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A B S T R A C T

Convolutional neural networks (CNNs) are effective tools for acoustic classification tasks such as species iden-
tification. Large datasets of labelled recordings are required to develop CNN classifiers which can be difficult to 
obtain, particularly if species are rare or vocalise infrequently. Additionally, data often requires manual labelling 
which can be time consuming requiring expert analysis. Artificially generating data using augmentation can 
address these challenges, however the impact of data augmentation on CNN performance is poorly understood 
and often omitted in bioacoustic studies. Here, we empirically test the impact of CNN architecture and 20 data 
augmentation methods on classifier performance. We use acoustic identification of 18 small mammal species as a 
case study of a species group that can be effectively surveyed by acoustic monitoring, but recordings for training 
data are scarce and difficult to collect. Networks that achieved the highest accuracy across all sample sizes was a 
10-layer CNN (96.43 %) and a pre-trained ResNet50 model (96.37 %). Overall, all augmentation effects 
improved ResNet50 model performance and 17 effects improved Conv10 performance, increasing relative 
change in accuracy (RCA) by 0.021–0.641. Three augmentation effects negatively impacted Conv10 RCA by 
− 0.042 to − 0.182. We also show that adding augmented data when the number of original samples is low has the 
greatest positive impact on accuracy and this effect was larger with ResNet50 models. Our work demonstrates 
that using data augmentation where few original samples are available can considerably improve model per-
formance and highlights the potential of augmentation in developing acoustic classifiers for species where data 
are limited or difficult to obtain.

1. Introduction

Passive acoustic monitoring (PAM) is a valuable tool for ecology and 
conservation to detect vocalising species that are difficult to observe 
visually and for surveying at greater geographical and temporal scales, 
reducing the need for trained personnel and time spent in the field (Gibb 
et al., 2019; Newson et al., 2017; Thomas et al., 2017). Recent im-
provements in acoustic hardware in terms of power requirements and 
memory capacity have increased the accessibility of acoustic sensors and 
therefore the scope of acoustic surveys, enabling the implementation of 
long term, landscape scale monitoring programs (Gibb et al., 2019; 
Prince et al., 2019). Surveys of this magnitude can generate large 
quantities of data comprising many hours of recordings; a single 
landscape-scale acoustic survey can generate several terabytes of data. 

Manual data analysis would be labour intensive and time consuming, 
eliminating many of the advantages that PAM offers (Florentin et al., 
2020). Developing partially or fully automated data processing and 
analysis pipelines is therefore key to ensuring that PAM remains viable 
for large scale ecological surveying.

During the last decade machine learning algorithms, for example 
support vector machines and Random Forest, have been used to develop 
acoustic classifiers capable of identifying a range of species' vocal-
isations for primates (Clink and Klinck, 2021; Heinicke et al., 2015), 
shrews (Zsebők et al., 2015), bats (Ayala-Berdon et al., 2020), bush 
crickets (Newson et al., 2017) birds (Sebastián-González et al., 2015) 
and elephants (Zeppelzauer et al., 2015). Deep learning, a subfield of 
machine learning that uses neural networks to extract features to iden-
tify patterns and relationships within highly dimensional data (LeCun 
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et al., 2015) has gained renewed interest in recent years following the 
development of graphics processing units (GPUs) capable of training 
complex neural networks which has extended into ecological studies 
(Christin et al., 2019).

Convolutional neural networks are perhaps the most widely used 
neural network in ecological studies (Borowiec et al., 2022; Christin 
et al., 2019) and have been developed to support a number of ecological 
applications including habitat classification (Abrams et al., 2019), ani-
mal behaviour prediction (Browning et al., 2018) and tree species 
identification (Allen et al., 2023). Although CNNs are primarily used in 
computer vision tasks, they have proven to be effective in acoustic 
classification tasks using spectrograms as input (Bermant et al., 2019; 
Chen et al., 2020; Mac Aodha et al., 2018; Ravaglia et al., 2023; Zhong 
et al., 2021). An advantage of neural networks compared to classic 
machine learning algorithms is that it does not require identification and 
description of features relevant for the classification task (feature 
extraction) by the developer prior to the training process (Chollet, 
2018). Manual feature extraction can be a time consuming and subjec-
tive process often requiring expert analysis (Borowiec et al., 2022). 
Instead, features are extracted during training using weighted filters to 
create feature maps. These weights are then adjusted during training to 
reduce loss, (the difference between the true class and the predicted 
class), increasing classifier performance by highlighting features rele-
vant to the task (Chollet, 2018). In order to ensure that features relevant 
for the classification task are extracted and unwanted signals (‘noise’) 
are ignored, a large number of training examples are required. In PAM 
studies involving common species that vocalise frequently at high am-
plitudes it may be straightforward to obtain recordings particularly if 
their vocal repertoire is well known and easy to distinguish (Zhong et al., 
2020). In studies involving rare or elusive species this can prove chal-
lenging as vocalising individuals may be difficult to locate, requiring 
extensive field time to record a range of individuals to ensure there is 
both a sufficient number of recordings and variation in the training data 
(Zhong et al., 2021). Additionally, there may be no prior knowledge of 
the target species vocalisations making them difficult to isolate in re-
cordings without other means of identification and it may be necessary 
to record individuals in captivity (Newson et al., 2020).

