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Abstract
Data-driven innovation entails an overall positive effect on society. Innovation is a 
central policy goal in the EU, and the regulation of the data economy tends to elect 
innovation as a primary objective. However, considerably less attention is devoted 
to the identification of the qualitative characteristics of the desired innovation. 
From a technological point of view, (data-driven) innovation can be cumulative, 
combinatorial, or generative. In all three instances, innovation commons are cru-
cial. The design of successful data commons demands the analysis of the relational 
dimension of the data economy, which can be conducted through the framework of 
business ecosystems. Incentives for data-based competition or cooperation in eco-
systems are inspired by a metaphorical cognition of the economic function of data: 
whether data is considered a resource or an infrastructure ultimately affects the 
design of innovation commons. To conclude, the paper draws the policy implica-
tions of this framework. Policymakers and regulators may select one narrative over 
another, thus molding the features of future innovation.

Keywords  Innovation · Data economy · Cumulative · Combinatorial ·  
Generative innovation

1  Introduction

Innovation is a central policy goal. In the data economy, the quest for more innova-
tion is supported by a growing number of regulatory instruments. Widely varying in 
scope, such instruments do nonetheless paint a shared frame for the “innovation prob-
lem”: moving from the assumption that innovation and economic growth are deeply 
interlinked, the total welfare generated by the data economy increases with the rise of 
available data. Public policies, thus, are meant to solve the wicked problem of data 
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access.1 A case in point are the data-sharing provisions encompassed, for instance, 
in the General Data Protection Regulation (GDPR), the Open Banking Directive 
(PSD2), the Public Sector Information Directive (PSI), the Digital Markets Act 
(DMA), and the proposed Data Act. The hard truth inspiring policy-making seems to 
be that making more data available exponentially increases the chances of develop-
ing novel, disruptive technologies. But policies pursuing sharing-led increments of 
innovation in the data economy are at great risk of fallouts. Widening data access 
requires a certain degree of cooperation among a broad range of economic players; 
at the same time, the combination of data entails risks for competition (Lundqvist, 
2018). Regulatory provisions crucially impact the complex net of competitive and 
cooperative relations that characterize the digital economy. Cooperation and compe-
tition draw the lines of innovation trajectories. Hence, policies aimed at increasing 
innovation in the data economy may alter the qualities of such innovation.

Indeed, not all innovation is born equal. It is an empirically grounded assump-
tion that private incentives to innovate have positive social repercussions; it is pair-
wise true that technological change appoints new winners and losers.2 As the term 
itself suggests, in novare means to introduce novelty: new ideas, methods, products 
as well as new social roles, relations, and systems. To stimulate innovation means to 
feed such change. Redistributive policy instruments can adjust the payoffs of inno-
vative processes ex-post. But change can rarely be reverted. For this reason, policy-
makers face a daunting challenge: not only should they ponder how to encourage 
innovation, but they also need to push change in the right direction. The regulation 
of the data economy comprehends both a quantitative and a qualitative dimension. 
Data-driven transformations need to be encouraged and channeled. How can policy 
foster the best possible innovative scenario?

This paper contributes to the debate on the regulation of data-driven innovation 
by framing the “innovation problem” in terms of innovation commons. The con-
cept of innovation commons was retrieved from the institutional political studies 
of Ostrom (Hess & Ostrom, 2003; Ostrom, 1990, 2005) and became an established 
economic concept thanks to the work of Potts and Allen (Allen & Potts, 2015, 2016; 
Potts, 2018). In the dynamic context of the data economy, the political design of 
innovation commons sets the ground for future cooperation and competition. Ulti-
mately, it determines the qualities of the resulting innovation. How should policy-
makers design innovation commons? I suggest the answer to be context-dependent. 
Successful innovation commons channel existing incentives to cooperate and com-
pete, and steer innovation in the legislator’s desired direction. Useful lenses for the 
scrutiny of digital contexts are offered by the study of business ecosystems. By 

1  The term “wicked problem” was introduced by Horst Rittel and Melvin Webber to describe the nature 
of many problems arising in complex societies, differing from the traditionally scientific “tame” prob-
lems. Wicked problems cannot be definitively described nor unequivocally solved, as the multitude of 
possible solutions escape the dualism correct/false: better or worse solutions depend on the definition of 
the problem provided by the parties involved, their individual preferences, and the (largely unpredictable) 
effects of the solution on the future development of the observed phenomenon. See (Rittel & Webber, 
1973).
2  The debate around the social repercussions of innovation is introduced in Section 2.
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focusing alternatively on the relations among players in different positions of the 
system it is possible to gain a multidimensional and functional understanding of the 
digital context. More specifically, the ecosystem metaphor supports the identifica-
tion of two different economic functions for data: data as a resource and data as 
an infrastructure. These two data paradigms represent implicit assumptions driving 
policymakers in the design of innovation commons. The qualitative dimension of 
innovation depends on whether data is treated as a resource or as an infrastructure.

The attentive reader has already noted that the paper makes exhaustive use of 
metaphors. Metaphorical thinking may not appear as the first choice framework to 
analyze technologically-driven changes in society. As Ricœur elegantly observed, 
technical and poetic language are at two ends of a single scale (2003). While tech-
nical terminology is meant to be precise, clearly defining a univocal meaning to 
a specific word, analogies work by suggestion, evoking a similarity between two 
concepts without specifying the distinctive elements that make the comparison pos-
sible. Nonetheless, analogies and metaphors are often used to describe technologi-
cal innovations. Computer desktops, artificial intelligence, and computer viruses are 
only some of the examples that relate the digital domain to the tangible world. By 
associating two seemingly unrelated concepts, the author transfers the set of impli-
cations commonly attributed to the subsidiary subject (the second term of the anal-
ogy) to the subject matter of the analysis. A desktop is organized and kept in order, 
intelligence allows inductive and deductive reasoning, and a virus spreads when two 
objects enter into contact. One single word substitutes a long list of attributes, pre-
senting them cohesively and coherently.

Metaphors, in this way, allow us to “identify the similar in the dissimilar” (Black, 
1955). Their role is not limited to embellishing an article by way of rhetoric fig-
ures: they have the power to redescribe reality, influencing how we approach a new 
concept. Analogies are not only a matter of language but also a matter of cogni-
tion (Vedder, 2002). They play a major role in the shaping of a narrative around the 
object of study. Narratives, in turn, have the power to deeply influence the behaviors 
of society, even more so if the unrealistic assumption of pure rationality which char-
acterizes neoclassical economic models is abandoned (Shiller, 2019).

By influencing users’ and companies’ incentives to make their data available 
for re-use, narratives moving from different characterizations of data have a strong 
effect on innovation patterns. The direction of innovation in the digital sector is sen-
sitive to the perception of players themselves, which often paints the frontiers of 
future possibilities. In the case of data, the heavy recourse to analogies highlights a 
common understanding: data are not simply representational resources (Gray, 2017). 
Metaphorical thinking draws “data imaginaries” and “data speak,” carving visions 
and rhetoric that try to encompass the molding effects data exercise on society. In 
this sense, metaphors and analogies contribute to shaping the data infrastructure. 
Metaphorical thinking (co)directs innovation.

Analogies also provide policymakers with mental models to rationalize the com-
plexity of the environment. They determine the characteristics of the data economy 
that they deem relevant. Consequently, they drive the identification of legislative 
priorities. The characterization of data adopted by lawmakers influences the adop-
tion of a protective or optimistic attitude toward data. It influences the balance that 
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will be struck between protective measures aimed at safeguarding citizens from new 
harms and novel rules promising to unlock all the potentialities of data-driven inno-
vation. This, in turn, determines the direction taken by investments in R&D. Eventu-
ally, how the technology is conceptualized decides the future developments of the 
technology itself.

The following sections build up a metaphorical framework for the design of inno-
vation commons. Section  2 expands on the effects of innovation and society, and 
motivates the need for innovation commons. A first taxonomy of innovation is out-
lined in Section 3: cumulative, combinatorial, and generative innovation represent 
distinct goals and require ad hoc policies. Subsequently, the concept of business 
ecosystem is offered as a tool to read the context in which the regulator wishes to 
intervene (4). Section 5 identifies two (coexisting) economic functions for data in 
ecosystems and outlines the differences between the two perceptions of reality. An 
attempt to point at possible consequences stemming from the adoption of one per-
spective instead of another is presented in Section 6. Section 7 concludes.

