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Abstract 36 

Empirical studies from laboratory systems and humans show that the gut microbiota is linked to host 37 
health. Similar evidence for effects on traits linked to fitness in nature is rare, not least because 38 
experimentally manipulating the gut microbiota is challenging. We demonstrate a novel approach in 39 
which we isolated, characterised, and cultured a bacterial strain, Lactobacillus kimchicus, directly from 40 
a wild bird (the great tit Parus major) and provided it as a self-administered dietary supplement. We 41 
assessed the impact of the treatment on the host microbiota community, on weight, and further tested 42 
if the treatment’s effect on weight affected a previous result linking microbiota alpha diversity to the 43 
weight in nestlings. The treatment dramatically increased L. kimchicus’ abundance in the gut 44 
microbiota and increased alpha diversity. This effect was strongest in the youngest birds, validating 45 
earlier findings pointing to a brief developmental window when the gut microbiota are most sensitive. 46 
In time lagged models, nestling weight was higher in the treatment birds suggesting L. kimchicus may 47 
have probiotic potential. There was also a positive time-lagged relationship between diversity and 48 
weight in control birds but not in the treatment birds, suggesting L. kimchicus helped birds 49 
compensate for low alpha diversity. We discuss why ecological context is likely key when predicting 50 
impacts of the microbiome. To our knowledge, this is the first time manipulating the gut microbiota 51 
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with a host native strain has been achieved in a wild population and provides direct evidence for the 52 
role of the microbiota in the ecology and evolution of natural populations. 53 
 54 

Significance Statement 55 

The gut microbiota has been linked to host health in laboratory studies but evidence for similar effects 56 
in wild systems is lacking. We use a novel approach to manipulate the microbiota of a wild bird, the 57 
great tit (Parus major), to explore links between the microbiota and weight, an important phenotypic 58 
trait related to survival- and hence biological fitness- in many animals. We isolated a bacterial strain 59 
from the host and provided it as a dietary supplement. The treatment changed the microbiota and 60 
increased the weight of individuals with low microbiota diversity. This provides direct evidence of the 61 
role of the microbiota in the ecology and evolution of natural populations and suggests that the strain 62 
we isolated has probiotic potential. 63 
 64 
Main Text 65 
 66 
Introduction 67 
Many studies have shown that the gut microbiota can affect host phenotype and health by influencing 68 
a variety of processes (1, 2). These processes include stress regulation (3), cognitive function (4), 69 
sociality (5), metabolism (6–8) and immunity (9, 10). The gut microbiota is highly variable within 70 
individuals, which is thought to help host’s rapidly adapt to environmental variation (11). For example, 71 
a flexible gut microbiota allows animals to cope with seasonal variation in food quantity and diet (12, 72 
13), and to detoxify dietary/environmental contaminants (14, 15). This may be particularly important 73 
during development when the microbiota is most sensitive to the environment (16) and the host can 74 
be readily affected by the microbiota (7, 9, 10). However, there is a lack of experimental evidence 75 
from wild systems that the microbiota causally affects host phenotypes generally and traits linked to 76 
fitness in particular.   77 
 78 
The vast majority of experimental microbiota manipulations are laboratory based and focused on 79 
commercially important agricultural species or model hosts (17). Typically hosts in these systems 80 
have limited genetic variation and experience consistent environmental conditions, making it difficult 81 
to generalise findings to wild populations that tend to have much higher microbial and environmental 82 
variation (18, 19). While conditions experienced by host species in the wild have ecological realism, 83 
many wild studies do not manipulate the microbiota directly and instead take advantage of natural 84 
observational experiments (15, 20, 21), or indirectly manipulate the gut microbiome by experimentally 85 
altering the environment (22, 23) or diet (24). Although more direct manipulations of the gut 86 
microbiome are necessary for causal inference—most commonly antibiotics and off the shelf 87 
probiotics—these have their limitations. Antibiotic effects tend to be broad spectrum making it difficult 88 
to understand the causes underlying any observed effects (25, 26). Single strain probiotic 89 
interventions can provide a more targeted way of changing the gut microbiome (27) but their effects 90 
often seem to be host specific (27–29) perhaps because the microbes used are not adapted to the 91 
host species and do not interact with host tissues (30–32). To our knowledge, the successful use of a 92 
probiotic or any direct microbial intervention has yet to be achieved in a wild animal, despite their 93 
promising potential for helping to understand ecological and evolutionary processes.  94 
 95 
Candidate microbial strains for interventions have been identified through observational association 96 
between naturally occurring strains of bacteria and indicators of health and fitness, or traits closely 97 
linked to fitness, in wild animals (33–36). Notably, naturally occurring Lactobacillus explained weight 98 
and survival in wild avian hosts (33, 37). Lactobacillus species are commonly used in probiotic 99 
treatments because they are often linked to beneficial effects on human model organisms (38–41). 100 
These effects include moderating the pH environment and the production of antimicrobials (including 101 
bacteriocins), thus encouraging or inhibiting the growth of microbes in the microbiome community 102 
(reviewed by Drissi et al. (39)). Commercial Lactobacillus probiotics change the gut microbiome of 103 
domestic pigeons and chickens (40, 42), improve the feed conversion rate in agriculture (43) and 104 
cause weight change in humans and domesticated animals (38, 42, 44). In the wild, body condition is 105 
a significant predictor of survival, particularly at the natal life stage (45, 46), yet whether the gut 106 
microbiome plays a causal role in determining animal fitness in the wild remains untested. Leveraging 107 
host-derived microbial interventions are needed to understand the fitness implications of host-108 
microbiome interactions in nature. However, despite evidence that host adapted strains are more 109 
effective than non-specific commercially available strains (32), host adapted strains of bacteria are 110 
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rarely if ever used in laboratory or domesticated animals (32, 47) and to our knowledge have never 111 
been used in the wild.  112 
 113 
In a previous observational study, we reported time-lagged links between gut microbiota, weight gain 114 
and survival during development in a model species in avian ecology, the great tit Parus major (33). 115 
Here, we build on this by experimentally investigating the effect of the gut microbiota using the novel 116 
approach of isolating, characterising and culturing a host-derived gut Lactobacillus strain from wild, 117 
free-living birds in the same population. We facilitated self-administration of this strain, also in the 118 
wild, when parents were feeding the nestlings at the nest, thus minimising researcher interference 119 
and enhancing ecological validity.  120 
 121 
First, we checked that the administration worked and explored what effect artificially increasing the 122 
abundance of one strain had on the gut microbiota alpha and beta diversity. We expected that a large 123 
dose of a single strain would give that strain a competitive advantage and hence lower the overall gut 124 
microbiota diversity, and the variance in the diversity because, for example, Lactobacillus can modify 125 
their environment by producing anti-microbials that inhibit the growth of other bacteria (39). We then 126 
tested whether the manipulation influenced nestling weight. Although the strain we isolated had not 127 
previously been linked to weight gain, given that the strain did show some probiotic characteristics 128 
and had functionality (see results) that hypothetically could benefit carbohydrate metabolism, and 129 
given the widely reported probiotic effects of Lactobacillus generally (38–41), we predicted a positive 130 
impact of the treatment on nestling weight. At the same time we expected the effect could be 131 
influenced by our previous findings of a negative correlation between nestling weight and alpha 132 
diversity in this wild system, suggesting that any benefits of our manipulation would most likely benefit 133 
nestlings with high alpha diversity. As our results emerged, however, this prediction was superseded 134 
by the opposite because alpha diversity and weight were positively, not negatively, correlated in this 135 
experiment, which we speculate was caused by supplemental feeding and points to the importance of 136 
nutritional status in determining the direction of the effect of the microbiota on host fitness. Our 137 
approach of manipulating gut microbiota using a host-derived strain and self-administration in the wild 138 
supports the hypothesis of a causal link between the microbiota and host phenotype. This approach is 139 
a necessary advancement for determining the role of the gut microbiota in host ecology (18) and is 140 
timely given its potential importance in wildlife conservation (48–50). 141 
 142 
Results 143 

