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Abstract

Human milk is the best nutrition for infants, providing optimal support for the developing immune system and gut microbiota.
Hence, it has been used as source for probiotic strain isolation, including members of the genus Bifidobacterium, in an effort
to provide beneficial effects to infants who cannot be exclusively breastfed. However, not all supplemented bifidobacteria
can effectively colonise the infant gut, nor confer health benefits to the individual infant host; therefore, new isolates are
needed to develop a range of dietary products for this specific age group. Here, we investigated the beneficial potential of
Bifidobacterium breve DSM 32583 isolated from human milk. We show that in vitro B. breve DSM 32583 exhibited several
characteristics considered fundamental for beneficial bacteria, including survival in conditions simulating those present in
the digestive tract, adherence to human epithelial cell lines, and inhibition of growth of potentially pathogenic microorgan-
isms. Its antibiotic resistance patterns were comparable to those of known beneficial bifidobacterial strains, and its genome
did not contain plasmids nor virulence-associated genes. These results suggest that B. breve DSM 32583 is a potential
probiotic candidate.
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Introduction

In recent years, there has been a significant increase in the
number of food and dietary supplement products containing
probiotic microorganisms, with specific strains of the genus
Bifidobacterium being used worldwide [1, 2]. Probiotics are
defined as ‘live microorganisms which when administered
in adequate amounts confer a health benefit on the host’ [3].
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Previous studies have reported various beneficial effects that
Bifidobacterium strains exert on human health, such as regu-
lation of intestinal microbial homeostasis [4], production
of vitamins [5], modulation of local and systemic immune
responses [6], and the hydrolysis of bile salts [7].
Bifidobacteria are among the first gut colonisers and the
most ubiquitous inhabitants of the gastrointestinal tract,
especially at early life stages. They can be regarded as

5 SLU, c/Santiago Grisolia, 2, Tres Cantos, Madrid, Spain

Department of Microbiology and Biochemistry of Dairy
Products, Instituto de Productos Lacteos de Asturias
(IPLA-CSIC), Paseo Rio Linares s/n, 33300 Villaviciosa,
Spain

7 HiPP GmbH & Co. Vertrieb KG, Georg-Hipp-Str. 7,
85276 Pfaftenhofen (Ilm), Germany

Gut Microbes & Health, Quadram Institute Bioscience,
Norwich Research Park, Norwich NR4 7UQ, UK

Norwich Medical School, University of East Anglia,
Norwich Research Park NR4 7TJ, UK

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s12602-024-10346-9&domain=pdf

4172

Probiotics and Antimicrobial Proteins (2025) 17:4171-4185

founding microbiota members that exert crucial influence
on the intestinal environment, the structure of the early-life
microbial communities, and ultimately host development
[8]. Bifidobacteria dominate the microbiota of vaginally
delivered breast-fed infants [9]. Numerous studies have
reported isolation of genomically identical Bifidobacterium
strains from faecal samples of breastfeeding mother-infant
pairs and the corresponding human milk, suggesting vertical
transmission [10, 11]. The high Bifidobacterium abundance
in breast-fed infants has been associated with their carbohy-
drate metabolism capabilities and linked to the presence of
genes involved in the degradation of human milk oligosac-
charides (HMOs) in their genomes [12, 13].

The ability to exert health benefits makes members of
Bifidobacterium excellent potential probiotic candidates.
However, studies have shown that not all probiotic-contain-
ing formulas or supplements ensure successful colonisation
of the infant gut or facilitate an increase in the abundance of
bifidobacteria in this environment [14, 15]. In addition, sig-
nificant strain-specific differences in probiotic performance
in vitro were described [16]. Therefore, ongoing research
in this field is necessary to develop new and safe strains for
formula and food production.

The initial screening and selection of beneficial strains
involve experimental assessments covering a number of
important criteria, for example, phenotypic and genotypic
stability of the candidate strain, carbohydrate fermentation
patterns, production of growth-inhibiting metabolites and
other antimicrobial substances, and subsequent ability to
inhibit potential pathogens [17, 18]. The probiotic strain
must be able to tolerate acidic and bile-rich conditions in
the gastrointestinal tract in order to survive passage through
the digestive system, making resistance to gastric acid and
bile salts one of the fundamental criteria in the selection of
bacterial candidates for commercial use [19]. The ability
of probiotic strains to adhere to the epithelium is another
important selection criterion, as adhesion to the intestinal
mucosa is regarded as a prerequisite for colonisation and
can facilitate displacement of potentially pathogenic micro-
organisms from host cells [20].

A significant aspect of the initial probiotic strain selec-
tion is the assessment of antibiotic resistance patterns. The
European Food Safety Authority (EFSA) states that bacte-
rial strains used in commercial products should not harbour
transferable antibiotic resistance and strongly recommends
that minimum inhibitory concentrations (MICs) of the most
important antimicrobial agents used in human medicine are
evaluated at the probiotic strain selection stage [21]. Given
that antibiotic resistance transfer can occur via a number
of different mechanisms, it is recommended that whole
genome sequences of bacterial candidate strains are screened
for their mobilome, i.e. the presence of insertion elements,
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transposases, bacteriophages, and plasmids, in addition to
phenotypic antimicrobial resistance assessment [18].

Here, we describe the functional properties of the novel
strain Bifidobacterium breve DSM 32583, isolated from
human milk and subjected to genotypic and phenotypic
evaluation, to assess its beneficial or ‘probiotic’ potential.
Genomic analysis and experimental approaches were used
to investigate its antibiotic resistance patterns, carbohydrate
fermentation profile, resistance to gastric acid, adherence
to human epithelial cell lines, and its antimicrobial activ-
ity. Our results indicate that B. breve DSM 32583 possesses
several promising characteristics of a probiotic candidate.

Materials and Methods

The strain isolation and the majority of phenotypic char-
acterisation experiments listed in the ‘Materials and Meth-
ods’ section were carried out by ProbiSearch SLU, Madrid,
Spain, unless indicated otherwise.

Common Name and Systematic Identification

The isolate has been deposited as DSM 32583 and WS
5622 in the German Collection of Microorganisms (DSMZ,
Braunschweig) and the Weihenstephan Strain Collection
(WS, Freising), respectively.