A solution commonly employed in computer vision tasks is to use 
data augmentation to artificially generate data where there are insuffi-
cient samples in a class. Data augmentation takes the original sample 
and applies a transformation to produce an additional training sample 
that is an altered version of the original whilst retaining characteristics 
relevant to that class (Nanni et al., 2020; Shorten and Khoshgoftaar, 
2019). Augmenting visual data usually involves image manipulation (e. 
g. rotation, reflection) however for audio processing, adjustments to the 
spectrogram can be made using time shifting or masking to generate 
augmented data. Additionally, sound manipulation techniques such as 
pitch shifting and stretching can be used in the time-domain, before 
spectrogram extraction, potentially increasing the range of variation 
that can be added to training data. (Nanni et al., 2020; Shorten and 
Khoshgoftaar, 2019). Although data augmentation can increase the 
amount of training data available, some methods may not be suitable for 
bioacoustic studies as features required for classification may be masked 
(Salamon and Bello, 2017).

Several CNN based acoustic studies have used a range of data 
augmentation techniques to boost sample sizes, however detailed ana-
lyses of the impact of augmentation methods on bioacoustic classifica-
tion tasks is often lacking or limited in scope. Augmentation methods 
commonly used include pitch and time shifting, time stretching, fre-
quency and time masking, noise addition (e.g. background and white 
noise) and combining sample spectrograms (Dufourq et al., 2021; 
Goussha et al., 2022; Lostanlen et al., 2019; Nanni et al., 2020; Nshi-
miyimana, 2024; Sprengel et al., 2016). Sprengel et al. (2016) used a 
combination of time and pitch shifting, background noise addition and 
spectrogram combination which increased mean average precision of 
bird species detection by 7.4 %. Similarly Lostanlen et al. (2019)

developed a classifier for detecting bird migration calls and used pitch 
shifting and time stretching to improve precision and recall. Dufourq 
et al. (2021) augmented data using time shifting and background noise 
addition during the development of a Hainan gibbon (Nomascus haina-
nus) CNN acoustic classifier and found that using augmented data 
significantly improved accuracy, specificity and precision however 
sensitivity was reduced by c. 2 %. A study of augmentation methods for 
bioacoustic data investigated the impact of four augmentation protocols 
on mean accuracy (Nanni et al., 2020). Three augmentation protocols 
improved mean accuracy, however protocols that involved standard 
image transformations such as image rotation and reflection, resulted in 
decreased model performance (Nanni et al., 2020). Although this study 
highlighted the importance of selecting augmentation methods suitable 
for acoustic data, the overall impact of each augmentation technique 
was not investigated. Manriquez et al., (2024) and Su et al., (2024) also 
found that using data augmentation to increase the number of training 
samples improved accuracy. Contrastingly, both studies found con-
flicting results regarding Gaussian noise; Manriquez et al. (2024)
demonstrated that adding noise improved accuracy but adding more 
than 15 % of the recordings' amplitude negatively impacted perfor-
mance. Conversely, Su et al. (2024) showed that reducing the signal to 
noise ratio by adding Gaussian noise corresponded to a decrease in 
model performance. Nshimiyimana (2024) evaluated CNN performance 
using data augmented using five different methods; the results indicated 
that adding pink noise improved performance even when the number of 
original samples was low but adding random noise had the greatest 
negative impact. It is clear from these studies that data augmentation 
can improve classifier performance but the results are conflicting in 
terms of which augmentation method is the most effective.

Here we use small mammal species as a case study to investigate the 
use of data augmentation to supplement training data for species where 
the availability of acoustic data are limited or difficult to obtain. We 
define small mammals according to the International Biological Pro-
gramme as mammal species weighing up to 5 kg. Small mammal species 
perform a range of key functions in terrestrial ecosystems including seed 
dispersal and pollination as well as being an important food resource for 
predators (Benedek et al., 2021). Certain small mammals species e.g. 
Muscardinus avellanareous can also serve as indicator species due to their 
sensitivity to habitat loss and fragmentation (Goodwin et al., 2017). 
Popular survey techniques include live trapping, sign surveys (e.g. the 
Great Nut Hunt), nest box surveys and foot print tunnels however these 
methods can lack adequate time resolution and may also be invasive and 
resource intensive in terms of field time and trained personnel (Goodwin 
et al., 2017; Mills et al., 2016). Live trapping can also carry a high 
mortality risk particularly for species with fast metabolisms (e.g. Sorex 
spp., (Shonfield et al., 2013)). This limits the scalability of most small 
mammal survey methods, however many small mammal species pro-
duce a range of vocalisations which provides an opportunity for PAM 
methods to be developed for this taxa. (Ancillotto et al., 2014; Ancillotto 
and Russo, 2016; Middleton et al., 2023; Newson et al., 2020; Zsebők 
et al., 2015). Futhermore, the availability of a multi-species acoustic 
classifier would enable the implementation of large scale and long term 
PAM programmes which could provide baseline data and valuable in-
sights into the spacial ecology of small mammals species.

Small mammals have a varied vocal repertoire both in terms of 
function and acoustic features (Ancillotto et al., 2017; Middleton et al., 
2023; Newson et al., 2020). Additionally, many species emit species- 
specific vocalisations that can be used for identification due to the dif-
ferences in call properties (e.g. frequency, duration and bandwidth) 
(Ancillotto et al., 2017; Middleton et al., 2023; Newson et al., 2020; 
Zsebők et al., 2015). Vocalisations can be audible, for example Apodemus 
spp distress calls (Ancillotto et al., 2017), however the species in this 
study emit predominantly ultrasonic calls (> 20 kHz), which are inau-
dible to humans (see supplementary information Figs. 1–4 for example 
spectrograms). An exception is Glis glis which vocalise in lower fre-
quencies, producing a range of audible calls, particularly during mating 
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Fig. 1. Schematic representations of CNN architecture: a) Conv2 network consists of two blocks of a single convolution layer proceeded by a max pooling layer, 0.25 
dropout is applied before the next convolutional block, the final two layers are fully connected (dense) layers; b) the Conv10 model consists of five blocks of 2 
convolution layers followed by max pooling and dropout layers; c) ResNet50 model; the first layer is a convolutional layer with 64 7 × 7 filters proceeded by a max 
pool layer. Each layer represents a residual block of three convolution layers and the arrows represent the shortcut connections between residual blocks. The final two 
layers are fully connected layers.