Lactobacillus kimchicus as a candidate probiotic, with gene function associated with 144 
carbohydrate, amino acid and protein metabolism.  145 
The host derived treatment strain, L. kimchicus (Lactobacillus kimchicus also known as 146 
Secundilactobacillus kimchicus (51, 52)) passed the isolation and characterisation screening which 147 
indicated the strain did not display antibiotic resistance, could survive in the adverse conditions found 148 
in the gastrointestinal tract and had potential probiotic properties. The complete genome of L. 149 
kimchicus 5.1 consists of 2,535,859 bp and has no plasmids or transposable elements. 2730 coding 150 
sequences were found, including 71 RNAs and 955 protein-coding open reading frames (ORFs) 151 
divided into 27 subsystem groups. The genome includes a sequence encoding the bacteriocin 152 
Leucocin A. The majority of the genes identified were associated with carbohydrate metabolism 153 
(19.6%), amino acid (18.7%) and protein metabolism (14.3%) (figure S2). Further description of the L. 154 
kimchicus metagenome is described in Supplementary Information (results of the ‘Isolation and 155 
characterisation’ section).  156 
 157 
L. kimchicus-treated birds show increase in microbiota’s inferred functional abundance. 158 
The inferred functional analysis, performed using Picrust2, generated 7657 inferred Kegg Orthologue 159 
Pathways and 428 inferred Meta Cyc pathways from the full amplicon sequence variant (ASV) dataset 160 
with a mean Nearest Sequence Taxon Index (NSTI) score of 0.22 (SE  0.001; median NSTI = 0.16, 161 
SE  0.001). 21 inferred Kegg Orthologs were differentially abundant, all of which were expressed 162 
more abundantly in the experimentally treated birds. These inferred KOs mapped to carbohydrate 163 
metabolism, protein metabolism, lipid metabolism and terpenoids and polyketides metabolism (table 164 
S6, S7). No inferred MetaCyc pathways were detected as differentially abundant.  165 
 166 
Experimental treatment increased the presence and abundance of L. kimchicus. 167 
All 16S rRNA sequences retained after filtering were aligned using BLAST with the L. kimchicus 168 
whole genome to determine which amplicon sequence variant (ASV) was the experimental treatment 169 



