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Abstract14

DNA-based biodiversity surveys, which involve collecting physical samples from15

survey sites and assaying them in the laboratory to detect species via their diagnos-16

tic DNA sequences, are increasingly being adopted for biodiversity monitoring and17

decision-making. The most commonly employed method, metabarcoding, combines18

PCR with high-throughput DNA sequencing to amplify and read ‘DNA barcode’19

sequences, generating count data indicating the number of times each DNA bar-20

code was read. However, DNA-based data are noisy and error-prone, with several21

sources of variation, and cannot alone estimate the species-specific amount of DNA22

present at a surveyed site (DNA biomass). In this paper, we present a unifying mod-23

elling framework for DNA-based survey data that allows estimation of changes in24

DNA biomass within species, across sites and their links to environmental covariates,25

whilst for the first time simultaneously accounting for key sources of variation, error26

and noise in the data-generating process, and for between-species and between-sites27

correlation. Bayesian inference is performed using MCMC with Laplace approxima-28

tions. We describe a re-parameterisation scheme for crossed-effects models designed29

to improve mixing, and an adaptive approach for updating latent variables, which re-30

duces computation time. Theoretical and simulation results are used to guide study31

design, including the level of replication at different survey stages and the use of32

quality control methods. Finally, we demonstrate our new framework on a dataset33

of Malaise-trap samples, quantifying the effects of elevation and distance-to-road on34

each species, and produce maps identifying areas of high biodiversity and species35

DNA biomass.36

Keywords: crossed-effects model, environmental DNA, joint species distribution modelling,37

observation error, occupancy modelling38
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1 Introduction39

Ecology is undergoing a technology revolution that is making it possible to rapidly40

generate species inventories via automated and high-throughput DNA sequencers and via41

electronic sensors, such as drones, satellites, camera traps, and acoustic recorders. These42

techniques can, if coupled with appropriate algorithms and databases, simultaneously iden-43

tify large numbers of target species, including those that are cryptic, difficult-to-access, tiny,44

and low-abundance (Bush et al., 2017; Besson et al., 2022; Piper et al., 2019; Ley, 2022).45

So far, the most efficient method for generating species-resolution inventories is DNA-based46

surveys, which rely on reading DNA barcodes: short, standardized sections of the genome47

that can be compared to a reference library to enable taxonomic identifications without48

the need to examine organism morphologies (Ratnasingham and Hebert, 2007).49

DNA barcoding refers to the identification of single species (Hebert et al., 2003), and50

DNA metabarcoding refers to the detection of large numbers of species from environ-51

mental DNA (eDNA), which is the collective name for DNA isolated from environmental52

samples (Taberlet et al., 2018). These environmental samples include water (Thomsen and53

Willerslev, 2015), soil (Frøslev et al., 2019), air (Clare et al., 2022), and bulk tissue (i.e.54

mass-trapped organisms) (Ji et al., 2013). For instance, Thomsen and Sigsgaard (2019)55

demonstrated that traces of eDNA on flower petals could be analysed to describe the di-56

versity of arthropods that visit wildflowers, including pollinators, parasitoids, predators,57

and herbivores. Ji et al. (2022) used the trace amounts of residual vertebrate blood left in58

30,468 blood-sucking leeches to map vertebrate wildlife across a 677 km2 nature reserve in59

China. Finally, Abrego et al. (2021) sequenced 542 mixed-species, bulk-tissue samples of60

arctic arthropods captured over 14 years and showed that species richness in the study site61

had declined by 50% during a time period in which local mean temperature had increased62

by 2C.63

The potential of DNA-based surveys for monitoring and managing biodiversity comes64

with a number of statistical challenges. Firstly, species-specific absolute abundances can-65
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not be estimated using DNA data alone. Secondly, DNA-based surveys yield data that66

are overdispersed (including zero-inflation) relative to a Poisson distribution due to several67

types of error and noise (see Section 1.1), some of which are species-specific. The framework68

presented in this paper addresses these challenges by developing a novel model and corre-69

sponding efficient inferential tools. Using our framework, we model within-species change70

in DNA biomass across sites (described in Section 1.1), which under certain conditions can71

be considered as a proxy for change in abundance, hence addressing the first challenge. To72

address the second challenge, we propose a hierarchical crossed-effects model that expresses73

key sources of variation, error and noise in the data collection and analysis pipeline, whilst74

accounting for correlation across species and across sites, and for covariate effects on DNA75

biomass. We also model frequently employed controls at the PCR stage and evaluate their76

effect on inference.77

1.1 DNA-based surveys and associated challenges78

Each individual of a species sheds tissue and waste products, and thus its DNA, into79

the environment. We will refer to this as DNA biomass. As we explain in Section 2,80

the estimates of species DNA biomass obtained from DNA-based surveys alone are only81

meaningful in comparison between sites, and for that reason, in this paper we focus on82

modelling changes in DNA biomass within species, across sites, referred to as changes in83

DNA biomass throughout. We achieve this by assuming that the processes are standardised84

across sites, samples, and PCR replicates and that any differences in the efficiencies of the85

processes are explained by covariates that can be included in the model. We highlight86

that, theoretically, the overall amount of DNA biomass for each species is proportional to87

the species’ abundance at that site, but the rate at which each species sheds DNA into88

the environment is unknown and not estimable using eDNA data alone. Additionally, the89

relationship between DNA biomass and abundance can vary between species and sites due90

to environmental conditions, such as DNA degradation rates, and we return to this point91

in Section 6. Under the assumption that this relationship does not vary with sites then we92
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Figure 1: Representation of the DNA biomass collection stage (Stage 1, Sites to Samples) and
the DNA biomass analysis stage (Stage 2, Samples to PCR to OTU table). Each of the selected
sites to be surveyed hosts a community of species, and hence a certain amount of DNA biomass for
each species. One or more physical samples are collected from each surveyed site, and a ‘spike-in’
or ‘internal standard’ ISD, can be added to each sample (last column). Each sample is PCR’d
one or more times and then sequenced. This process gives rise to the OTU table.

can interpret changes in species DNA biomass as corresponding changes in abundance.93

DNA-based surveys comprise two stages (Figure 1): the sample collection stage (Stage94

1), taking place in the field, and the sample analysis stage (Stage 2), taking place in the95

lab.96

In Stage 1, physical samples are collected from each surveyed site. However, the amount97

of DNA biomass of each species collected in each sample is the result of a noisy and error-98

prone process (see Table 1). Specifically, the sampling method inevitably favours some99

species over others, and as a result, DNA biomass collection rates, conditional on the100

available DNA biomasses, are species-specific (Stage 1 species effect). The amount of DNA101

biomass collected for each species also varies between samples collected at the same site102

(Stage 1 noise). Finally, there are non-negligible probabilities that (a) no DNA biomass103

is collected for a species even if there was DNA biomass of that species at the site (false104

negative error) and (b) the DNA biomass in the sample is not the result of species presence,105

but instead reflects contamination or deposition from elsewhere (false positive error) (Stage106

1 false negative and false positive errors are jointly referred to as Stage 1 error).107

In Stage 2, the physical samples are assayed in the lab. The most frequently used method108

for reading DNA barcodes from eDNA samples is ‘amplicon sequencing’ (see Lindahl et al.,109
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2013, for an excellent review). In short, from each sample, all DNA is extracted and purified.110

After extraction, a small aliquot of DNA from each sample is subjected to Polymerase Chain111

Reaction (PCR), which selectively amplifies (makes many copies of) just the DNA-barcode112

sequences. It is common practice in Stage 2 for a sample to be PCR-assayed multiple times,113

known as technical replicates to distinguish them from sample replicates in Stage 1. The114

PCR outputs (‘amplicons’) from all the samples and their technical replicates are pooled115

and read on a high-throughput DNA sequencer. This procedure ultimately leads to a list116

of many millions of individual DNA sequences (known as reads), which are processed in a117

bioinformatic pipeline that removes low-quality reads, groups the remainder into clusters of118

similar reads that are species hypotheses known as OTUs (Operational Taxonomic Units),119

and apportions each OTU’s reads back to its original samples and PCRs. The resulting120

OTU table dataset indicates the number of reads for each OTU in each PCR in each sample121

in each site (Figure 1), with columns representing the species and rows representing the122

PCR runs. For simplicity, we hereafter use the terms OTUs and species interchangeably.123

