ATSWEET4/5. These genes have been

observed to have an effect on chlorophyll content in both

Arabidopsis thaliana (Liu et al., 2016) and in rice (Zhou et al.,

2014). A search was carried out for non-synonymous SNP calls

within SNP calls that were removed prior to GWA, including many

resulting from ‘off target’ sequencing that did not have coverage

in >90% panel members. This search identified a non-synony-

mous SNP at the start of the SWEET gene causing a substitution

of Serine to Threonine. This variation was identified in 15 of 26

members with the minor allele of the MTA, suggesting this non-

Table 2 Descriptive statistics, broad sense heritability (H2) and ANOVA for phenology, nitrogen content and hyperspectral indices of HiBAP grown

for two years (Y15-16 and Y16-17) in northwest Mexico under full irrigated conditions

Trait†
ANOVA‡

Mean Min. Max. LSD H2 G Y G × Y

Phenology

DTA (days) 76.4 68.4 85.2 3.2 0.87 *** *** ***

DTM (days) 114.9 104.7 123.8 3.4 0.85 *** *** ***

Nitrogen

NLamA7 (%) 3.6 3.3 4 0.2 0.62 *** ** ***

SPADA7 49.7 42.9 56 4.2 0.52 *** ns ***

Vegetation Indices

GNDVI(R780-R550)/(R780+R550) 0.61 0.56 0.64 0.031 0.40 *** ** ***

RNDVI(R780-R670)/(R780+R670) 0.76 0.72 0.79 0.031 0.19 0.06 ** ***

NDII(R850-R1650)/(R850+R1650) 0.163 0.136 0.185 0.018 0.59 *** ** *

NDMI(R1649-R1722)/(R1649+R1722) 0.021 0.017 0.023 0.002 0.28 *** ** **

EVI2.5*((R900-R680)/(R900+6*R680-7.5*R475+1)) 0.80 0.75 0.86 0.04 0.47 *** * ns

Pigment composition

Chl a (RARSa)R675/R700 0.59 0.53 0.65 0.05 0.44 *** ** ***

Chl a (PSSRa)R800/R675 7.46 6.35 8.75 1.06 0.14 ns ** ***

Chl b (RARSb)R675/(R650*R700) 8.17 7.12 9.55 1.1 0.20 0.06 ** ***

Carotenoids (RARSc)R760/R500 6.61 5.64 7.83 0.73 0.46 *** ** ***

Carotenoids:Chla ratio (SIPI)(R800-R435)/(R415+R435) 0.73 0.71 0.77 0.025 0.38 *** ** ***

Total ChlR750/550 3.98 3.48 4.45 0.39 0.38 *** ** ***

Total ChlR750/700 4.11 3.73 4.52 0.4 0.24 ** ** ***

Senescence/degradation indices

NPQI(R415-R435)/(R415+R435) -0.048 -0.069 -0.028 0.021 0.30 ** ** ns

PSRI(R680-R570)/(R531-R570) -0.007 -0.018 0.004 0.009 0.32 ** * ***

Water Indices

Water Index (WI2)R1100/1200 1.073 1.059 1.084 0.007 0.71 *** 0.07 ns

Water Index (WI3)R1300/1450 2.706 2.412 2.95 0.211 0.46 *** ** ***

Water Index (WI4)R1300/1200 0.995 0.992 0.998 0.002 0.4 *** ** ***

Physiology predictor

Leaf Mass Area (LMA) 57.3 49.7 66.8 6.1 0.37 *** ** *

Respiration rate per Dry Matter (R_DM) 60.3 55.1 65.8 6.2 0.00 ns * ns

†
DTA: days to anthesis, DTM: days to maturity, NLamA7: nitrogen concentration measured in leaf laminas seven days after anthesis, SPAD: chlorophyll content per unit

flag leaf area, Chl: chlorophyll, NDVI: Normalized Difference Vegetation Index, GNDVI: Green Normalized difference vegetation index based on the difference

between near-infrared and green light reflectance; RDNVI: Red Normalized difference vegetation index based on the difference between near-infrared and red

reflectance; NDII: Normalized difference infrared index; NDMI: Normalized difference matter index; EVI: Enhanced vegetation index; RARSa and PSSRa: chlorophyll a;

RARSb: chlorophyll b; RARSc: carotenoids; SIPI: Structural independent pigment index; Total Chl: total chlorophyll content; NPQI: Normalized Pheophytinization Index;

PSRI: Plant senescence reflectance index; WI: water index.
‡
*P < 0.05, **P < 0.01, ***P < 0.001 and not significant (ns). Italic numbers are significant at P < 0.1.

ª 2021 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 19, 1537–1552
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synonymous SNP is in phase with the MTA. No candidate genes

that had any link to measured traits were identified for 4 MTAs. A

full list of candidate genes and gene identifiers can be seen in

Table S7.

Discussion

‘De novo’ SNP discovery

The size of the wheat genome means it is not yet economically

viable to perform whole genome sequencing for large popula-

tions. Much of our understanding of the genetic diversity of

wheat has come from array-based genotyping (Allen et al., 2016;

Wang et al., 2014). An alternative is enrichment capture, that has

uncovered ‘hidden variation’ across world diversity panels (Pont

et al., 2019) and landraces (Gardiner et al., 2018). Here we utilize

capture sequencing and de novo SNP discovery to assess the

contribution of strategically integrated exotic germplasm to

overall CIMMYT germplasm diversity, to identify and track wild

relative introgressions and demonstrate how this novel diversity

can be exploited to identify candidate genes for agriculturally

important traits. We also show a clear improvement in our ability

to assess diversity within the HiBAP panel when comparing de

novo methods to the previously available array-based genotyping

for the panel. This included demonstrating the extent to which

introgression of exotic material has increased genetic variation

throughout the panel which was previously masked because the

predesigned nature of array-based methods limit discovery of

truly novel variation (Figures 2 and 3) along with leveraging the

~100 fold increase in SNP density to identify non-synonymous

SNPs within a candidate genes.