 4 

strain. We found that ASV27 aligned with 100% similarity and had the greatest alignment length 170 
(442bp) with 0 mismatches or gaps and the highest bit score (817 bits). This ASV was present in 171 
44/101 treatment bird samples and 6/100 control bird samples, and its presence was therefore highly 172 
dependent on treatment (χ2= 35.9, df = 1, p<0.001). Approximately 200 other ASV’s also matched 173 
with 100% similarity but with shorter alignment lengths. Of the ASV’s with the top 20 bit scores (18 174 
Secundilactobacillus spp. and 2 Latilactobacillus spp.) all but ASV27 were present in 5 or less 175 
individuals and most were present in only a single treatment bird. We also confirmed that ASV27 was 176 
significantly more relatively abundant in treated birds (coef = 2.09, BH-correct p =0.02). The only 177 
other differentially abundant ASVs were two Actinobacteria, ASV163 (Williamsia sp.: coef = 1.19, BH-178 
corrected p =0.03) and ASV676 (Conexibacter sp.: coef = 0.81, BH-corrected p = 0.046). 179 
 180 
L. kimchicus treatment increased gut alpha diversity and increased variation in community 181 
composition.  182 
L. kimchicus treatment increased mean gut microbiota diversity for all three alpha diversity measures: 183 
log-Chao1 (table 2; figure 1), Shannon diversity (table S1, treatment: 0.288, p=0.024; figure 1) and 184 
log-Faith’s phylogenetic diversity (table S2, treatment: 0.231, p = 0.026; figure 1). This effect was 185 
strongest in D8 nestlings (table 2; figure 2) and diminished in later life stages. L. kimchicus treatment 186 
did not affect variation in any of our three measures of alpha diversity: log-Chao1 diversity (0.006, 187 
p=0.94), Shannon diversity (Bartlett’s K-squared: 0.36, p=0.55) or log-Faith’s phylogenetic diversity 188 
(0.077, p = 0.781). 189 
 190 
The community composition of the gut microbiota was not affected by treatment in a consistent 191 
manner and differed instead across woodland sites (table 3; figure 3), although there was some 192 
support for treatment to affect beta diversity differently across sites (table 3; figure S1). Treatment 193 
(p=0.24) and life stage (p=0.39) had homogeneity of variance when calculated for all age groups 194 
together. However, treatment was associated with differences in dispersion for day-8 (D8) (p=0.024) 195 
but not day-15 (D15) nestlings (p=0.22) or adult birds (p=0.63) when calculated for each age group 196 
separately. There was no evidence that Firmicutes relative abundance was affected in treated birds 197 
compared to controls (table S3; -0.6, p = 0.158), controlling for life stage. 198 
L. kimchicus treatment affected host weight by neutralising microbial diversity’s link with 199 
future weight gain.  200 
There was no effect of treatment or alpha diversity on contemporary weight at any age (table 4, S4), 201 
as we found in a previous study (33). However, in the time lagged models there was a significant 202 
main effect of treatment on weight, with L. kimchicus treated birds having higher weight at day-15 203 
when controlling for either log(Chao) or log(Faith’s PD) diversity at day-8 (table 5, S7). The effect of 204 
treatment on weight is marginally significant when controlling for Shannon diversity (table S6). There 205 
was a positive relationship between all three diversity measures at D8 and weight at D15 in control 206 
birds but this effect was negated by the L. kimchicus treatment, meaning treatment birds with low 207 
diversity had higher weights than control birds with low diversity (table 5, S5, S6; figure 4). In other 208 
words, there was a time lagged relationship between diversity and weight in control birds but not in 209 
treatment birds.  210 
 211 
Discussion  212 
We show that the addition of a host-adapted Lactobacillus strain significantly affected both the gut 213 
microbiota of a wild bird and its phenotype. The addition of L. kimchicus in the diet increased nestling 214 
weight and eliminated the positive link between gut diversity variation and host weight observed in 215 
control nestlings. In other words, the ingestion of L. kimchicus appeared to compensate for low alpha 216 
diversity that would otherwise result in nestlings having low weight, possibly by providing additional 217 
metabolic functionality.  The addition of L. kimchicus in the diet increased the diversity and changed 218 
the predicted functional profile of hosts’ microbiota. Specifically, hosts’ Chao1, Shannon and Faith’s 219 
phylogenetic diversity increased, as did carbohydrate and protein metabolism with the addition of the 220 
L. kimchicus compared to control birds. Additionally, we find further support for the importance of 221 
bacteria from the local environment/diet in structuring the microbiota of the young, while adults 222 
maintain more stable microbiota in the face of environmental sources of perturbation.  223 
 224 
Treatment alters gut microbiota 225 
Our method for direct experimental manipulation of the gut microbiota of wild birds, without the use of 226 
antibiotics or regular handling, successfully changed the microbiota of treatment birds. Though the 227 
strain was not taxonomically identified in the experimental samples, probably because of the different 228 
sources of the database and experimental strains, the BLAST results indicate that ASV27 is almost 229 
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certainly the experimental strain. ASV27 shared 100% identity with the experimental strain and was 230 