2 � Data‑Driven Innovation Commons

Innovation benefits society.3 The assumption is certainly simplistic: in reality, it 
is only true given several co-occurring conditions.4 Notwithstanding the debates 
nuancing the statement, the EU pursues innovation as a social goal. The European 
“innovation agenda” was first compiled in the mid-1990s (Borrás, 2003). The term 
innovation entered the political arena substituting and expanding the previously 
prominent couple “science and technology,” to whom is dedicated Title XIX of 
the TFEU.5 Since the articles contained in Title XIX replace their analogous in the 
TEC, it is safe to say that the pursuit of technological progress is a foundational goal 
of the EU.6 Advances in technology are expected to promote competitiveness—and 
competitiveness fosters growth. However, reframing scientific and technological 
policy in terms of innovation policy marks a shift in the understanding of the prob-
lem. A new light is shed on the socio-organizational dynamics concomitant to the 

3  To dilute this claim, note that inequalities are often exacerbated by innovation processes. For instance, 
van den Hoven and Rooksby observe an uneven distribution of the “informational wealth” (Van Den Hoven 
& Rooksby, 2008). As such, a regulatory reflection on the direction of desired innovation is pivotal.
4  For instance, Nelson defines innovation as a form of problem-solving. In this sense, demand is an 
important factor in determining which problems have been tried to solve; richness influences the benefit 
extracted from innovation (Nelson, 1962). On a different but related note, Bender et al. have investigated 
the tremendous costs of language models, stemming from environmental costs to financial costs, oppor-
tunity costs, and substantial harms. The authors invite careful weighing of costs and benefits before push-
ing innovation in the direction of very large language models (Bender et al., 2021).
5  For a brief overview of the differences between science and technology, and the relation between them, 
see Brooks (1994). Regarding Title XIX of the TFEU, it goes under the title “Research and Technological 
Development and Space”; its first words explicitly reference science and technology. Art. 190 (1) indeed 
states that “the Union shall have the objective of strengthening its scientific and technological bases.”.
6  Treaty Establishing the European Community. The relevant articles are Arts. 163–176 TEC.
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production of knowledge (Borrás, 2003). The pursuit of innovation is no longer an 
apanage of a single policy area: it is a transversal policy goal.

The EU growing concern for innovation is supported by the literature pointing at  
innovation as a major source of economic growth (Gilbert, 2006). Ignoring the  
reasons driving firms to invest in research and development (R&D), the outcome of 
such activities entails a positive effect on society. This perspective is confirmed by 
empirical evidence showing that the social positive return from R&D investments 
exceeds the private one (Griliches, 1992). A pivotal study in this field was carried 
out by Mansfield in 1977. Measuring both the private and social returns of seven-
teen industrial innovations, he confirmed previous literature results in appreciating 
a higher median rate of social returns compared to private ones.7 Within his sample, 
he estimated a 56% rate of social return from industrial innovation. Additionally, he 
observed that private returns are characterized by extreme variability. Investments in 
innovation are risky. Lastly, in 30% of the cases, the private returns were so low that 
no firms able to make an accurate prediction would have invested in the innovation. 
Nonetheless, social returns were consistent. With the complete information about 
the success of the technology, it would have still made sense from a societal per-
spective to innovate; but firms’ incentives would have been null.

More recent research on social returns of innovation flags the multiple spillovers 
that stem from innovating activities. Hence, it is unlikely for R&D investments alone 
to drive all of the productivity gains. Jones and Summers highlight that productiv-
ity gains from innovation are driven by a wider set of innovative efforts (Jones & 
Summers, 2020).8 Incorporating more variables into the analysis, they found out that 
the magnitude of social gains from innovation might have been consistently overes-
timated by models purely based on R&D investments. To estimate more accurately 
the average social returns from innovations, they consider the case in which gains 
from R&D pay off slowly, delaying the achieved benefits and thus reducing their 
present value. Moreover, they account for the non-R&D-related costs of innovation: 
among them, investments in capital assets such as equipment, machinery, and soft-
ware. The resulting analysis, however, confirms that social gains from innovation 
remain large. The result is strengthened by the observation that other factors can 
lead to an underestimation of social returns of innovation when only R&D invest-
ments are taken into account: inflation bias, gains in health and longevity, and inter-
national spillovers are usually not considered. The conclusion is that, even under 
less simplified assumptions than the ones Mansfield relied upon, investments in 
innovation promote large average social gains.

7  Note that Mansfield defines the social rate of return as the sum of the savings incurred by customers 
due to the product’s cost reduction (a consequence of both process or product innovation) and the innova-
tor’s (adjusted) profits. See Mansfield et al. (1977), p. 224.
8  Observe that Jones & Summers’ model is rooted in endogenous growth theory. The authors esti-
mate social returns from innovative investments based on the growth rate of GDP per capita, under the 
assumption that, first, the latter will be equivalent to the growth rate in total factor productivity (Solow, 
1956), and, second, that total factor productivity in advanced economies comes from investments in new 
ideas (e.g., Romer, 1990; Aghion & Howitt, 1992). See Jones and Summers (2020), p.4.
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Incentives to innovate, however, depend on the expected returns for the single 
firm investing in innovation. Private expected returns might be lower than social 
benefits—in this case, missing investments harm society more than firms. Such risk 
of underinvestment is coherent with a characterization of innovation as a commons. 
The term commons can indeed be used with two meanings: first, it may refer to a 
resource that is both rival and non-excludable; second, it can indicate the institutions 
that “govern the appropriation and provisioning of the resources among the com-
munity” (Potts, 2018).9 Innovation commons, thus, jointly define the resources that, 
if shared with the community, would enable innovation, and the conditions under 
which such resources are shared. In this paper, data-driven innovation is assumed 
to be a common. This entails that (1) more data-driven innovation is desirable, and 
(2) the innovation problem can be construed as a problem of combined knowledge 
(Potts, 2018).

Data-driven innovation undoubtedly yields transformative effects on society. 
The term data-driven innovation defines the use of data and analytics to improve 
or foster new products, processes, organizational methods, and markets (OECD, 
2015).10 Machine learning techniques, artificial intelligence, and always-online 
interconnected objects are just some of the technological innovations made possible 
by data exploitation. The data economy continues to increase in size (MIT Tech-
nology Review Insight & Infosys Cobalt, 2021). Undisputedly, economic growth 
does not automatically translate into an even increase in well-being across all the 
strata of society. The altered social landscape brought upon by the recent rapid surge 
in the use of pervasive technologies is fraught with risks; the wealth generated by 
this flourishing sector of the economy may be unevenly distributed. Nonetheless, 
technological progress in the collection, storage, and analysis of digital information 
allows for the creation of new value (Buchholtz et al., 2014; OECD, 2015, 2017). 
It permits to augment the size of the pie to be shared between the participants in 
the economy. This adds to the direct positive effect of innovations in sectors such 
as health, science, and education, and to the benefits consumers receive in terms of 
increased variety (OECD, 2015).

Data drives innovation, but the mere existence of data does not necessarily bring 
about more innovation. The effective exploitation of the value creation potential of 
data demands, to begin with, appropriate technologies for their analysis and ade-
quate knowledge management systems to ensure that the information they carry is 
not lost (Bresciani et  al., 2021). Data science, machine learning, artificial intelli-
gence (AI), and computing technologies empower data-driven innovation (Luo, 
2023). Changes in how information is stored and made available for use, and in the 
technology adopted to exploit it, determine the progress of innovation. Ultimately, 
data flows draw the frontiers of the data economy. Data generation makes innovation 

9  The theory of the innovation commons draws upon Hayek, Williamson, and Ostrom to present the 
innovation problem as a combined knowledge problem (Potts, 2018).
10  The concept of data-driven innovation, in this and subsequent publication of the OECD, is tied to the 
availability of “Big Data,” that is “the information asset characterized by such a high volume, velocity 
and variety to require specific technology and analytical methods for its transformation into value” (De 
Mauro et al., 2016).
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possible; rules for data access and use define the direction of the innovation trajecto-
ries. The implications across society stemming from the distribution and use of data 
are wide-ranging (Sadowski, 2019). They dictate which players participate in the 
economy, the distribution of power among them, and which actors are simply left 
out.11 In other words, it marks the characteristics of data-driven innovation.

Hence, the design of innovation commons is a necessary but daring task. New 
spaces for the combination of data-embedded information are key to facilitating the 
transmission of knowledge and fostering innovation. At the same time, the architec-
ture of said spaces has long-lasting effects on the society of the future. Posing that 
the sharing of informational resources will produce innovation, and thus economic 
growth, how does the resulting society look like? The next section provides an over-
view of the three main modes in which data drives innovation, clearing the field for 
a successive evaluation of data-driven innovation’s socio-relational dimension.

3 � Which Innovation for the Common Good?12

Among the many definitions that have been offered for the term innovation, one is 
particularly convenient to investigate innovation commons: innovation is “a new 
pattern of bits of information” (Macdonald, 1998). In the digital sector, such bits 
take a binary form. Data is, indeed, machine-readable encoded information (Zech, 
2016).13 New patterns of data enable data-driven innovation; they—to phrase it 
better—are data-driven innovations. Variations in such patterns may occur based 
on the rules governing their creation. Which instructions can be followed in the 
quest for innovation? The strategy adopted to explore the potentially infinite space 
of new information (i.e., the search space) substantiates diverging results. Players’ 
limited and value-infused perception of the search space infuses the choice of one 
strategy over another.