Isolation of B. breve DSM 32583

The strain was isolated as described previously [22]. Healthy
women, after normal full-term pregnancy, without mastitis
and other perinatal problems were enrolled to the study aim-
ing at evaluating the diversity of lactobacilli and bifidobac-
teria in human milk (study B-06/262, Ethical Committee on
Clinical Research of Hospital Clinico, Madrid).

Genotypic Identification

The whole genome of B. breve DSM 32583 has been
sequenced and described [22]. Previously, we employed
average nucleotide identity (ANI) analysis to confirm the
affiliation of DSM 32583 to the B. breve taxon, with the
98.1% ANI value to the type strain B. breve DSM 202137
[22]. Here, complete genome sequences for Bifidobacterium
species associated with human hosts—infants in particular
(Bifidobacterium longum subsp. longum and Bifidobacte-
rium longum subsp. infantis, B. breve, Bifidobacterium bifi-
dum, Bifidobacterium catenulatum, Bifidobacterium pseu-
docatenulatum)—were downloaded from NCBI and used
in comparative analysis employing Mashtree v.1.2.0 (Sup-
plementary Table 1) [23].
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The presence of mobile insertion elements in the genome
of B. breve DSM 32583 was investigated using ISfinder
(transposases) [24], PHASTER (phage-related sequences)
[25], and PlasmidFinder (the presence of plasmids) [26].
Virulence genes and pathogenicity islands were searched
for using VirulenceFinder v.2.0 [27] and PAIDB v.2.0 [28].
The presence of putative antimicrobial resistance genes was
assessed using the CARD database (v.3.2.4) [29]. Addi-
tionally, regions flanking the detected tet(O) gene homo-
logue were screened against the NCBI database [30] using
the online blastn suite [31], as well as aligned to respec-
tive genomic regions of B. longum strains H34, F313,
and Y1 (accession numbers: KY697301.1, KY697302.1,
KY697303.1) [32] using MAFFT v.7 [33]. The presence
of putative bacteriocin gene clusters was investigated using
Bactibase and BAGEL4 [34, 35].

Prediction of HMO clusters was performed by comparing
known bifidobacterial protein sequences to the genome of
B. breve DSM 32583 using local blastp (e-value < 1x 107,
percentage identity >70%). HMO clusters were annotated
‘present’ if all cluster components were identified at the
above homology level. Incomplete clusters (more than 3
locally clustered genes) were annotated as ‘partially present’.

Phenotypic Identification

Gram-staining and catalase assays were conducted as
described previously [36]. The activity of fructose-6-phos-
phate phosphoketolase (FOPPK) was confirmed through the
enzymatic-colorimetric assay [37].

Antimicrobial Susceptibility Testing

Minimum inhibitory concentrations (MICs) were deter-
mined according to recommendations of the (EFSA) using
a micro-dilution method within the ISO 10932 IDF 223
International Standard by Probisearch SL, Madrid, Spain,
and Dairy Research Institute of Asturias-Spanish National
Research Council IPLA-CSIC), Villaviciosa, Spain. Addi-
tionally, MICs were also determined by E-test strips by Pro-
bisearch SL, Madrid, Spain, and LADR Laborverbund Dr.
Kramer & Kollegen, Geesthacht, Germany.

Briefly, the MIC of 16 antibiotics, namely ampicillin,
vancomycin, gentamycin, kanamycin, streptomycin, clinda-
mycin, tetracycline, chloramphenicol, tylosin, ciprofloxacin,
colistin, fosfomycin, neomycin, erythromycin, virginiamy-
cin, linezolid, trimethoprim, and rifampicin was determined.
Colonies from overnight culture plates were resuspended
in sterile saline solution at turbidity of a McFarland stand-
ard of 1 (3x 108 CFU/ml). The bacterial solution was then
used to inoculate at 1:1000 LSM-cys liquid medium, com-
posed of a 90% Iso-Sensitest medium (BD Difco, USA) and
a 10% of MRS-cys medium (0.3 g/l) (BD Difco, USA), as

indicated in Standard ISO 10932:2010. Next, 100 pl of the
diluted culture was distributed into the well of antibiotic-
precoated plates VetMIC Lact-1 (version 1) and Lact-2 (SVA
National Veterinary Institute, Sweden). The plates were then
incubated for 48 h under anaerobic conditions at 37°C, and
the minimal inhibitory concentration (MIC), defined as the
lowest antibiotic concentration at which there is no visual
growth (ISO 10932:2010), was determined.

Additionally, MICs of selected antibiotics were also
determined by E-test strips (AB BIODISK, Solna, Sweden)
following manufacturer’s instructions. Briefly, individual
colonies from overnight culture were resuspended in 5 ml
of sterile saline until density corresponding to a McFarland
standard of 0.5 was obtained (1.5 x 10® CFU/ml). A ster-
ile cotton swab was dipped into the standardised inoculum
and used to inoculate an agar plate. Inoculated plates were
allowed to dry for approximately 15 min before application
of the E-test strips with preformed antimicrobial gradients.
After 24 h of incubation, the MIC was defined as the value
corresponding to the first point on the E-test strip where
growth did not occur along the inhibition ellipse. For bac-
teriostatic agents (e.g. tetracycline, erythromycin, and clin-
damycin), the MIC was read at the point where growth was
inhibited by 80% (i.e. the first point of significant inhibition
as judged visually).

The Carbohydrate Fermentation and Enzymatic
Activity Profiles

The carbohydrate fermentation profile was determined with
the API 50 CH system (BioMérieux, France) according to
the manufacturer’s instructions by Probisearch SL, Madrid,
Spain. The enzymatic activity profile was assayed using
the API Zym galleries (BioMérieux, France) following the
manufacturer’s instructions.