taxonomically identified as the same genus, so we are confident that ASV27 is the experimental 231 
strain. It is not clear whether the strain became permanently established in the birds following the 232 
cessation of the treatment because our site’s negligible recruitment of nestlings into the local, 233 
fragmented breeding population precluded extensive follow-up sampling. Nevertheless, the presence 234 
of the strain did alter the gut microbiota, albeit in the opposite direction to our predictions. We 235 
expected that by providing a large dose of a single strain, that the strain would get a competitive 236 
advantage and hence lower the overall gut microbiota diversity (39). Instead, all three measures of 237 
alpha diversity increased among birds in the experimental treatment, compared to control birds, 238 
though variation in diversity was unchanged across treatment groups. The gut community 239 
compositions did not change with treatment in a predictable manner but became more variable in 240 
younger nestlings. Whole genome sequencing indicates our strain contains a gene encoding the 241 
bacteriocin Leucocin A, which inhibits a broad range of other lactic acid bacteria and some known 242 
(non-Lactobacillus) pathogens (53). It is unclear how the treatment increased diversity. L. kimchicus 243 
may have suppressed another dominant strain or strains that were in turn suppressing other bacteria. 244 
Alternatively, the treatment may have simply upset the community dynamics of the gut and allowed 245 
very low abundance resident taxa to increase to detectable levels or novel environmental microbes to 246 
colonise the gut. 247 
 248 
Early developmental windows 249 
Our results show that younger birds were more sensitive to the experimental treatment, with the effect 250 
of L. kimchicus treatment on alpha diversity, and the dispersion of the overall community (i.e. beta 251 
diversity), diminishing with age. This provides experimental support for our previous observational 252 
results highlighting the presence of early developmental windows during which the microbiota of 253 
nestling great tits are particularly sensitive to environmental variation (16). This is important because 254 
laboratory studies in tadpoles and mice have shown that microbiota variation during development can 255 
affect the host’s future phenotype (10, 54). This differential sensitivity may be due to older birds 256 
having more developed immune systems and more established gut communities which are more 257 
resistant to invasion by novel microbes (55, 56). Future experiments could investigate this hypothesis 258 
by disrupting the immune system of the host in conjunction with the addition of a native strain to the 259 
diet. Similar to our previous study (33), there was no contemporary effect of diversity on weight, 260 
suggesting that any effect of the microbiota on weight takes some time to manifest. 261 
 262 
Beneficial effects of L. kimchicus on host weight 263 
There was a positive main effect of the L. kimchicus treatment on nestling weight, which to our 264 
knowledge is the first such demonstration of a direct link between the gut microbiota and a trait 265 
closely linked to fitness in a wild population. Alpha diversity was positively correlated with host weight 266 
in the control birds, meaning that nestlings with low alpha diversity were below average weight, and 267 
theoretically at higher risk of mortality. The ingestion of L. kimchicus appeared to compensate for this 268 
effect of low alpha diversity by increasing weight in low diversity nestlings, but there was no difference 269 
in weight between the two treatments at high alpha diversity. This pattern means treated birds had 270 
higher overall weight and less variation in weight, when accounting for D8 weight. There appears to 271 
be an upper limit of diversity, beyond which L. kimchicus does not provide any benefit to the host. 272 
Whether ASV27 was detected in a treated individual did not affect their weight (table S8), which could 273 
be due to a variety of reasons, including: (i) the incompleteness of 16S sequencing means that not all 274 
taxa in a sample will be identified, particularly for samples with high overall microbial abundance; and 275 
(ii) the fieldwork protocol meant that birds were sampled at different times of day, which could affect 276 
the amount of the treatment strain present in their system at the time we took the faecal sample. 277 
 278 
Predicted functional analysis suggests that L. kimchicus increased metabolic function, which may 279 
have compensated for loss of functionality in low diversity birds, although only up to a certain diversity 280 
threshold since higher levels of diversity did not confer any extra benefit. Whole genome sequencing 281 
of L. kimchicus found that the majority of the genes identified were associated with carbohydrate 282 
metabolism (19.6%) as well as amino acid (18.7%) and protein metabolism (14.3%) (see 283 
supplementary information section on ‘Isolation and characterisation’). Predicted function in the gut 284 
microbiota as a whole also found taxa with genes associated with carbohydrate and protein 285 
metabolism, which were enriched in treatment birds. Nestling great tit diet is rich in protein and amino 286 
acids (57–59) but low in carbohydrates (60) as they primarily feed on insects, especially caterpillars, 287 
while the birds in this experiment were fed supplementary mealworms. The treatment may have 288 