Fig. 2. Spectrograms showing a 1 s recording of S. araneous. i. shows the spectrogram of the unaltered recording. ii. shows the effect of band stop filter which masks a 
random frequency band; iii.) shows the impact of time mask which removes a section of the spectrogram along the time axis. Spectrogram iv. has Gaussian noise 
added, v. shows the effect of background noise addition which is the combination of the original wav file with another 1 s wav file containing non-target sounds, 
spectrogram vi. shows how time shift alters the image by shifting the spectrogram along the x-axis.
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season (Middleton et al., 2023). Although the vocal behaviour of labo-
ratory rodents has been well studied, including recent works involving 
the development of deep learning acoustic classifiers (Coffey et al., 
2019; Goussha et al., 2022), there have been fewer studies focusing on 
wild species.

Our objectives were three-fold; first we investigate the impact of 
network structure and training sample size on the acoustic classification 
of small mammal species. We achieve this by training CNNs with 
increasing numbers of convolutional layers and training samples. Sec-
ondly, we address the issue of limited training data availability by 

developing 20 data augmentation techniques. The impact of each 
augmentation method on classifier performance is determined by 
training CNNs using augmented data and comparing model accuracy. 
We also test the effect of increasing the proportion of augmented 
training data on overall classifier performance by conducting a series of 
experiments in which CNNs are trained using data where novel samples 
are replaced by an increasing proportion of augmented samples. Thirdly, 
we investigate the impact of using data augmentation to balance an 
acoustic dataset of 18 small mammal species with an uneven number of 
recordings per species by comparing overall model F1 scores for CNNs 

Fig. 3. Spectrograms of a 1 s recording of S. araneous with two augmentation methods applied. i. the original spectrogram with a band stop filter applied and 
Gaussian noise added; ii. a band stop filter is applied after background noise is added; iii. a band stop filter and time mask are added so that sections of the spec-
trogram on the x and y axes are removed; iv. Gaussian noise is added followed by a time mask; v. background noise is added before applying a time mask; vi. the 
spectrogram is shifted along the time axis and a band stop filter applied; vii. Gaussian noise is added followed by time shift; viii. Background noise is added and before 
time shift; ix. time shift is applied and time mask added.
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trained with an unbalanced dataset and a dataset balanced using data 
augmentation.

2. Materials and methods

2.1. Data collection

Sound recordings of small mammal species found in the UK were 
obtained from a number of sources of wild and captive individuals 
(Newson et al., 2020). Additional recordings of three species (Apodemus 
agrarius, Dryomys nitedula and Glis glis) were obtained during field visits 
to Turov Meadow, Pripyat Forest and Białowieża National Park, Belarus 
in July 2021, Budos-Pravienǐskių mǐskų nature reserve, Lithuania in 
August 2022 and Hockeridge Wood, UK in August and September 2022. 
In Belarus, target species were captured using baited traps and trans-
ferred to a terrarium overnight before being released at their capture 
location. Vocalisations were recorded using SM4 Bat FS bat detectors 
(Wildlife acoustics, MA, USA) using a sampling rate of 256 kHz. 
Vocalisations were identified by visually inspecting sound files using 
SonoBat Viewer (UK). Recordings were obtained from four Apodemus 
agrarius individuals and a single Dryomys nitedula. Further Dryomys 
nitedula recordings were obtained in Budos-Pravienǐskių miškų nature 
reserve, Lithuania by deploying acoustic sensors (SM4 minbat, (sam-
pling rate 256 kHz), Audio Moths, (250 kHz)) and camera traps next to 
four nest boxes and two feeding stations. Vocalisations were identified 
using the timestamp of camera trap videos of Dryomys nitedula activity to 
isolate the corresponding acoustic file which was subsequently reviewed 

in Sonobat. Similarly Glis glis recordings were obtained in Hockeridge 
Wood during August and September 2022 using camera traps and 
acoustic sensors set up at three nest boxes. A total of 18 small mammal 
species and two non-target classes were included in the acoustic refer-
ence library with 467 to 7033 recordings per species (Table 1). Bat social 
calls from a broad range of over 45 European species were included as a 
separate class as they can be acoustically similar to small mammal 
vocalisations and a noise class containing background noise to minimise 
the occurrence of false positive identifications.

2.2. Data pre-processing

The acoustic library consists of files in wav format with varying 
lengths and sample rates, which requires pre-processing to ensure the 
input spectrograms are uniform in bandwidth and duration. Recordings 
with sample rates greater than 250 kHz were resampled to 256 kHz; files 
with sample rates less than 250 kHz were discarded. Each recording was 
sliced into one second segments using the labels created using Tadarida 
(Bas et al., 2017) which contain the start time of the call in each file. 
Small mammal vocalisations are predominantly short in duration and 
one second was considered sufficient to retain the defining character-
istics whilst also ensuring that the maximum number of samples were 
extracted.