Recent synthetic wheat contribution to D genome
variation and identification of wild relative
introgressions

HiBAP panel members containing exotic pedigree history were

found to have a 62% increase in genetic variation when

compared to elite lines. Since this variation is present in wheat

lines that have been demonstrated to have no yield penalty, it

could be deployed rapidly into breeding programmes to alleviate

the genetic bottleneck on the D genome which may be hindering

genetic gains in wheat (Lopes et al., 2015). A large contribution

to this variation is made by the synthetic derivatives in which the

proportion of Ae. tauschii was observed to be as high as 43% of

the D genome with an average of 16% across the synthetic-

derived subpopulation (Table S4). Contribution of synthetic

material to advanced lines has been theoretically predicted

utilizing genetic inference from pedigree history and allele

frequency variation of markers at low resolution, determining a

likely average of 17.5% contribution (Rosyara et al., 2019). Here

we are able to confirm these predictions and build on this by

identifying regions to high resolution and through SNP identity

utilizing the Ae. tauschii reference genome. Across this whole

subpopulation a total of 2.65 Gb (67.2%) of the D genome was

identified to be of synthetic donor origin, demonstrating the

value of the HiBAP panel as a resource that could be utilized to

study the effects of the presence of some of the ~22 000 genes

found in these regions that are already introgressed into

agronomically favourable backgrounds. We also identify that

the proportion of Ae. tauschii donors in the synthetic subpopu-

lation can vary substantially, from as little as 0.5% to as high as

Figure 4 Phenotypic variation in Spectral reflectance from the 149 lines: (a) The level of variation in reflectance of the visible portion of the hyperspectral

reflectance data for each member of the HiBAP panel. The distribution of observed values derived from spectral indices (b) flag leaf chlorophyll a (c) flag leaf

chlorophyll b and (d) flag leaf carotenoid content across all panel members where frequency relates to the number of panel members within each bin in

each histogram.

ª 2021 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 19, 1537–1552
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43% of the D subgenome, a larger range than identified in

studies using synthetic octoploids as primary Ae. tauschii donors

(0.075%–13.5%) (Nyine et al., 2020). Through comparison of

sister lines within the panel we also show that the content of the

donor genome is not necessarily linked to the number of

subsequent crosses post introduction of primary synthetic mate-

rial (Figure S6, Table S4).

By utilizing genome-wide variation in conjunction with pedi-

gree history and genetic resources for wheat wild relatives we are

able to track introgressions from other common donors including

Rye and T. ponticum. Using identification by genetic identity we

tracked the once common CIMMYT 1BL/1RS introgression to 6

HiBAP panel members (Table S5). We also confirm that this

original introgression remains intact in each instance, demon-

strating the inability of homologous recombination when the

effect of ph mutants is negated, restricting breakage of alien

introgressions (Hao et al., 2020). We also identified a region of

increased SNP density on chromosome 7DL in 3 panel members,

pedigree history examination determined this to be of T.

ponticum origin. This introgression, inferring resistance to both

stem rust (Sr25) and leaf rust (Lr19) (Niu et al., 2014) can be

tracked through CIMMYT breeding material. The agronomic

advantages these introgressions infer highlight the importance of

tracking their presence in breeding programmes and for making

selections for future crosses.

Using high density genotyping and high-throughput
phenotyping to uncover novel markers and putative
candidate genes associated with photosynthetic
efficiency

Recent developments in high-throughput phenotyping have

already made significant contributions to physiological breeding

(Araus and Cairns, 2014; Chapman et al., 2014; Tattaris et al.,

2016) and breeding programmes (Reynolds et al., 2020). Assess-

ment of photosynthetic related traits using high-throughput

surrogates based on spectral profiles has allowed the identifica-

tion of genetic variation in wheat for photosynthetic capacity and

efficiency(Silva-Perez et al., 2019) and respiration(Coast et al.,

2019) at leaf level along with pigmentation composition and

water content at canopy level allowing the identification of QTLs

associated with spectral indices (Gizaw et al., 2018; Liu et al.,

2019). In the present study, we aimed to identify genetic variation

Table 3 Stepwise analysis with biomass at physiological maturity

(BM_PM), harvest index (HI), thousand grain weight (TGW), grain

number (GM2), Radiation Use Efficiency measured between 40 days

after emergence and initiation of booting (RUE_E40InB), RUE between

initiation of booting and seven days after anthesis (RUE_InBA7), RUE

between seven days after anthesis and physiological maturity

(RUE_GF) and RUE between 40 days after emergence and

physiological maturity (RUET) as dependent variables and nitrogen

content and hyperspectral indices as independent variables

Trait Variable chosen r R2 Significance

BM_PM WI_2 0.343a 0.112 <0.001

WI_2, PSRI 0.379b 0.132 <0.001

HI LMA(—) 0.309a 0.089 <0.001

LMA(—), RARSa 0.437b 0.180 <0.001

LMA(—), RARSa, RARSb 0.502c 0.236 <0.001

LMA(—), RARSa, RARSb,

R750_700(—)

0.544d 0.277 <0.001

LMA(—), RARSa, RARSb,

R750_700(—), RNDVI

0.594e 0.330 <0.001

TGW EVI 0.234a 0.048 <0.01

EVI, PSRI 0.380b 0.133 <0.001

GM2 EVI(—) 0.304a 0.086 <0.001

EVI(—), PSRI(—) 0.420b 0.165 <0.001

RUE_E40InB RARSb 0.289a 0.077 <0.001

RARSb, LMA(—) 0.345b 0.107 <0.001

RARSb, LMA(—), GNDVI 0.386c 0.131 <0.001

LMA(—), GNDVI 0.384d 0.136 <0.001

LMA(—), GNDVI, R750_700

(—)