pH Stress Survival Assay

The survival of the isolate at low pH was tested in an in vitro
model of the human stomach and small intestine based on
that described by Marteau et al. [38]. Limosilactobacillus
fermentum CECT 5716, Lactobacillus johnsonii Lal, Lac-
ticaseibacillus rhamnosus GG, and Lacticaseibacillus casei
Immunitas were tested as controls. UHT-treated human milk
(25 ml) containing approximately 10° CFU/ml of the isolate
were diluted in 5 ml of sterile electrolyte solution containing
6.2 g/l of NaCl, 2.2 g/l of KCI, 0.22 g/1 of CaCl,, and 1.2 g/1
of NaHCO; to simulate the in vivo dilution by saliva. Then,
5 ml of porcine gastric juice was added, and the mixture was
incubated at 37°C on a shaker (paddle speed 200 +5 min™).
The pH curve in the stomach-resembling compartment was
controlled to reproduce the values found in monogastric ani-
mals after yoghourt consumption [39]: pH 5.0 at initiation,
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pH 4.1 at 20 min, pH 3.0 at 40 min, and pH 2.1 at 60 min.
Fractions were taken from these compartments at 20, 40, 60,
and 80 min, in a manner that simulates the normal gastric
emptying [38]. After adjusting their pH to 6.5+0.2 with 1 M
NaHCO;, they were mixed with 10 ml of a sterile electrolyte
solution containing 5 g/l of NaCl, 0.6g/1 of KCl, 0.3 g/l of
CaCl,, 4% of porcine bile, and 7% of pancreatin (Sigma-
Aldrich, UK), which simulates the content of the duode-
nal juice. After 120 min of successive exposure to these
conditions, bacterial survival was determined by plating the
samples onto TOS agar plates (Merck, Germany), which
were then incubated anaerobically at 37°C for 48 h. These
assays were performed in quadruplicate, and the values
were expressed as the mean + SD. Cumulative percentages
of bacteria that survived the passage through the simulated
gastric and duodenal compartments for the total collection
period were obtained by summing the results of successive
sampling periods.

Adhesion Assays to Caco-2 Cells

The adherence of B. breve DSM 32583 to HT-29 and Caco-2
cells was examined as described previously [40]. Addition-
ally, L. fermentum CECT 5716, L. rhamnosus GG, and L.
casei Imunitas were tested. Cells were grown in DMEM
medium (PAA, Linz, Austria) containing 25 mM glucose
and 1 mM sodium pyruvate and supplemented with 10%
heat-inactivated (30 min, 56°C) foetal calf serum, 2 mM
L-glutamine, 1% non-essential amino acid preparation, 100
U/ml penicillin, and 100 mg/ml streptomycin. For the adher-
ence assays, HT-29 and Caco-2 were cultured to confluence
in 2 ml of medium devoid of antibiotics. Approximately 10
days post confluence, 1 ml of the medium was replaced with
1 ml of B. breve DSM 32853 suspension (10® CFU/ml in
DMEM). The inoculated cultures were incubated for 1 h at
37°Cin 5% CO,. Then, the monolayer was washed five times
with sterile PBS, fixed with methanol, stained with Gram
stain and examined microscopically. The adherent bacteria
in 20 random microscopic fields were counted for each test.

Growth Inhibition of Other Bacterial Species

An overlay method previously described [41, 42] was used
to determine the ability of the strain to inhibit the growth
of other microorganisms. The following bacteria were
employed as indicator organisms: Enterococcus faecium
P21, Enterococcus faecalis TAB28, Listeria monocytogenes
ScottA, L. monocytogenes Ohio, Listeria innocua RdC,
Staphylococcus aureus CECT 5191, Staphylococcus epider-
midis CECT 231, Salmonella enterica serovar Choleraesuis
CECT 4155, S. Choleraesuis CECT 409, S. Choleraesuis
CECT 443, S. enterica serovar Enteritidis 4396, Escherichia
coli CECT 4076 (O157:H7), E. coli RIM1, E. coli RIM2,
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Klebsiella pneumoniae CECT 142, Klebsiella oxytoca
CECT 860T, and Proteus vulgaris CECT 484. The plates
overlaid with bacterial indicators were incubated at 37°C for
48 h, while those overlaid with yeasts cells or fungal spores
were incubated at 30°C for up to 120 h. The plates were
examined for zones of inhibition around the strain streaks.
All experiments assaying inhibitory activity were performed
in triplicate.

Conjugated Linoleic Acid (CLA) and Conjugated
Linolenic Acid (CLNA) Production

All reagents used were HPLC grade: hexane and sulphuric
acid were obtained from Labscan (Ireland), linoleic acid
(LA) (C18:2 cis9 cis12) from Sigma-Aldrich (USA), lino-
lenic acid (ALA) (C18:3 cis9 cis12 cis15) from Nu-Chek
Prep, Inc. (USA), and high conjugated linoleic acid (CLA)
content oil (Tonalin R) from Cognis (Germany). LA and
ALA were prepared as a 30 mg/ml stock solution containing
2% (w/v) Tween-80 and filter sterilised through a 0.45-um
pore size membrane.

B. breve DSM 32583 was grown overnight at 37°C in
MRS broth supplemented with 0.05% (w/v) L-cysteine-HCL
(Sigma-Aldrich, USA) and 0.2% (w/v) Tween-80 (MRS-Cys
broth) under anaerobic conditions. Three percent (v/v) of
the culture were transferred to fresh MRS-Cys broth (10 ml)
containing free LA (0.5 mg/ml) and/or free ALA (0.5 mg/
ml) and incubated at 37°C for 24 h under anaerobic condi-
tions. The strain was also tested for CLA/CLNA production
in 10% reconstituted skim milk supplemented with 0.05%
(w/v) L-cysteine and 0.8% (w/v) casamino acids (milk-based
medium).

Lipid isolation from culture media was carried out using
a chloroform/methanol (2:1, v/v) solution according to Folch
method modified by Iverson et al. [43]. The lipid residues
obtained were subjected to a N, flow and remained dissolved
in chloroform at —20°C until spectrophotometric analysis.
For this analysis, lipid extract (200 pl) was placed on a
quartz 96-wells plate, and total CLA was quantified at a
wavelength of 233 nm in a spectrophotometer according to
Rodriguez-Alcala et al. [44]. Measurements were obtained
in triplicate.