Over 130 h of recordings from more than 90,000 wav files were 
collected during 2021 fieldwork therefore to reduce the time required 
for manual processing a semi-automated process was employed. First, a 
subsection of recordings were visually inspected using SonoBat. Sonobat 

Fig. 4. Augmented spectrograms showing a 1 s recording of S. araneous where three or more augmentation effects are applied. i. the spectrogram is shifted along the 
time axis, a band stop filter is applied followed by Gaussian noise addition; ii. Similar to the previous spectrogram but background noise is applied instead of Gaussian 
noise; iii. a time shift transformation is applied, followed by adding background noise and a time mask; iv. A time shift transformation is applied followed by Gaussian 
noise and a time mask; v. background noise is added before applying a band stop filter and time mask; vi. a time shift transformation is applied followed by a band 
stop filter and adding Gaussian noise.
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is designed for bat call analysis but can be used to view recordings of 
lower frequency sounds. Three or four vocalisations were selected as 
templates to mine the remaining data using the R package monitoR 
(Hafner and Katz, 2018). MonitoR was developed to detect and identify 
animal sounds using spectrogram template matching to identify target 
sounds within acoustic survey files (Hafner and Katz, 2018). Vocal-
isations used for templates were selected to represent the acoustic 
variation in each small mammal species' calls. The spectrogram template 
is used as a sliding window to score the survey file. Each score that 
exceeds a predefined threshold constitutes a positive detection and is 
recorded with the start time and filename. Although a high number of 
false identifications were generated, a low threshold value was selected 
(0.5) to minimise the risk of missing vocalisations in the recordings. The 
detection data were used to extract one second files containing potential 
vocalisations which were manually verified and added to the reference 
library. The reference library comprising one second samples for 18 
small mammal species and two non-target classes (Table 1) was 
randomly split into training, validation and test datasets.

2.3. CNN architecture

The development of deep convolutional neural networks has trans-
formed image classification tasks with deeper networks (networks with 
greater numbers of layers) generally outperforming shallower networks 
(He et al., 2016; Simonyan and Zisserman, 2015; Szegedy et al., 2015). 
Deep networks with many layers can be difficult to train due increased 
computational load and the ‘vanishing gradient’ problem (He et al., 
2016; Szegedy et al., 2015). Several networks have overcome these is-
sues; ResNet models can contain in excess of 50 layers (48 convolution 
layers, one average and one max pooling layer) and eliminate the van-
ishing gradient issue using residual blocks which skip layers by taking 
the output of one layer and passing it to another layer deeper in the 
network (He et al., 2016). Another important consideration during 
acoustic classifier development for PAM is its ability to generalise on 
unseen data. The use of deep CNNs may perform well in test conditions, 
achieving high performance metrics but could potentially lead to over- 
fitting. Deeper networks can extract higher level features due to the 
additional convolutional layers, which can lead the model to learn 

features that are only present in the training data (Zhang et al., 2021). 
This could have negative consequences on its applicability for PAM 
where survey conditions may differ markedly from test conditions due to 
differences in environmental variables (e.g. temperature, vegetation 
cover, anthropogenic noise). In this study we use a ResNet50 model 
pretrained using the ImageNet dataset which consists of c. 14 million 
labelled images of everyday objects (Abadi et al., 2015) in addition to a 
ResNet50 model without pretraining, and networks consisting of 
increasing numbers of convolutional layers from 2 to 10 layers (Conv2 - 
Conv10) to determine the optimal CNN architecture and to assess 
whether simpler models (i.e. fewer convolutional layers) are better at 
generalising compared to a ResNet50 model (the number of trainable 
parameters for each model is provided in the Supplementary materials, 
Table 1.). The Conv models consist of blocks of one or two convolution 
layers followed by max pooling and 0.25 % dropout layers with two fully 
connected layers as the output layers (Fig. 1). As the depth of the Conv 
model increases, the number of filters for each convolution layer in-
creases. For example, the first layer in Conv2 has 64 filters and the 
second layer has 128 filters (Fig. 1a). All filters have a kernel size of 3 ×
3. The deepest network Conv10, starts with 32 filters in the first layer 
and increases to 256 filters in the final layer (Fig. 1b). The increase in the 
number of filters serves to extract more fine grained features (Chollet, 
2018). ResNet50 consists of four groups of residual units comprising 
three convolutional layers (Fig. 1c). The residual units within each 
group has the same configuration in terms of filters and kernel size, with 
the final group containing 2048 1 × 1 filters (for further details see (He 
et al., 2016)). Models were trained for 100 epochs using an Adam 
optimizer with a learning rate of 0.0001. Relu activation functions were 
used with convolution layers and a Softmax activation function was used 
in the final fully connected layer.

2.4. Data augmentation

Many data augmentation methods used in computer vision tasks (e.g. 
image inversion, rotation etc) are unsuitable for acoustic classifiers as 
they distort the defining characteristics of the signal (Nanni et al., 2020; 
Zhong et al., 2021). Similarly, methods used to augment non-biological 
sounds (e.g. pitch shifting, time-stretching) may also alter the signal 
sufficiently to change features that are used for species identification 
such as frequency and duration. However, there are a number of 
augmentation techniques that can generate data to introduce variability 
without losing defining features. In this study we used five augmentation 
techniques; i. band stop filter; ii. background noise; iii. Gaussian noise; iv. 
time mask and v. time shift (Table 2). We applied each technique singly 
and then in combinations of up to four effects (Figs. 2–4). With the 

Table 1 
Small mammal acoustic dataset; number of one sample recordings per species 
extracted from the acoustic library. Species in bold were included in training 
data for the experiments in sections 2.5.1–2.5.3. Data for species marked with * 
were collected during 2021–2022 fieldwork.