0.429e 0.168 <0.001

LMA(—), GNDVI, R750_700

(—), PSRI(—)

0.525f 0.256 <0.001

RUE_InBA7 SPAD_A7(—) 0.262a 0.062 0.001

SPAD_A7(—), WI_4 0.309b 0.083 0.001

RUE_GF WI_2 0.214a 0.039 <0.01

RUET RARSc 0.190a 0.030 <0.05

RARSc, SIPI(—) 0.270b 0.060 <0.01

RARSc, SIPI(—), WI_2 0.341c 0.098 <0.001

RARSc, SIPI(—), WI_2,

NLamA7(—)

0.397d 0.135 <0.001

Figure 5 Genome-wide association results for total chlorophyll content. Manhattan plot showing (a) the GWA output for total chlorophyll content (R750/

700), significance cut-offs for -log10p of 5 and FDR correction are shown as blue and red lines respectively. (b) The same GWA output for chromosome 2B,

the level of genetic linkage to the most associated SNP is depicted by a heatmap.

ª 2021 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 19, 1537–1552
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at leaf level from the spectral profiles reflected by green tissue.

Our GWAS analysis identified 47 novel MTAs (Table 4) that, after

a validation process, could be deployed into CIMMYT marker-

assisted breeding programmes to track favourable alleles for traits

that have important agronomic implications. One such trait is the

chlorophyll content of leaves that has significant effect on

photosynthetic efficiency, water use efficiency and yield in

multiple crop species in field environments (Gu et al., 2017;

Slattery et al., 2017). MTAs were identified for chla and chlb

separately and also for total chlorophyll content on chromosomes

Table 4 Summary of Marker-Trait Associations (MTAs) identified. MTAs from common intervals are indicated by the same colour

Trait Chromosome MTA ID Position P-value Interval

Phenology

DTA chr5B chr5B-27404243 27404243 8.12E-06 25–28 Mbp

chr6B chr6B-189683325 189683325 7.45E-07 188–189 Mbp

Nitrogen content

SPAD chr2B chr2B-106930486 106930486 7.54E-06 105–140 Mbp

chr2D chr2D-16845994 16845994 1.96E-06 15.3–16.9 Mbp

chr5A chr5A-3550988 3550988 4.72E-07 3–4 Mbp

chr6D chr6D-456495062 456495062 8.69E-07 455–462 Mbp

Vegetation Index

NDVI chr7D chr7D-608810464 608810464 2.56E-07 608.8–610 Mbp

GNDVI chr2B chr2B-153275048 153275048 7.03E-10 148–157 Mbp

chr3B chr3B-723108033 723108033 2.11E-06 721–725 Mbp

RNDVI chr7A chr7A-711982572 711982572 2.30E-06 711–712.5 Mbp

chr7D chr7D-608810464 608810464 9.92E-08 604–611 Mbp

NDII chr6A chr6A-497983531 497983531 6.33E-06 497.8–498.5 Mbp

NDMI chr2B chr2B-669669845 669669845 2.73E-07 530–670 Mb

EVI chr6B chr6B-174740483 174740483 1.10E-06 17–19 Mbp

chr3D chr3D-523811772 523811772 1.50E-06 51–52 Mbp

Pigmentation composition

RARSa chr2A chr2A-16347452 16347452 7.35E-08 500 kb–26 Mbp

chr2B chr2B-20043565 20043565 8.67E-07 15–21 Mbp

chr2B chr2B-149018684 149018684 4.08E-08 148–154 Mbp

chr7B chr7B-135775607 135775607 5.78E-06 135–136 Mbp

PSSa chr2A chr2A-17001351 17001351 7.13E-07 500 kb–20 Mbp

RARSb chr2B chr2B-153898371 153898371 1.83E-06 150–154 Mbp

chr3B chr3B-20186940 20186940 1.27E-07 18.4–21 Mbp

chr3B chr3B-715184359 715184359 9.06E-07 713–728 Mbp

RARSc chr3B chr3B-20358957 20358957 1.25E-08 19–21.5 Mbp

chr7A chr7A-676592398 676592398 1.84E-06 675–677 Mbp

chr7B chr7B-722589303 722589303 4.66E-06 722–725 Mbp

chr7D chr7D-608810464 608810464 1.05E-06 608–609 Mbp

SIPI chr3B chr3B-711119921 711119921 2.87E-06 690–712 Mbp

chr7D chr7D-610551080 610551080 3.74E-06 608–611 Mbp

R750550 chr2B chr2B-2619111 2619111 9.55E-06 2.4–3.2 Mbp

chr2B chr2B-153275048 153275048 6.29E-09 150–155 Mbp

R750700 chr2B chr2B-153275048 153275048 1.04E-09 150–155 Mbp

chr3B chr3B-736709296 736709296 2.72E-07 722–737 Mbp

Senescence/degradation indices

NPQI chr7A chr7A-539405222 539405222 2.31E-07 523–564 Mbp

PSRI chr3B chr3B-718670251 718670251 3.43E-07 715.7–718.6
Water Indices

WI2 chr3A chr3A-616891767 616891767 9.04E-07 616–625 Mbp

WI3 chr1B chr1B-572799923 572799923 1.09E-07 567–573 Mbp

chr7A chr7A-34727282 34727282 7.30E-06 34.5–35 Mbp

WI4 chr3A chr3A-616891767 616891767 2.87E-08 616–628 Mbp

chr3D chr3D-611549913 611549913 1.24E-07 612–620 Mbp

Physiology predictor

LMA chr3D chr3D-336170196 336170196 3.29E-07 307–336 Mbp

chr1B chr1B-65889406 65889406 5.71E-07 65–83 Mbp

R_DM chr1D chr1D-397474458 397474458 1.27E-06 396–399 Mbp

ª 2021 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 19, 1537–1552
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2BS and 3BL with the main association on 2BS at ~150 Mbp