Of course, other factors count in the selection of any innovation strategy. A prom-
inent place among them is reserved for the availability of data (and information), 
the costs and benefits of sourcing additional one, and more generally the fit with 
players’ overarching goals and declared mission. The analysis of the socio-relational 

11  In this regard, note that a growing body of literature, referred to as critical data studies, is devoted to 
the exploration of the cultural, ethical, and critical challenges posed by Big Data. See, for instance, Iliadis 
& Russo (2016), Crawford (2014), and Dalton et al. (2016).
12  The title of this section hints at the book “Economics for the common good” (Tirole & Rendall, 
2017). In this paper, innovation is conceptualized in a similar way to what Tirole and Rendall did with 
economics: a fundamentally positive force, whose transformational potential comes with challenges that 
cannot be ignored. The authors define the “common good” in terms of general interest, which may be 
opposed to the interests of individuals. To identify the common good, one needs to place themselves 
behind a veil of ignorance and, pretending not to know their position in society, point out what is desir-
able. The notion builds on an intellectual tradition originating with Hobbes and Locke, continued by 
Rousseau, and more recently refined by Rawls and Harsanyi (Rawls, 1999, p. 2).
13  For a more technical definition of data, consider the one provided by UNECE, which describes data 
as a “reinterpretable representation of information in a formalized manner suitable for communication, 
interpretation, or processing” (UNECE, 2020). This definition is the one adopted by ISO and OECD.
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dimension of innovation commons offered in Section  4 is intended to facilitate a 
deeper comprehension of these factors. Before plunging into the depth of the net-
work dynamics of digital complex systems, however, it is fundamental to offer a 
taxonomy of the possible data patterns constituting the output of the economic play-
ers—and the subject of policy-making. Bits of information can prompt cumulative, 
combinatorial, or generative innovation (3.1). Data, specifically, can drive all three 
kinds of patterns (3.2): luckily, it is possible to identify a baseline regulatory goal 
capable of fostering innovation in all these forms (3.3).

3.1 � Cumulative, Combinatorial, and Generative Innovation

Innovation takes multiple shapes, and is thus described in multiple ways. Setting 
aside its socio-relational dimension for the time being, the focus is here kept on 
technological innovation. A widely adopted definition of technological innovation 
is that of “a new or improved product or process whose technological characteris-
tics are significantly different from before” (OECD, 1992). Focusing on the word 
“improved,” one can get the idea that innovation is a cumulative process: incremen-
tal changes follow one another, to the point that the resulting product/process is so 
different from the original one to be defined as new. Indeed, the accumulation of 
knowledge is a possible driver of innovation. The basic principle behind the func-
tioning of carts and cars is the same and has been known to humanity since the dawn 
of time: a round object in movement dissipates less energy than an angled one. Over 
thousands of years, new knowledge was accumulated and applied to the cart. The 
development of the combustion engine determines the invention of cars; nonethe-
less, the functioning of cars capitalizes on all the knowledge cumulated by human 
experience with carts. The collection of information enables cumulative innovation. 
The more information is retained in a system, the higher the potential for growth 
(Winters, 2020).

Innovation does not exclusively rely on the accumulation of information. A sec-
ond kind of innovation was theorized by Schumpeter.14 In The Theory of Economic 
Development, he introduces the concept of combinatorial innovation. Economic 
change, in his view, stems from new combinations of productive means. Produc-
tion is the combination of available materials and forces. Consequently, “to produce 
other things, or the same things by a different method, means to combine these 
materials and forces differently” (Schumpeter, 1926). Producers of vehicles do not 
reinvent the wheel every time a new means of transportation hits the market: the 
wheel is simply assembled in combination with different components. Bicycles, 
cars, motorcycles, trucks, and electric scooters are all the result of the combination 
of wheels with something else. Note that combinatorial innovation is not possible 
if the information is not easily exchangeable. Thus, information needs to be organ-
ized. Combinatorial innovation involves the combination of different components 
as much as the combination of the clusters of knowledge associated with them. 

14  The concept was probably already introduced by Jean-Baptiste Say, credited by Schumpeter himself in 
the second German edition of The Theory of Economic Development (Harper, 2020).
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Moreover, combinatorial innovation is robust to high levels of information loss from 
one generation of products to another (Winters, 2020). Simplification of information 
may even help in reducing the complexity of the search space, that is, the number of 
solutions available to a certain problem. In other words, less information generates 
simpler, more reachable questions. The combination of multiple solutions to simple 
questions is what permits breakthrough, complex, innovation.

Consider an oversimplified history of the wheel and its applications. The first 
known application of the wheel dates back to the Copper Age: domesticated horses 
were trained to move wheeled carts. Cumulative improvements over millennia led 
to better carts. Plenty of other inventions, however, concurred to ease the lives of 
humanity. Among them, animal-led mills, constituted by two overlapping stones, 
assured the production of high quantities of flour. The integration of such struc-
tures with wheels rotating with the force of water cascades allowed the construc-
tion of water-powered mills. The functioning of the latter is based on the property 
of rounded objects of conserving more energy than other shapes, the very same 
property that makes carts with rounded wheels an efficient means of transporta-
tion. The wide leap in innovation constituted by the water-powered mill was ena-
bled by the application of a known technology in a different context. Similarly, 
cumulative innovation gave the wheel in water mills the shape of a turbine. Water 
mills became increasingly efficient. Yet, this increase in efficiency loses relevance 
when compared to the leap in technology that followed the application of the tur-
bine to steamboats. Brian Arthur theorizes such changes of context as shifting of the 
domain. Domains are defined as “any cluster of components drawn from in order 
to form devices or methods, along with its collection of practices and knowledge, 
its rules of combination, and its associated way of thinking” (Arthur, 2014, p. 22). 
Technologies provide solutions to specific problems, they define products or pro-
cesses; domains are a collection of mutually supportive technologies. Each domain 
possesses a unique set of accumulated knowledge, practices, and mindset. They own 
their proper grammar (Arthur, 2014, p. 47).

Changes in the domain are the main way in which technology progresses. Some-
times, such changes originate from the illuminate minds of gifted individuals. Other 
times, it is chance that provides unique opportunities. More often, however, it is the 
spill out of information among different domains that enables the change. When 
unprompted change is driven by large, varied, and uncoordinated participants, inno-
vation is said to be generative (Zittrain, 2005). Generative innovation is easier when 
the function of technological components is not well-defined (Arthur, 2014). The 
reason is simple: a kid playing with a red brick will come up with infinite roles for 
it; should the brick be given the shape of a car, the possibilities become limited. 
Similarly, multi-purpose technologies foster creative recombination (Murmann & 
Frenken, 2006).

Multi-purpose technologies are, indeed, technologies that possess a generative 
capacity. The concept of generative capacity was debuted in the context of social 
policy research by Schön and referred to the ability of metaphors to continuously 
generate new perspectives on the world by carrying familiar meanings in new 
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domains (Schön, 1993).15 Imported in linguistics, it is traditionally associated with 
the ability of alphabets to constantly generate new meanings through the recombina-
tion of sounds (Chomsky et al., 2006). The meaning of the term “generative” was 
retained when translated into innovation studies: here, generative capability came 
to define an overarching capability that enables continuous innovation (Guo et al., 
2022). Generative innovation is unending and self-sustaining.

In some instances, the availability of information constrains the trajectory of inno-
vation: the ebbs and flows of human technological progress are affected by the physi-
cal movement of individuals carrying expertise, ideas, and knowledge. In cyberspace, 
physical limits can be relaxed. It remains to be ascertained whether other limitations 
are in place in the digital world. Does the nature of data itself nudge to the promotion 
of cumulative, combinatorial, or generative innovation specifically? The question is 
bound to draw in respondents’ perceptions about the essence of data. Pending further 
assessments, however, the following Section 3.2 attempts to offer a first irrefragable 
answer on the potentialities of data for innovation.

3.2 � Data Drives Just Anything

The effective management of innovation commons is contingent on the identifica-
tion of the target type of innovation. Indeed, slightly divergent institutions encourage 
respectively cumulative, combinatorial, and generative innovation (West, 2009). An 
appropriate starting point for any policy evaluation stands in the recognition that 
data potentially enable all three of the above-mentioned innovation paradigms.

Data-driven innovation can be cumulative. At a basic level, the availability of large 
quantities of data continuously enables the discovery of novel insights. This appears to 
be the assumption behind the release by the Novartis Institute for Biomedical Research, 
in 2007, of an incredibly wide amount of data retrieved from the analysis of the genome 
of more than 3000 type 2 patients (West, 2009). Besides, the technologies adopted in 
data analyses improve cumulatively as well. The accurate targeting of advertisement ser-
vices offered by Google or Meta, for instance, builds over decades of systematic data col-
lection. The algorithm adopted by Netflix to provide personalized movie recommenda-
tions constantly improved over time as the company gained access to a wider audience. 
A quantitative study conducted in 2021 on innovation in AI used to mitigate and adapt 
to climate change showed that new AI patents in mitigation and adaptation technologies 
are associated with an exponential number of subsequent innovations (Verendel, 2023).

