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Abstract. Interventional devices and insertable imaging devices such as 

transesophageal echo (TOE) probes are routinely used in minimally invasive car-

diovascular procedures. Detecting their positions and orientations in X-ray fluor-

oscopic images is important for many clinical applications. Nearly all interven-

tional devices used in cardiovascular procedures contain a wire or wires and are 

inserted into major blood vessels. In this paper, novel attention mechanisms were 

designed to guide a convolution neural network (CNN) model to the areas of 

wires in X-ray images. The first attention mechanism was achieved by using 

multi-scale Gaussian derivative filters in the first convolutional layer inside the 

proposed CNN backbone. By combining these multi-scale Gaussian derivative 

filters together, they can provide a global attention on the wire-like or tube-like 

structures. Furthermore, the dot-product based attention layer was used to calcu-

late the similarity between the random filter output and the output from the 

Gaussian derivative filters, which further enhances the attention on the wire-like 

or tube-like structures. By using both attention mechanisms, a high-performance 

CNN backbone was created, and it can be plugged into light-weighted CNN mod-

els for multiple object detection. An accuracy of 0.88±0.04 was achieved for de-

tecting an echo probe in X-ray images at 58 FPS, which was measured by inter-

section-over-union (IoU). Based on the detected pose of the echo probe, 3D echo 

can be fused with live X-ray images to provide a hybrid guidance solution. Codes 

are available at https://github.com/YingLiangMa/AttWire. 

Keywords: Rotated Object Detection, X-ray Imaging, Attention CNN. 

1 Introduction 

Minimally invasive cardiovascular procedures are routinely carried out to treat diseases 

such as coronary heart diseases, valvular heart disease, congenital heart diseases and 

more. The procedure is usually guided using X-ray fluoroscopy and interventional de-

vices and insertable imaging devices are routinely used during the procedure. Real-time 

object detection for medical devices is one of the most important tasks in hybrid guid-

ance systems as well as robotic procedure systems. Hybrid guidance systems for mini-

mally invasive cardiovascular procedures involves fusing information from Magnetic 



2  F. Author and S. Author 

 

Resonance Imaging (MRI) images, CT images or real-time 3D transesophageal echo 

(TOE) with X-ray fluoroscopy [1][2]. Device detection can facilitate the hybrid guid-

ance system using both 3D echo volumes and X-ray fluoroscopic images, and the real-

time registration is achieved by detecting the pose of the TOE probe in X-ray images 

[3]. Real-time device detection also facilitates motion compensation and automatic reg-

istration in MRI or CT based hybrid guidance systems [4]. Furthermore, knowing the 

locations of devices may allow procedures with complete or shared autonomy with ro-

bots in the near future. 

The detection of the TOE probe and interventional devices in X-ray images has been 

previously studied. Existing methods can be divided into two categories: traditional 

computer vision techniques [5][6] and learning-based methods [7][8][9][10]. Methods 

based on traditional computer vision techniques are prone to errors due to image arti-

facts and the presence of other similar objects. Although learning-based methods have 

demonstrated a great potential to detect devices robustly, they relied on manual feature 

selection. Therefore, these methods are not easily transferred to other target devices or 

detect multiple devices at the same time. 

In recent years, state-of-the-art multiple object detection methods have been devel-

oped to detect and identify common objects (e.g. vehicles, people, animals and more) 