A real-world complication in DNA-based laboratory pipelines is that samples are typ-124

ically ‘normalised’ one or more times. For instance, after the samples are enzymatically125

digested to break down cells and release their DNA into their ‘lysis-buffer’ solutions, each126

sample constitutes a larger volume of liquid than can be used for DNA extraction. The127

samples are thus normalised by taking a fixed volume from each sample for processing.128

Another normalisation step happens after PCR, because different PCR replicates can gen-129

erate different amounts of product. In this case, the PCR products are normalised by130

taking a certain amount of liquid from each PCR output, either inversely proportional to131

their concentration, or fixed across PCRs. In the first (lysis buffer) normalisation step,132

the numerator (amount of lysis buffer taken for extraction) is fixed, while the denominator133

(total volume of lysis buffer) varies. In the second (PCR product) normalisation step, the134

numerator (amount of PCR liquid taken for sequencing) varies, while the denominator (to-135

tal volume of PCR liquid) is fixed. It is standard procedure to record these normalisation136
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fractions, and in Section 2, we show how this information is incorporated into the model.137

Generally, we should expect a positive relationship between the DNA biomass of a138

species in a sample and the count of reads obtained for that species in that sample (Luo139

et al., 2022), but this relationship is imperfect, due to noise and error (see Table 1). First,140

even given best practice, there are small but non-negligible probabilities (a) that a species’141

DNA in a sample fails to be amplified or sequenced, leading to false-negative error and (b)142

that a species’ DNA cross-contaminates other samples and is amplified, leading to false-143

positive error (Stage 2 false negative and false positive errors are jointly referred to as Stage144

2 error). We say that a PCR yields non-negligible reads for a species when the PCR product145

of that species is successfully read by the DNA sequencer (i.e. the PCR is successful), and146

otherwise, a PCR yields zero or non-zero but negligible reads, in which case we say that147

the PCR is not successful for that species. We note that a PCR can be successful, that148

is, yield non-negligible reads, not only when the biomass is present in the sample but also149

when it is not, in the latter case because of contamination. Additionally, PCR amplification150

also inevitably favours some species over others, due to PCR primer mismatch, resulting151

in species-specific amplification rates (Stage 2 species effect, equal within columns of the152

OTU table), and PCR and sequencing stochasticity results in different total numbers of153

reads across all species, even for the same sample (Stage 2 pipeline effect, equal within rows154

of the OTU table). Finally, due to the inherent stochasticity of the PCR and sequencing155

process, there is added noise in the resulting reads in each cell of the OTU table (Stage 2156

noise).157

In Stage 2, in addition to recording the normalisation fractions, different approaches158

are employed to understand and monitor some of the noise and error. One such approach159

is the so-called internal standard or spike-in, during which a known amount of DNA of a160

synthetic sequence or of a species that is known to be absent from all surveyed sites, is161

added to each sample. In addition, negative controls, which are samples that are known to162

not include DNA of any species, can be introduced in Stage 1 and Stage 2 (Ficetola et al.,163
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2015).164

Table 1: Description of noise, error, and species/pipeline effects in the two stages of DNA-based
surveys.

Stage 1 - DNA biomass collection

Species effect Every sample contains a certain amount of DNA biomass of each species,
with the amount proportional to the DNA biomass available at the site.
However, the proportionality constant is unknown and species-specific,
since the DNA of different species can be collected at different rates.

Noise The amount of DNA biomass collected for each species varies stochasti-
cally between samples collected at the same site and time.

Error It is possible for the DNA of a target species that is present at a site not
to be sampled (false negative error), or traces of DNA from one sample
to contaminate another sample (false positive error).

Stage 2 - DNA biomass analysis

Species effect As a result of differences in gene copy number, DNA extraction efficiency,
and PCR amplification efficiency, the correspondence between the source
sample DNA biomass and the number of amplicon reads is species-specific
(each column of the OTU table).

Pipeline effect PCR stochasticity and the passing of small aliquots of liquid along the
laboratory pipeline affects the total number of reads per technical repli-
cate for all species (each row of the OTU table).

Noise In addition to the species and pipeline effect, there is added noise in the
number of reads per OTU and PCR (each cell of the OTU table).

Error It is possible for the DNA of a target species that is present in the sample
not to be amplified in the lab (false negative error), or traces of DNA
of one sample to contaminate and be detected in other samples (false
positive error), due to the high species-detection power of amplicon se-
quencing.

1.2 Existing approaches165

A common approach for modelling metabarcoding data is to convert them to detection/non-166

detection data by thresholding the number of reads in the OTU table, with user-specified167

criteria. This allows the use of a generalized linear model (GLM) framework (Saine et al.,168

2020), which has also been extended to account for species correlation, for example using169

joint species distribution models (JSDMs) (Ovaskainen and Abrego, 2020). However, this170

approach does not account for the two stages or the noise and error inherent in DNA-based171

surveys (Table 1).172

To that end, several different but related approaches have been proposed. A common173

approach applies occupancy models that account for false negative observation error to174
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the binary detection/no detection data (Ficetola et al., 2015). More recently, multi-scale175

extensions of these occupancy models have been proposed to account for false negative176

error in both stages (Mordecai et al., 2011; Schmidt et al., 2013) and for false positive177

error (Guillera-Arroita et al., 2017; Griffin et al., 2020) for a single species. However, the178

occupancy model framework disregards the information in the reads and relies on arbitrary179

thresholds about what constitutes a detection. Alternatively, the reads have also been180

modelled within a GLM framework (Takahara et al., 2012; Carraro et al., 2018) but without181

considering the errors in each stage. A joint model of species occupancy and corresponding182

reads was developed by Fukaya et al. (2022) but without considering the direct link between183

species DNA biomass at the site and species reads, or the correlation between species.184

Finally, we note that an area of research similar to DNA-based biodiversity surveys185

is microbiome biology, which is the genetic material of all microbial life in an abiotic186

substrate (e.g. soil) or in a living host (e.g. the human microbiome). When modelling187

microbiome data, analysis has usually focused on understanding changes in the relative188

composition of each taxon across different samples. As a result, modelling approaches in189

this field have revolved around the Dirichlet-Multinomial, which allows inference of the190

changes, across samples, of the proportions of the species DNA biomasses(Fordyce et al.,191

2011; Coblentz et al., 2017; McLaren et al., 2019; Clausen and Willis, 2022), although192

within-species changes in DNA biomass are argued to be informative (Tkacz et al., 2018).193

A more detailed comparison between the model we introduce in this paper and models for194

microbiome data is given in Section 2.1.195

1.3 Structure of the paper196

In this paper, we present a unifying hierarchical modelling framework for OTU reads197

that considers key sources of variation, noise, and error at both stages of DNA-based198

biodiversity surveys (Table 1), while also modelling correlation between species and between199

sites. The model allows us to infer changes in DNA biomass and to link these changes to200

site-specific covariates.201
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We use state-of-the-art MCMC (Markov chain Monte Carlo) methods that build on202

recent work for hierarchical and crossed-effects models (Zanella and Roberts, 2021) as well203

as adaptive MCMC techniques (Andrieu and Thoms, 2008). In particular, we develop a204

novel sampling technique to improve mixing in the special case of a multivariate crossed-205

effect model with PCR-specific random effects, and we use adaptive updates of latent206

variables to focus sampling effort. This allows us to fit our model (with many latent207

variables across the different stages of DNA surveys) to data from large numbers of sites,208

samples per site, PCRs per sample, and species.209

The new model, its properties, and links to existing models are presented in Section210

2. Details on our approach to inference are given in Section 3. Issues of study design are211

explored and corresponding simulations are presented in Section 4. A case study of a large212

Malaise-trap metabarcoding dataset is presented in Section 5, and the paper closes with a213

discussion in Section 6.214

2 Model215

We assume that Mi physical samples are collected from site i, i = 1, . . . , n, and Kim216

PCR replicates are performed on the m-th sample from site i. We denote by ysimk the217

number of DNA reads of the s-th species, s = 1, . . . , S in the k-th PCR replicate of the218

m-th sample collected at the i-th site. We have nz site covariates and Xz
i represents their219

value at site i and nw sample covariates, represented as Xw
im for the m sample at the i-th220

site. In what follows, i indexes sites, m samples, k PCR replicates, and s species.221