Combinatorial innovation can be data-driven, too. It is common practice among 
medical scientists, for instance, to mine literature and open data to facilitate diagnostic  
decision-making in cancer treatment (Ding & Stirling, 2016). Data-driven technologies 
are often combined: again in the medical sector, blockchain technology can be 
combined with machine learning to protect personal, highly sensible data collected by  

15  Schön notes that “problem settings are mediated […] by the “stories” people tell about troublesome 
situations” (Schön, 1993, p. 138). Metaphors, in his view, are an instrument for policy evolution that 
allows the framing of ever-new social situations. His reflections appear more relevant than ever in respect 
of the regulation of the data economy.
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medical devices (Snow, 2021). The resort to combinatorial strategies to explore the 
space of new possibilities bears the considerable advantage of reducing the uncertainty 
intrinsic to the innovation process. By combining known components, inventors 
can sensibly reduce the variation in the expected success of their efforts (Fleming,  
2001). Completely new components can lead to spectacular failures or triumphant 
breakthroughs; a combination of old components brings upon more modest but less 
uncertain results. The concept is exemplified plainly by innovative digital products 
resulting from the application of data-driven technologies to previously analogical 
domains (Hylving & Schultze, 2013). The knowledge accumulated in the domain of 
app development spills onto wearables as much as smart TVs, autonomous vehicles, 
or IoT appliances.16 Full digital combinatorial innovation is possible too. In this sense, 
Application Programming Interfaces (APIs) are a keystone. Thanks to APIs and 
agile development methods, multiple services can quickly be integrated into a single-
user application (Yildiz, 2022). Interoperability facilitates combinatorial innovation. 
The fungibility of data investments promotes inter-sectoral jumps. As a result, few 
big players controlling common APIs can expand in multiple sectors: the markets of 
competition blur, and new risks materialize (Sharon, 2021).17

Last, the characteristics of the data economy facilitate generative innovation. 
Data-enabled technologies such as data analytics, data mining, Artificial Intelli-
gence (AI), and the Internet of Things (IoT) can be easily transferred from one 
domain to another. Their decision problem is mostly defined in wide terms and 
can quickly adapt to the context. Machine learning, for instance, is used to tai-
lor Netflix’s recommendation as well as to identify unknown influences among 
historical painters—and for uncountable other applications. Coherently, the data 
economy is a dynamic environment. Big data have a generative capacity (Scholz, 
2017, p. 70). Generative algorithms are eyed as the actual more promising devel-
opment in the data economy (World Economic Forum, 2023; Minevich, 2023). 
Generative innovation involves a potentially infinite amount of economic players, 
although strong variations can occur in their degree of awareness and the share of 
value they capture.18 Petabytes of data provide information that answers unposed 
questions (Anderson, 2008). Whether or not this signifies “the end of theory,” as 
algorithms generate more insightful, useful, accurate, or true results than special-
ists crafting targeted hypotheses and strategies (Graham, 2012), it is undeniable 

16  At this point it is necessary to clarify the relation between data, information, and knowledge. Data 
are the syntactic format through which semantic content, id est information, is carried. With an exam-
ple drawn from the analogic world, data represent the letters printed in a book that physically carry the 
information. The latter, on the other hand, define the meaning that the combination of printed charac-
ters delivers. Note that one single character carries, by itself, little information. Additionally, informa-
tion theory illustrates how the identification of regularities in a set of data is used to predict patterns and 
guide behaviors, factually turning information into knowledge. In a similar guise, companies in the data 
economy recur to data analytics to turn data into an intangible asset (knowledge).
17  To get an idea of the magnitude of those “sphere transgressions,” see the Sphere Transgression Watch 
at https://​www.​ihub.​ru.​nl/​proje​ct/​spher​etran​sgres​sionw​atch.​page.
18  One can argue that anyone contributing to one of the webpages composing the 45/B compressed 
plaintext training dataset of GPT-3 participated in the generative algorithm (Brown et al., 2020). How-
ever, each author’s contribution was involuntary and no compensation is foreseen for them.

https://www.ihub.ru.nl/project/spheretransgressionwatch.page
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that innovation is increasingly the result of inductive, rather than deductive, rea-
soning (Mazzocchi, 2015).19

Consider, for instance, the evolution of watches. The knowledge accumulated in 
the domain of application development integrates the know-how of producers of 
watches and their physical components. In 1972, Hamilton released the first digital 
watch under the name Pulsar Time Computer. The product was a success, contribut-
ing to shaping social imaginaries and expectations about the future (Kent, 2021). It 
represents, mostly, a leading example of combinatorial innovation. The subsequent 
and frequent releases of new versions, updated only in the graphical interface, can 
undoubtedly be classified as cumulative improvements. Generative innovation only 
happens when wearables are integrated with software and operating systems. Tech-
nologies maturated in the context of smartphone development, applied to the hard-
ware of a digital watch, gave life to an entirely new product with use not comparable 
with watches’. Wearables permit reading the time; a large share of fitness fiends 
among consumers suggest that measuring exercise and monitoring sleeping time are 
more appealing than simply checking the time (The Economist, 2015). Mostly, the 
wide set of applications available to integrate the smartwatch offers novel and ever-
changing uses.

In conclusion, data are little red bricks.20 They can be piled up one over another 
to improve existing constructions; combined with a set of wheels they will turn into 
cars; they can generate several new exciting games whose limit only lies in the fan-
tasy of the kid playing with them. Posit, however, that multiple children decide to 
join and make their own bricks available to create a more intriguing construction. 
They will surely need rules. In designing those rules, what kind of construction 
should be selected as a goal? More overtly, if data can drive cumulative, combina-
torial, and generative innovation alike, which one should be the objective of poli-
cies for innovation commons? In this paper, I prudently approach this interrogative: 
before advancing with the analysis, the next Section 3.3 identifies a safe baseline for 
political and regulatory action.

3.3 � Data Access, a Common Objective

Policymakers engaged in the regulation of the data economy face a fundamen-
tal question: would the pursuit of one kind of innovation hinder the evolution of 
another? Would initiatives supporting cumulative innovation, for instance, affect 
the evolution of combinatorial or generative innovation? In providing an answer 
to such a quest, the bottom line is that any institutional response to data-driven 

19  The use of extremely high amounts of data subject to relatively low levels of project-specific reorgani-
zations and sorting bears the risk of dragging on – and possibly reinforcing – existing biases in society. 
See Pigliucci (2009).
20  This assumption shall be read as one of the many metaphors used in discussing data. The underly-
ing implication is not that the economic function of data is assimilated to the function of bricks; more 
simply, the accent is posed on the influence of the relational and regulatory environment on the results 
stemming from the shared use of data. For a more extensive discussion of the economic function of data, 
see Section 5.
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innovation commons should have an overall positive effect on society as a whole. In 
other terms, a policy should not provoke more damage than benefit. The uncertainty 
inherent in the regulation of new technologies risks being harmful in the long run 
(Anderlini et al., 2013). Analytical tools are needed to reduce uncertainty.

At a basic level, there is one policy goal encouraging all three kinds of innovation. 
Fostering data access and sharing is a fundamental enabler of data-driven innovation. 
Innovation builds on existent information. While single data points, taken alone, carry 
little information, data sharing is undermined by the risk of communicating informa-
tion.21 Sharing can be hindered as a consequence of what Kenneth Arrow described as 
the “information paradox”: a potential buyer of information cannot assess the value of 
the transaction before they receive the information itself, but if the seller were to reveal 
the content of the information to the buyer before concluding the contract, there would 
be no incentives for the buyer to proceed with the transaction, as he would already pos-
sess the information (Arrow, 1962, p. 19). Sometimes, however, information is sponta-
neously shared by the players in the economy. That is possible if they share a common 
goal. Allen and Potts studied information commons in the early process of collective 
pooling of information (Allen & Potts, 2015; Potts, 2018). When uncertainty is higher, 
and the possible innovation trajectories are almost boundless, information is extremely 
valuable.22 According to their framework, as soon as innovation becomes established 
the need for cooperation is bound to decrease. Uncertainty over the innovation trajec-
tory lessens. Competition begins to operate. Incentives to solve the innovation paradox 
shrink, eventually leading to a reduction in the amount of information exchanged.

Competitive dynamics carve innovation into one of the three above-mentioned 
shapes. As such, they also affect cooperation. Incentives for data sharing are linked to the 
competitive and cooperative relations existent in the digital economy: a possible frame-
work for the analysis of such relations is presented in the next Section 4. By introducing 
the concept of the business ecosystem, the ambition of this paper is to offer the reader a 
pair of glasses to more clearly distinguish the need for institutional intervention in this 
extremely dynamic sector of the economy. Mostly, these lenses permit us to discern 
which innovation do data enable, and when. Commons could thus be managed to favor, 
respectively, cumulative, combinatorial, or generative innovation. A context-dependent 
intervention, I argue, necessitates tools to understand the context. The concept of ecosys-
tem is instrumental to root up the relational dynamics of the data economy.

4 � Ecosystems, Loci of Innovation

The development of business ecosystems is the organizational backbone of digital-
based innovation. Ecosystems enable what Benkler defines as commons-based peer 
production (Benkler, 2002), a third mode of production alternative to markets and 

21  In this sense, talking about data access (by firms that might not necessarily derive from the data the 
same information as the data holder) necessarily involves a discussion around the cession of information 
(by economic players worried that data sharing might pass sensitive information to competitors).
22  Regarding the relation between uncertainty and technological innovation, also see Dequech (2004).
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firms especially frequent in the digital economy.23 Peer production can be described 
as “a process by which many individuals, whose actions are coordinated neither by 
managers nor by price signals in the market, contribute to a joint effort that effec-
tively produces a unit of information or culture” (Benkler, 2003, p. 1256). Com-
mons-based peer production, in the context of the digital economy, depends on the 
aggregation of independent firms which autonomously “scour their information 
environment in search of opportunities to be creative in small or large increments” 
(Benkler, 2002, p. 376). Such exploration is based on data sharing: by accessing new 
data firms retrieve new information, reduce their level of uncertainty, and undertake 
innovation ventures. Note that aggregation implies a certain degree of cooperation. 
Cooperative relations are nurtured to better respond to continual competitive threats. 
In the digital sector, innovation is the engine of competition (OECD, 2022).24 Coop-
eration, in this challenging arena, becomes a competitive instrument (Teece, 1992). 
Cooperative data-driven innovation is faster and more apt to respond to ever-evolv-
ing threats (Petit & Teece, 2020). The complex net of cooperative relations that rises 
around major players’ technologies constitutes the structure of business ecosystems.