The concentrations of CLA and CLNA in the culture
media were determined using a direct methylation method.
Heptadecanoic acid (C17:0; Sigma-Aldrich, USA) was
added to the samples as an internal standard. The fatty acid
methyl esters (FAMEs) were dissolved in n-hexane and
determined by gas chromatography (GC) in a chromatograph
equipped with a VF-23 column (30 m X 0.25 nm X 0.25 pm;
Varian, Netherlands). For gas-liquid (GLC) analysis, the
initial temperature was 80°C. Then, the temperature was
increased to 170°at 30°C/min, held at 170°C for 3 min,
increased to 230°C at 30°C/min, and finally held at 230°C
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for 7 min. Helium was used as the carrier gas at a pressure of
15 psig and with a split ratio of 1:50. The injection volume
was 0.5 pl, and the analysis time was 15 min. Peaks were
identified by comparing the retention times of CLA methyl-
ated standards (Nu-check, USA) and by gas chromatogra-
phy-mass spectrometry (GC/MS). CLA and CLNA concen-
trations were expressed as pg/ml, and their conversion rates
from LA and ALA were calculated using the formula (CLA/
(CLA+LA))x 100 and (CLNA/(CLNA +LNA)) x 100,
respectively.

Results

B. breve DSM 32583 was isolated from human milk and is
a non-motile, non-spore forming, catalase negative, FOPPK-
positive, rod-shaped anaerobic Gram-positive bacterium.
The average nucleotide identity (ANI) analysis previously
confirmed the affiliation of DSM 32583 to the B. breve taxon
(Supplementary Table 2) [22]. Additionally, relatedness
analysis of representative infant-associated Bifidobacterium

Fig.1 Cladogram of selected
Bifidobacterium isolates

representative of infant-asso-
ciated bifidobacterial species,

Bifidobacterium clades
B. catenulatum
B. pseudocatenulatum
B. bifidum

B. breve

B. longum subsp. infantis

including B. breve DSM 32583
(marked in red). The dendro-
gram was generated based on

B. longum

species placed B. breve DSM 32583 within the B. breve clus-
ter (Fig. 1).

Mobilome of B. breve DSM 32583

We assessed the genome of B. breve DSM 32583 for the
presence of insertion sequences. This analysis revealed that
all long open reading frames (ORFs) (>50% coverage of
known insertion sequence (IS) length) that showed high
similarity to known transposases were homologous to IS
previously reported for bifidobacteria, in particular the strain
B. longum NCC2705 [45] (Supplementary Table 3).

The search for the presence of putative bacteriophage
particles in the genome of B. breve DSM 32583 did not
identify any complete prophage sequence, but only three
incomplete prophage-associated regions were detected. The
first was predicted to contain a phage tail protein similar to
that from phage Strept phiSASD1, the second a transposase
similar to that found in phage Bacter Diva, while the third
region was predicted to contain a gene of unknown func-
tion similar to that previously identified in phage Entero
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phiEF24C (Supplementary Table 4). Furthermore, analysis
of the genomic data also suggested the absence of plasmids.

Resistome: Virulence Factors and Antimicrobial
Resistance

The screening for virulence and pathogenic potential of B.
breve DSM 32583 revealed a complete absence of virulence
genes.

Using the CARD database [29], the genome of B. breve
DSM 32583 was examined for the presence of putative genes
associated with antibiotic resistance. This analysis detected
homologues of two resistance genes commonly identified
in other bifidobacteria, the rifamycin-resistant beta-subunit
of RNA polymerase (rpoB) and the tetracycline resistance
gene tet(O) (Supplementary Table 5).

The identified homologue of the te#(O) gene in B. breve
DSM 32583 was not found to be located in the vicinity of
putative transposases, with only short, incomplete sequence
regions (less than 80 nt) identified as identical to known
insertion sequence elements upstream and downstream (Sup-
plementary Table 3). However, manual comparison against
the NCBI database (September 2022) revealed a putative
homologue of a protein previously proposed to be transpo-
son-associated (tnpV) directly upstream of the fef(O) gene.
The tnpV gene was originally identified in the Clostridium
perfringens transposon Tn4451, which is mobilisable but
not self-mobile, i.e. in need of a transposase in close prox-
imity. Previous reports suggested that the tnpV sequence
showed similarity to viral transcriptional regulators based on

a)

PSI-BLAST searches, but its function and relevance remain
unknown [46].

Phenotypic tetracycline resistance (MIC pg/ml>256) in
bifidobacteria harbouring the te#(O) gene has been linked
to the presence of a 99-bp gene encoding a putative Cpp-
like protein downstream of the tetracycline resistance gene
[32]. Sequence comparisons between the genome of B. breve
DSM 32583 and nucleotide sequences downstream of the
tet(O) gene previously reported for tetracycline-resistant B.
longum strains revealed partial homology to these regions
(86.3% nucleotide identity over a 150-bp aligned region, on
average). This might suggest the presence of the putative
and not yet fully characterised cpp2 gene, whose relevance
is difficult to ascertain, especially considering the lower
MIC levels observed for B. breve DSM 32583, as described
below. The proposed genomic architecture of the regions
flanking the fef(O) gene homologue in B. breve DSM 32583
is represented in Fig. 2a.

Given the results of the genomic analysis, B. breve DSM
32583 was subjected to antibiotic sensitivity testing accord-
ing to the recommendations of EFSA using a micro-dilution
method, as well as E-test strips, with sensitivity to tetracy-
cline tested by three independent laboratories.

The results of this analysis revealed that B. breve DSM
32583 exhibited antibiotic sensitivities within the recom-
mended EFSA cut-off values (Table 1) and varying results
for tetracycline. The MIC values recorded for this antibiotic
ranged from 4 to 16 pug/ml between the testing institutions. A
discrepancy between the results of genomic and phenotypic
analysis was also observed for rifampicin. While genomic

B. breve DSM 32583

D) ) )

tnpV

b)

B. breve UCC 2003
BBR_RS13075-BBR_RS13100
B. breve UCC 2003
BBR_RS18470-BBR_RS18480
B. breve UCC 2003
BBR_RS18490-BBR_RS18520
B. breve UCC 2003
BBR_RS18650-BBR_RS18675

tet(0)

B. longum SC596
BLNG_01254-BLNG_01264

cpp2

Blon_2171-Blon_2177

DSM 20438
BBPC_RS08935_RS08975

B. longum JCM 1217

BLLJO8355_BLLJ08385
B_infantis ATCC 15697
BLON_RS12070_RS122215
B. Infantis ATCC 15697
Blon_0879-Blon_0885
B.pseudocatenulatum