[11]. The majority of these methods use axis-aligned bounding boxes to locate the target 

objects. However, our proposed method requires rotated bounding boxes as medical 

devices in X-ray images often have arbitrary orientations and rotated bounding boxes 

are more accurate to determine their locations. Furthermore, applications such as the 

hybrid guidance using echo and X-ray images requires the orientation of the TOE probe 

in X-ray images. Few deep-learning based object detection methods using rotated 

bounding boxes have been developed and they are mainly in the domain of satellite 

image analysis [12]. However, all existing methods do not meet our requirements for 

device detection. First, existing methods do not optimize for grayscale X-ray images 

and lack attention mechanisms for our target objects. Secondly, existing methods do 

not have sufficient accuracy, robustness or speed to be used in our applications. There-

fore, we designed a convolution neural network (CNN) from scratch to achieve our 

requirements and also to take advantage of additional information available in X-ray 

images. Many interventional devices contain a wire and wire mesh and are inserted into 

major blood vessels. Insertable imaging devices are tube-like structures. Therefore, 

novel attention mechanisms using trainable pre-defined filters and an attention layer 

were designed to guide our CNN models to the areas of wires in the X-ray images. 

2 Method 

2.1 Image acquisition and image synthesis 

10,072 X-ray images were acquired in 43 different clinical cases using a mono-plane 

X-ray system at *** Hospital. There were 6,533 images from 9 transcatheter aortic 

valve replacement (TAVR) procedures, 250 images from one atrial fibrillation (AF) 

procedure guided by X-ray and transesophageal echo images and 3,289 images from 

33 standard AF procedures.  
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As 4,789 images out of total 10,072 images do not contain the TOE probe, a method 

of image synthesis has been developed to automatically insert an image patch of a TOE 

probe. It is based on Poisson image editing (PIE) [13][14], which blends an image patch 

into the context of a destination image. The blending was achieved via solving the 

equation (1).  

min
𝑓𝑖𝑛

∬ |∇𝑓𝑖𝑛 − 𝑣|2
Ω

 with 𝑓𝑖𝑛|𝜕Ω = 𝑓𝑜𝑢𝑡|𝜕Ω                              (1) 

where ∇ is the gradient operator. The goal of eq. (1) is to find the intensity values 𝑓𝑖𝑛 

within the masked area (Ω) of image patch matching with the surrounding values 𝑓𝑜𝑢𝑡 

of the destination image. A binary mask will be used to create the masked area (Ω), 

which is the loose selection of the blending object. 𝜕Ω is the border of the masked area 

and v is the image gradient within the masked area. Figure 1 gives an example of PIE. 

    

Fig. 1. An example of PIE. (a) The original image. (b) Overlay the image patch with the original 

image. The red contour is the border of the masked area (𝜕Ω). (c) Image after applying PIE. (d) 

The intensity profiles. Arrows in the images indicate the location of the intensity profiles. 

40 image patches were extracted from 40 image sequences which contain the TOE 

probe. Data augmentation techniques were used to increase the variation of the pose of 

the TOE probe in X-ray images. Random rotations and translations were applied to the 

extracted image patches. There are restrictions applied to random rotations and transla-

tions to ensure the generated image are anatomically correct.  

 

2.2 The attention backbone  

Our clinical applications require real-time object detection while maintaining high ac-

curacy and robustness. To achieve this goal, attention mechanisms were designed to 

take advantage of additional information about the location and structure of medical 

devices. Many devices contain a wire and wire mesh or tube-like structures. To guide 

the attention of our CNN models, the multi-scale Gaussian derivative filters were used 

in the first convolution layer to enhance the visibility of wire-like or tube-like objects 

[15]. This process involves the calculation of a 2x2 Hessian matrix, and it is computed 

at every image pixel [16]. The Hessian matrix H consists of second order derivatives 

that contain information about the local curvature. H is defined such as: 

𝐻 = [
𝐿𝑥𝑥(𝑥, 𝑦; 𝑠) 𝐿𝑥𝑦(𝑥, 𝑦; 𝑠)

𝐿𝑦𝑥(𝑥, 𝑦; 𝑠) 𝐿𝑦𝑦(𝑥, 𝑦; 𝑠)
]                                (3) 

a b c d 
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Where 𝐿𝑥𝑦(𝑥, 𝑦; 𝑠) =
𝜕2𝐿(𝑥,𝑦;𝑠)