The picture of technology-intensive machines voraciously analyzing exception-
ally wide datasets recalls sci-fi imaginaries rather than organic biological ecosys-
tems. Still, the term ecosystem is part of the academic jargon of multiple fields 
interested in the data economy: from business, management, and innovation studies 
to computer sciences, it is rapidly spreading to the legal and economic literature. In 
particular, competition law scholars are advancing the idea that ecosystems allow to 
grasp and systematize the multi-dimensional nature of competition in the digital sec-
tor (Jacobides & Lianos, 2021; Petit & Teece, 2020; Robertson, 2021). More than 
that, the term made it to legal texts (Digital Markets Act, Digital Services Act) and 
Court decisions (Google LLC and Alphabet, Inc v European Commission, 2022). 
In this paper, business ecosystems are defined as comprising firms that collectively 
offer value to customers, independently setting their business strategy but strongly 
connected one with another. Independence and interdependence are both neces-
sary but insufficient conditions. Economic players independently designing their 
products are part of markets25; full interdependence between outputs is achieved in 

23  Benkler uses the concept of commons-based peer production to analyze “the phenomenon of large- and 
medium-scale collaborations among individuals that are organized without markets or managerial hierar-
chies” which “is emerging everywhere in the information and cultural production system” (Benkler, 2002, 
p. 375). While the subject of his research is limited to decentralized modes of information production 
(such as, e.g., free software), his framework can easily be adopted for the study of information production 
structures in business ecosystems at large, whether or not the latter are governed by a leader. For this pur-
pose, however, the behavior that Benkler attributes to individuals is assigned to firms.
24  The idea that innovation constitutes a relevant dimension of competition is not new: already in 1962 
the economist Richard Nelson observed that “increasingly the focus is on competition through new prod-
ucts rather than on direct price competition” (Nelson, 1962, p. 4). In the digital sector, the phenomenon 
is simply accentuated.
25  Here, and in the remainder of this paper, I refer to “products” to indicate the output of players in digi-
tal ecosystems, implying the much longer notation “products/services/solutions.”.
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hierarchical organizations such as firms or conglomerates. Ecosystems, like com-
mons-based peer production systems, stand in between “hierarchies” and “markets” 
(Benkler, 2003; Gawer, 2014; Jacobides et al., 2018).

Although it is possible to identify examples of business ecosystems that origi-
nated as early as the 1920s, the managed business ecosystem as an organizational 
form is connected to the computer industry of the 1960s. James Moore identifies 
two major shifts that played a pivotal role in its affirmation (Moore, 2006). The first 
was the development of the family of computers IBM System/360.26 Thanks to a 
modularized architecture, IBM was able to offer several variations of the same prod-
uct able to accommodate the needs of different market segments, without the need 
to develop and maintain multiple product lines (Liu, 2016). The modularized archi-
tecture allowed for the development of complementary markets for specific parts 
of the computer (Moore, 2006). Modules made it possible to launch an extremely 
complex product on the market, at the same time assuring that it could easily 
evolve to accommodate changes in demand. The second paradigmatic shift identi-
fied by Moore as generative of the business ecosystem as a managed form of busi-
ness organization was operated in the same period by HP. While IBM established a 
new technical paradigm, based on modularized interoperable architecture, HP laid 
the foundation for a new cultural paradigm. The company’s internal organization 
was grounded on collaboration. Small groups of engineers would cooperate on spe-
cific projects and flexibly re-arrange themselves at their conclusion. The organiza-
tion was based on open and loose groups, among which information flew relatively 
freely (Burgelman et al., 2017). The collaboration of autonomous individuals pro-
motes creativity (Benkler, 2003).

Modularized architecture and collaborative culture are, indeed, distinct features 
of digital ecosystems. Chiefly, digital ecosystems permit the extension of those par-
adigms beyond the borders of the firm. Complex innovations are developed as com-
binations of distinct modules. Specific product design choices help firms to generate 
product families and lead to systematic, quick innovation through the use of com-
mon assets (Gawer, 2014). Innovation is boosted by specialization. In each module, 
knowledge is accumulated. As such, new firms can access the market by provid-
ing new complementary solutions that can be integrated into the main product. At 
the same time, module recombination allows for multiple possibilities for combi-
natorial innovation. It is by recombining the components that Apple can accommo-
date the needs of all the market segments covered by its personal computers offer. 
The collaborative culture that made HP successful in a highly technological sector 
is frequently adopted by firms belonging to the same ecosystem. Unless they are 
fully complementary, companies in the ecosystem alternate competitive and coop-
erative relations based on time, market, and functions.27 They are said to “coopete” 
(Brandenburger & Nalebuff, 1998).

26  On this point, Moore builds on the work of Baldwin and Clark (2000).
27  Functions are marketing, sourcing, operations, research, and development.
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Autonomous and asynchronous innovation can be conducted by multiple firms 
using the same resource. At the same time, access to resources may provide a competi-
tive advantage. Data pooling and sharing are influenced by inter- and intra-ecosystem 
coopetitive dynamics. On the bones of business ecosystems, data ecosystems take shape. 
An interesting strand of the literature on the regulation of data is devoted to the iden-
tification of technical solutions capable of fostering open data ecosystems or explic-
itly facilitating data reuse by supporting collaborative networks.28 The object of these 
studies is constituted by spontaneous or privately managed data-sharing platforms. It 
is, however, important to note that data and business ecosystems are not overlapping.
Data ecosystems enable data commons; business ecosystems to innovation commons. 
By focusing on the latter, the article intends to flag the potential rather than the actual 
data commons: the ones that could happen, if regulation is successful. Moreover, the 
focus is kept exclusively on the data commons that foster innovation. Indeed, the struc-
ture of business ecosystems determines the architecture of innovation.29 Regulation on 
data access affects the information available to ecosystem members. Thus, they influ-
ence the trajectory of innovation. How it happens are hard to predict due to the complex-
ity of ecosystems’ structures. The next part (4.1) attempts to analyze the distribution of 
information in digital ecosystems.

4.1 � Information‑Bound Innovation Trajectories

Digital ecosystems are complex systems (Briscoe, 2010). The number of publica-
tions dedicated to the understanding of the digital economy might make this asser-
tion sound trivial. But puzzled researchers of the digital era might feel reassured 
recalling the definition of complexity provided by complexity science: the complex-
ity of a system is related to the amount of information necessary to describe it (New 
England Complex Systems Institute, n.d.). The description of digital ecosystems 
requires more information than the description of traditional markets. The concept 
can be better understood through an example. Consider a hypothetical “grandparent 
test”30 on the environment of operations of a hotel and the environment of opera-
tions of its closer digital equivalent, Airbnb. A traditional hotel purchases toiletry 
sets, breakfast products, and cleaning services from its suppliers, and provides a 
room for the night to its clients. The operations of Airbnb involve a significantly 
wider number of players (Fig.  1). Additionally, note that the relationship among 
them is more varied compared to the traditional market. Contracts and purchases 
are no longer the main way of interaction. Players that are not in direct communica-
tion can nonetheless be highly interdependent (Shaughnessy, 2019). The amount of 
information needed to describe Airbnb activities is significant.

28  See, for instance, Immonen et al. (2014) and Oliveira et al. (2019).
29  Lessig, 2002.
30  A “grandparent test” consists in explaining a technical topic without recurring to specialized jargon, in a 
way that would make it understandable to someone not familiar with the technicalities (Winsor, 2019).



1 3

Digital Society (2023) 2:31	 Page 17 of 34  31

The main characteristic of complex systems is that small changes in one of the 
parameters can produce large changes in the aggregated behavior of the system (Petit 
& Schrepel, 2023). This can be easily understood by referring to a peculiar exam-
ple of complex systems: the atmosphere. In 1962, the meteorologist Edward Lorenz 
observed that a butterfly’s flap in Brazil could cause the formation of a tornado in 
Texas.31 In the context of business ecosystems, the butterfly effect explains the unpre-
dictability of innovation trajectories. The course of technology is influenced by what 
Arthur referred to as “small historical events” (Arthur, 1983).32 Apparently, random 
choices in the early stages of development of a new technology become cemented in 
the technological structure of the economy. Arthur states that “micro-events become 
magnified by positive feedbacks; their cumulation decides the outcome and forms 
the causality” (Arthur, 1983). The anticlockwise hands in the 1433 clock displayed 
in Florence’s cathedral testify that casualty ultimately is entrenched in conventions.33 
“History becomes destiny” (Arthur, 1983, p. 16).

Fig. 1   The Airbnb Ecosystem.  Source: own elaboration based on Shaughnessy, 2019

31  To be precise, in 1962 Lorenz observed that a flap of a seagull’s wing could change the course of 
weather forever. In 1972 he organized a conference titled “Could a butterfly’s flap in Brazil cause a tor-
nado in Texas?” The meteorological phenomenon he discovered was named the “butterfly effect,” how-
ever, I take the official date of discovery of the effect as 1962, as the animal flapping wings is the only 
modification to the scientific finding that occurred in 1972.
32  Note that Arthur’s studies presuppones increasing returns to technology, that is decreasing cost of sup-
ply. This typically holds in the digital economy.
33  The “anticlockwise convention” disappeared around 1550 (Arthur, 1983, p. 15).
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Strong path dependencies undermine the applicability of the neoclassical “rational 
agent” assumption.34 Participants in the system are extremely bounded agents: their 
decisions are heavily dependent on their starting point, and the effects of such deci-
sions are determined by a net of interdependencies of which they are likely not fully 
aware. Ecosystem complexity is made manageable through modularity (Baldwin, 2007; 
Moore, 2006). An organizational structure is modular when it is composed of elements, 
i.e., modules, that independently perform distinctive functions (JK Gershenson et al., 
2003; Simon, 1962). It tends to emerge in large systems characterized by a high num-
ber of interdependencies (Simon, 1962; DL Parnas, 1972; Ethiraj & Levinthal, 2004). 
The separation into modules allows for the creation of sub-systems. Participants in each 
sub-system are closely connected to one another and loosely related to participants in 
other sub-systems. Within modules, the unit of analysis is limited to a reduced amount 
of interactions: hence, complexity is reduced. Conventions and standards dominate 
exchanges among the different modules.