. Present

B. breve DSM 32583

® 6 6 6 O

O Partially present

O o O

Fig.2 a Schematic representation of putative genomic architecture of
the regions flanking the identified fet(O) gene homologue in B. breve
DSM 32583. b Diagram depicting presence and absence of homo-
logues of known HMO degradation clusters in B. breve DSM 32583
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(blastp, e-value.™°, percentage identify >50%). HMO clusters were
annotated ‘present’ if all cluster components were identified at the
above homology level. Incomplete clusters (more than 3 locally clus-
tered genes) were annotated as ‘partially present’
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Table 1 Antibiotic resistance EFSA guidelines for Probisearch SLU LADR IPLA-CSIC
profile of B breve.DS.M bifidobacteria
32583. Minimum inhibitory
concentrations (MIC) were Performed method MIC and E-test E-test MIC
determined according to Ampicillin 2 0.25 0.094
recommendations of the )
European Food Safety Agency Chloramphenicol 4 0.5 0.19
(EFSA) using both a micro- Ciprofloxacin n.r 8
dilution method within the ISO Clindamycin 1 <0.03 0.016
10932 IDF 223 International Colistin or ot
Standard and an E-test strip oS ) ’ ’
method by three independent Erythromycin 1 1 0.125
diagnostic laboratories Fosfomycin n.r n.t
Gentamycin 64 32 64
Kanamycin n.r 64 256
Linezolid n.r 0.25
Neomycin nr 256
Rifamycin nr <0.12
Streptomycin 128 4
Tetracycline 8 4 12 16
Trimethoprim nr 8
Tylosin n.r n.t
Vancomycin 2 0.5 0.7
Virginiamycin n.r 0.25

screening suggested high protein homology to the known
amino acid sequence conveying resistance to rifampicin
in Bifidobacterium adolescentis DSM 20083 (92.48%
identity), the results of the antimicrobial resistance testing
revealed that B. breve DSM 32583 was susceptible to this
antibiotic (Supplementary Table 5 and Table 1).

Carbohydrate Fermentation Patterns of B. breve
DSM 32583

The carbohydrate fermentation pattern of B. breve DSM
32583 was tested with API Rapid 50 CH fermentation strips
by two different laboratories. Overall, profiles were qualita-
tively similar (Supplementary Table 6), with inter-laboratory
variation between data reported for L-arabinose, amygdalin,
D-trehalose, gentobiose, and L-fucose.

Members of B. breve, B. longum subsp. infantis, B.
longum, and B. pseudocatenulatum have previously been
reported to contain genomic clusters required for HMO uti-
lisation [12, 13, 47]. Therefore, we searched for the presence
of these clusters in B. breve DSM 32583. Lacto-N-tetraose
and lacto-N-neo-tetraose HMO clusters have been well
annotated in B. breve UCC2003, Int cluster (BBR_RS13080-
BBR_RS13100), lac cluster (BBR_RS18470-BBR_
RS18480), the nah cluster (BBR_RS18490-BBR_RS18520),
and [np/glt cluster (BBR_RS18650-BBR_RS18675) [13],
and homologues to all of these clusters were identified in B.
breve DSM 32583. This suggests that B. breve DSM 32583

has genomic potential to degrade oligosaccharides present in
human milk (Fig. 2b and Supplementary Table 7).

Enzymatic Activity

Enzymatic activity of B. breve DSM 32583 was investigated
against 19 different enzymes using the API ZYM assay.
Typically, Bifidobacterium strains have high activities of
B-galactosidase and a-glucosidase, and moderate-to-high
activity of a-galactosidase. Additionally, weak or absent
activities of a-mannosidase, and a-fucosidase are charac-
teristic for members of the genus Bifidobacterium, and so
are weak protease activities [48, 49].

B. breve DSM 32583 exhibited esterase (C4), esterase
lipase (C8), leucine arylamidase, valine arylamidase, cys-
tine arylamidase, acid phosphatase, naftol-AS-BI-phospho-
hydrolase, a-galactosidase, f-galactosidase, a-glucosidase,
p-glucosidase, and N-acetyl-p-glucosaminidase activities
among the tested enzymes (Supplementary Table 8).

Resistance to Gastric Acid

The ability of B. breve DSM 32583 to survive conditions sim-
ulating those present in the gastrointestinal tract was tested
and compared with that of L. fermentum CECT 5716, L. rham-
nosus GG, L. johnsonii Lal, and L. casei Immunitas. Viability
of B. breve DSM 32583 and L. casei Immunitas remained
at around 15% on average between the 20 min mark at pH 5
and the 60 min mark at pH 3, while the results recorded for
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Table 2 Fraction of cells (10 ® CFU/ml) that survived the simulated conditions of the human gastrointestinal tract. Assays were performed in

quadruplicate, and the values were expressed as the mean +SD

Gastric simulation—survival [% + SD] of 10° CFU/ml

Time (min) 20 40 60 80

pH 5 4,1 3 2,1

B. breve DSM 32583 14+2 154+39 16.0+3.1 7.1+1.5
Limosilactobacillus fermentum CECT 5716 10+1 13.8+1.8 18.00+2.6 10.0+0.0
Lacticaseibacillus rhamnosus GG 15+2 2.0+1.3 11.5+0.4 12.7+0.6
Lactobacillus johnsonii Lal 9+0.9 11.5+1.2 11.9+0.4 9.6+1.0
Lacticaseibacillus casei Imunitas 15.8+0.5 20.1+3.8 16.7+6.4 0.1+0.0

Table 3 Adherence of B. breve DSM 32583 to HT-29 and Caco-2
cells. Given are the number of bacteria in 20 microscopic fields and
the SD

Strain HT-29 Caco-2
B. breve DSM 32583 862+361 330+124
Limosilactobacillus fermentum CECT 5716  886+59  277+185
Lacticaseibacillus rhamnosus GG 820+350 362+139
Lacticaseibacillus casei Immunitas 164 +89 17+11

the remaining tested strains in the same time frame showed
more variability (Table 2). After 80 min and pH reduction to
2.1, around 7% of B. breve DSM 32583 on average remained
viable in the gastric compartment, while the viable counts for
L. casei Immunitas dropped to 0.1%. The cumulative survival
of B. breve DSM 32583 during passage through the simulated
gastric and duodenal compartments (about 52% on average)
was comparable to that of L. casei Immunitas and L. fermen-
tum CECT 5716 (about 53% and 51%, respectively), while
an overall lower value was recorded for L. rhamnosus GG, L.
Johnsonii Lal (around 41% on average).