Our proposed model (see Figure 2) is hierarchical, with three levels. The first level222

models the amount of DNA biomass of each species at the surveyed sites, which is a223

function of environmental and landscape covariates as well as between-species and between-224

sites correlation (DNA biomass availability). The second level models the amount of225

DNA biomass collected for each species in each physical sample from each site (DNA226

biomass collection). Lastly, the third level models the number of reads obtained for227

each species in each PCR from each physical sample (DNA biomass analysis). Data are228
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observed only at the third level, as the result of Stage 2 of the survey, with levels one and229

two corresponding to latent states.230

DNA biomass availability L = {lsi } ∼ MN(B0 +XzB,Σ, T ), T−1 ∼ GH

DNA biomass collection

logit(θsim) = ϕs
0 + ϕs

1l
s
i +Xw

imϕ
s

P(δsim = 1) = θsim,
P(γsim = 1 | δsim = 0) = ζs,

vsim ∼
{

N(ηs + lsi +Xw
imβ

W
s , σ

2
s) if δsim = 1

N(µs, ν
2
s ) if δsim = 0, γsim = 1

DNA biomass analysis

P(csimk = x | δsim, γsim)
δsim γsim x = 0 x = 1 x = 2
1 − 1− ps ps 0
0 1 1− ps ps 0
0 0 1− qs 0 qs

ysimk ∼



πδ0 + (1− π)(1 + NB(µ0, n0)) if csimk = 0
NB(exp(ms

imk), rs)

ms
imk = λs + vsim + uimk + oimk

uimk ∼ N(0, σ2
u)

if csimk = 1

Pois(µ̃) if csimk = 2

(a)

(b) (c)
Figure 2: (a): Model summary, (b): Directed acyclic graph representing the relationships be-
tween the variables in the model. (c) Graphical representation of the latent indicator variables in
the model.

DNA biomass availability We denote the logarithm of the amount of DNA biomass of231

species s in site i available for collection by lsi and denote the n×S matrix L by {L}is = lsi .232

We model DNA biomass correlation between species and spatial correlation between sites233

by assuming that L follows a matrix normal distribution, L ∼ MN(B0+X
zB,Σ, T ) (Dawid,234

1981), where B0 is an n×S matrix with columns 1nβ
s
0, with β

s
0 a species-specific intercept,235

Xz is a design matrix whose rows are Xz
i , B is an nz × S matrix of regression coefficients,236

Σ is an n × n matrix modelling the correlation across sites, and T is an S × S matrix237

modelling the correlation across species. We note that, within this framework, the amount238
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of DNA biomass of a species at the surveyed site cannot be exactly 0, but can be negligible239

for modelling purposes as we describe below. We employ a graphical horseshoe (GH) prior240

(Li et al., 2019) for the inverse species covariance matrix Q = T−1, which is defined by241

specifying the following a priori independent distributions on each element242

Qss ∝ Exp

(
λ

2

)
, s = 1, . . . , p, Qts = Qst ∼ N(0, λ2stτ

2), λst ∼ C+(0, 1), s < t ≤ S

subject to the constraint T ∈ ΩS, where ΩS is the space of the positive definite S × S243

matrices, C+ represents the half-Cauchy distribution (Gelman, 2006), and τ ∼ C+(0, 1).244

Unlike Li et al. (2019) who specified a flat prior Qss ∝ 1, we follow Wang (2012) and245

define a proper prior Qss ∼ Exp(λGH

2
), ensuring that T , which is latent, has a proper246

posterior. We model the spatial correlation matrix Σ using an exponential kernel function,247

so that Σi1i2 = σ2 exp
{
− (xi1

−xi2
)2

l2

}
, where xi1 and xi2 are the locations of site i1 and i2,248

respectively. We note that we have accounted for species correlations in the DNA biomass249

availability stage, but any residual correlations of this type could also be the result of250

species correlations in the collection or analysis stages, discussed below. It is not possible,251

with metabarcoding data alone, to identify the source of these inferred correlations, and252

therefore, species correlations should be interpreted with caution.253

DNA biomass collection We denote by ws
im the amount of DNA biomass of species s254

collected in sample m from site i and vsim := log(ws
im). To account for Stage 1 false negative255

error at this stage, we introduce the latent variable δsim that is equal to 1 if DNA biomass256

for species i has been collected in the m-th physical sample from site i, and 0 otherwise.257

We assume that δsim = 1 with probability θsim, which is a function of covariates Xw
im, and258

of lsi , since higher amounts of DNA biomass are expected to lead to a higher probability259

of collecting DNA biomass in the sample, leading to logit(θsim) = ϕs
0 + ϕs

1l
s
i + Xw

imϕ
s. We260

note that as lsi tends to −∞, θsim tends to 0, and therefore the species becomes practically261

impossible to detect. If the amount of DNA biomass collected is greater than 0 (δsim = 1),262

we model vsim ∼ N(ηs + lsi + Xw
imβ

w
s , σ

2
s), where ηs models Stage 1 species effects on the263

DNA biomass collection rate and σ2
s models the species-specific Stage 1 noise in the DNA264
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biomass collection rate. To account for Stage 1 false positive error, we introduce latent265

variable γsim, which is equal to 1 with probability ζs if the collected DNA biomass is the266

result of contamination and 0 otherwise. We assume that γsim can be 1 only if δsim = 0267

and that vsim ∼ N(µs, ν
2
s ) if γ

s
im = 1. In this way, we assume that a sample which already268

contains DNA biomass of a species cannot be further contaminated by the DNA of the269

same species from another sample or site. We make this assumption as there is not enough270

information in the data to partition the collected DNA biomass between that which was271

truly collected from the site and that which was contamination from elsewhere.272

DNA biomass analysis As mentioned above, by non-negligible reads we mean that some273

of the PCR product is successfully read by the DNA sequencer. We introduce latent variable274

csimk to model the success of PCR k, sample m, and site i for species s, i.e. Stage 2 error.275

Firstly, if sample m from site i contains DNA biomass of species s (ws
im > 0), PCR run k276

can be successful, i.e. non-negligible reads (true positive), csimk = 1, or not successful, i.e.277

negligible reads (false negative), csimk = 0, and we assume that csimk = 1 with probability278

ps. We note that we have assumed here that ps only varies by species and not across sites279

or replicates in either stage. However, ps could depend (negatively) on the total amount280

of DNA biomass in the sample, particularly in cases of low DNA concentration for that281

species or could vary across primers or between labs. We return to these issues in Section282

6. Secondly, if sample m from site i does not contain DNA biomass of species s (ws
im = 0),283

PCR run k can be successful if it yields non-negligible reads due to lab contamination284

(false positive), csimk = 2, or not successful (again, csimk = 0, true negative) and assume285

that csimk = 2 with probability qs.286

We model the reads conditional on csimk as follows. Conditional on csimk = 1, ysimk ∼287

NB(exp(λs + vsim + uimk + oimk), rs), where λs models the Stage 2 species effect on the288

amplification rate, uimk is the Stage 2 pipeline effect, with uimk ∼ N(0, σ2
u), oimk is an289

offset modeling the normalisation steps described in Section 1.1, and rs is a species-specific290

variance of the Stage 2 noise. If more than one normalisation step is employed, then291
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they can all be incorporated into the same offset as a sum. Conditional on csimk = 0,292

ysimk ∼ πδ0 + (1− π)(1 + NB(µ0, n0)), that is, there are zero reads with probability π, and293

non-zero but negligible reads otherwise. Finally, conditional on csimk = 2, ysimk ∼ Pois(µ̃s).294

The negative binomial is parameterised in terms of the mean and the number of failures.295

A visual representation of the PCR process when csimk = 1 is shown in Figure 1 of the296

Supplementary material.297

Stage 2 negative control samples (which are known to not contain DNA of any species)298

can be easily accounted for in our model by having additional samples for which δ̃sl =299

γ̃sl = 0. Accounting for spike-ins corresponds to having S⋆ additional species for which300

(vS+1
im , . . . , vS+S⋆

im ) is known. Since the pipeline effect is shared across all species (including301

spike-ins), the known values of vsim for the spike-ins help to better estimate uimk. We further302

investigate this effect in Section 4.303

The model is summarised in Figure 2 (a), the directed acyclic graph of the model is304

shown in Figure 2 (b), while a graphical representation of the latent variables introduced305

across both stages is shown in Figure 2 (c). The model allows both zero-inflation and306

overdispersion (even after accounting for zero-inflation) of the reads. In the case of true307

positives (when csimk = 1), we allow overdispersion through the negative binomial distribu-308

tion and the introduction of the offset. The use of negative binomial is a standard choice309

for overdispersed data, particularly in Bayesian modelling. Ver Hoef and Boveng (2007)310

discuss the merits of negative binomial and quasi-Poisson regression modelling in ecological311

data. Datta and Dunson (2016) discuss how a scale mixture of negative-binomial regression312

models can be used for so-called quasi-sparse counts, which are often small, not zero.313