𝜕𝑥𝜕𝑦
 and the other terms are defined similarly. Here, 

𝐿𝑥𝑦(𝑥, 𝑦; 𝑠) = 𝐿𝑦𝑥(𝑥, 𝑦; 𝑠). 𝐿(𝑥, 𝑦; 𝑠) is an image smoothed by a Gaussian filter of the 

appropriate scale s. 𝐿(𝑥, 𝑦; 𝑠)  is computed as 𝐿(𝑥, 𝑦; 𝑠)  =  𝐿(𝑥, 𝑦)  ∗  𝐺(𝑥, 𝑦; 𝑠) , 

where ∗ is the convolution operator and the Gaussian filter  𝐺(𝑥, 𝑦;  𝑠) =
1

2𝜋𝑠
𝑒−(𝑥2+𝑦2) 2𝑠⁄ . Therefore, eq. (3) can be converted to  

𝐻 = [
𝐿(𝑥, 𝑦)  ∗ 𝐺𝑥𝑥(𝑥, 𝑦; 𝑠) 𝐿(𝑥, 𝑦)  ∗ 𝐺𝑥𝑦(𝑥, 𝑦; 𝑠)

𝐿(𝑥, 𝑦)  ∗ 𝐺𝑦𝑥(𝑥, 𝑦; 𝑠) 𝐿(𝑥, 𝑦)  ∗ 𝐺𝑦𝑦(𝑥, 𝑦; 𝑠)
]                      (4) 

Where 𝐺𝑥𝑥(𝑥, 𝑦; 𝑠), 𝐺𝑦𝑦(𝑥, 𝑦; 𝑠) and 𝐺𝑥𝑦(𝑥, 𝑦; 𝑠) are Gaussian derivatives and are of-

ten known as Laplacian of Gaussians (LoG). In practice, we just pre-compute the 

masks of these Gaussian derivatives, convolve with the input image. By combining 

these multi-scale Gaussian derivative filters together, they can provide a global atten-

tion on the wire-like or tube-like structures.  

The architecture of the attention backbone is illustrated in figure 3 and 15 LoG filters 

are used in the first convolution layer to provide the first attention mechanism. Among 

15 filters, there are five groups, and each group contains three LoG filters with the same 

scale factor s, which are defined as 𝐺𝑥𝑥(𝑥, 𝑦; 𝑠), 𝐺𝑦𝑦(𝑥, 𝑦; 𝑠) or 𝐺𝑥𝑦(𝑥, 𝑦; 𝑠). To accom-

modate different sizes of objects on the wires, five different scale factors were used in 

five groups of LoG filters. To calculate the scale factor 𝑠0 for object size 𝑟0, we use 

𝑠0 = ((𝑟0 − 1) 3)⁄ 2
. This equation is motivated by the “3𝜎” (𝑠0 = 𝜎2) rule that 99% 

of energy of the Gaussian is within three standard deviations. The final multiscale 𝑠0 is 

in the range of 0.11 ≤ 𝑠0 ≤ 9 and it is based object size from 2 to 10 (Unit is in image 

pixels) in an image with a 200x200 resolution. The second attention mechanism is 

achieved by a dot-product based attention layer [17], which calculates the similarity 

between the random filter output and the output from LoG filters (figure 3). The atten-

tion layer further enhances the attention on the wire-like or tube-like structures. 

 

Fig. 3. Attention backbone and an example of its usage in single object detection.  
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2.3 Single object detection 

Firstly, a customized CNN was designed for single object detection using the proposed 

attention backbone. As shown in figure 3, the localization of a rotated bounding box is 

achieved by the output of the final dense layer, which provides five parameters: center 

(x, y), size (w, h) and angle (δ). 

Two object detectors were trained, one for the TOE probe and the other one for the 

transcatheter aortic valve (before deployment). A modulated rotation loss function was 

designed and adapted from [18]. It minimizes the difference between the predicted val-

ues and ground truth values. All five parameters which define the rotated bonding box 

were normalized between 0 and 1 to avoid errors caused by objects on different scales. 