provided protein metabolism functionality that was otherwise lacking in low diversity birds, but which 289 
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was unnecessary in high diversity birds who already had a microbiota with this functionality. A follow 290 
up study that includes a metabolomic analysis of the host’s gut microbiome would be an important 291 
next step for understanding precisely how the treatment affects weight. 292 
 293 
The predicted functional analysis results should be interpreted cautiously, as the metabolic pathways 294 
are inferred from existing reference genomes, and therefore may not represent poorly characterised 295 
microbial environments. Our NSTI scores were relatively high (suggesting a relatively poor match to 296 
existing reference genomes) compared to OTU-based benchmarks (61). However, our NSTI scores 297 
are similar or lower than other comparable wildlife studies and may be inflated as they were based on 298 
ASV’s (100% identity) rather than OTU's (97% identity), which increases variation and consequently 299 
decreases reference sequence similarity (62, 63). Despite these limitations, the predicted functional 300 
analysis was consistent with our complementary functional analysis of L. Kimchicus from 301 
metagenomic data, which we interpret as strong support that our microbiome manipulation led to 302 
overall changes in gut microbiota function (and consequently host phenotype), though remains to be 303 
mechanistically confirmed through metabolomic and metagenomic analyses.  304 
 305 
Previously, we reported a negative correlation between D8 alpha diversity and D15 weight in an 306 
observational study of the same wild population (33) where food was likely limited. This contrasts to 307 
the pattern in this experiment where significant supplemental food was provided daily and we found a 308 
positive correlation between D8 alpha diversity and D15 weight. We suggest that greater diversity 309 
increases weight gain but only when food is abundant, as was the case during our current study. In 310 
other words, the potential costs of high microbial diversity, as supported by observations in Davidson 311 
et al. (33) and Krams et al. (64), may be outweighed by the benefits provided by the microbes—aiding 312 
digestion, providing useful metabolites, and preventing the colonisation of pathogenic microbes (8, 41, 313 
65, 66) —but only when there are surplus nutrients such as the supplementary food provided in the 314 
current experiment. On the other hand, when food is limiting- greater diversity may impose a cost due 315 
to the greater immune burden. There may therefore be a threshold of nutrient availability that sees the 316 
drain on host resources, due to high diversity, become outweighed by the alternative benefits 317 
provided by gut microbes, such as preventing the colonisation of pathogenic bacteria, when hosts 318 
experience a sufficient calorie surplus. A future study could help examine this by including a non-319 
supplementary fed control group, alongside a supplementary fed control and supplementary fed 320 
experimental group. It follows that the costs and benefits of the relationship between diversity and 321 
weight may change as the birds’ microbiomes change in response to different seasonally available 322 
food (67) or climatic variables such as rainfall (13). Indeed mammalian studies have found that the 323 
specific changes in the microbiota may help their hosts adapt to seasonal reductions in food supply 324 
(12, 13), possibly at the expense of microbes that aid host immune function (68). 325 
 326 
Conflicting links between diversity and host health have also been found in humans. Low diversity 327 
during development, which is associated with Caesarean sections (69), has being linked with 328 
diarrhoea in infants (70), and obesity and diabetes in later life (71, 72). Meanwhile, formula fed infants 329 
have higher diversity than breastfed infants early in development (69) but worse health outcomes 330 
(73). These conflicting links suggest that greater diversity is not a positive or negative trait per se, but 331 
that the host’s context probably plays a major role in determining the links between the microbiota and 332 
host health. Comparisons between mammals and birds may shed light on the role of diversity in 333 
promoting health or fitness outcomes, though is likely to be confounded by the very different time 334 
frames involved and the dominant role of mammalian milk in structuring the microbiota in early life 335 
(74). 336 
 337 
 338 
Conclusions 339 
To our knowledge, this is the first study to demonstrate how direct ingestion of a microbial strain 340 
affects host phenotype in a wild, free-living animal. We did this using a microbial strain that was 341 
isolated from the host gut microbiome and was self-administered, facilitating an efficacious method 342 
appropriate to the host’s ecology. Our key findings support the role of the gut microbiota in promoting 343 
host health during development and the greater sensitivity of juveniles’ microbiota to environmental 344 
sources of variation. Our results suggest the effect of the microbiota on a fitness proxy (weight) likely 345 
depends on the environmental context, specifically nutrient availability. Experimentally identifying 346 
microbes that are important for fitness in wild hosts, as well as when and how they act, is important 347 
for both our ability to further investigate the functional and evolutionary role of the microbiome, for our 348 