The model presented in Figure 2 is not identifiable in its general form unless certain314

constraints are applied, as we discuss below. For example, choosing for simplicity Σ and T315

to be diagonal, if we define ṽsim := vsim − ηs − lsi and l̃si := lsi − βs
0, the model for θsim and316

ysimk conditional on csimk = 1 and all offsets oimk set to 0 can be expressed as317
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
l̃si ∼ N(Xiβ

z
s , τ

2
s )

ṽsim ∼ N(Ximβ
w
s , σ

2
s)

θsim = logit(ϕs
0 + ϕs

1β
s
0 + ϕs

1l̃
s
i + ϕsXs

im)

ysimk ∼ NB
(
exp(βs

0 + l̃si + ηs + ṽsim + λs + uimk), rs

) (1)

It is evident that the model is invariant to transformations of the form

(βs
0)

⋆ = βs
0 + c+ d, (λs)

⋆ = λs − c, (ηs)
⋆ = ηs − d, (ϕs

0)
⋆ = ϕs

0 − ϕs
1(c+ d).

The reason for this unidentifiability is that data are observed only in the third level of318

the model, and hence the following sets of species-specific parameters are confounded: the319

baseline amount of DNA biomass across all sites (βs
0) with the baseline collection rate (ηs)320

and the baseline amplification rate (λs), and the former again with the baseline detection321

rate ϕs
0. However, by assuming that all these baseline rates are constant across sites,322

samples, and PCRs, we are able to infer species-specific changes in DNA biomass across323

sites and therefore covariate effects.324

For inferential purposes, we reparameterise the model and set the new baseline (log)325

amount of DNA biomass, (βs
0)

⋆, equal to βs
0 + ηs, which means that we can only estimate326

the sum of the baseline amount of available DNA biomass and the corresponding baseline327

collection rate for the same species. Similarly, we set the new baseline (logit) collection328

probability (ϕs
0)

⋆, equal to ϕs
0 − ϕs

1ηs, since the baseline collection probability is also con-329

founded with the baseline collection rate (equivalent to setting ϕs
0 ≡ 0 and ηs ≡ 0 in330

Equation (1)).331

As a result, we cannot infer the amount of available DNA biomass separately from the332

collection rate, and hence the estimates of log DNA biomass obtained, as mentioned above,333

are only meaningful for comparison within each species. For the same reason, comparisons334

of absolute amount of DNA biomass across species are not meaningful. We also note that335

depending on the survey design in terms of the number of samples collected per site and336

the number of PCR replicates per sample, additional sets of parameters can be confounded337

and not estimable. Specifically, the following pairs of parameters are confounded:338

• S = 1: pipeline effect uimk and PCR variance rs,339
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• K = 1: PCR variance rs and sample noise ṽsim,340

• M = 1: sample noise ṽsim and site noise l̃si .341

These are pathological cases that arise when there is no replication at the site/sample/PCR342

levels. Replication is vital for being able to account for and to estimate the effects of the343

different sources of noise and error (Buxton et al., 2021), an issue to which we return in344

Section 4.1. Finally, we note that if the offsets oimk introduced in the model due to the345

several normalisations occurring in the pipeline are not recorded, the link between the346

amount of DNA biomass in the environment and the reads is broken. However, a potential347

way to restore this link is the introduction of spike-ins, which contribute to the estimation348

of the “overall” pipeline effects ũimk = uimk + oimk.349

2.1 Special cases350

Two models available in the literature (Section 1.2) arise as special cases of our model.351

First, the Dirichlet-Multinomial model (DMM) (Fordyce et al., 2011) is expressed through352

the following hierarchy (omitting the indexes m and k to simplify notation):353 {
(y1i , . . . , y

S
i ) ∼ Multi(Ni, π

1
i , . . . , π

S
i )

(π1
i , . . . , π

S
i ) ∼ Dirichlet(wα1, . . . , wαS)

. (2)

where Ni =
∑S

s=1 y
s
i . The DMM can be seen as a special case of the model described in354

Section 2, for the Stage 2 process, conditional on δsi = 1. Specifically, ysi ∼ NB(exp(λs +355

vsi + ui), rs), and therefore, assuming λs = ui = 0, if rs → ∞, the distribution for ysi con-356

verges to a Pois(exp(vsi )). Conditional on Ni, the model is a Multi
(
Ni, π

1
i , . . . , π

S
i

)
, where357 (

π1
i , . . . , π

S
i

)
=

(
exp(v1i )∑
s exp(v

s
i )
, . . . ,

exp(vSi )∑
s exp(v

s
i )

)
. Next, assuming exp(vsi ) ∼ Gamma(wαs, θ), we358

obtain (π1
i , . . . , π

S
i ) ∼ Dirichlet(wα1, . . . , wαS). Finally, as the DMM does not take errors359

into account, the equivalence with our model can be obtained by setting ps ≡ 1.360

McLaren et al. (2019) propose to account for the Stage 2 species effect in the DMM361

framework by modelling the probabilities (π1
i , . . . , π

S
i ) as (

e1π̃1
i∑

s e
sπ̃s

i
, . . . ,

eS π̃S
i∑

s e
sπ̃s

i
), where es362

models the species-specific efficiencies, which in our model is achieved by using a species-363

specific λs. The DMM can be extended hierarchically if nested treatments are considered364
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(Coblentz et al., 2017) by defining a nested prior (α1, . . . , αS) ∼ Dirichlet(α1
0, . . . , α

S
0 ) for365

each level. In our model, this is achieved by a hierarchy of normal priors. This highlights366

a key difference between the DMM approach and the approach we introduce in this paper,367

since we model the propagation of the absolute amount of DNA biomass across the different368

stages, while the DMM models the propagation of the relative amount of DNA biomass.369

Secondly, the occupancy model of Griffin et al. (2020), in the simple case of no covariates,370 
zi ∼ Be(ψ)

wim ∼ Be(ziξ1 + (1− zi)ξ0)

yimk ∼ Be(wimp+ (1− wim)q)

(3)

designed for (single-species) qPCR, can be seen as a special case of our model when the371

information in the counts is not considered. Specifically, letting li be binary, with li ∈372

{−∞, 0}, and defining zi = exp(li), we obtain θim|(li = −∞) = 0 and θim|(li = 0) =373

logit(ϕ0). Hence, the model for δ and c becomes374 {
δim ∼ Be(zi(logit(ϕ0) + (1− logit(ϕ0))ζ) + (1− zi)ζ)

cimk ∼ Be(δimp+ (1− δim)q)
,

which is identical to the Griffin et al. (2020) model after defining ξ1 = logit(ϕ0) + (1 −375

logit(ϕ0))ζ and ξ0 = ζ.376

3 Inference377

Samples can be drawn from the posterior distribution of the parameters using a Gibbs378

sampler. Posterior sampling is greatly helped by representing the negative binomial dis-379

tribution as a Gamma-Poisson mixture, which allows many parameters to be updated in380

closed form from their full conditional distribution.381

For the parameters σs, µs, B and B0, the full conditional distribution is available in382

closed form, and therefore posterior sampling is straightforward. We use simple random383

walk Metropolis-Hastings steps for parameters π, µ0, n0, and rs and Metropolis-Hastings384

steps with a Laplace approximation proposal for the parameters lsi , λs, v
s
im, uimk and rs.385

However, on its own, this naive Gibbs sampler will mix slowly since we have a complex386

hierarchical model with crossed-effects and many latent variables. We address this by387
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updating parameters in blocks using re-parameterisation and an adaptive updating scheme388

for the discrete latent variables.389

To illustrate our approach to blocking and re-parameterisation, we consider the error-390

free version of our model391 
lsi ∼ N(0, τ 2s )

vsim ∼ N(lsi , σ
2
s)

uimk ∼ N(0, σ2
u)

ysimk ∼ NB(exp(λs + vsim + uimk), rs)

(4)