Modularity is the key to agile innovation. If technological paradigms continu-
ously shift, how can firms build resources and capabilities that sustain competitive 
advantage? Modularity allows parallel work to proceed independently. Chiefly, mul-
tiple components of a complex product can be innovated at the same time. The case 
of IBM/360 illustrates the advantages of a modular product design for innovation. 
First, autonomous innovation takes place within components. New, updated data 
entry units could be released anytime, as long as they respected the measures of 
the console. Research and development are independently carried on by each com-
ponent. More generally, players producing alternative modules compete with each 
other. In dynamic environments, competition is based on innovation (OECD, 2022). 
A modular structure, by simplifying complexity, reduces the information necessary 
to adduce incremental improvements. Moreover, reverse engineering and imitation 
are made easier. Cumulative knowledge and joint problem-solving within modules 
are incentivized (Pil & Cohen, 2006). Thus, we could expect higher rates of incre-
mental innovation.

Second, combinatory innovation takes place by exchanging and replacing lower-
performance modules with higher-performance modules. In the IBM/360, exploi-
tation of combinatory innovation gave rise to multiple models, each of whom was 
better suited for different typologies of users. The relative ease with whom it was 
possible to recombine the essential elements of the computer gave birth to a flour-
ishing market of non-original substitutes. Peripheral products could be attached to 
the System/360 processor thanks to its standard interface. Third-party suppliers and 
manufacturers quickly entered the new market. Consequently, competition increased. 
A modular architecture facilitates the development of new markets, encouraging 
value creation.35

34  Neoclassical economists were aware that participants of the economy do not always behave in rational 
ways. Nonetheless, the adoption of a presumption of full rationality was justified by the so-called “as-if” 
justification: as players would be rational the majority of the time, it is safe to build theories “as-if” they 
act rationally (Friedman, 1953).
35  On this point, see Coase (1960).
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Lastly, the modularized architecture of digital ecosystems enables generative 
innovation. The early production of the IBM/360 can be considered a case of a 
closed ecosystem. When ecosystems are open, that is to say when the membership 
can be acquired by any third party capable of annexing their product to the system’s 
complex offering, the boundaries become more malleable (Um et al., 2013). Innova-
tion can advance by harnessing the distributed creativity of heterogeneous players 
(Yoo et al., 2012). The generativity of open ecosystems “comes from the variety of 
plug-ins of different kinds,” whereas closed ecosystems can only rely on a variety of 
modules of the same kind (Um et al., 2013; Yoo et al., 2012). The generative capa-
bility of the Android ecosystem, for instance, is given by the virtually never-ending 
diversity of the third-party applications that can run on it. An Android smartphone 
can turn into a training device, a music player, or even a metal detector. The open-
ness of the system benefits from product-agnostic modules, such as Google Maps 
APIs, which can be integrated into a multitude of different products. Open systems 
count more members; more members translate into increased complexity. For this 
reason, open ecosystems often proliferate around the figure of a leader: hierarchy is 
a powerful way to manage complexity (Simon, 1962).36 Undoubtedly, leaders detain 
a substantial advantage over the other members: they can increase variations in 
their products and raise the overall flexibility of the system without incurring high 
transaction costs (Um et  al., 2013). By designing the architecture, they can easily 
steer innovation trajectories. Their control over innovation is, however, not absolute. 
Generative innovation relies on exchanges and unforeseeable contacts, and increases 
with the flow of information within and outside the ecosystem.

The relative position of economic players, the openness of connection between 
modules, and the overall architecture of the system affect the characteristics of inno-
vation in the data economy. The level of competition ecosystem’s members are most 
sensible to, together with the perceived rivalry of data, determines the incentives 
to share data. Mostly, remember that the economic players aggregated in an eco-
system are independent. Ultimately, their competitive strategy determines what kind 
of innovation they want to pursue. As their competitive strategy depends on which 
information they have, and considering that data embed such information, access to 
data determines the resulting innovation. For this reason, the next Section 5 concen-
trates on the possible roles that data can assume in ecosystems. Different (perceived) 
data functions determine the willingness to access data commons and the strategic 
choice of the participants in the economy. The resulting innovation will be qualita-
tively different. Finally, when policies for innovation commons endorse a specific 
data function, they implicitly support specific qualitative features of innovation.

36  This this is, of course, not always the case. Numerous Open Data movements originate spontaneously, 
and it is not rare for members of data commons to engage in participative forms of administration. How-
ever, Big Tech’s ecosystems are the ones that mostly catalyze the interest of regulators, preoccupied with 
the excessive powers retained by those leaders.
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5 � The Dual Role of Data

The context in which innovation commons take shape comprises both the external 
forces fostering or hindering collaboration and an individual calculation of the costs 
and benefits of sharing. Incentives to cooperate, thus engaging in data commons, 
and compete, i.e., excluding opponents from the commons, depend on the perceived 
value of data. The latter is, in turn, linked to players’ perceived economic function 
of data. The modular architecture of digital ecosystems permits the identification of 
two different economic functions for data. Each function facilitates a specific kind 
of innovation. The next paragraphs focus on the perceptions that data points are eco-
system resources shared according to players’ incentives to cooperate or compete.

Section 5.1 examines two analogies that describe different declinations given by 
the literature to data as resources. In particular, Sub-section  5.1.1 focuses on the 
analogy of data as commodities; Sub-section  5.1.2 presents data as common pool 
resources. Access to resources enables cumulative and combinatorial innovation. But 
data is also an infrastructure for digital ecosystems: this is the subject of Section 5.2. 
The relational nature of data, and the embedded generative potential, serve the eco-
nomic players to organize the world. The infrastructural role of data enables genera-
tive innovation, which has a greater chance of having disruptive effects on society. As 
illustrated in Section 4, the ecosystem-mediated relationship among the firms partici-
pating in an innovation common determines the characteristics of the resulting inno-
vation. As a consequence, different functions for data can prevail at different levels 
of the ecosystem. Policies aiming at fostering innovation commons are expected to 
appropriately select the narrative they adopt towards data and match it with the role 
of the firms that are expected to partake in the commons and the characteristics of the 
desired innovation.

5.1 � Data as a Resource

Data points are the immaterial but fundamental inputs of the data economy. Two 
analogies represent the relational implications of data as an economic resource: when 
data is equated to commodities (Sub-section 5.1.1), a light is shed on its competi-
tive consumption; when data is liked to common pool resources (Sub-section 5.1.2), 
attention is brought to the importance of cooperation.

5.1.1 � Commodities

The metaphor that had the most powerful grip on public opinion is certainly one that 
associates data with a commodity. “Data is the new oil” is a sentence that rapidly 
surged to the position of workplace litany, when not a company mantra, to the point 
that it is considered by many a tired cliché (Gilbert, 2021). In highlighting the fun-
damental role of data in fueling companies’ growth, the metaphor pairs a descriptive 
claim with a normative one. Neglecting data management becomes the equivalent, 
for a company, of forgetting to fill the tank of the car. Data is freed by its technical 
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aura and normalized, becoming part of firms’ daily operations as raw materials, with 
their supply taking a central role in the development of the business strategy. Oil 
is seldom substituted by gold, highlighting the value that the resource has for busi-
nesses. The other facet of the same medal is the analogy equating data to a currency 
that consumers spend inadvertently. This metaphor provides a tentative explanation 
for the rapid rise of Big Techs, firms whose business model does not usually involve 
direct payment by the consumer. The mystery of how those firms could produce value 
while offering a free service is thus quickly solved: users do not pay with money but 
with data. Data is liked to a currency.37 It provide companies with a resource whose 
value they are unaware of, and Big Tech companies able to extract data from users 
can resell it by making an immense profit. An illustration published on the cover of 
The Economist in 2017 perfectly represents the metaphor. Big Techs are drawn in 
the guise of oil platforms, a wordplay based on their status as online platforms. The 
implicit admonition contained in the analogy warns against the free and unconscious 
transfer of valuable goods that accompanies many digital actions.

The success of the data is the new oil, gold, or currency metaphors can be due 
to their ability to provide a characterization of data that reflects and explains their 
behavior as observed by individual users and professionals in their daily experi-
ences. However, its deconstruction reveals that it moves from a series of implicit 
assumptions, transferring to data a set of non-trivial economic properties. Data is a 
scarce resource that has to be extracted, possesses commercial value and is fungible. 
Moreover, the amount of data at their disposal determines businesses’ competitive 
strength: no market player will be willing to make its data available to other firms 
(Graef, 2016). As a matter of fact, due to the high fungibility of data, companies 
operating in the data economy can quickly expand their activities in different mar-
kets. This represents a considerable obstacle to data sharing. Firms considering its 
data a commodity are not likely to make it accessible for re-use. The risk they incur 
is a loss of competitive advantage.