 7 

fundamental understanding of its host’s ecology, and for the utility of microbe interventions in applied 349 
ecology. 350 
 351 
Materials and Methods 352 
 353 
Obtaining and culturing host-native strain 354 
Faecal samples were taken from great tit nestlings at Dukes Wood, Co. Cork, Ireland in June 2020. 355 
These samples were inoculated into BD Difco Lactobacillus broth (75) (MRS; Difco Laboratories, 356 
Detroit, MI). This was incubated anaerobically at 37°C overnight and serially diluted using phosphate-357 
buffered saline (PBS), then spread onto Lactobacillus Selective (LBS) agar (Difco Laboratories, 358 
Detroit, MI) plates and incubated under different conditions, i.e., anaerobically at 30°C and 37°C, and 359 
aerobically at 30°C and 37°C for two days. Colonies with different morphologies were streaked and 360 
re-streaked on LBS to obtain pure cultures. The pure lactic acid bacteria cultures were subsequently 361 
kept in LBS broth supplemented with 35% (v/v) glycerol and frozen at −80°C until further analysis. 362 
Genomic DNA was extracted, the 16S rRNA gene amplified using Polymerase Chain Reaction (PCR) 363 
and sent for sequencing to Genewiz (Hope End, Takeley, Essex, CM22 6TA, United Kingdom). The 364 
resulting sequences were compared to existing genomic data using the Basic local alignment search 365 
tool (BLAST) on the NCBI server (http://www.ncbi.nlm.nih.gov/BLAST/). The identity of the isolates 366 
was determined based on the highest scores (≥ 98%). Subsequently the entire genome of a sample 367 
was sequenced to check for antibiotic resistance, bacteriocin and metabolic genes to understand the 368 
strains suitability for experimentation and its’ functional capabilities. The strain was screened for 369 
probiotic characteristics as we wished to preferentially target beneficial strains for the microbial 370 
intervention. A potential probiotic needs to survive the adverse conditions of the gastrointestinal tract 371 
(GIT); therefore, in vitro tests that simulated the GIT were conducted. L. rhamnosus GG was used as 372 
a reference strain. The tests included bile salt and acidity tolerance testing, antimicrobial agent 373 
production, and pathogen inhibition, amongst others. The strain was freeze-dried and concentrated in 374 
powder form using 10% (w/v) trehalose (Sigma Aldrich, Wicklow, Ireland). The viability of the freeze 375 
dried powder was confirmed with a 6 week stability trial which demonstrated the strain could still grow 376 
well after rehydration. See supplementary information section on ‘Isolation and characterisation’ for 377 
more details on the isolation and testing of the host native strain. 378 
 379 
Dosing 380 
In order to disturb the birds as little as possible during the nesting period, nestlings were fed the 381 
lyophilised powder indirectly by providing mealworms (Tenebrio molitor) soaked in a solution (see 382 
below) in sterilised plastic pots (pot volume = 125 ml) under the front entrance of each nest box. The 383 
parents took the supplementary mealworms into the nest and fed them to the young. This provisioning 384 
behaviour was confirmed visually on a sample of five nests. We observed adults consuming the 385 
worms themselves and bringing them into the nest to feed their chicks, at all five nests. The first nest 386 
to hatch at a site was randomly assigned to a treatment and subsequent nests were alternately 387 
assigned to treatment or control. Given the limited adherence of the powder to each worm we decided 388 
to simply provide the maximum dose of powder that we could afford given our production capacity. 389 
Each treatment nest was provided with approximately 0.07g of L. kimchicus per chick per day mixed 390 
with 10 mealworms (~ 1.2g) per chick per day. This quantity of worms represents approximately 30-391 
40% of their daily nutritional needs between the ages of D3-D7 and 15-20% between the ages of D8-392 
D15 (76). We aimed to provide enough supplementary food that each chick in the nest would receive 393 
some worms, as providing too few worms could lead to only the most competitive and strongest 394 
chicks receiving the treatment worms, but not so much that parents did not forage and hence prevent 395 
the nestlings from being colonised by ‘normal’ environmental microbes. Supplementary feeding 396 
started on day-0 (day of hatching) and stopped after day-14. Control nests were provided with 397 
mealworms soaked in trehalose (0.007g trehalose per chick). Each dose of L. kimchicus and 398 
trehalose powders were rehydrated with 1ml of distilled water before application to worms. 399 
 400 
Nest monitoring, trapping, tagging and faecal sampling 401 
Nests were checked following the schedule in O’Shea et al. (77). Nestling weight was recorded on 402 
day-8 and day-15 post hatching and faecal samples taken. If nestlings were large enough on day-8, 403 
they were given individual ID rings from the British Trust for Ornithology (BTO). If the nestlings were 404 
too small to ring they were marked with a unique pattern by trimming the downy feathers on their 405 
heads until they could be ringed at day-15. Adults were trapped on the nest on day-12 when they 406 
were  fitted with a BTO ring if they had not already been, and had their measurements and faecal 407 