A naive Gibbs sampler updating each parameter from its full conditional leads to pro-392

hibitively slow mixing, due to the form of the likelihood where λs, v
s
im and uimk appear as393

a sum. To address the slow mixing in the nested effects, λs and vsim, the use of a centred394

parameterisation (Papaspiliopoulos et al., 2007) has been suggested, which corresponds to395

defining v̄sim := λs+v
s
im and l̄si := λs+ l

s
i . However, issues of slow mixing still exist between396

v̄sim and uimk and, as noted by Zanella and Roberts (2021), re-parameterisation does not397

improve mixing in the case of crossed-effects models. In a classic crossed-effect model of the398

form yjkl ∼ N(λ+vj+uk, σ
2), Papaspiliopoulos et al. (2020) propose a collapsed Gibbs sam-399

pler by first jointly sampling λ with vj and then λ jointly with uk. However, this approach400

does not scale well in our setup, since it would involve sampling all the λs and uimk jointly,401

which have dimensions S and the total number of PCR technical replicates
∑

i,mKim re-402

spectively. Zanella and Roberts (2021) propose the use of identifiability constraints on403

the model, which in Equation (4) correspond to assuming
∑

s v
s
im =

∑
k uimk = 0. Since404

sampling conditionally on constraints can be challenging, we propose a simpler strategy to405

improve mixing that is more suited to our framework. We consider re-parameterising to406

the factor averages v̂im = 1
S

∑S
s=1 v̄

s
im and ûim = 1

K

∑K
k=1 uimk and the factor increments407

ṽsim = v̄sim − v̂im and ũimk = uimk − ûim and performing an update by first sampling jointly408

the factor means conditional on the increments, that is, from (v̂im, ûim|ṽsim, ũimk) and next409

using the standard updates (uimk|v1im, . . . , vSim) and (vjim|uim1, . . . , uimK). In our simula-410

tions, we have found that jointly updating the factor means considerably improves mixing.411
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The sampling scheme for the complete model is presented in the Supplementary material.412

The indicator variables (δsim, γ
s
im, c

s
imk) can be updated directly from their full condi-413

tional distributions but, since there are nMS(K̄ + 2) (where K̄ is the average number of414

PCR replicates) of these variables and often one value of (δimk, γimk, cimk) has probability415

very close to 1, evaluating every full conditional distribution in every iteration can be very416

time-consuming and computationally wasteful. Therefore, we use a cheap approximation as417

a proposal in a Metropolis-Hastings step. Specifically, every B iterations, we update the ap-418

proximation p̂((δsim, γ
s
im, c

s
imk) = (ϵ1, ϵ2, ϵ3)) =

1
T

∑T
t=1 I

(
(δsim)

(t), (γsim)
(t), (csimk)

(t)) = (ϵ1, ϵ2, ϵ3)
)
,419

where (δsim)
(t), (γsim)

(t), (csimk)
(t) is the value of (δsim, γ

s
imc

s
imk) at the t-th iteration, I(A) is420

the indicator function, which takes the value 1 if A is true and 0 otherwise, and T is the421

number of current iterations. Using this update scheme, we only need to evaluate the422

likelihood if the state is proposed to change. If the probability of one state is close to423

one, the adaptive scheme often proposes the current state, which can be accepted without424

computation. The adaptive scheme does not affect convergence of the MCMC algorithm425

since the approximation clearly has diminishing adaptation, and the state space of the426

indicator variables is discrete (see e.g. Roberts and Rosenthal, 2009, for more discussion of427

conditions for convergence of adaptive MCMC schemes).428

4 Study design429

In this section, we use a simplified version of the model to investigate the properties430

of our modelling approach under different study designs in terms of the number of sites,431

samples per site, and PCRs per sample, as well as the number of spike-ins. In each section,432

we consider the estimates of the differences in log DNA biomass, when log DNA biomass433

is not a function of site-specific covariates (no covariate case), and the estimates of the434

covariate coefficients when log DNA biomass is a function of a single continuous covariate435

(regression case). In Section 4.1 we present theoretical results using a continuous version436

of our model that does not account for error in either stage. In Section 4.2 we fit our model437

as presented in Section 2 under different scenarios for study design by varying the number438
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of sites, number of samples per site, and number of PCRs per sample. Finally, in Section439

4.3, we explore the effect of spike-ins for different levels of noise in each stage of the process440

and different study designs.441

4.1 Theoretical results for a simplified version of the model442

We consider a normal approximation of the model presented in Section 2, which assumes443

no species or site correlations, that both stages are error-free by setting θsim = ps = 1, and444

that the variances of the distributions of the noise at each stage are the same across species.445

As mentioned in Section 2, the use of spike-ins corresponds to the presence of species in446

the sample for which (vS+1
im , . . . , vS+S⋆

im ) is known. We assume, without loss of generality,447

that vS+j
im = 0 for j = 1, . . . , S⋆. We have the following proposition.448

Proposition 4.1. Consider the model λs ∼ N(0, σ2
λ) for s = 1, . . . , S + S⋆ and, for

i = 1, . . . , n, k = 1, . . . , K, m = 1, . . . ,M ,

uimk ∼ N(0, σ2
u), vsim

 ∼ N(lsi , σ
2), s = 1, . . . , S

= 0, s = S + 1, . . . , S + S⋆
,

ysimk ∼ N(uimk + λs + vsim, σ
2
y), s = 1, . . . , S + S⋆

where σ2, σ2
u and σ2

y are known.449

(a) If we assume p(lsi ) ∝ 1 and σ2
λ ∈ (0,∞) is known, then

Var(ls1 − ls2|y) =
1

M

σ2 +
σ2
y

K

1 +

σ2
u

σ2
y

σ2
u

σ2
y
S⋆ + 1

 . (5)

450
(b) If we observe a single covariate Xi

i.i.d.∼ N(0, 1) for the i-th site and assume lsi ∼

N(Xiβs, τ
2) with σ2

λ = ∞ (i.e. p(λs) ∝ 1) and p(βs) ∝ 1, then

Var(βs|y) =
1

n− 1

(
τ 2 +

1

M

(
σ2 +

σ2
y

K

))
× (1 + C) (6)

where C = σ2
u

σ2
y+(Mτ2+σ2)K(1+S⋆ σ2

u
σ2
y
)+σ2

u(S+S⋆−1)
.451
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Here σ2
y models the variance of the noise in Stage 2, as was the case for rs in the original452

model. Equations (5) and (6) show the contributions of the variances at each stage to the453

posterior variance of the corresponding estimates (changes in biomass between sites, on the454

log scale, and covariate coefficients, respectively) in this special case.455

The results for this special case suggest that, for both Var(ls1 − ls2|y) and Var(β|y),456

increasing replication at a given stage decreases the contribution of the error variance at457

that stage and all downstream stages. For example, increasing the number of samples M458

per site reduces the contribution of the noise variance σ2 at Stage 1 and at all downstream459

stages, i.e. σ2
y and σ2

u in Stage 2. Whereas, increasing the number of PCR replicates, K,460

only reduces the contribution of the Stage 2 variances (σ2
u and σ

2
y). Additionally, the benefit461

of the spike-in is greater as the ratio of variances σ2
u

σ2
y
increases. Moreover, in the case of462

Var(β|y), if σ2 is much greater than σ2
y, the benefit of the spike-in is negligible, as the noise463

induced by σ2 greatly outweighs the noise that can be mitigated via the use of spike-ins.464

4.2 Simulated results for the full model; varying n, M , and K465

We turn our attention to the full model in Fig. 2 and again consider two cases: no466

covariates and a single covariate, Xi ∼ N(0, 1). In the no covariate case, we consider the467

model’s ability to estimate the correct sign of the difference of species log DNA biomasses468

at two sites. We use the Brier score b(i1, i2, s) := (p̄(lsi1 > lsi2)− δi1,i2)
2, where p̄(lsi1 > lsi2) is469

the posterior probability of lsi1 > lsi2 and δi1,i2 is 1 if the true value of lsi1 is greater than the470

true value of lsi2 and 0 otherwise. We generate lsi ∼

 N(1, τ 2s ) i odd

N(0, τ 2s ) i even
which separates471

the sites between those with “high” DNA biomass and those with “low” DNA biomass. We472

use S = 40 species, n = 300 sites, M ∈ {1, 2, 3, 4, 5} samples per site and K ∈ {1, 2, 3, 4}473

PCR replicates. The values of the other parameters are reported in the Supplementary474

Material. We have performed 50 replications for each combination of values of the design475

parameters, M and K. We report the average b(i1, i2, j) spanning i1 across the sites with476

low DNA biomass, i2 across the sites with high DNA biomass, and s across all species477
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and across the replicates. As expected, the Brier score decreases, and hence the ability to478

distinguish between sites with low and high DNA biomass increases, as M and K increase479

(Figure 3). However, the benefit of increasing K decreases with M , which highlights the480

greater importance of multiple sample replicates per site in Stage 1.481

Figure 3: Brier score for distinguishing high and low DNA biomass sites, as a function of the
number of samples (M) and number of PCR replicates (K). We have only considered M ≤ 5,
since greater M is unrealistic, and set n = 300.