The loss function is defined as: 

𝑙𝑐𝑝 = |𝑥𝑔 − 𝑥𝑝| 𝑊𝑖𝑚𝑔⁄ + |𝑦𝑔 − 𝑦𝑝| 𝐻𝑖𝑚𝑔⁄                                                               (5) 

𝑙𝑚𝑟 = 𝑚𝑖𝑛 {
𝑙𝑐𝑝 + |𝑤𝑔 − 𝑤𝑝| 𝑊𝑖𝑚𝑔⁄ + |ℎ𝑔 − ℎ𝑝| 𝐻𝑖𝑚𝑔 + |𝛿𝑔 − 𝛿𝑝| 90°⁄⁄

𝑙𝑐𝑝 + |𝑤𝑔 − ℎ𝑝| 𝑊𝑖𝑚𝑔⁄ + |ℎ𝑔 − 𝑤𝑝| 𝐻𝑖𝑚𝑔⁄ + |90° − |𝛿𝑔 − 𝛿𝑝|| 90°⁄
            (6) 

where 𝑙𝑐𝑝 is the central point loss, (𝑥𝑝, 𝑦𝑝) is the predicted center point and (𝑥𝑔, 𝑦𝑔) is 

the ground-truth center point. Eq. (6) is for the exchangeability of height and width. 

As shown in figure 4, the activation maps of selected layers were visualized to illus-

trate the model attentions in the aortic valve detector. The model global attention is 

clearly on the wires in the first layer and then enhanced by the attention layer. Finally, 

the model shifts the attention to the local areas of the target object (the aortic valve) in 

the final convolution layer.  

 

Fig. 4. (a) The original image. (b) The activation map from the convolution layer with 

15 LoG filters. (c) The activation map from the attention layer. (d) The activation map 

from the last convolution layer in the attention backbone. 

2.4 Multiple object detection 

Inspired by the CenterNet [19], a one-stage multiple-object detector was designed by 

using a similar attention backbone proposed in this paper. The one-stage detector can 

achieve a higher inference speed and it is suitable for real-time applications. The pro-

posed detector is a light-weight CNN model and only contains 3.7M trainable parame-

ters for two-class object detector. As shown in figure 5, the proposed CNN model con-

sists of down-sampling layers and up-sampling layers. The model has four outputs. The 

a b c d 
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first one is the center-point heatmap and it is used to localize the center point (x, y) of 

the rotated bounding box. The second output is used to determine the object size (w, h). 

The third output is the rotate angle (δ) of the bounding box. The fourth output is the 

offset output, and it is used to recover from the discretization error caused due to the 

downsampling of the input. For example, in our model, the input image resolution is 

256x256 and the image resolution after the last up-sampling layer is 128x128. If the 

ground truth of center point is (𝑥𝑔, 𝑦𝑔) in center heatmap output, the corresponding 

ground truth of center point in the input image is (2𝑥𝑔 + 𝜀𝑥, 2𝑦𝑔 + 𝜀𝑦). Both 𝜀𝑥 and 𝜀𝑦 

are discretization errors and they are either 0 or 1 in our model.  

The proposed CNN model not only outputs a rotated bounding box for each object 

but also outputs a confidence value. Therefore, the model can predict whether the target 

object exists in the image or not. The model also can achieve multiple object detection 

as it has multiple channels of center heatmaps and each channel can localize the center 

points of one class of objects. The ground-truth heatmap for center points is not defined 

as either 0 or 1 because locations near the target point should get less penalization than 

locations far away. Therefore, Gaussian heatmap 𝑒
‖𝑃−𝑃𝑔‖

2

2𝜎2  was used and P is the pre-

dicted center point and Pg is the ground truth. 𝜎 is set to 1/3 of the radius, which is 

determined by the size of objects. Focal loss [20] is used in the output for center-point 

heatmap and it is mainly to solve the problem of imbalanced classification in target 

detection. The loss functions for the remaining outputs are L1 loss function. Figure 6 

presents some results of center-point heatmaps and detection results. 