being present in all measurements which could be a result of the

mostly overlapping absorbance spectra of the two pigments

(Huang et al., 2015). A QTL has been identified for chlorophyll

content on 2BS under heat stress, spanning nearly the entire short

arm of the chromosome (Bhusal et al., 2018), using ultra-high

density genotyping we are able to reduce this to an interval of

<5 Mbp. Within this interval we identify Early Chloroplast

Biogenesis 2 (ECB1)/Vanilla Cream 1 (VAC1), a pentatricopeptide

repeat protein with arabidopsis mutants in the gene reducing

chlorophyll content by 10 fold (He et al., 2019; Yu et al., 2009).

SPAD measurements in the flag leaf (a surrogate of total chl

content), uncovered MTAs on chromosomes 2B, 2D, 5A and 6D.

Candidate gene search within the 2B interval showed the

Genome Uncoupled 5 gene (GUN5). GUN5 encodes a magne-

sium chelatase (Davison and Hunter, 2011), mutations in the

gene in Arabidopsis result in the disruption of chlorophyll

synthesis. This can be explained because GUN 5 sits in the

retrograde signalling pathway linking chlorophyll biosynthesis to

sugar signalling (McCormac and Terry, 2004).

This makes GUN5 a possible target for future study in relation

to chlorophyll variation in the HiBAP panel. We also identified a

pigment specific MTA for chla on 2A and 7B and an MTA specific

to chlb on chromosome 3BL. Of these, we believe that 3BL

association has been identified previously in a QTL spanning over

a fifth of 3B (Czyczyło-Mysza et al., 2013), here we refine that to

a region of less than 2Mbp. Within 1Mbp of MTA for chla in 2A

two candidate genes were identified: an ERF1 gene associated

with biotic/abiotic stress tolerance, which when overexpressed in

wheat has demonstrated a 50% increase in chla content under

normal growing conditions (Xing et al., 2017). Also a SWEET bi-

directional sugar transporter related to Arabidopsis SWEET4/5,

with mutants in SWEET4/5affecting leaf chlorophyll content in

Arabidopsis (Liu et al., 2016) and rice (Zhou et al., 2014),

although the mechanism for this effect is still unclear. SWEET

transporters catalyse the passive efflux of sucrose down the

gradient from the mesophyll to the apoplast where it is taken up

by sucrose transporters (SUTs) into the phloem (Chen et al.,

2012). Within this gene, a non-synonymous mutation was

identified in the prefiltered SNPs set that is in phase with the

top SNP for this MTA, the SNP was called in 15 of the 25 lines

containing the minor allele for this MTA. When taken together

this evidence makes the SWEET gene a strong candidate for

further study. The fact that both SWEET and GUN5 genes were

associated with chlorophyll traits suggests that the two may be

working together to control chlorophyll content in wheat leaves.

Through the index NPQI we can also make inference about the

level of chlorophyll degradation happening in the leaves (Lowe

et al., 2017) which can be indicative of plant senescence. We

detected an association for NPQI in chromosome 7AL that

contains HY5, an antagonist of PIF that controls the accumulation

of chlorophyll in the leaves in response to phytochrome

photoreceptor signalling (Toledo-Ortiz et al., 2014), which also

causes delayed senescence in rice transgenic plants (Burman

et al., 2018). We also observed an association on 3BL for plant

senescence itself through calculation of PSRI, this interval contains

AHK2 a cytokinin receptor which controls leaf longevity in

Arabidopsis and knockouts demonstrate a delayed senescence

phenotype. Another gene in this interval found >180 kbp from

this MTA is transcription factor TCP20 which causes early

senescence phenotypes in Arabidopsis but only in a double

mutant including TCP9 due to predicted redundancy in signalling

roles (Danisman et al., 2012).

Increasing RUE is a major target for achieving yield potential

(Zhu et al., 2010). However, under field conditions like the ones

experienced in Cd. Obregon, leaves are exposed to high

irradiance absorbing more light they can use. This leads to

photooxidative damage and reduces photosynthetic efficiency in

a process known as photoinhibition. To avoid oxidative stress and

photoinhibition, photoprotective mechanisms can be activated in

response to high irradiance. There is evidence that photoinhibi-

tion has a large impact on biomass production in crops exposed

to high light levels (Murchie et al., 2015) and photoprotective

mechanisms can increase yield and canopy RUE in rice (Hubbart

et al., 2018). Previous studies identified photoprotective genes

associated with RUE (Molero et al., 2019) indicating that

protection of photosynthetic machinery has an impact in wheat.

However, we also need to consider that in some cases,

photoprotective mechanisms could also dissipate too much

energy that could be used in photosynthetic processes. Therefore,

the trade-off of photoprotective mechanisms needs to be

considered.

In this study, the photoprotective mechanisms that were

detected are related with non-photochemical processes happen-

ing before photolysis in PSII, such as the xanthophyll cycle, where

xanthophyll carotenoid plays an important role(Murchie et al.,

2015). In our analysis, carotenoid content in the flag leaf (RARSc)

was the first trait explaining 3% of RUET variation and together

with carotenoids:chla ratio (SIPI) 6% of variation was explained.