In the regression case, we consider the absolute error and posterior standard deviation482

of the covariate coefficient βs. We use n ∈ {50, 100, 200} sites, M ∈ {1, 2, 3} samples per483

site and K ∈ {1, 2, 3} PCR replicates per sample and S = 40 species. The values of the484

other parameters are reported in the Supplementary Material. We performed 50 replicates485

for each combination of values of the design parameters and averaged results across all486

replicates. and species. Results are shown in Figure 4.487

As expected, absolute error and posterior standard error both decrease with more sites488

n, samples per site M , and PCRs per sample K. Doubling the number of sites from 50489

to 100 has a bigger effect than doubling them again from 100 to 200, suggesting that the490

benefit of increasing the number of sampled sites decreases as the number of sites gets large.491

Collecting two samples per site instead of one drastically decreases both absolute error and492

posterior standard deviation, whereas the effect is less pronounced when the number of493

samples is further increased to three compared to two, and the same can be said about the494

number of PCRs.495
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(a) (b)
Figure 4: Mean absolute error, (a), and posterior standard deviation, (b), averaged across all
species and all simulations, of the covariate coefficient βs for varying numbers of sites (n), samples
per site (M), and numbers of PCR replicates per sample (K).

4.3 Spike-ins496

In this section, we consider the improvement in inference when S⋆ spike-ins are employed497

in Stage 2. The effect of the spike-ins is maximised in the case of no false negative/positive498

errors, otherwise the benefit of the spike-ins is lower, and dependent upon the level of499

error. Therefore, in this section we consider data and corresponding model with no false500

positive/negative errors.501

We simulated data on n = 300 sites, M ∈ {1, 2, 3} samples per site, and K ∈ {1, 3}502

PCR replicates per sample on S = 10 species. For each setting of M and K, we have fitted503

the model when S⋆ ∈ {0, 1, 2, 3} and report in each case the posterior relative error and504

posterior relative variance of the estimates, which are calculated by dividing the posterior505

error/variance by the corresponding error/variance when using S⋆ = 0 (which is the case506

with the greatest error/variance).507

Results of the simulation study are presented in Figure 5. In both cases, improvements508

diminish for S⋆ ≥ 2, and in most cases S⋆ = 1 already provides most of the improvement,509

suggesting that the benefit of more than one spike-ins is minimal. The no covariate case510

is shown in the first row of Figure 5. Spike-ins contribute more to reducing biomass-511

change estimation error and variance with M > 1, with M = 1 resulting in virtually no512
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No covariate

Regression

Figure 5: Effect of spike-ins on inference. The three facets per figure represent simulations with
M = 1/2/3 samples per site. The between-samples standard deviation, σ, is represented by the
line type, the between-sites standard deviation, τ , is represented by the color, the number of PCR
replicates, K, is represented by the symbols. The first column represents the posterior relative
error of the estimates and the second column represents the posterior relative variance.

improvements for any setting considered in the simulation. When M > 1, improvement513

is more pronounced when K = 1 instead of K = 3, because in the latter case, thanks514

to this replication at Stage 2, there is already increased information for estimating the515

pipeline effect. This is particularly true when τ is 1 instead of 0.5, because in this case,516

the differences between sites are more pronounced. For both values of τ , improvements are517

bigger when the between-samples standard deviation (σ) is smaller, since otherwise, Stage518

1 noise dominates the process and understanding noise in Stage 2 decreases the overall519
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variance proportionally less.520

The second row of Figure 5 shows the regression case. We have chosen smaller values521

for σ and τ (.2 and .5), since the relative contribution of the spike-ins is negligible with522

larger values. Spike-ins contribute more to reducing error and variance when the between-523

samples standard deviation (σ) and the between-sites standard deviation (τ) is smaller524

because, similar to before, the noise at early stages dominates the process, and therefore525

the relative contribution of the spike-ins is smaller. Also similar to the no covariate case,526

the contribution of the spike-ins is higher for K = 1 PCR replicates compared to K = 3.527

However, unlike that case, the contribution does not appear to increase as the number of528

samples per site M increases.529

5 Case study530

We apply our model to an unpublished amplicon sequencing dataset of arthropod inver-531

tebrates collected using 121 Malaise-trap samples from 89 sample sites in the H.J. Andrews532

Experimental Forest (HJA), Oregon, USA (225 km2) in July 2018 (site details are provided533

in Li et al. 2024). Each trap was left to collect for seven days, and samples were transferred534

to fresh 100% ethanol to store at room temperature until extraction. The management ob-535

jective that motivated the collection of this dataset is to interpolate continuous species536

distributions among the 89 sample points so that areas of higher and lower conservation537

value at the HJA can be identified.538

For each sample, the collected invertebrate samples were combined with a lysis buffer,539

in an amount proportional to the starting sample mass, to digest the tissue, and a fixed540

aliquot was then taken from the overall mixture (and recorded) for DNA extraction and541

subsequent three PCRs. This normalization, as described in Section 2, was accounted for542

in the model by setting the offset oimk equal to the log ratio between the aliquot and the543

overall amount of liquid mixture in each case. We included 50 species in the study by544

selecting the species that have the most non-zero counts across all PCR replicates. Log545

DNA biomass is modelled as a function of two environmental covariates: log elevation and546
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log distance-to-road.547

Figure 6 presents the 95% posterior credible intervals (PCIs) for the species-specific548

coefficients of log elevation and log distance-to-road in the model for log DNA biomass. The549

effects of the covariates on species DNA biomass are not consistent within each taxonomic550

order, which suggests low phylogenetic inertia at this rank for response to these landscape551

characteristics. Elevation is a stronger predictor for species DNA biomass than distance-to-552

road for this ecosystem. This makes ecological sense, since distance-to-road is only expected553

to exert an effect over about 100 meters, via canopy openness, whereas elevation exerts a554

pervasive effect via its effects on temperature, precipitation, and vegetation.555

Figure 6: Case study: 95% PCI of the species-specific coefficients of log elevation (left) and
distance to road (right) in the model for log DNA biomass. Species are grouped taxonomically.

Figure 7 (a) presents the posterior mean of the between-species residual correlations.556

We set λGH = 1 in the GH prior and we emphasize that the GH prior assumes no prior557

structure imposed on the taxa. Species in the Diptera (flies, spp. 14-30) exhibit higher pos-558

itive correlations with each other, as well as with several species in the Hymenoptera (ants,559

bees, and wasps) and Lepidoptera (butterflies and months). We conservatively interpret560

these positive residual correlations as indicative of unmeasured environmental covariates,561

such as canopy openness, rather than of biotic interactions. We also note that two species in562
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the Lepidoptera, (spp. 41, 43), one in the Hymenoptera (sp. 33), and one in the Psocodea563

(barklice, sp. 50) are among the few species showing strong negative residual correlation564

with many of the other species, and again, we conservatively interpret these correlations565

as indicative of unmeasured environmental covariates. There is a strongly positive, pair-566

wise correlation between two tabanid fly species Hybomitra liorhina and Hybomitra sp.567

(spp. 12, 13), which might indicate the oversplitting of one biological species into two568

OTUs during the bioinformatic pipeline. Finally, there is also a strongly positive, pairwise569

correlation between the moth species Ceratodelia gueneata (sp. 44) and the predatory fly570

(Scathophagidae, Microprosopa sp., (sp. 20), which might indeed indicate a specialised571

predator-prey relationship. All that said, we highlight that these inferred correlations have572

been accounted for in the DNA availability stage of the model, but, as we discuss in Section573

2, they can also be the result of the DNA biomass collection or analysis stages, so should574

be interpreted with caution.575

Figure 7: Case study. Left: Correlation plot of all species. Red represents positive correlations
while blue represents negative correlations. Species are grouped taxonomically. Right: Posterior
mean of biomass-weighted species richness across the study area. For each species, we rescale the
log-biomass amount across all study sites into the range [0, 1] and next we compute the species
richness as the sum of all the rescaled biomasses across all species.