 

Fig. 5. The CNN architecture for multiple object detection. N is the number of classes.  

Backbone 
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Fig. 6. Center point heatmaps and object detection with confidence values.  

2.5 Clinical application: fusing 3D echo with live X-ray images 

The object detector can detect the location as well as in-plane rotation (figure 7(a)) and 

scale of the TOE probe. There are two additional rotations: roll and pitch (figure 7b), 

which are out-of-plane. Roll and pitch angles could not be detected by our object de-

tector. A template library was developed to detect both out-of-plane rotation angles and 

it is a comprehensive collection of images of the TOE probe in different roll and pitch 

rotation angles. These images are created from a digitally reconstructed radiography 

(DRR) model of the TOE probe. As the TOE probe is sitting inside the oesophagus 

during the procedure, the probe is not free to move in all directions. Our template library 

only covers the pitch angle from -45° to 45° and the roll angle from -90° to 90°. The 

angle interval is 2°. Therefore, the number of images in the library is 4050 images 

(4050 = (180/2)  × (90/2)). The normalized cross correlation is used to compute 

the similarity between the detected probe image patch and an image from the template 

library. A real-time performance can be achieved by using a GPU-based implementa-

tion. 

        

Fig. 7. (a) In-plane rotation. (b) Roll and pitch (out-of-plane). (c) The DRR model 

The 3D TOE image volume can be visualized in the 2D X-ray fluoroscopic image 

by aligning the TOE and X-ray system coordinate systems. The transformation matrix, 

𝑇𝑇𝑂𝐸_𝑡𝑜_𝑋𝑟𝑎𝑦, which transforms from 3D TOE image space to 2D X-ray image space 

consists of a rigid body transformation matrix 𝑇𝑟𝑖𝑔𝑖𝑑  and a projection matrix 𝑇𝑝𝑟𝑜𝑗. It 

can be computed as 𝑇𝑇𝑂𝐸_𝑡𝑜_𝑋𝑟𝑎𝑦 = 𝑇𝑝𝑟𝑜𝑗𝑇𝑟𝑖𝑔𝑖𝑑 . The projection matrix transforms from 

3D X-ray C-arm space to 2D X-ray image space. This can be calculated by using the 

intrinsic parameters of the X-ray system [21]. 𝑇𝑟𝑖𝑔𝑖𝑑  can be decomposed into two ma-

trices (𝑇𝑟𝑖𝑔𝑖𝑑 = 𝑇𝑚𝑜𝑑𝑒𝑙_𝑡𝑜_𝐶−𝑎𝑟𝑚𝑇𝑇𝑂𝐸_𝑡𝑜_𝑚𝑜𝑑𝑒𝑙 ). Where 𝑇𝑇𝑂𝐸_𝑡𝑜_𝑚𝑜𝑑𝑒𝑙  transforms from 

Roll 

Pi

tch 
Pitch 

a b c 
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3D TOE model space to 3D X-ray C-arm space. This matrix is generated by the probe 

detection algorithm and probe image matching method that positions the 3D TOE 

model in C-arm space. 𝑇𝑇𝑂𝐸_𝑡𝑜_𝑚𝑜𝑑𝑒𝑙  relates the position of the 3D TOE images to the 

position of the 3D TOE model.  This is the TOE probe calibration matrix and is calcu-

lated pre-procedurally using a specifically designed calibration phantom and the cali-

bration method can be in [22]. 

3 Results 

A total of 10,072 X-ray images (80% train, 10% validation and 10% testing) was used 

to train and test object detectors. Both validation and testing images are real images, 

and 4,789 synthetic images were only used in the training dataset. All models using 

different backbones were implemented in Keras with a Tensorflow (version 2.10) 

backend and were trained on a GPU farm (NVidia RTX 6000 Ada with 48G memory). 