http://www/
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samples taken. Nests were checked a final time at the end of the season to determine whether any 408 
nestlings failed to fledge. 409 
 410 
Faecal samples were taken using an adapted version of the sampling apparatus of Knutie et al. (78). 411 
Briefly, nestlings were placed on sterilised PVC trays in clean paper bags. This sampling apparatus 412 
was placed on a hot water bottle while waiting for nestlings to produce a sample; day-8 nestlings were 413 
given 5 minutes to produce a sample and day-15’s were given 10 minutes. Nestling body temperature 414 
and activity was monitored to ensure they remained warm. If nestlings did not produce a sample they 415 
were placed back in the nest to warm up while their siblings were sampled and if possible a second 416 
sampling attempt was made. When sampling adult birds a sterilised grid made of coated fencing was 417 
placed over the PVC tray in order to prevent adults contaminating the sample, as adults were much 418 
more active than nestlings in the sampling bag. Faecal samples were transferred to a sample tube 419 
using a sterile inoculation loop and preserved with 95% ethanol. Sample tubes were transferred to a -420 
80°C freezer at the end of the day. 421 
 422 
DNA extraction & Library preparation 423 
Prior to DNA extraction the ethanol was removed from the samples using a MiVac centrifuge, which 424 
centrifuges and heats samples at very low pressure (<100 mbar). Open sample tubes were placed in 425 
the Genevac miVac Centrifugal Concentrator (Fisher Scientific) and centrifuges for 2 hours at 45° C 426 
and 1465 rpm. Typically, this removed all the ethanol and dried out the samples. Any remaining 427 
ethanol was removed using a pipette. DNA was extracted from the faecal samples using the 428 
PowerFecal Pro kit (Qiagen, cat no. 51804). Some alterations were made to the kit protocol (May, 429 
2019 version), following Trevelline et al. (79).  430 
 431 
The V3-V4 variable region of the 16S rRNA gene was amplified using 341F and 341R primers 432 
(Sigma-Aldrich) from the extracted DNA using the 16S metagenomic sequencing library protocol 433 
(Illumina: 16s-metagenomic-library-prep-guide-15044223-b) with some modifications. Samples were 434 
split across 3 PCR plates and indexed using Illumina index primers sets A and D. DNA samples from 435 
the PCR plates were normalised to 10nM and pooled. Samples were sequenced on the MiSeq 436 
sequencing platform (Azenta Life Sciences/Genewiz, Germany), using a 2 × 300 cycle kit, following 437 
standard Illumina sequencing protocols. Negative controls using sterile filtered water (Sigma-Aldrich) 438 
were included at the extraction, evaporation and amplicon PCR steps, and brought through to 439 
sequencing in order to detect experimental or environmental contaminants. See supplementary 440 
methods section of the supplementary information file for more in-depth laboratory methods. 441 
 442 
Bioinformatics analyses 443 
After sequencing samples were processed using the DADA2 pipeline in R (R version 4.2.2; R Core 444 
Team, 2022), following the dada2 tutorial v1.16 (81). Sequences were trimmed and truncated to 445 
remove adapters and low quality reads, then filtered to remove sequences with expected errors >2. 446 
Errors were estimated and the core sample inference algorithm applied to the filtered and trimmed 447 
sequence data. Forward and reverse reads were merged to obtain full denoised sequences. A 448 
sequence table of Amplicon Sequence Variants (ASV) was constructed containing counts of the 449 
unique sequences by sample. Chimeric sequences were removed using the default ‘consensus‘ 450 
method. A taxonomy table was generated using the naïve Bayesian classifier method and the Silva 451 
(v138.1) reference database. The dada2 outputs were combined into a single Phyloseq object (82) in 452 
R before further filtering of samples. ASV’s identified as chloroplasts, archaea, eukarya or 453 
mitochondria were removed. Duplicates, controls and potentially contaminated samples were 454 
removed. Sample completeness curves were plotted using the rarecurve function from the vegan 455 
package (83). Sample completeness occurred at about 7500 reads so all samples with less than 7500 456 
reads were removed before further analysis. Contaminant ASV’s were identified using the prevalence 457 
method from the decontam package (84). Shannon and Chao1 diversity were estimated with 458 
phyloseq’s estimate_richness function. 459 
 460 
Phylogenetic diversity was also calculated in the form of Faith’s PD (85). A ‘Generalized time-461 
reversible with Gamma rate variation maximum likelihood’ tree was constructed using a neighbour-462 
joining tree as a starting point with the Phangorn package (86) following the Bioconductor workflow  463 
(87). Faith’s PD and Chao1 values were very similar for each sample (figure 1). We expected these 464 
diversity measures to be related because phylogenetic diversity is positively correlated with richness 465 
but considering there is so little difference this suggests that there is very little phylogenetic signal at 466 
all, or in other words the taxa are not closely related.  467 
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 468 
Inferred function and differential abundance analysis 469 
Picrust2 (88) was used to infer the abundance of functionally relevant KEGG functional orthologs 470 
(KO) and MetaCyc pathways. We used Microbiome Multivariate Association (MaAsLin2) to test for 471 
differentially abundant KO and MetaCyc pathways across treatments, accounting for age as a fixed 472 
effect and including site and nest ID as random terms. P-values were FDR-corrected using the 473 
Benjamini-Hochberg method (89). We describe functions according to the BRITE hierarchies 474 
database. We also tested for differentially abundant ASVs using the MaAsLin2 method, as  described 475 
above.   476 
 477 
Statistical analyses 478 
Alpha diversity 479 
Variation in alpha diversity (log-Chao1, Shannon diversity and Faith’s PD) across treatment groups 480 
was assessed using Bartlett’s test (90). Linear mixed models were used to investigate the effect of 481 
treatment on alpha diversity across age groups, using the lme4 package (91). Models included the 482 
alpha diversity term (log-Chao1 or Shannon diversity) as the response, and treatment (control, L. 483 
kimchicus), life-stage (day-8, day-15, adult) and the interaction treatment × life-stage as predictor 484 
variables. Woodland site, nest ID and bird ID were used as nested random effects to control for non-485 
independence in the data. Weighted effects coding (wec) (92) of the life stage variable was used 486 