In Figure 7 (b), we show the biodiversity map for the area, which is useful for identifying576

areas of higher species richness and compositional distinctiveness, which together can be577

26



used to identify areas of higher conservation value (i.e. higher ‘site irreplaceability’ sensu578

Baisero et al., 2022). The predicted mean log DNA biomasses on a continuous map over579

the HJA for all individual species are presented in the Supplementary Material. These can580

be used to identify species with a wide spatial range, such as the click beetle (Megapenthes581

caprella), or with a restricted range, such as the leafhopper (Osbornellus borealis).582

Finally, Figure 8 (a) suggests that generally, there is a similar amount of variation583

between sites and between samples for these species. As suggested by Figure 8 (b), the584

species that we have considered have similar collection probabilities across the several sites,585

possibly due to the fact that the most frequently detected species across PCRs have been586

selected. Figure 8 (c) demonstrates, as expected, that the Stage 2 true positive probability587

is close to 1 for all species. We highlight here that this probability is modelled as species-588

specific but assumed constant across all replicates. Similarly, the figure also suggests that589

the probability of a Stage 2 false negative error is very close to 0 for all but three species.590

One of these three (sp. 14) is in the fly family Tachinidae, which are parasitoids of other591

insects and thus might have been collected not only as adults but also occasionally as eggs592

attached to the adults of other (insect) host species, with the latter case being classified as593

false positives in Stage 2, given that an egg would contribute very low amounts of starting594

DNA biomass.595

elfig:cov˙results596

597

6 Discussion598

Over the last decade, DNA-based biodiversity studies, primarily using metabarcoding,599

have rapidly increased in popularity, and multivariate statistical models are now starting600

to be deployed to analyse metabarcoding data (e.g. Lin et al., 2021; Pichler and Hartig,601

2021; Abrego et al., 2021; Fukaya et al., 2022; Ji et al., 2022). Our paper provides the602

first unifying modelling framework that considers and quantifies key sources of variation,603

error and noise in metabarcoding surveys (Table 1). As a result, our modelling framework604

allows more reliable and more powerful biodiversity monitoring and inference on species605
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Figure 8: Case study: (left) 95% PCI of the species-specific between-samples standard deviation
σs and between-sites standard deviation

√
Tss (in bold). (center) 95% PCI of the species-specific

average collection probability θsim across all sites. (right) 95% PCI of the species-specific Stage
2 false-positive probabilities qs (on the left of the plot) and true-positive probabilities ps (on the
right of the plot). Species are grouped taxonomically.

responses to landscape characteristics than has been possible before. We have employed,606

extended, and developed a number of inferential tools to deal with the complexity of the607

proposed hierarchical model, which involves two latent stages and a large number of latent608

variables. Finally, this is the first modelling approach that accounts for spike-ins and609

negative controls (empty tubes), which are widely used quality-control methods in DNA-610

based biodiversity surveys but rarely explicitly considered within a modelling framework.611

We explored the benefits of spike-ins on inference and provided analytical and simulation612

results of the effects of study design choices on parameter estimates. As is the case in all613

models, we make certain assumptions about the data-generating process and if (any of)614

these assumptions are violated, then inference can be biased. Below, we discuss the key615

assumptions and corresponding model extensions, when appropriate.616

Our new framework allows us to infer and map species DNA biomass change across617

surveyed sites (Figure 7 (b)), and to link these to landscape characteristics (Figure 6).618

The resulting maps can be used to identify areas of high conservation value, as well as619

areas where particular species or groups of species are more or less prevalent, and to620

detect species-specific shifts, expansions, and shrinkage. We are also able to study pairwise621
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correlations across large numbers of species (Figure 7 (a)), which is considerably more622

scalable using metabarcoding data than using standard observational data. We note that,623

as discussed in the corresponding sections of the model and the case study, we cannot624

unambiguously identify the sources of the estimated correlations using the available data625

alone, as factors other than the affinity between species, such as competition for primers,626

could affect the inferred species correlations. We have shown that using spike-ins can627

substantially increase inference accuracy for parameters of interest (Figure 5). Our results628

also demonstrate that the current practice of collecting a single sample from each surveyed629

site considerably reduces our ability to infer changes in species DNA biomass and that630

replication at both stages as well as the use of normalisation-ratio offsets or spike-ins is the631

optimal approach to designing metabarcoding studies (Figure 3).632

In metabarcoding data, the baseline DNA biomass of each species is confounded with its633

species-specific collection and amplification rates. Hence, we cannot infer absolute values634

of species-specific DNA biomass across sites using metabarcoding data alone. However,635

by assuming that baseline species-specific collection and amplification rates are the same636

across sites, samples, and PCR replicates, we can infer species-specific DNA biomass change637

across sites, species-specific covariate effects, and pairwise species correlations. Finally, we638

model species amplification rates as independent random effects, but competition between639

species for primers, polymerases and nucleotides during PCR amplification might violate640

this independence assumption, and future experimental work, alongside model extensions,641

should explore this issue further.642

We note that we have not allowed the probability of Stage 2 species detection, ps, to vary643

between samples or PCR replicates, and hence we have assumed that it does not depend644

on the DNA biomass of other species in the sample/PCR replicate. However, because645

of the PCR product normalisation step, described in Section 1.1, in PCR replicates with646

relatively high resulting overall DNA biomass, relatively low-DNA-biomass species might647

be less likely to be drawn in high enough concentration to be detected, an issue that is648
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often referred to as PCR dropout. Empirically, it is known that such PCR competition can649

be mitigated by using a lower number of PCR cycles (Yang et al., 2021) and by sequencing650

each sample replicate more deeply. When extending the model of this paper, Stage 2 species651

detection can be modelled as a function of DNA biomass, so that logit(psimk) = βp
0+βp(v

s
im+652

oimk). Model extensions of this type are important but are expected to introduce further653

identifiability issues and computational challenges and hence require careful investigation.654

Generally, modelling changes in (proxies of) abundance, such as changes in DNA655

biomass, is a more powerful monitoring tool than modelling changes in species presence656

across survey sites (Joseph et al., 2006). Metabarcoding studies yield count data without657

any consequence on associated cost, and hence overcome the time and cost implications658

associated with collecting count data for multiple species. Our model uses the raw count659

data, and does not rely on ad-hoc rules about what constitutes a practically zero count for660

converting them to binary data, which has been the standard practice thus far (Ovaskainen661

et al., 2017; Bush et al., 2020). To model changes in (log)biomass for each species across662

sites, we rely on the investigator being able to record any normalisation steps (or to include663

a spike-in), otherwise the relationship between change in read counts and change in the664

amount of biomass in the environment cannot be inferred, and instead the counts can only665

be used to infer composition, as is standard practice in metabarcoding studies. We have666

allowed for over-dispersion in the count data using a negative binomial distribution, but667

future work could consider alternative parametrisations, such as the discrete Weibull distri-668

bution. The model can also be extended to account for multiple primers or for differences669

between labs, if samples are processed by more than one lab, by introducing regression670

models for corresponding parameters.671

Metabarcoding studies, particularly when applied to microbiomes and meiofauna (e.g.672

nematodes, micro-eukaryotes), can detect 1000s of species, which leads to large numbers of673

latent variables and coefficients in the model. There are several ways that the inferential674

tools presented here could be further extended to scale to these cases. Firstly, the posterior675
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distribution conditional on the uimk is independent across species. If uimk could be esti-676

mated at a first stage then inference across species could be easily parallelized. Secondly,677

variational Bayes methods could be applied to avoid the use of sampling methods. The678

choice of variational distribution will be important and can exploit the conditional normal-679

ity of much of the model. Alternatively, the model could be adapted by assuming that the680

coefficient matrices such as βz = (βz
1 , . . . , β

z
S), have a low-dimensional representation. We681

highlight that in its current format, the model assumes species-specific parameters, and682

hence there is potentially a large number of parameters to be estimated for each species.683

Therefore, if a species only has a few non-zero PCR reads from potentially only a few sites,684

estimating all of these species-specific parameters is difficult. Future work should explore685

sharing parameters between species, making inference for rarely-observed species possible.686