The economic function of data is (or is considered to be)38 the one of commodi-
ties when firms are subject to competitive threats. In this regard, it is important to 
observe the multidimensionality of competition in the digital ecosystems. Static, 
price-based competition can take place horizontally among complementors offering 
substitutable products; vertical intra-ecosystem competition refers to value captured 
through joint collaboration; innovation-based competition takes place between dif-
ferent ecosystems that offer comparable value added to customers through the pro-
vision of multiple products. The ecosystem theory reaffirms that the assessment of 
firms’ competitive advantage cannot overlook the analysis of the aggregate level. 
In any case, the extraction and accumulation of data having the function of a com-
modity support cumulative evolution within the boundaries of the module—be it the 
single firm or the ecosystem vis-à-vis competing ecosystems.

37  Currencies are specific cases of commodities. On this topic, see Clements and Fry (2008)
38  In this regard, remember that self-perception is as relevant as reality. Members of the ecosystem 
define their strategies based on their bounded rationality.
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5.1.2 � Common Pool Resources

Multiple scholarly contributions on the data economy equated data to a common 
pool resource.39 Data is non-rival: consumption by one actor does not prevent re-use 
by others. In addition, it has limited excludability: it is common practice to limit 
data access through the adoption of technical barriers. Data can be kept a secret. 
Technical solutions meant to control third-party access are commonly adopted by 
companies operating in the data economy. And, if it is undeniable that cybersecu-
rity attacks can undermine the efficacy of such solutions, it is pairwise true that so 
far the large data holders such as Google, Meta, and others “do not seem to suffer 
from a vast copying and leaking of their huge amount of collected data” (Kerber & 
Schweitzer, 2017). Goods characterized by non-rivalry and limited excludability are 
considered to be impure public goods (Leach, 2003). Thus, the most appropriate 
framework for the analysis would thus be the one of common pool resource (CPR) 
elaborated by the Nobel laureate academic Elinor Ostrom, who in 2003 co-authored 
a seminal paper studying information as a CPR (Hess & Ostrom, 2003). Innovation 
is possible when data governance can overcome collective action problems associ-
ated with data access.40

The CPR perspective focuses on the social need for firms’ cooperation. Data that 
holds little to no value for the firm that held their access are often left abandoned in 
data lakes or data swamps. If such data was to be shared, new firms could use the 
same data points in a different domain. Thus, combinatorial evolution could surge.

5.2 � Data as an Infrastructure

The last analogy equates data to an infrastructure. In the same way of roads and 
electric systems, data comprises “a backbone for much of modern social and eco-
nomic activity” (Ruhaak, 2020). Considering the multitude of downstream innova-
tions made possible by the use (and re-use) of data, its wide availability will fos-
ter technological progress and increase social welfare. Data can be considered a 
multi-purpose resource (OECD, 2015). The value of data in contexts different than 
the one in which it is originated may be difficult to assess, given that the value of 
information is context-dependent, but it is most likely positive (OECD, 2015). The 
infrastructural angle raises attention to the transformative effects that data-driven 
innovation entails on the economy and society. Relatedly, the emergence of such 
characterization of data is more recent: it moves from the recognition that the dis-
ruptive changes brought by the quick technological advances in the data economy 
affected a multiplicity of actors, many of whom in unforeseeable ways. As such, 
the analogy sheds light on the multiplicity of technological trajectories typical of 

39  This assumption is particularly prominent in (but not limited to) sector-specific research. See, for 
instance, (Dulong de Rosnay & Le Crosnier, 2012; Erik de Man, 2006; Fia, 2021; Reichman & Uhlir, 
2003; Šestáková & Plichtová, 2019).
40  The very same framing of “innovation commons” adopted in Section 2 derives from the treatment of 
data as CPRs.
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the digital economy. The value of an infrastructure varies depending on the activ-
ity that it enables. When data is liked to infrastructures, then, the focus is not on 
their use value nor their commercial value: the policy discourse is centered around 
their potential value (Ducuing, 2020). Brett Frischmann proposes a three-step test 
to define an intangible as an infrastructural resource: it should be non-rivalrous in 
consumption to some appreciable extent; social demand for it shall be driven pri-
marily by downstream product activities that require the resource as an input; it shall 
serve as input for a wide range of goods, be they commercial or non-commercial. 
Infrastructures are “used by many different users, with the usage evolving over time, 
as may the type of users” (Frischmann, 2012). The combination of the three criteria 
results in the definition of intellectual infrastructure as “non-rival inputs for a wide 
variety of outputs” (Frischmann, 2012). The OECD underlines that such a definition 
perfectly describes the nature of data (OECD, 2015). Indeed, the value from data is 
created subsequently to their transfer and in relation to reuse.

The economic function of data as an infrastructure potentially enables the flourish-
ing of generative innovation. Infrastructures are a way in which interconnected systems 
can be conceptualized (Henfridsson et al., 2013). In digital ecosystems, data connect 
the modules with the rest of the ecosystem. But data also transmits elements of the 
social context in which they have been co-created. As Star and Ruhleder write, “an 
infrastructure occurs when the tension between local and global is resolved” (1996). 
The data to which players in the ecosystem have access determines the technological 
landscape that they can explore; at the same time, the distribution of data in the eco-
system defines the connections with the other economic players. Gray renames the data 
infrastructure “data worlds”: his invite is to not consider data exclusively as resources, 
but to investigate how political, social, and cultural values emerge from data infrastruc-
tures (Gray, 2017).41 Data worlds provide the horizon of intelligibility; the informa-
tion to which each participant in the ecosystem has access defines its ability to move in 
the world. Ultimately, they decide the direction of innovation of the ecosystem and, as 
such, the well-being of society.

Data worlds, according to Gray, offer transnational coordination (Gray, 2017). Data 
as infrastructures, indeed, assist the governance of the ecosystem. They are an instru-
ment for the ecosystem leader in its quest to maintain alignment of complementors’ 
interests. Ecosystem leaders influence the architecture of the ecosystem through the 
design of their products. Usually, this includes a certain influence on the definition 
of standards and rules for interoperability. This directly affects the allocation of data, 
shaping the modules of the ecosystem; in turn, size and relations between modules 
strongly affect innovation trajectories. The starker the influence of the leader over the 
ecosystem’s infrastructure, the more power will it have over the orchestration of data 

41  The locution “data world” originated in the context of research on open data; it can nonetheless easily 
be transferred to open ecosystems. Note that the expression “data infrastructures” is used by Gray in the 
sense of “socio-technical arrangements which underpin the production of data: consisting of relational 
ecologies of software components, data standards, methods, techniques, committees, researchers, instru-
ments and other things”. The relational components makes the concept overlap with our definition of 
data as an infrastructure.
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resources. The higher chances of successful generative innovation materialize when 
data infrastructures are open, participative, and dynamic.

The same data serves the function of resource and infrastructure. The perceptions 
of the players, together with contextual use-related factors, determine the economic 
players’ attitude towards cooperation through data commons. The same metaphors 
guide regulators’ interpretation of the complex and dynamic digital economy. It 
helps them understand which function does data hold. If data is perceived as a com-
modity, a CPR, or an infrastructure, the legislative focus will be drawn to different 
ecosystem levels. The kind of innovation encouraged by the regulatory interven-
tion will thus differ. Metaphors are abstract guides for the interpretation of reality 
but entail material effects. The three above-mentioned metaphors for data address 
a need from a public policy perspective. Paraphrasing the OECD, they “provide a 
framework that can guide policymakers in identifying when data warrant their atten-
tion” (OECD, 2015, p. 178). The next Section 6 attempts to sketch the consequences 
stemming from the adoption of one metaphor other than another; further research is 
needed to disentangle the implicit assumptions driving policymakers in the design 
of innovation commons.

6 � Policy Implications

Data enables innovation. How it happens is mediated by business relationships in 
ecosystems. The analysis presented in this paper invites us to adopt a more gran-
ular view of the data economy. Cooperation through data commons has different 
costs and foreseen benefits depending on whether data are treated by ecosystems’ 
members as resources or if they represent an infrastructure. Taking an ecosystem 
perspective assists in identifying areas and modalities of intervention able to lever-
age existing incentives. Different options of data governance emerge as possible. 
Policies aiming to foster innovation commons shall take into account the structure 
of the business ecosystem they intend to address to (1) be effective, and (2) prevent 
unexpected long-time effects on the ecosystem governance, affecting multiple actors 
(Cennamo, 2021).

Different regulatory solutions may foster innovation commons in digital ecosys-
tems. When data has the role of a commodity, the starting point of the legislative 
discussion lies in the recognition that data hold commercial value. Therefore, the 
regulator adopting this point of view is likely to increase transparency in the mar-
ket, so that consumers are fully aware of the economic value of the data they are 
creating. Relatedly, the legal framework is charged with the task of facilitating the 
emergence of a healthy and well-functioning market for data. Although a certain 
degree of concentration among data providers appears as unavoidable, directly stem-
ming from the characteristics of the commodity extracted and supplied, the role of 
legal institutions driven by the willingness to foster commons for commodity data 
is to ensure access to data to all the companies operating in downstream markets. 
Those companies will be enabled to use them to fuel the provision of new and bet-
ter services, generating growth and innovation. If the grip that the analogy holds 
among managers and the public is reflected in the policymaking, we can expect the 
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legislation to focus on the commercial value of data, providing incentives for their 
exchange in huge quantities, considering the fungibility they have across different 
markets and ultimately ensuring that all the companies transforming them in goods 
and services have access to this essential commodity.