Adhesion Assays to Caco-2 and HT-29 Cells

The adherence of B. breve DSM 32583 was tested and com-
pared with that of selected lactic acid bacteria (Table 3).
B. breve DSM 32583 exhibited levels of adherence to
HT-29 cells that were comparable to those of L. fermen-
tum CECT 5716 and L. rhamnosus GG, with 862 + 361,
886 +597, 820+ 350 bacterial cells detected in the assessed
microscopic fields, respectively. In contrast, the number of
adherent cells recorded for L. casei Immunitas was lower
(164 + 89 cells). Similarly, numbers of bacterial cells that
adhered to Caco-2 cells were higher for B. breve DSM
32583, L. fermentum CECT 5716, and L. rhamnosus GG
(330124, 277 £ 185, and 362 + 139, respectively), while
the number of observed adherent L. casei Immunitas cells
was considerably lower, with only 17+ 11 cells recorded.
Overall, these results suggest high ability of B. breve DSM
32583 to adhere to HT-29 and Caco-2 cells.

@ Springer

Table 4 Antimicrobial activity of the isolate B. breve DSM 32583
against selected bacterial strains (++, halo 3-6 mm;+ + +,>6 mm)

Strain Halo
Enterococcus faecium P21 ++
Enterococcus faecalis TAB28 ++
Listeria monocytogenes ScottA +++
Listeria monocytogenes Ohio +++
Listeria innocua RdC +++
Staphylococcus aureus CECT5191 +++
Staphylococcus epidermidis CECT231 +++
Salmonella Choleraesuis CECT4155 +++
Salmonella Choleraesuis CECT409 +++
Salmonella Choleraesuis CECT443 +++
Salmonella Enteritidis 4396 +++
Escherichia coli CECT4076 +++
Escherichia coli RIM1 +++
Escherichia coli RIM2 +++
Klebsiella pneumoniae CECT 142 ++
Klebsiella oxytoca CECT 860 T ++
Proteus vulgaris CECT484 ++

Growth Inhibition of Other Bacterial Species

The potential of probiotics to antagonise potential pathogens
is of particular interest; therefore, the ability of B. breve
DSM 32583 to inhibit growth of selected strains was evalu-
ated. B. breve DSM 32583 was able to inhibit growth of
indicator bacteria (Table 4). In all 17 cases tested, a zone
of inhibition with a radius larger than 3 mm was observed
after direct contact of B. breve DSM 32583 with the indi-
cator strain cultures, and in 12 out of 17 cases tested, the
radius was greater than 6 mm. This inhibition is likely to
result from production of organic acids and the decrease in
the environmental pH, rather than from the production of
compounds with bactericidal properties. This observation
could be supported by the results of genomic analysis, which
indicated the absence of bacteriocin genes in the genome of
B. breve DSM 32583.
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Conjugated Linoleic Acid (CLA) and Conjugated
Linolenic Acid (CLNA) Production

Lastly, we assessed the potential of B. breve DSM 32583
to produce CLA and CLNA. The concentration of CLA
produced by the strain in MRS medium supplemented with
L-cysteine (MRS-Cys) reached 171 +38 pug/ml, indicating
that the minimal conversion rate from the added linoleic
acid (LA) was approximately 74%. B. breve DSM 32583
was able to produce different CLA isomers, such as cis 9,
trans 11 CLA, trans 10, cis 12 CLA and trans 9, trans 11
CLA (Table 5, Fig. 3a). The conversion rate of linolenic acid
(LNA) into CLNA was higher than that of CLA, approxi-
mately 99%, with the amount of produced CLNA reaching
the concentration of 219 +9 pg/ml. Two CLNA isomers
(cis 9, trans 11, cis 15 CLNA and trans 9, trans 11, cis
15 CLNA) could be detected in the chromatogram profiles
(Table 5, Fig. 3b).

Subsequently, B. breve DSM 32583 was tested for
CLA and/or CLNA production in the milk-based medium.
(Table 5). CLA production was lower in this medium com-
pared with MRS supplemented with L-cysteine, reaching
75 + 10 pg/ml at approximately 31% conversion rate, while
the CLNA production and conversion rates were comparable
to those observed in MRS-Cys medium (Table 5).

Discussion

Human milk and exclusive breastfeeding are the best form
of nutrition for infants, providing all essential macro- and
micronutrients alongside other health-promoting factors
[50]. One of the advantageous properties of human milk
is the presence of beneficial bacteria that colonise the
infant gut and modulate the developing immune system.
Therefore, human milk is nowadays an important source
for isolation of probiotic strains [51]. In particular, benefi-
cial properties of members of families Lactobacillaceae
and Bifidobacteriaceae are frequently assessed due to their
established history of safe use [52]. Each new potentially
probiotic strain should be validated by genotypic and phe-
notypic methods to ensure both its safety and its potential
to exert health-promoting effects on the host [53].

In the present work, we describe functional properties
of Bifidobacterium breve DSM 32583 isolated from human
milk. Previously performed average nucleotide identity anal-
ysis identified our strain as a member of the B. breve taxon
[22]. Here, additional analysis of relatedness to representa-
tive Bifidobacterium strains belonging to several infant-asso-
ciated species also placed B. breve DSM 32583 within the B.
breve cluster, confirming its affiliation to this well-studied
species that has previously been associated with a number
of health-promoting properties [13, 14, 54].

Genomic analysis of the bacterial mobilome allows to
identify potentially harmful mobile elements and becomes
a standard in the characterisation of probiotic candidates.
Prokaryotic genome plasticity and stability can be impacted
by the presence of different mobile elements, such as inser-
tion sequences (IS), transposases, plasmids, and prophages
[55]. Transposable elements have been suggested to play a
role in environmental adaptation and species diversification
through their involvement in chromosomal deletions and/
or rearrangements mediated by their ability to catalyse the
movement of DNA fragments between different locations in
the genome by recognising specific target sequences [56].
For B. breve DSM 32583, all detected ORFs that showed
high similarity to known transposases were homologous to
IS previously reported for bifidobacteria, in particular the
strain B. longum NCC2705 [45].