The trained models were evaluated on an Intel i7 1.8GHz laptop with a NVidia T550 

graphics card to test the inference speed. Table 1 and 2 show the comparison results of 

our approach (AttWire) with state-of-the-art backbones in single and multiple object 

detection. AP50 and AP75 are the average precisions, which are evaluated at IoU=0.5 

and IoU=0.75. AP50 and AP75 in multiple object detection are the mean values of all 

objects. mAP is the mean value across different IoU thresholds (IoU thresholds from 

0.5 to 0.95 with a step size of 0.05). 

Table 1. Results for single object detection. 

Target Object Backbone Parameters FPS IoU AP50 AP75 

TOE probe head 

VGG16 17.1M 43 0.77±0.21 0.9 0.812 

ResNet-50 36.4M 31 0.83±0.14 0.977 0.794 

AttWire 6.8M 55 0.89±0.05 1.0 0.978 

Aortic valve 

 

VGG16 17.1M 52 0.81±0.11 0.972 0.743 

ResNet-50 36.4M 37 0.85±0.08 0.981 0.886 

AttWire 6.8M 59 0.93±0.04 1.0 1.0 

Table 2. Results for multiple object detection. 

Backbone Parameters FPS IoU (TOE) IoU (valve) mAP AP50 AP75 

MobileNet 7.3M 53 0.79±0.09 0.77±0.17 0.546 0.999 0.603 

ResNet-50 28.7M 41 0.81±0.07 0.80±0.15 0.618 0.998 0.729 

DenseNet121 11.1M 34 0.81±0.07 0.79±0.16 0.584 0.997 0.644 

AttWire 3.7M 58 0.88±0.04 0.87±0.11 0.779 1.0 0.922 

 

Overall accuracy of fusing 3D echo with X-ray images was evaluated by using target 

registration error (TRE). TRE is defined as error distances between corresponding 

points in both X-ray and echo images. Although real-time synchronized visualization 

of the live data stream was possible during the clinical procedures, the post-procedure 
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analysis for this paper required that the recorded X-ray and echo data were synchro-

nized manually, resulting in only approximately synchronized sequences. The manual 

synchronization was done through visual matching using landmarks such as catheters 

or artificial valves. Total 20 overlay views are created from 10 X-ray image sequences. 

Corresponding catheters were manually defined in the echo and X-ray views using 

spline curves. Equally spaced points along the echo curve were automatically defined 

as measurement points. The corresponding X-ray point was defined as the closest point 

on the X-ray curve. An example of these error measurements is given in figure 8(b). 

Overall, our method achieves a TRE of 2.5±1.2 mm at a speed of 32 FPS. 

       

Fig. 8. An example of error measurement. (a) Echo X-ray overlay. (b) Error measure-

ment. Red lines are the shortest distances. 

4 Conclusion and Discussions 

Clinical applications for minimally invasive heart procedures require highly robust and 

accurate algorithms for detecting interventional and imaging devices in real-time X-ray 

fluoroscopic images. In this paper, novel attention mechanisms were designed to guide 

the CNN model to the areas of wires in X-ray images. The attention-based backbones 

were implemented in both single and multiple object detection models and they outper-

form existing state-of-the-art and light-weight backbones by every metric. In addition, 

our single object detection framework has achieved above 0.97 in AP75 and more than 

50 FPS. The proposed models for multiple object detection also can perform keypoint 

detection. With the attention mechanisms we designed, the framework could robustly 

localize the positions of electrodes on the catheter, and this will enable detecting cath-

eters and devices simultaneously. The detection CNN model facilitates real-time fusion 

between X-ray fluoroscopy and 3D echo images. It could provide both detection of both 

TOE probe and other surgical devices. 

Acknowledgments. This study was funded by EPSRC, UK (grant number EP/X023826/1). 
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