Scientific Name English name No. 1 s 
samples

Species 
code

Rattus rattus Brown rat 7033 Ratrat
Microymys minutus Harvest mouse 5530 Micmin
Rattus norvegicus Black rat 5303 Ratnor

Apodemus flavicollus Yellow necked mouse 5187 Apofla
Apodemus sylvaticus Wood mouse 2762 Aposyl

Mus Musculus House mouse 2605 Musmus
Sorex araneus Common shrew 2587 Sorara

Arvicola amphibius Water vole 2491 Arvamp
Sorex minutus Pygmy shrew 2152 Sormin
Muscardinus 
avellanarius

Hazel dormouse 2063 Musave

Crocidura leucodon Bicoloured shrew 1921 Croleu
Apodemus agrarius* Striped field mouse 1760 Apoagr

Microtus agrestis Field vole 1639 Micagr
Crocidura russula Greater white-toothed 

shrew
1379 Crorus

Glis glis* Edible dormouse 1252 Gligli
Crocidura suaveolens Lesser white-toothed 

shrew
978 Crosua

Neomys fodiens Water shrew 851 Neofod
Dryomus nitedula* Forest dormouse 467 Drynit
Bat social calls n/a 4718 Batsoc

Non-target sounds n/a 3000 Noise

Table 2 
Augmentation effects: Description of each data transformation method and its 
abbreviation.

Augmentation 
effect

Method Abbreviation

Background 
noise

Selects a random one second segment from a 
directory of audio files containing non-target 
sounds and adds this to the original sample. 
Non-target sounds include animal 
vocalisations and anthropogenic sounds such 
as cars.

Noise

Bandstop filter masks a frequency band based on a randomly 
selected central frequency. The filter gradient 
is also randomized.

BSF

Gaussian noise adds Gaussian noise at an amplitude between 
0.01 and 0.015

Gaussian

Time mask masks a time band in the spectrogram for 
0.01–0.2 s

TM

Timeshift shifts the time axis of the spectrogram by up to 
+/− 0.5 s. Samples that are shifted beyond the 
start or end of the spectrogram are moved to 
the opposite end

TS
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exception of background noise all augmentation methods were imple-
mented using the Python library Audiomentations (Jordal et al., 2019).

2.5. Testing the impact of network configuration and augmentation on 
classifier performance

To investigate the effects of increasing network depth and the 
number of training samples on classifier performance, we conducted a 
series of experiments using a dataset of 12 classes that each contained a 
minimum of 2000 novel (unaugmented) recordings (classes highlighted 
in bold in Table 1). Two sets of 200 samples per species were randomly 
selected for the validation and test datasets, of the remaining recordings 
a further 1600 were randomly selected for training. We used the same 
dataset to determine the most effective augmentation methods and the 
impact of substituting novel samples with augmented samples. Our final 
set of experiments included all 20 classes (Table 1) and investigated the 
impact of uneven classes in relation to balanced classes supplemented 
with augmented data (see supplementary information, Table 2 for a 
summary of experiments).

2.5.1. Network architecture and sample size
We assessed network architecture and configuration by training 12 

different models: 10 models using greyscale input images (1 channel; 
nine CNNs with 2–10 convolutional layers and a ResNet50 model), and 
two networks with RGB input images (three channels); a 10-layer CNN 
and a ResNet50 model (Fig. 1). The RGB ResNet model was initialised 
using weights trained using Imagenet data, the greyscale ResNet50 did 
not use pre-trained weights. The effect of training sample size was tested 
by training each CNN using datasets of 100 to 1600 novel (unaug-
mented) samples per species in 100 sample increments. Each model 
configuration was trained for 100 epochs. We repeated this process five 
times in order to calculate mean accuracy and to account for any vari-
ation in results due to the stochastic nature of the training process. The 
two models achieving the highest overall mean accuracy were selected 
for the remaining experiments.

2.5.2. Assessing the impact of each augmentation effect
The effect of each augmentation method on overall model accuracy 

was assessed by training Conv10 (GS) and ResNet50 (RGB) models with 
a dataset containing 12 classes that contained a minimum of 2000 
samples (Fig. 1). Models were first trained using a baseline dataset of 
160 samples per species and then using a ‘gold standard’ dataset of 1600 
novel samples per species to give probable lower and upper bounds for 
performance. Subsequent models were trained using 160 original sam-
ples that were augmented using one or a combination of the augmen-
tation effects listed in Table 2 to create an augmented dataset containing 
10 % original samples and 90 % augmented data, so that the amount of 
training data was the same as the gold standard dataset. Models were 
evaluated five times and mean accuracy calculated. Augmented model 
performance was compared by calculating the proportion of the gold 
standard accuracy achieved in relation to the baseline accuracy referred 
to as relative change in accuracy (RCA). This metric was used instead of 
baseline accuracy change as it gives a measure of the impact of data 
augmentation on model performance compared to models training using 
novel data only i.e. the gold standard dataset. Relative change in accu-
racy (RCA) was computed using the equation below: 

RCA =
ACCAugmented − ACCBaseline

ACCGold − ACCBaseline
(1) 

Where ACCAugmented, ACCBaseline and ACCGold are the mean test accu-
racies of the augmented model under test, the baseline model trained on 
160 samples and the gold standard model trained on 1600 samples.

2.5.3. Augmented data vs original samples
To understand how model performance is affected by increasing the 

proportion of augmented data and reducing the number of novel 

samples compared to using novel samples only, a series of experiments 
was conducted using the dataset which included 12 species with more 
than 2000 samples available. In each iteration we increased the number 
of novel samples by 100, starting from 100 up to 1600 samples per 
species. Novel samples were augmented using the five methods with the 
greatest RCA (Fig. 3) in equal proportion to increase the number of 
samples to 1600 per species. Both models (Conv10 (GS) and ResNet50 
(RGB)) were evaluated five times to compute mean accuracy.