Carotenoids play an important role protecting the photosynthetic

machinery from excessive light (Cazzonelli, 2011; Demmig-

Adams, 1990). Also, the ratio of carotenoids to chlorophyll is

associated with senescence triggered by ageing or stress (Bort

et al., 2005). An MTA for carotenoid content was identified on

chromosome 3B, along with three others on homeologous

regions of 7A, B and D. Two genes in the 3B interval were

denoted as being involved in carotenoid biosynthesis by Knet-

miner, SYTF and TRAESCS3B02G039600.

Reduced total chlorophyll content in the flag leaf is
associated with enhanced RUE in elite cultivars

Total chlorophyll content was negatively correlated with RUE

(Table 3) and it is mainly determined by chla concentration since

the ratio between chla:chlb in wheat non-stressed plants is ~3:1
(Watanabe et al., 1994). In the present study, chla (RARSa)

explained a significant part of HI variation while chlb (RARSb)

explained variation for RUE_E40InB. In wheat canopies, the

uppermost layer including the flag leaf measured in this study

receives the highest irradiance. However, photosynthetic machin-

ery in wheat is saturated at 1200 μmol/m2/s (Blum, 1990).

Considering the high irradiance in Obregon when the measure-

ments were taken (>1800 μmol/m2/s), flag leaves absorb more

light than they can use and need to engage photoprotective

mechanisms. Lower chlorophyll content per unit area in the upper

leaves facilitates light penetration in the canopy decreasing

canopy extinction coefficient and therefore mitigating efficiency

losses associated with light saturation (Hamblin et al., 2014; Ort

et al., 2011) This is in agreement with the negative effect

observed here between total chl content and RUE, suggesting

that less chlorophyll content in upper leaves has a positive effect

on biomass production as observed for rice or soybean (Gu et al.,

2017; Slattery et al., 2017).

ª 2021 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 19, 1537–1552
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Implications in physiological breeding

Here we uncover the contribution of exotic material to variation

in CIMMYT wheat lines, confirming the value of strategic

incorporation of primary synthetics to ease genetic bottlenecks

in the D genome. The HiBAP panel now represents an unprece-

dented resource of characterized genetic diversity, containing

~67% of the Ae. tauschii genome across the panel already in

agronomically viable backgrounds. Identification of Ae. tauschii

introgressions at such resolution allows breeders to select lines for

strategic crossing to increase overall genetic variation using

agronomically favourable material. The HiBAP panel has also been

extensively phenotyped including yield traits, biomass accumula-

tion, RUE and respiratory rates, in both yield potential and under

abiotic stress. The results presented here highlight the possibilities

created when phenotyping and genotyping efforts are coordi-

nated in consortiums such as the International Wheat Yield

Partnership (www.iwyp.org) to boost wheat genetic gains.

The use of hyperspectral reflectance (ASD Field Spec) measured

on leaves in the field is independent of sunlight (due to the light

source of the device) and one leaf can be measured in less than

30 s (Silva-Perez et al., 2017). From the reflectance spectrum

produced, multiple indices were derived which when combined

with high density genotyping, facilitated the identification of

candidate genes/traits integral to photosynthetic improvement.

This protocol facilitates measurement of hundreds of genotypes

per day to explore genetic variation of photosynthesis (Silva-Perez

et al., 2019) making association analysis feasible. The new MTAs

for traits that contributed to RUE, HI and other traits of interest

can be further used to identify allelic variation in other mapping

populations or introgressed into elite lines through conventional

and strategic crossing.

The current study was conducted on the flag leaf and scaling

leaf-level data to the canopy can be complicated as leaf age and

leaf angle can play a crucial role when integrating leaf-level

photosynthetic traits at the canopy scale (Furbank et al., 2019).

However, leaf-level measurements have been previously associ-

ated with higher yields (Carmo-Silva et al., 2017; Fischer et al.,

1998; Tang et al., 2017) and in the present study, traits measured

at leaf level explained a significant proportion of the variation of

BM_PM, HI, TGW, GM2 and RUE measured at different growth

stages. Nevertheless, further experiments expanding measure-

ments at the flag leaf to other canopy levels and at more time

points across the whole growth cycle may be worthwhile

(Murchie et al., 2018).

The identification of new sources of variation that contribute to

increased photosynthetic potential in wheat together with the

identification of markers associated with them could help to

identify better donors that can provide superior combinations of

alleles of useful genes.

Methods

Plant material

The High Biomass Association Mapping Panel (HiBAP) consists of

149 bread wheat spring types (Table S6) that are agronomically

acceptable including elite high yielding lines, pre-breeding lines

that have been selected for high yield and/or biomass, including

lines that have ‘exotic’ material such as landraces or synthetic

primary hexaploids in their recent pedigree history along with

appropriate local check lines. The panel contains members that

show broad variation of both RUE and biomass at multiple

growth stages as described in (Molero et al., 2019), and are

controlled for the confounding effects of the extremes of height

and phenology.

DNA extraction and capture enrichment

Flag leaf tissue was obtained from plants used in field trials after

anthesis. Material from 10 individuals was taken per line and

pooled for DNA extraction using a standard CTAB based method.

DNA purity was assessed using a NanoDrop 2000 (Thermofisher

Scientific) and quantified fluorometrically using the Quant-iTTM

assay kit (Life Technologies). Dual indexed DNA libraries were

constructed with a modal insert size of 450 bp using TruSeq DNA

library preparation kit (Illumina). Capture enrichment was carried

out using the MyBaits targeted capture kit (Arbor Bioscience,

Michigan USA) incorporating 100 000 custom 120-mer RNA bait

sequences with 8x pre-capture multiplexing following standard

protocols. In total, 90 000 probes were designed in an island

strategy distributed to facilitate enrichment and subsequent

variant calling from regions spanning the entire genome. Probe

sequences were designed based on a subgenome-collapsed

reference, allowing probes to target homeologous regions,

increasing the genomic design space with the fewest probes

possible. 10 000 probes were designed to target selected gene

sequences using an end-to-end tiling strategy covering the gene

body and the promoter region (~2000 bp). The 2 kb distance was

based on the median distance between the TSS and the first

transposable element, 1.52 kb to allow a high likelihood of full

promoter sequence capture (Wicker et al. 2018). Enriched

libraries were then sequenced on a NovaSeq6000 (Illumina) S4

flowcell producing 2 × 150 bp paired end sequences.