The GDPR contains a curious case of the data-as-commodity metaphor. Art.20 of 
the Regulation establishes the right to “data portability,” giving the data subject the 
right to receive the personal data concerning her “in a structured, commonly used 
and machine-readable format” and to transmit those data to another controller. This 
particular article appears to pursue a different goal to the rest of the GDPR: while 
the remainder of the regulation builds the foundation of a fundamental right to data 
protection, art. 20 seems to be guided by the desire to push growth and competitive-
ness. One may go as far as arguing that, by facilitating the transfer of data from and 
to competing controllers, data portability could assist incremental innovation. Each 
player could rely on the same resources and independently pursue their innovation 
strategy. However, the GDPR does not contain any indication that supports the trade 
of such a precious commodity.42 The result is an almost forgotten, never enforced, 
and arguably ineffective provision.

The data-as-CPR analogy designs a clear priority for the regulator that adopts it: 
to foster data sharing by increasing control over data. The attention is drawn to issues 
of data undersupply due to collective action problems determining an inefficient use 
(and re-use) of data. The regulator will aim at facilitating data production and reuse 
by correcting economic agents’ failure to spontaneously negotiate the optimal level of 
the good. The assignment of clear and defined control over data may be considered 
an unavoidable step. A specific declination of this view is offered by Birch when he 
refers to the assetization of data (Birch et al., 2020). The author problematizes inno-
vation as being increasingly driven by the pursuit of rents, and proposes laws that 
protect (personal) data subjects with time-limited property rights.43

The data-as-CPR analogy appears to have guided the European Commission in 
the drafting of the Data Governance Act, adopted in May 2022. The objective of 
the Regulation is the stimulation of innovation through the establishment of a clear 
framework for data reuse and sharing across specific sectors. Among the many pro-
visions, several regard the so-called “data-altruism”—which is, the voluntary dis-
closure of personal data by data subjects. For example, Art. 17 regulates public 

42  Indeed, the European Commission has clearly indicated in the EU Horizontal Provisions on Cross-
Border Data Flows and Protection of Personal Data and Privacy in the Digital Trade Title of EU Trade 
Agreements that the protection of personal data is fundamental right, non-negotiable in the context of 
trade agreements. See COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PAR-
LIAMENT AND THE COUNCIL Data Protection as a Pillar of Citizens’ Empowerment and the EU’s 
Approach to the Digital Transition—Two Years of Application of the General Data Protection Regula-
tion (2020).
43  For an example, see the analysis of the regulatory framework for the access to interconnected vehi-
cles’ data by Kerber & Moeller (2019). According to them “[…] There is a broad consensus that the 
crucial challenge for competition on the markets for repair and maintenance services in the ecosystem 
of connected driving is the exclusive control of the OEMs (i.e. car manufacturers) of the access to in-
vehicle data and the connected car” (p. 9). An appropriate response to the challenges of digitalization in 
the automotive industry, thus, requires the granting of control to independent economic players.
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registers of recognized data altruism organizations. Data is considered to be a neces-
sary input, and the regulator has the duty to overcome the organizational and techni-
cal obstacles that impede innovation commons. However, access to data is provided 
only to certain pre-determined categories of economic players. As such, the result-
ing innovation can only be cumulative or, at best, combinatorial.

Lastly, when regulators recognize data as the infrastructure of the ecosystem, 
they will design institutions to make it available for use in a non-discriminatory way. 
They will have to address a problem connected with the general-purpose nature of 
infrastructures: as the value that will be produced through infrastructures cannot 
be known ex-ante, public policies should ensure that they are sufficiently produced 
(OECD, 2015). All the interested third parties could then profit from the resource, 
unlocking a wide and unpredictable range of downstream activities. Regulation 
towards infrastructure should be particularly mindful: data, in this declination, gov-
ern and enable the relationships among members and design the space in which they 
operate. The data infrastructure contributes to shaping ecosystems’ incentives, facil-
itating cooperation, and making generative innovation possible. Ecosystem leaders 
influence such infrastructure by governing the ecosystem and designing its archi-
tecture. Standards-setting and interoperability multiply the relations among the eco-
system members and govern their contacts with external (competing) ecosystems. 
Regulation underpinned by the infrastructure metaphor is likely to promote new 
standards and mandate interoperability. In the context of ex-post enforcement, con-
sidering data’s role as an infrastructure leads to measuring Big Tech’s impact (also) 
against the relational impact that it holds.

The recognition of the infrastructural function of data is quite recent. However, 
it is already possible to uncover instances in which the European regulator, more or 
less consciously, has looked at the market through the lenses of this metaphor. It is 
the case of the access-to-account rule (XS2A) contained in the Open Banking Direc-
tive (PSD2). The rule mandates incumbents (usually traditional banks) to disclose 
information on users’ accounts to third-party providers (prior authorization of the 
users themselves). The rationale behind it is explained by the legislator’s intention 
of facilitating the entrance of new agents.44 By improving the level playing field 
for payment service providers, the XS2A rule does not only improve conditions for 
the entrance of banks’ direct competitors, but it promotes the flourishing of pay-
ment initiation services and account information services. Consumers could thus 
benefit from an infinite range of new products: new apps for managing expenses 
complement the banks’ product, new banks can more easily secure consumers or 
completely new services can arise. Ex-post, it appears that the latter case has been 
the most favored by the Directive. The PSD2 enabled, in particular, the blooming of 
“PayTech” companies (Polasik et al., 2020): a plurality of niche-targeted and varied 
services that offer customers previously inexistent tools. In this sense, the XS2A 
rule seems to have favored the emergence of generative, intra-module, innovation.

Through the XS2A, the European regulator intends to foster innovation by 
making data available not only to operators in downstream markets for which it 

44  Directive (EU) 2015/2366, Art. 67.
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represents a necessary raw material but also to newcomers who can use such a 
resource in ways that the directive is unable to foresee or restrict. This is consistent 
with the narrative that equates data to infrastructure and advocates that institutions 
should make sure that it is made available for use in a non-discriminatory manner. 
This way, all the interested third parties could profit from the resource, unlocking 
a wide and unpredictable range of downstream activities. However, it needs to be 
noted that no unique standard was defined for payment service providers’ APIs. 
The European Banking Authority was designated to draft the regulatory technical 
standards indicated in the legislative act, which were subsequently approved by the 
Commission. The definition of standards is a fundamental step for the success of 
any legislative intervention which aims to foster data infrastructures: the inappro-
priate design of APIs would have undermined the favorable outcome of the direc-
tive (Borgogno, 2019).

Standards play, indeed, a major role in defining the architecture of modularized 
systems. They influence the thickness of the transaction points, hence incentives to 
entry. The introduction of an alternative standard, determining a different organiza-
tion of modules, is a major push for intra-ecosystem competition. The introduction 
of disruptive innovation is made possible by architectural shifts. As such, standard-
setting intended to foster innovation and competition shall necessarily move from 
the definition of which kind of innovation and competition represents their goal. 
Incremental, combinatorial, or generative innovation? Horizontal intra-ecosystem 
competition, vertical intra-ecosystem competition, or inter-ecosystem competition?

Further research is needed to better delineate the policy implications stemming 
from the adoption of a metaphor other than another. Table 1 summarizes the find-
ings enucleated in this section.

But the examples presented above merely scratch the surface of the complex legal 
analysis needed to establish which function of data is recognized behind a legisla-
tive act. Additionally, although the regulation of the digital economy is a vibrant and 
rapidly evolving branch of the law, the majority of the legislative interventions have 
been enacted too recently to draw more than initial considerations on their effects. 
In this article, I offered a theoretical framework that awaits further testing. The next 
Section 7 offers some preliminary conclusions.

7 � Conclusions

Data connects digital firms in a complex net. Its understanding is challenging: it 
requires taking into account the multiple horizons of intelligibility that coexist in 
the production (and fruition) of a single product. However, such disentanglement 
represents a necessary step to fostering cooperative innovation. The exchange of 
(data) resources, together with the smooth coordination of independently achieved 
technological progress, promises to advance society’s well-being in the form of gen-
erative innovation. The promotion of data-driven innovation is with good reason a 
goal of European policies for the digital sector. But the regulation of digital markets 
shall include, as a preliminary step of the legislative intervention, the outline of the 
kind of innovation that is intended to achieve. By altering the distribution of data in 
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the ecosystem, regulation may modify the incentives to compete and cooperate. As 
such, a context-dependent approach shall be favored. Different dimensions of com-
petition (horizontal inter-ecosystem, vertical inter-ecosystem, intra-ecosystem) may 
be dependent on different kinds of innovation (cumulative, combinatorial, genera-
tive). Further research is needed to examine the inevitable trade-offs among them, 
and the balancing actions available for government intervention. Ultimately, the reg-
ulation of the data economy should rest on the acknowledgment that the future tra-
jectory of innovation depends upon the lenses through which the complexity of data 
worlds is cognized. Setting the rules means having a voice in the narrative guiding 
the development of technology, a narrative that, in conclusion, will be chorally co-
created by the many participants of digital ecosystems.
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