2.5.4. Unbalanced data
Training models with unbalanced classes (i.e. an unequal number of 

samples per species) can lead to bias towards the better represented 
classes (Borowiec et al., 2022). In our reference library there is a sig-
nificant difference between the species with the lowest number of re-
cordings (D. nitedula 467 recordings) and the greatest number of 
recordings (Rattus rattus, 7033). To examine this, we first trained 
Conv10 (GS) and ResNet50 (RGB) models using the complete, unbal-
anced reference library listed in Table 1 to obtain the overall mean F1 
score. The F1 score is a metric commonly used in machine learning and 
is the harmonic mean between precision (the number of predictions that 
are correct) and recall (the number of correct predictions as a proportion 
of the total number of examples). It is calculated using the following 
formula: 

F1 = 2⋅
Precision⋅Recall

Precision + Recall
(2) 

Next we trained Conv 10 (GS) and ResNet50 (RGB) models using 
balanced datasets of 250 to 4000 samples per species, increasing the 
training datasets by 250 samples per species during each iteration. As 
the size of the training dataset increased, we used data augmentation to 
balance the classes that had insufficient novel samples.

3. Results

Our analyses begin with the network architecture and sample ex-
periments, we find that accuracy increases as the number of convolu-
tional layers increases (Fig. 5). Next, we compare the RCA for each of the 
20 data augmentation methods, the results show that all augmentation 
techniques improve RCA with the exception of three effects that give 
negative RCA scores to Conv10 mean accuracy (Fig. 6). The third part of 
our analyses is represented in Fig. 7 which shows the change in accuracy 
as the proportion of augmented data increases versus using novel sam-
ples only. Finally, we evaluate the difference in model accuracy when 
the number of training samples increased, using augmentation to bal-
ance uneven classes compared to a model trained using an unbalanced 
dataset of novel samples only. We determine that the number of training 
samples is more important for improving accuracy than balancing the 
classes (Fig. 8).

3.1. Network configuration

The models achieving the two highest mean accuracy scores across 
all training sample sizes were ResNet50 (RGB) (96.37 %) and Conv10 
(GS) (96.43 %). The lowest performing models were Conv2 (95.0 %) and 
Conv4 (95.0 %) (Fig. 5).

The difference in mean accuracy was greater for models trained with 
fewer training samples; for models trained with 100 samples per species 
the difference between the highest and lowest accuracy scores was 6.82 
% points compared to 1.33 % points for models trained using 1600 
samples per species (Fig. 5). Training Conv10 models using RGB images 
resulted in a poorer performance, reducing accuracy by 0.15 to 4.56 % 
compared to models trained with greyscale images (Fig. 5). Conversely, 
using RGB images to train ResNet50 models increased accuracy by 0.42 
to 5.76 % compared to models using greyscale input (Fig. 5).
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3.2. Augmentation effects

Augmentation effects were tested using the two CNN models that 
achieved the greatest accuracy in section 3.1 (Conv10 (GS) and 
ResNet50 (RGB)). Overall, data augmentation had a greater positive 
impact on ResNet50 RCA compared to Conv10; ResNet50 performance 
was not negatively impacted by any augmentation method (Fig. 6). 
Relative change in accuracy was higher in models trained with data 
augmentation protocols that contained time shift (Table 3, Fig. 6). Three 
protocols negatively affected Conv10 performance; time mask and 
Gaussian noise (− 0.041 RCA), Gaussian noise (− 0.094 RCA) and band 
stop filter with Gaussian noise (− 0.182 RCA).

3.3. Augmented data vs original samples

Fig. 7. shows mean test accuracy for models trained using novel 
samples only and models trained with datasets of 1600 samples per 
species with increasing proportions of augmented data moving from left 
to right. Model accuracy significantly improved when augmented data 
was used to increase the number of training samples, particularly when 
the number of original samples was low. Model accuracy improved by 
3.92 % (Conv10 (GS)) and 8.37 % (ResNet50 (RGB)) with the addition of 
90 % augmented data compared to training with 100 samples per spe-
cies only (Fig. 7). Although model accuracy increased when data 
augmentation was used to increase the number of training samples to 
1600 per species, it was not a replacement for using 1600 novel samples 
per species which achieved the best accuracy scores. Model accuracy 
decreased when novel data was substituted with augmented data 
particularly with when the proportion of augmented data constituted 
more than 50 % of training data (Fig. 7). This effect had a greater impact 
with Conv10 (GS) networks compared to a significantly smaller effect 
with ResNet50 (RGB) (Fig. 7).

3.4. Unbalanced data

Fig. 8 shows mean test accuracy using data with unbalanced classes 
was greater for Conv10 (GS) (98.61 %) compared to ResNet50 (RGB) 
models (97.91 %). For models trained using datasets with balanced 
classes, sample sizes of 1000 or greater were needed in order to surpass 
ResNet50 (RGB) unbalanced mean accuracy however the number of 
training samples per classes required for mean accuracy to exceed un-
balance Conv10 (GS) accuracy was 2500 indicating that the number of 
training examples is more important than balancing classes where the 
amount of training data are limited, particularly with ResNet50 (RGB) 
models. Model accuracy for both networks began to plateau at 2250 
samples per species.

The confusion matrices (Fig. 9) show that when the classes are un-
balanced the two species that had the highest classification errors were 
D. nitedula (8 %) and G. glis (4 %). These species were generally mis-
classified as noise. Similarly, the species with the highest classification 
error for the Conv10 (GS) model trained with a balanced dataset were 
D. nitedula (4 %) and G. glis (3 %) with the addition of M. avellanarius (4 
%). The confusion matrix for ResNet50 (RGB) trained using balanced 
data showed that G. glis has a significantly higher classification error (17 
%). These errors were caused by incorrectly classifying G. glis calls as 
Noise. In all four models errors were also generated by vocally similar 
species being misidentified for example A. flavicollus and A. sylvaticus 
and both Sorex species.