instead of the default dummy coding as we were interested in the effect of treatment at each life-487 
stage, and how treatment affected diversity compared to the overall mean of diversity, rather than 488 
compared to a specific reference level. Estimates for age in these wec models represent the deviation 489 
of each level from the sample mean across all levels, where the sample mean is weighted by the 490 
number of observations at each level. In wec models the intercept refers to the weighted sample 491 
mean rather than the average value for the chosen reference level, and estimates are for the 492 
deviation from this sample mean. In weighted effect coding, interactions represent the additional 493 
effects over and above the main effects obtained from the model without these interactions (93). 494 
Interaction estimates are orthogonal to the main effects meaning the main effects are interpretable. 495 
Model residuals were checked using DHARMa (94). 496 
 497 
Beta diversity 498 
Before modelling the community composition, we removed low prevalence taxa (<5%). Taxa counts 499 
were centre-log (CLR) transformed and the Aitchison distance between samples calculated (95, 96). 500 
The PERMANOVA+ function (97) from the Primer (v.7) package (98) was used to determine the 501 
between group variation of samples according to treatment, controlling for the random effects of site 502 
and nest ID, as well as the effect of age category as a fixed effect. The type III (partial) sum of 503 
squares were calculated. To visualise differences between treatment groups the ASV count data with 504 
low prevalence taxa removed was CLR transformed with imputation to eliminate zero values using the 505 
clr_c function from the Tjazi package (99). Imputation was used to avoid issues with zero inflation in 506 
principal component analysis (PCA). The principal components of the transformed data were 507 
calculated and the first two components plotted. The dispersion (within-group variance) of samples by 508 
treatment group and life-stage were calculated, using PERMDISP function, as PERMANOVA models 509 
assume homogeneity of variance. 510 
 511 
Detecting L. kimchicus in samples 512 
No sequence was identified as L. kimchicus (or Secundilactobacillus kimchicus) by taxonomic 513 
assignment so we compared all the filtered bacterial sequences detected in the birds with the L. 514 
kimchicus genome obtained from whole genome sequencing, using BLAST from the rBLAST package 515 
(100). BLAST created alignments between each bacterial taxa and L. kimchicus and the alignments 516 
were ranked according to bit score, which measures similarities of alignments. The 20 alignments with 517 
the highest bit scores and greatest overlap in length were investigated further to verify whether they 518 
were the treatment strain. None of these 20 best aligned sequences were present in more than 5 519 
individuals except for ASV27, which was present 50 individuals. A chi-square test was used to test 520 
whether ASV27 presence was dependent on treatment. 521 
 522 
Relative abundance of Firmicutes 523 
The treatment strain, L. kimchicus, is part of the Firmicutes phylum and might have interacted with 524 
other microbiota in this phylum. The addition of a Lactobacillus could have (a) promoted the growth of 525 
other Lactobacillus species by modifying the environment, or (b) reduced the growth of other 526 
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Lactobacillus through competition (39). We used a binomial model from the lme4 package (91) to test 527 
the effect of treatment on Firmicutes relative abundance, controlling for life-stage (which was 528 
weighted effects coded) as a fixed effect and the nested random effects of site, nest and bird ID. The 529 
response, proportion of reads that were Firmicutes, was weighted by the total number of reads in the 530 
sample. 531 
 532 
Treatment effect on weight and weight gain 533 
A previous paper from our study system reported a time-lagged effect of alpha diversity at D8 on 534 
weight at D15 (33). We first tested the effect of treatment on weight across all birds (nestlings and 535 
adults), accounting for age, brood size and contemporary microbiota diversity (Shannon, log-Chao1). 536 
The age variable was backwards difference coded, meaning each age group is compared to the 537 
previous age group i.e. D15 compared to D8, adult compared to D15, as in this case the sequential 538 
comparison was of more interest than making a comparison with an arbitrary reference level or to the 539 
overall life stage mean. We included the interactions treatment × age, and treatment × alpha-diversity, 540 
as we expected the treatment to affect alpha diversity and that the treatment might affect the age 541 
groups differently considering the differential sensitivity of developing individuals microbiota (16). 542 
 543 
We then repeated the time-lagged analysis of weight gain on nestlings alone as in Davidson et al. 544 
(33). This modelled weight at D15 against the fixed effects weight at D8, alpha diversity at D8, lay 545 
date and brood size, with woodland site and nest ID as nested random effects. We subtracted the 546 
minimum scaled value from the diversity term (setting the minimum value to zero) in order to explicitly 547 
test the effect of treatment at low diversity. Additionally, we also examine whether the impact of 548 
treatment was dependent on alpha diversity by including their interaction. Model residuals were 549 
checked using DHARMa (94). We also investigated whether the detection of ASV27 at D8 550 
(True/False) affected the D15 weight of treated birds, while controlling for the same fixed and random 551 
effects as above. 552 
 553 
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Figure legends 
 
 

 
 
Figure 1. Alpha diversity boxplots comparing the L. kimchicus treatment birds with control 
birds, N = 201. PD refers to Faith’s Phylogenetic diversity. 

 
Figure 2. Effect of treatment on log(Chao1) diversity across age groups, N = 201. Partial residual 
plot of Chao1 diversity by treatment split by age category, with confidence intervals (table 2). Horizontal 
line indicates the grand mean. 

 
Figure 3. PCA plots of Aitchison distances between samples in different age categories, N = 
139 (repeats removed). Ellipses coloured according to experimental treatment group and each panel 
represents a different age category. 
 
 
Figure 4. Effect of D8 log(Chao1) diversity on D15 weight in grams, across treatment groups, N 
= 61. Partial residual plot with separate lines and 95% confidence intervals for each treatment group. 
Chao values (x axis) are scaled to a minimum of zero while weight values (y axis) are not scaled. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 