Prophages have long been known to contribute to hori-
zontal gene transfer events through transduction—a process
in which a bacteriophage transfers non-viral DNA from one
bacterial cell to another [57]. The B. breve DSM 32583
genome contains no plasmids and no complete prophage
sequences, with only three incomplete prophage-associated
regions present. Therefore, the probability of horizontal gene
transfer in case of B. breve DSM 32583 seems very low.

Genomic resistance to antibiotics has to be assessed for
probiotic candidates and does not pose a safety concern, as
long as the antibiotic resistance genes are intrinsic and not
located on mobile elements like plasmids [58]. The screen
for the presence of putative genes associated with antibiotic
resistance revealed putative homologues of the rifamycin-
resistant beta-subunit of RNA polymerase (rpoB) and the
tetracycline resistance gene tet(O). Previous studies have
indicated that resistance to rifamycin in bifidobacteria is
linked to a number of different mutations observed across

Table 5 Conjugated linoleic (CLA) and linolenic (CLNA) acid production and rate of linoleic (LA) and linoleic acid (LNA) conversion by B.
breve DSM 32583. Values are means of triplicate experiments and standard deviation (+ SD)

Medium CLA ug/ml cis9 transll (% LA conversion CLNA ug/ml cis9 transll (% LNA
CLA) % CLNA) conver-
sion %
MRS-Cys 171+39 81+1 75+6 219+39 83+9 99+1
Milk-based medium 75+10 84+5 3+14 244 +40 94 +1 97+1
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Fig.3 Gas chromatography
chromatogram profiles of the
fatty acid content present in the
culture media obtained from

B. breve DSM 32583 grown ss03
in MRS broth supplemented 3
with 0.5 mg/ml linoleic (a) and
linolenic acid (b). Extensions of 3
the anterior chromatogram indi-
cating the conjugated linoleic 3
(CLA) and linolenic (CLNA)
acid isomers are presented in 3
boxed fields
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the rpoB gene, including regions other than the resistance-
conveying sequence ‘hot spots’ [59]. Moreover, the wide-
spread presence of tetracycline resistance genes tet( W/M/O/S)
in bifidobacteria is very well documented, with no reports
of related adverse observations [60—62] and the wide use in
the functional food industry, including dairy products and
other probiotic formulations [63]. The tet(W) gene seems to
be the most prevalent in different bifidobacterial species, as it
has been detected at high frequencies in strains belonging to
B. longum subsp. longum [61] and B. animalis subsp. lactis
[61, 64]. Furthermore, it has been identified in genomes of
a number of bifidobacterial strains featured in commercial
products with long-term known safety, for example, in B. ani-
malis subsp. lactis BB-12 [65] or B. breve BB02, B. animalis
subsp. lactis BLO3, and B. animalis subsp. lactis BI04 [66].

@ Springer

Previous literature shows that the fef(W) gene in the genus
Bifidobacterium seems to be integrated into the chromosome
with its surrounding regions showing strain-specificity and is
frequently flanked by transposase target sequences or genes
coding for transposases [60, 64]. This suggests that, under
appropriate conditions, the gene could be transferred, but
this has never been experimentally confirmed [64, 65]. Here,
the homologue of the fet(O) gene in B. breve DSM 32583
was not found to be located in the vicinity of putative trans-
posases. Manual sequence searches revealed the presence of
a putative homologue of a non-self-mobile protein previously
proposed to be transposon-associated (tnpV) upstream of the
tet(O) gene. However, it’s function remains unknown [46].

Phenotypic antibiotic sensitivity testing according to the
EFSA guidelines revealed antibiotic sensitivities within the
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recommended EFSA cut-off values. Interestingly, values
for tetracycline showed variation ranging from 4 to 16 pg/
ml between the testing institutions. While the value of 16
pg/ml is formally above the recommended EFSA cut-off of
8 pg/ml, the results obtained for B. breve DSM 32583 fall
within the inter-laboratory variation of MICs previously
reported for other commercially used bifidobacteria, such
as B. animalis subsp. lactis BB-12 [1], HN019, B1-04, and
B420 [67], B. longum subsp. longum BORI, and B. breve
M-16V [1]. Despite the fact that tetracycline-class drugs are
broad spectrum antibiotics and have many clinical applica-
tions, their utility has been declining in the past 50 years due
to an increase in rates of acquired resistance and the avail-
ability of other antimicrobials, such as cephalosporins [68].
Nowadays, tetracycline-class antibiotics are mainly used as
a second-line treatment option in human medicine due to
many side effects, such as ototoxicity [68, 69], but remain
among the most frequently used in livestock and poultry
worldwide [70].

Many probiotics are known to carry several chromosom-
ally located resistances [71]. Given that bacteraemia caused
by probiotics has only been reported in extremely rare cases
and susceptible cohorts [72], it has been proposed that pro-
biotic strains should be susceptible to at least two major
commonly used antibiotics [73]. Since B. breve DSM 32583
is susceptible to ampicillin, vancomycin, gentamycin, strep-
tomycin, clindamycin, chloramphenicol, and erythromycin,
the strain meets this criterion. Moving forward, approaches
to reduce antibiotic resistance in probiotic candidates might
take advantage of recently proposed genome engineering
methods [74, 75]. While current food law regulations and
consumer expectations are not yet in line with these pioneer-
ing ideas, future dietary product developments may imple-
ment such techniques.

Another condition for probiotic strains is the absence
of bacterial virulence factors, which have been shown to
enable pathogens to replicate and disseminate within a host
by negatively modulating or eluding host defences [76].
Screening for virulence and pathogenic potential of B. breve
DSM 32583 revealed no virulence genes, as expected for
bifidobacteria.

Being saccharolytic, bifidobacteria utilise carbohydrates
as their sole source of carbon and energy. As such, they
play an important role in shaping the gut environment
through their carbohydrate metabolism capabilities [77].
Therefore, we assessed the carbohydrate fermentation pat-
tern of B. breve DSM 32583 at two independent institu-
tions. Overall, the profiles were qualitatively similar, with
some inter-laboratory variation, and indicated that B. breve
DSM 32583 can metabolise a wide range of carbohydrates,
which is consistent with previous reports. Indeed, it has been
widely proven that bifidobacteria can metabolise different
carbohydrates, including host-derived gastric mucin, and

host- and plant-derived oligosaccharides, such as galacto-
oligosaccharides and fructo-oligosaccharides or pectin, but
the bifidobacterial metabolic capacity for specific carbohy-
drates is species- and strain-dependent [77].