4. Discussion

A key challenge during CNN acoustic classifier development is the 
availability of large numbers of labelled recordings, particularly for 
elusive or endangered species (Borowiec et al., 2022; Zhong et al., 
2021). We show that although increasing the number of real training 
samples is the best way to improve CNN accuracy, data augmentation 

Fig. 5. Mean model accuracy for Conv2–10 and ResNet50 greyscale (GS) networks and Conv10 and ResNet50 (RGB) networks trained using 100, 200, 400, 800 and 
1600 samples per species. The bars represent 95 % confidence intervals.
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can substantially improve accuracy where the amount of training data is 
low. This has important implications in PAM studies for species where 
labelled data are unavailable or difficult to obtain.

Our network configuration tests demonstrate that a very shallow 
neural network with two convolution layers can achieve a high level of 
model accuracy identifying 12 species of small mammals with mean 
accuracy of 94.95 % (Fig. 1). Model accuracy was further improved with 
the addition of convolutional layers although this effect was less pro-
nounced with larger datasets suggesting that increasing the number of 

training samples had a greater impact on accuracy compared to network 
depth (Fig. 1). Generally, deeper networks require more training data to 
prevent overfitting (Zhang et al., 2021) but we did not find this effect 
here with the exception of the greyscale ResNet50 model. Deeper net-
works can overfit with small datasets due to the lack of variation in 
training data coupled with the need to train additional layers that may 
extract fine grained features that are only present in the training data 
(Zhang et al., 2021). This is reflected in the accuracy scores for ResNet50 
(GS), which is not pre-trained, that are markedly lower compared to the 

Fig. 6. Relative change in accuracy for each augmentation protocol for ResNet50 and Conv10 models. The bars represent 95 % confidence intervals.
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pre-trained ResNet50 (RGB) model. The difference is particularly 
evident when networks were trained using 100 samples per species 
(Fig. 1).

Apart from ResNet50 (GS) classifiers, deeper models outperformed 
networks with fewer convolutional layers when the amount of training 
data was reduced. To address overfitting concerns, training accuracy 

Fig. 7. Test accuracy of models trained with increasing numbers of novel samples vs models with trained using novel samples and the addition of augmented data. 
The right panel represents mean test accuracy for Conv10 (GS)networks and the left panel shows test accuracy for ResNet50 (RGB) models.

Fig. 8. F1 score of models trained with increasing training sample sizes. Data augmentation was used to increase sample sizes for species with insufficient novel 
samples. The dotted lines represent the F1 score of each model trained using data containing unbalanced classes of unaugmented samples.
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and loss curves were assessed; the accuracy and loss curves for Conv10 
(GS) models trained with 100 samples per species indicate that although 
validation accuracy and loss improve, values fluctuate significantly 
which could indicate some overfitting (Supplementary materials, 
Fig. 5a). In comparison, adding further training data shows the accuracy 
and loss curves to be more stable (Supplementary materials, Fig. 4b and 
c). In fact, adding as few as another 100 samples per species suggests 
that overfitting can be reduced with a relatively modest increase in 
training data (Supplementary materials, Fig. 4c). Due to the hierarchical 
nature of CNNs, shallow networks lack the capacity to extract higher 
level features which may be required to reduce classification errors 
(LeCun et al., 2015). Our results suggest that there is an optimal network 
depth for small datasets which contains sufficient convolutional layers 
for effective feature extraction but also reduces the risk of overfitting.

ResNet50 (RGB) models outperformed ResNet50 models trained 
with greyscale images which can be attributed to the addition of pre-
trained weights, partially mitigating the issue of overfitting seen with 
small datasets. Dufourq et al. (2022) also highlights the potential of deep 
networks for acoustic classification by demonstrating that CNN classi-
fiers with more than 50 convolutional layers could achieve F1 scores of 
up to 82 % when using as few as 25 training examples (Dufourq et al., 
2022).

Convolutional neural networks require large datasets to achieve high 
accuracy scores (Christin et al., 2019) and this is illustrated in Fig. 7; 
model accuracy rapidly increases initially when additional training ex-
amples are added. Accuracy starts to plateau at 1600 samples per species 
suggesting that increasing the number of training samples further would 
have a negligible impact on overall accuracy. Fig. 7 also highlights the 
impact of adding augmented data. Augmentation was most beneficial 
when the number of original samples was low; adding augmented data 
had a greater impact on ResNet50 (RGB) performance. Deep models are 
prone to over fitting particularly when there are few training data 
(Zhang et al., 2021) however our study shows this can be mitigated with 
the addition of augmented data. This has important implications for 
PAM studies involving rare or elusive species where it is difficult to 
obtain sufficient recordings; when relatively few recordings are avail-
able sample sizes can be boosted using augmentation in order to achieve 
accuracy comparable to unaugmented datasets.