Genotyping and imputation

Sequencing quality was assessed with FastQC and low-quality

reads removed/trimmed. The paired end sequencing data for

each accession was mapped to the Refseq-v1.0 reference

sequence (IWGSC et al., 2018) using BWA MEM version 0.7.13

(Li and Durbin, 2009). Mapping results were filtered using

SAMtools v1.4 (Li et al., 2009); any non-uniquely mapping reads,

unmapped reads, and/or poor-quality reads were removed. PCR

duplicates were identified and removed using Picard Tools

MarkDuplicates. Variant calling was carried out using bcftools

and were filtered using GATK (McKenna et al., 2010), using the

standard GATK recommended parameters of minimum quality of

30, a minimum depth of 5. The likely functional effect of each

variant was annotated using SnpEff 4.3 (Cingolani et al., 2012)

using a custom database generated using Refseq v1.1 annotation

(IWGSC et al., 2018) (All gene identifiers listed relate to this

annotation). For each SNP loci found in the panel as a whole, if no

alternative allele was found for an individual but mapping depth

of ≥5 was observed, the individual was designated as homozy-

gous reference for that loci, else it was designated as missing

data. SNP loci that had <10% missing data and a minor allele

frequency of ≥5% were then subjected to imputation using

Beagle 5.0 (Browning and Browning, 2016).

Population structure analysis

Genetic inference into the population structure of the panel was

made using STRUCTURE 2.3.4 (Pritchard et al., 2000) using

model-based Bayesian approaches along with Hierarchical clus-

tering to deduce similarity between lines. An admixture model

was selected in STRUCTURE and run using 30 000 burn-in

iterations and 50 000 repetitions of the Markov Chain Monte
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Carlo (MCMC) model for the assumed subpopulations of k (2-10)

for 10 independent, randomly seeded iterations of the analysis

per assumed subpopulation. To identify the statistically most likely

number of definable subpopulations, the delta k method of

(Evanno et al., 2005) was applied to all 10 replicates, where the

Dk statistic is deduced from the rate of change in the probability

of likelihood [LnP(D)] value between each k value. The Evanno

method was implemented through STRUCTURE HARVESTER

Python script (Earl and von Holdt, 2012). CLUMPP 1.1.2 was

used to produce a consensus Q matrix using 10 independent

STRUCTURE replicates for each assumed subpopulation number

(Jakobsson and Rosenberg, 2007). To assess the overall level of

genetic variation in the panel PCA analysis was carried out using

the Scikit-Learn machine learning package in Python. PCA was

applied to genotyping data from the 35K wheat breeders array

used in the study of Molero et al. 2019 and capture enrichment

sequencing derived genotyping data for all subgenomes com-

bined and for the D genome separately to assess the level of

variation that could be observed when using pre-known SNP loci

and using de novo methods. To determine genomic regions most

greatly affected by the incorporation of exotic material, fixation

index (Fst) was calculated in windows of 500 kbp in pairwise

comparisons of the elite subpopulation with the exotic subpop-

ulations that included landrace, synthetic and landrace + syn-

thetic and the introgression lines subpopulation as a whole. As a

control measure, the elite population was randomly split and Fst
was calculated between the pseudo-subpopulations.

Identification of Ae. tauschii synthetic D genome donor
regions and S. cereale introgressions

To identify genomic regions originating from Ae. tauschii donors

used in the creation of primary synthetics present in the pedigree

history of 40 HiBAP panel members, SNPs called for each HiBAP

member were compared to SNPs called between the CS wheat

reference and the Ae. tauschii reference genome (Luo et al.,

2017) to determine identity. Paired end 150 bp reads were

simulated from the Ae. tauschii reference genome to a depth of

20x using WGSim. Reads were mapped and variant called using

the same methods outlined for the capture sequencing of the

HiBAP panel members. To remove noise created by varietal SNPs

between CIMMYT germplasm and the CS reference, Weebil1

SNPs were generated using trimmed sequencing reads used to

create the contig assembly of Weeblil1 (project PRJEB35709

accession SAMEA6374024) and SNPs from the panel matching in

location and allele we removed from further analysis. SNPs across

each panel member were binned into 500 kbp bins and within

each bin the number of SNPs showing identity by state to Ae.

tauschii were counted. To estimate the contribution of Ae.

tauschii within the entirety of the HiBAP panel the maximum

number of SNPs within every 500 kbp window was assessed for

both the elite background and synthetic background subpopu-

lations. Where the value for a bin in any synthetic line was 5-fold

higher than the average value for each bin from the whole elite

population this was classed as a modern Ae. tauschii region.

Additionally, the theoretical contribution to pedigree from Ae.

tauschii was estimated using the available pedigree and selection

history information from the International Wheat Information

System (IWIS), curated by CIMMYT.

To determine the presence of Rye introgressions in the panel

SNPs between Rye and CS were generated by mapping and

variant calling Lo7 Rye Illumina sequencing reads (ERS446995)

against CS as previously described. Genetic identification of

regions of Rye was carried out using the same identity by state

methods for Ae. tauschii outlined previously.