Bifidobacterial species and strains associated with early
life, e.g. B. breve and B. longum subsp. infantis, often con-
tain catabolic genes that specifically target human milk
oligosaccharides (HMOs) for degradation and metabolism
[78]. The B. breve DSM 32583 genome contains putative
homologues to Bifidobacterium gene clusters previously
implicated in the degradation of lacto-N-tetraose and lacto-
N-neo-tetraose. This suggest the potential of B. breve DSM
32583 to degrade oligosaccharides present in human milk,
which will have to be verified in future studies.

An important characteristic of bacterial strains used in
probiotic formulations is their ability to survive the passage
through the gastrointestinal tract, in particular through the
acidic environment of the stomach and the duodenum, where
the bile salts are secreted, and retain their optimal function-
ality [79]. We therefore tested the ability of B. breve DSM
32583 to survive conditions simulating those present in the
gastrointestinal tract and compared it with that of L. fermen-
tum CECT 5716, L. rhamnosus GG, L. johnsonii Lal, and
L. casei Immunitas. B. breve DSM 32583 showed good gas-
trointestinal survival rates, and we observed strain-specific
variability in the viability of bacterial cells, consistent with
previous reports. For example, Marteau et al. [38] reported
cumulative deliveries of a viable B. bifidum strain, recov-
ered from fermented milk product Ofilus (Yoplait), from the
gastric compartment into the duodenal compartment at 67%,
while in a study conducted by Venema et al. [80] using a
computer-controlled in vitro model of the stomach and small
intestine (TIM-1), 5.3% of the viable ingested bifidobacterial
dose (B. longum SP07/3 and B. bifidum MF20/5) and 1% of
the viable ingested Lactobacillus dose (Lactobacillus gas-
seri, PA16/8) survived passage through the gastric compart-
ment. Significant variability in the survival of different bifi-
dobacterial strains was previously shown by Zuo et al. [16],
who reported gastric juice tolerance of 0.01 and 70.13% for
B. bifidum IF3-211 and B. lactis Bb12, respectively.

Probiotic candidates should be metabolically active in the
gastrointestinal tract, we therefore assessed the enzymatic
activity of B. breve DSM 32583 and its ability to produce
health-promoting conjugated acids. The strain exhibited
esterase (C4), esterase lipase (C8), leucine arylamidase,
valine arylamidase, cystine arylamidase, acid phosphatase,
naphthol-AS-BI-phosphohydrolase, a-galactosidase,
[p-galactosidase, a-glucosidase, f-glucosidase, and N-acetyl-
B-glucosaminidase activities. The enzymatic profile of B.
breve DSM 32583 was generally similar to those previously
reported for members of this species, including B. breve
ATCC 15698, B. breve ATCC 15699, B. breve ATCC 15700,
B. breve ATCC 15701, and B. breve IDCC4401 [54].
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Conjugated linoleic acid (CLA) and conjugated linolenic
acid (CLNA) have been reported to exert various physio-
logical benefits to host health, including anti-inflammatory
[81, 82], anti-hypertensive [83], and anti-atherosclerotic
effects [84]. Since their production by probiotic bacteria
has recently become a sought-after characteristics [85], we
assessed the potential of B. breve DSM 32583 to produce
CLA and CLNA, with the results indicating that our strain
is able to produce these compounds in different growth
conditions.

Another prerequisite for probiotic characterisation is the
adherence to intestinal epithelial cells. Adherence to the
intestinal mucosa mediated by a close interaction between
bacterial adhesins and the host cell surface is the first step
in gut colonisation [86]. Therefore, the ability of a candidate
strain to adhere to intestinal cells is another prerequisite for
probiotic characterisation [87]. In addition, probiotic bac-
teria able to form a tight bond with the host epithelial cells
may compete with potential pathogens for the same recep-
tors, thus preventing potentially pathogenic microorganisms
from colonising the host [20]. In the present work, B. breve
DSM 32583 showed good adherence to HT-29 as well as
Caco-2, which was comparable to other probiotic strains,
namely L. fermentum CECT 5716 and L. rhamnosus GG.

Furthermore, B. breve DSM 32583 inhibited the growth
of pathogen strains in vitro. The ability of probiotic bacteria
to protect against infectious agents is considered to result
from their considerable potential to interact with the host’s
immune system and to produce compounds displaying anti-
microbial properties, e.g. lactic and acetic acid or bacteri-
ocins [87].

Genotypic and phenotypic characterisation of candi-
date probiotic strains is the first step in the assessment of
their safety and their potential suitability for commercial
use. At this early stage of characterisation, we have shown
that B. breve DSM 32583 possesses beneficial character-
istics required from a potential probiotic candidate. How-
ever, while we compared phenotypic traits of B. breve DSM
32583 to those of well-characterised probiotic members
of Lactobacillaceae, we have not yet answered questions
related to differences in functionality between our strain and
other human milk-associated members of the genus Bifido-
bacterium. This is an important aspect that should be con-
sidered in the future, especially given that strain-specific
differences have previously been reported for early-life bifi-
dobacteria [16].

Some of the major limitations in probiotic develop-
ment are associated with the reproducibility of preliminary
results in vivo. While the results for bacterial survival and
enzymatic activity might be promising in vitro, the use
of cell lines and the addition of digestive enzymes do not
fully reflect natural conditions in the gastrointestinal tract.
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Complementary, recently published results strengthen our
understanding of the beneficial effects of B. breve DSM
32583 discussed here. We have shown good survival and
metabolic activity of the strain in an infant gut model [88]
and conducted a small pilot-trial, whose results suggested
beneficial effects of the strain on the incidence of respira-
tory and GI infections in infants [89]. Further assessments
in human intervention studies will have to ensure the strain’s
suitability and efficacy to infants.

Concluding Remarks

B. breve DSM 32583 described in this report showed several
characteristics considered fundamental for probiotic candi-
dates. It survived conditions simulating those present in the
digestive tract, was able to adhere to human epithelial cells,
and inhibited growth of potentially pathogenic microorgan-
isms. Its antibiotic resistance patterns were comparable to
those of known probiotic strains, and its genome did not
contain plasmids nor any virulence genes. These findings
suggest that B. breve DSM 32583 may potentially be suitable
for commercial applications.
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