Augmentation methods that achieved the highest relative change in 
accuracy included time shift with the single effect time shift achieving 
the third highest RCA for both models (Fig. 6). Using a combination of 
augmentation effects compared to single augmentation effects generally 
had a greater positive impact on RCA which is likely due to the addition 
of a time shift transformation. Time shift transformations introduce a 
significant amount of variation whilst maintaining the key features of 
call structure in terms of frequency and duration. Combining time shift 
with one or more effects adds another layer of variation which in this 
study has resulted in an increase in RCA. Conversely the three 
augmentation methods that had the greatest negative impact on RCA 
were two combined effects band stop filter and Gaussian noise, time 

mask and background noise, and the single effect Gaussian noise (Fig. 3). 
The reference library contains recordings with varying signal to noise 
ratios (SNR) and it is possible that the addition of Gaussian or back-
ground noise masked vocalisations resulting in poorer model perfor-
mance. This is supported in the works presented by Su et al. (2024)
which demonstrated that adding Gaussian noise reduced F1 scores and 
Nshimiyimana (2024) which showed that adding random noise also 
negatively impacted performance. Manriquez et al., (2024) determined 
that adding noise below 15 % of total amplitude was beneficial which 
suggests that SNR needs to be carefully considered when using Gaussian 
noise addition. Models trained with data augmentation methods 
including band stop filter had mixed results in terms of RCA. Frequency 
is a key characteristic in small mammal species identification (Newson 
et al., 2020) and applying a band stop filter could potentially eliminate 
the frequency band containing the vocalisation resulting in a reduced 
impact on model accuracy. Additionally, adding a time mask could 
remove part of the spectrogram containing the vocalisation although 
time mask had a greater positive impact on model performance 
compared to band stop filter. Given that masking part of the spectrogram 
could remove key features required for classification it may seem con-
tradictory that both effects combined improved RCA. Improvements to 
RCA could simply be due to the increased number of training examples 
irrespective of augmentation method however three augmentation 
protocols decreased model performance. Another potential reason that 
adding band stop filters and time masks improves RCA is that they could 
act in a similar way to dropout layers added to the network architec-
tures. Adding dropout layers to CNNs helps to reduce over fitting by 
randomly setting a proportion of the convolutional layer's outputs to 
zero i.e. omitting a percentage of the layer's output which has the effect 
of breaking up patterns identified by the network that are not relevant to 
the classification task (Srivastava et al., 2014).

The issue of unbalanced datasets is a common concern in machine 
learning due to the potential bias towards classes with disproportion-
ately large numbers of training examples (Borowiec et al., 2022). Both 
models trained using unbalanced datasets achieved high mean F1 scores 
which appears to contradict this statement (Fig. 8). However using 
training data with unbalanced classes had a greater impact on ResNet50 
(RGB) model performance compared to Conv10 (GS) performance 
indicating that complex models are more susceptible to class imbalance. 
Deeper networks are prone to over fitting when there are insufficient 
training data (Srivastava et al., 2014; Zhang et al., 2021) which may 
have contributed to the poorer performance with the unbalanced dataset 
where there were as few as 467 recordings for D. nitedula. Class imbal-
ance had little impact on Conv10 (GS) model. Although overall F1 score 
did not improve significantly, balancing class reduced classification er-
rors for D. nitedula, which had the lowest number of novel samples 
(Fig. 9) for both models. The confusion matrix for the balanced 
ResNet50 (RGB) network had a significantly high classification error 
rate for G. glis (17 %). G. glis is the only species in this study that vo-
calises primarily in the audible frequency range and it is possible that 
the network has overfit the Noise class resulting in the misclassification 
of G. glis calls as noise. Our analyses demonstrates that the number of 
training samples is more important than balanced classes in terms of 
overall F1 score however increasing the number of samples for poorly 
represented classes can improve class specific accuracy.

5. Recommendations

The results of our study highlights several key areas that could 
benefit researchers developing CNN acoustic classifiers and we suggest 
the following recommendations: 

• When training data is limited (e.g. 100 samples per species), 
increasing the number of convolutional layers can improve model 
accuracy by up to 6.82 %; very deep networks such as ResNet50 

Table 3 
Augmentation effects with the five highest and lowest combined relative 
change in accuracy (RCA). Combined RCA is calculated as the mean of the RCA 
values for ResNet50 and Conv10 classifiers.

Augmentation effect combined RCA

Time shift, band stop filter and noise 0.641
Time shift 0.629

Time shift and time mask 0.626
Time shift and band stop filter 0.620

Time shift and background noise 0.588
Background noise 0.184

Band stop filter and background noise 0.146
Time mask and Gaussian noise 0.077

Gaussian noise 0.0311
Band stop filter and Gaussian noise 0.0213
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benefit from pretraining to reduce overfitting and can increase ac-
curacy by more than 5 % compared to models without pretraining.

• Classifier accuracy can be improved by c. 3.92–8.36 % using data 
augmentation to generate 90 % more training data when there are as 
few as 100 recordings per species.

• Data augmentation methods that include time shift are preferable to 
methods based on band stop filters; avoid adding Gaussian noise or 
background noise where the signal to noise ratio is poor to reduce the 
risk of masking vocalisations.

• Although balancing classes using augmentation can make modest 
improvements on overall accuracy, (0.12–0.75 %), it can 

significantly reduce species-specific classification errors for under-
represented classes.

6. Conclusion

Our study demonstrates that although the number of training sam-
ples has the greatest impact on classifier performance, data augmenta-
tion can improve models when training data are scare. Obtaining 
recordings of animal vocalisations is challenging and time consuming 
(Newson et al., 2020) and the availability of labelled recordings can be 
limited. We show that data augmentation can be used to supplement 

(a) Conv10 (GS): unbalanced data (b) ResNet50 (RGB): unbalanced data

(c) Conv10 (GS): 4000 samples per class (d) ResNet50 (RGB): 4000 samples per class

Fig. 9. Confusion matrices showing test data predictions (%). The top row shows species predictions using a Conv10 (GS) model trained using data containing 20 
uneven class (a) and data containing 20 classes with 4000 samples of novel and augmented data (b). The bottom row shows predictions using a ResNet50 (RGB) 
model trained with unbalanced data (c) and classes balanced using data augmentation (d).
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training datasets with as few as 100 samples per species to improve 
classifier performance. This highlights the potential of data augmenta-
tion as an efficient means of generating additional data where acoustic 
data collection is difficult and to mitigate challenges associated with 
unbalanced or small training datasets.
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