Field experimental conditions

The 149 lines were grown in two consecutive growing seasons

(2015/16 and 2016/17, which will be referred to as Y16 and Y17

respectively). Field experiments were carried out at the IWYP-Hub

(International Wheat Yield Partnership Phenotyping Platform) at

CENEB in the Yaqui Valley, near Ciudad Obregón, Sonora, México

(27°240 N, 109°560 W, 38 masl), under fully irrigated conditions.

The soil type was a coarse sandy clay, mixed montmorillonitic

typic caliciorthid, low in organic matter, and slightly alkaline (pH

7.7) in nature(Sayre et al., 1997). Experimental design was a α-
lattice with four replications in raised beds (2 beds per plot each

0.8 m wide) with four (Y16) and two (Y17) rows per bed (0.1 m

and 0.24 m between rows respectively) and 4 m long. The

emergence dates were 7 Dec. 2015 and 30 Nov. 2016 for each

year. The seeding rate was 102 kg/ha. Appropriate fertilization,

weed disease and pest control were implemented to avoid yield

limitations. Plots were fertilized with 50 kg N/ha (urea) and 50 kg

P/ha at soil preparation, 50 kg N/ha with the first irrigation and

another 150 kg N/ha with the second irrigation. Growing condi-

tions and main agronomic characteristics of the trial grown for

two years are detailed in (Molero et al., 2019).

Chlorophyll content, N composition and reflectance
measurements

Chlorophyll content in the flag leaf was measured with a SPAD-

502 Minolta (Spectrum Technologies Inc., Plainfield, IL, USA) in

five flag leaves per plot seven days after anthesis (SPADA7).

Nitrogen concentration of the leaf lamina (NlamA7) was

measured using the Kjeldahl digestion method putting together

all green leaf laminas from 12 random stems harvested seven

days after anthesis after drying (oven dried at 70°C for 48 h),

milling and digestion with concentrated sulphuric acid.

The hyperspectral reflectance of flag leaves was measured

between 11.00 to 14.00 h approximately seven days after

anthesis following the protocol described by(Silva-Perez et al.,

2017). A FieldSpec®3 (Analytical Spectral Devices, Boulder, CO,

USA) full range spectroradiometer (350–2500 nm) was coupled

via a fibre optic cable to a leaf. A mask was used to reduce the

leaf-clip aperture and a black circular gasket was pasted to the

mask to avoid leaf damage and to eliminate potential entry of

external light through the edges. One reflectance measurement

was made per leaf lamina, and two measurements per plot in two

plots per entry. Different spectral reflectance indices were

calculated (Peñuelas and Filella, 1998). The formulas for index

calculations are presented in Table 2. Leaf mass area (LMA) and

respiration on a dry matter basis (RDM) were estimated using a

web-application to predict wheat physiological traits from

hyperspectral reflectance spectra known as the Wheat Physiology

Predictor [https://www.metabolome-express.org/pheno/] based

on (Silva-Perez et al., 2017) and (Coast et al., 2019) prediction

models.

Genome-wide association analysis

Association analysis was carried out using GAPIT(Lipka et al.,

2012) on 149 HiBAP lines. A model based on the unified mixed

linear model approach, the SUPER algorithm, was applied to the

genotype/phenotype data. The model was adjusted using mem-

bership coefficient matrices produced by STRUCTURE assuming

between 2–8 subpopulations (Q2-8) or the first 10 eigenvectors
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from principal component analysis (PC1-10) along with a kinship

matrix (K) as covariates to limit the confounding effects of

population structure effects and therefore reducing false posi-

tives. The EMMA method proposed by Kang et al. (2008) to

create a positive semidefinite kinship matrix (K) was followed,

implemented in GAPIT. Interval size was determined by taking the

flanking SNPs from each association that were greater than the

lower -Log P 5 threshold. To identify possible causative candi-

dates, genes within the associated intervals were submitted to

Knetminer. The resultant information networks were assessed

and if adequate evidence was available to suggest the gene or its

orthologous genes may be involved in a mechanism linking to the

trait to which it was associated, the gene was selected as a

possible candidate. Interval genes were also mined for non-

synonymous variants in both the high confidence SNP calls along

with those falling below depth filters.

Statistical analysis of phenotypic data

In order to deduce the combinatorial contribution of the leaf

pigment, hydration and predicted photosynthetic capacity traits

described in this study to overarching agronomically important

traits, multiple linear regression analysis was applied. For this

analysis we utilize data for agronomic traits including biomass, HI,

TGW, GM2 and RUE at various growth stages along with DTA and

DTM from the study by Molero et al. (2019). Agronomic trait data

was analysed by using a mixed model for computing the least

square means (LSMEANS) for each genotype across both years

using the program Multi Environment Trial Analysis with R for

Windows (METAR, (Alvarado et al., 2019)). DTA was used as

covariate (fixed effect) when its effect was significant with the

exception of phenology and RUE. Broad sense heritability (H2)

was estimated for each trait across both years as:

H2 ¼ σ2g

σ2gþ
σ2ge
e þ σ2

re

where r = number of repetitions, e = number of environments

(years), σ2 = error variance, σ2g = genotypic variance and σ2ge =-
G × Y variance.

In this study, we define low broad sense heritability when

H2 < 0.30, medium when 0.30 ≤ H2 < 0.60 and high when

H2 ≥ 0.60 (Johnson et al. 1955).

Multiple linear regression analysis (stepwise) was used to

analyse the relationship between the studied variables using the

SPSS statistical package (SPSS Inc., Chicago, IL, USA).
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Etudes et Recherches, (Lamaddalena, N., Lebdi, F., Todorovic, M. and

Bogliotti, C., eds), pp.251–253. Hammamet (Tunisia): Bari: CIHEAM. https://

om.ciheam.org

Browning, B.L. and Browning, S.R. (2016) Genotype imputation with millions of

reference samples. Am. J. Human Genet. 98, 116–126.
Burman, N., Bhatnagar, A. and Khurana, J.P. (2018) OsbZIP48, a HY5

transcription factor ortholog, exerts pleiotropic effects in light-regulated

development. Plant Physiol. 176, 1262–1285.
Carmo-Silva, E., Andralojc, P.J., Scales, J.C., Driever, S.M., Mead, A., Lawson,

T., Raines, C.A. et al. (2017) Phenotyping of field-grown wheat in the UK

highlights contribution of light response of photosynthesis and flag leaf

longevity to grain yield. J. Exp. Bot. 68, 3473–3486.
Cazzonelli, C.I. (2011) Carotenoids in nature: insights from plants and beyond.

Funct. Plant Biol. 38, 833–847.
Chapman, S.C., Merz, T., Chan, A., Jackway, P., Hrabar, S., Dreccer, M.F.,

Holland, E. et al. (2014) Pheno-copter: a low-altitude, autonomous remote-

sensing robotic helicopter for high-throughput field-based phenotyping.

Agronomy, 4, 279–301.
Chen, L.-Q., Qu, X.-Q., Hou, B.-H., Sosso, D., Osorio, S., Fernie, A.R. and

Frommer, W.B. (2012) Sucrose efflux mediated by SWEET proteins as a key

step for phloem transport. Science (New York, NY), 335, 207–211.

ª 2021 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 19, 1537–1552

Photosynthetic capacity in spring wheat 1549

 14677652, 2021, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/pbi.13568 by U

niversity O
f E

ast A
nglia, W

iley O
nline L

ibrary on [31/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.ebi.ac.uk/ena/
info:x-wiley/peptideatlas/PRJEB38874
https://om.ciheam.org
https://om.ciheam.org
https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1111%2Fpbi.13568&mode=


Cingolani, P., Platts, A., Wang, L.L., Coon, M., Nguyen, T., Wang, L., Land, S.J.

et al. (2012) A program for annotating and predicting the effects of single

nucleotide polymorphisms, SnpEff. Fly, 6, 80–92.
Coast, O., Shah, S., Ivakov, A., Gaju, O., Wilson, P.B., Posch, B.C., Bryant, C.J.

et al. (2019) Predicting dark respiration rates of wheat leaves from

hyperspectral reflectance. Plant, Cell Environ. 42, 2133–2150.
Colmer, T.D., Flowers, T.J. and Munns, R. (2006) Use of wild relatives to

improve salt tolerance in wheat. J. Exp. Bot. 57, 1059–1078.
Cossani, C.M. and Reynolds, M.P. (2015) Heat stress adaptation in elite lines

derived from synthetic hexaploid wheat. Crop Sci. 55, 2719–2735.
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Supporting information

Additional supporting information may be found online in the

Supporting Information section at the end of the article.

Figure S1 Depiction of genotyping capture probe set design/

tiling strategy including (A) collapsing the reference genome (B)

the ‘genotyping’ portion as probes scattered across the genome

(C) with the ‘gene of interest’ portion in which probes were

arranged almost end-to-end across the gene body and promoter

region.

Figure S2 A heatmap ideogram demonstrating genome-wide

SNP density across the HiBAP panel after all called SNPs were

combined and subsequently filtered to remove loci with >10%
missing data and a minor allele frequency of less than 5%.

Figure S3 Estimation of the most likely number of true

subpopulations (K_number) within the HiBAP panel estimated

using the Evanno Method demonstrating the presence of 2 main

subpopulations.

Figure S4 Principal component analysis showing genetic variation

in the HiBAP panel. A) Panel members when coloured by

subpopulation membership deduced using STRUCTURE software.

B) Panel members coloured by presence of landrace, synthetic or

a combination in their pedigree history.

Figure S5 Genome-wide Fst calculations between (A) the Elite

and Exotic subpopulations and (B) two pseudo-subpopulations of
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elite background wheat created by randomly splitting the elite

subpopulation into two groups.

Figure S6 SNP density plot of two synthetically derived sister lines

where SNPs are in 500 kbp bins. Red bars indicate number of

SNPs identified to match modern Ae. Tauschii, blue bars show all

other SNPs. Demonstrating the altering levels of introgressed

regions, even between members of the same cross and selection

history.

Figure S7 SNP density plots for chromosome 1B from each

member of the HiBAP panel found to contain the 1BS/1RL Rye

introgression. Orange bars indicate the number of SNPs per 500

kbp bin that match the position and allele with those found in

between Rye and the wheat reference genome. Blue bars show

number of SNPs per bin that do not match Rye genetic variation.

Figure S8 SNP density plots for chromosome 7D from each

member of the HiBAP panel found to contain the 7DL/7EL

Thinopyrum ponticum introgression. Blue bars show number of

SNPs per 500 kbp bin.

Figure S9 Manhattan plots showing GWA results for 23 traits.

Blue line depicts the significance threshold of -Log10 P 5 and the

red line depicts the FDR threshold.

Table S1 DNA sequencing and mapping statistics

Table S2 The distribution of SNPs called against the Refseq1.0

Chinese Spring wheat reference genome.

Table S3 Genome-wide distribution of SNPs used for GWA

analysis

Table S4 Identification of regions of Ae. Tauschii origin in HiBAP

lines with Synthetic pedigree history

Table S5 A list of lines found to contain S. cereale/T. ponticum

introgressions

Table S6 Pedigree history information for the HiBAP panel

Table S7 Potential candidate genes identified for each associa-

tion using Knetminer

ª 2021 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 19, 1537–1552

Ryan Joynson et al.1552

 14677652, 2021, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/pbi.13568 by U

niversity O
f E

ast A
nglia, W

iley O
nline L

ibrary on [31/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1111%2Fpbi.13568&mode=