We are not modelling species presence/absence and instead we have focused on mod-687

elling biomass on a continuous scale. As a result, we cannot infer whether a species is688

absent from a particular study site, but instead only if its DNA biomass at a given site is689

practically zero. We have assumed that a sample which already contains DNA biomass of690

a species cannot be further contaminated by the DNA of the same species from another691

sample or site in Stage 1. This is a reasonable but also necessary assumption, because of692

model identifiability issues otherwise. It is possible that there exists contamination from693

other sites if their samples are all processed in the same laboratory, especially at the same694

time, or that there is contamination during the collection or transfer of samples. However,695

with only metabarcoding data to hand, it is not possible to identify the source of contami-696

nation, or to model the possibility that a sample that contains DNA of a species has been697

further contaminated by the DNA of the same species from another sample or site in Stage698

1. This is yet another reason to take measures that minimise contamination risk.699

eDNA metabarcoding has revolutionised the cost-effectiveness, precision, and scale at700

which biodiversity assessment can be performed. Nevertheless, the multiple stages at which701

imperfect detection of DNA biomass can occur during the workflow are not insignificant. By702
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facilitating estimates of within-species changes in DNA biomass as a function of covariates,703

while accounting for workflow uncertainties, our modelling framework provides a substantial704

improvement in the design and analysis of eDNA metabarcoding data.705
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1 Inference

We can reparameterise the model by expressing the negative binomial using the Poisson-

Gamma mixture and a centred parameterisation:

β̄s
0 ∼ N(λs, σ

2
β)

L̄ = {l̄si } ∼ MN(B̄0 +XzB,Σ, T )

T−1 ∼ GH

logit(θsim) = (l̄si − λs)ϕ1s +Xw
imϕs

P(δsim = 1) = θsim

P(γsim = 1 | δsim = 0) = ζs

µ̄s ∼ N(λs, σ
2
µ)

v̄sim ∼

 N(l̄si +Xw
imβ

W
s , σ

2
s) if δsim = 1

N(µ̄s, ν
2
s ) if δsim = 0, γsim = 1

P(csimk = 1|δsim = 1 or γsim = 1) = ps

P(csimk = 2|δsim = 0, γsim = 0) = qs

ηsimk ∼ Gamma
(
rs,

rs
exp(v̄sim+uimk+oimk)

)
if csimk = 1

ysimk ∼


πδ0 + (1− π)(1 + NB(µ0, n0)) if csimk = 0

Pois(ηsimk) if csimk = 1

Pois(µ̃) if csimk = 2

uimk ∼ N(0, σ2
u)

where we have defined 

β̄s
0 = βs

0 + λs

l̄si = lsi + λs

v̄sim = vsim + λs

µ̄s = µs + λs

.

If not stated, we use a Metropolis-Hastings update with a Laplace approximation as

2



proposal if a full conditional distribution is not tractable.

• Update λs

The full conditional has the density

N(β̄s
0|λs, σ2

β) N(µ̄s|λs, σ2
µ)

(∏
i,m

Be
(
δsim, logit(−ϕ1sλs + ϕ1sl̄

s
i +Xw

imϕs)
))

and the parameter is updated using a Metropolis-Hastings random walk.

• Update ηsimk

ηsimk ∼ Gamma

(
rs + ysimk, 1 +

rs
exp(v̄sim + uimk + oimk)

)
• Update rs

The full conditional distribution has density

p(rs|·) ∝ N(rs|µr, σ
2
r)

∏
i,m,k:csimk=1

NB(ysimk|exp(v̄sim + uimk + oimk), rs)

and the parameter is updated using a Metropolis-Hastings random walk.

• Update v̄sim and uimk

We define the overall means v̂im = 1
nim

∑
s:δsim=1 or γs

im=1 v̄
s
im, where nim =

∑
s:δsim=1 or γs

im=1,

and ûim = 1
K

∑
k uimk, and the increments ṽsim = v̄sim − v̂im and ũimk = uimk − ûim.

We first sample from the joint full conditional of the overall means conditional on the

increments (v̂im, ûim|ṽ1im, . . . , ṽSim, ũim1, . . . , ũimK , . . . ), which has density of the form

p(v̂im, ûim|·) ∝ N

v̂im
∣∣∣∣∣∣ 1

nim

∑
s:δsim=1 or γs

im=1

lsi ,
1

nim

∑
s:δsim=1 or γs

im=1

σ2
s

N

(
ûim

∣∣∣∣0, σ2
u

Kim

)

∏
k,s: csimk=1

Gamma

(
ηsimk|rs,

rs
exp(v̂im + ṽsim + ûim + ũimk + oimk)

)
where nim =

∑
s:δsim=1.
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Next, we sample v̄sim from its full conditional distribution which has density

p(v̄sim|·) ∝N(v̄sim|l̄si +Xw
imβ

W
s , σ

2
s)

δsimN(v̄sim|µ̄s, ν
2
s )

(1−δsim)γs
im

×
∏

k: csimk=1

Gamma

(
ηsimk|rs,

rs
exp(v̄sim + uimk + oimk)

)
,

and uimk from its full conditional distribution which has density

p(uimk|·) ∝N(uimk|0, σ2
u)

∏
s: csimk=1

Gamma

(
ηsimk|rs,

rs
exp(v̄sim + uimk + oimk)

)
,

In all three cases, we use a Metropolis-Hastings update with a Laplace approximation as

proposal.

• Update l̄si

The parameter can be updated from its full conditional distribution which has density

p(l̄si |·) ∝N(l̄si |β̄s
0 +Xiβ

z
s , l̄

−s
−i , T,Σ)

∏
m:δsim=1

N(v̄sim|l̄si +Ximβ
W
s , σ

2
s)∏

m

Be(δsim|logit
(
−ϕ1sλ+ ϕ1sl̄

s
i +XW

imϕs

)
)

using a Metropolis-Hastings update with a Laplace approximation as proposal. The condi-

tional distribution N(l̄si |β̄s
0+Xiβ

z
s , l̄

−s
−i , T,Σ) can be efficiently computed using the algorithm

described in Section 1.1.

• Update (B0, B)

These parameters are updated from their joint full conditional distribution which is

p(B0, B|l) ∝ N(vec((B0, B))|0, σ2
βI(p+1)S)MN(B0 +XzB,Σ, T )

and can be written in closed form as

vec(B0, B) ∼ N(Λ−1
B µB,Λ

−1
B )
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where ΛB = T−1 ⊗ (X̄TΣ−1X̄) and µB = (IS ⊗ X̄T )(Σ−1vec(L)T−1), with X̄ = (1, X)

• Update βw
s

βw
s ∼ N(Λ−1

β µβ,Λ
−1
β )

where Λ−1
β =

(XW
δ )TXW

σ2
s

+ σ2
βInw and µβ = (XW

v )T

σ2
s

(vsδ − lsδ), and X
W
δ , vsδ , l

s
δ are the subset of

Xw, vs and ls, respectively, such that δsim = 1 for species s.

• Update σ2
s

σ2
s ∼ IG(aσ + nδ, bσ + sδ)

where nδ =
∑

i,m 1δsi,m=1 and sδ =
∑

i,m:δsi,m=1(v̄
s
im − l̄si −Xw

imβ
w
s )

2.

• Update µ̄s

µ̄s ∼ N(mµ, σ
2
µ)

where σ2
µ = ( 1

σ2
µ
+ nγ

ν2s
)−1, mµ =

(
λs

σ2
µ
+

∑
γs
im

=1 v̄
s
im

ν2s

)
σ2
µ and nγ =

∑
i,m 1γs

im=1

• Update ϕ1s and ϕs.

Since these are coefficients of a logistic regression, we use the Pólya-gamma updating

scheme (Polson et al., 2013) where δsim are responses and the regressors are l̄si − λs and

Xw
im.

• Update csimk, δ
s
im and γsim

We update csim1, . . . , c
s
imK , δ

s
im and γsim in a single block and, for ease of notation, we drop

the indices i, m and s when describing the update. During the burn-in phase, we update

these parameters by sampling from their full conditional distribution. We note that since

the variable v̄ is not present in the model if δ = γ = 0, this update requires a reversible

jump Markov Chain Monte Carlo (RJMCMC) move.

If δ ̸= 0 or γ ̸= 0, we propose c1, . . . , cK , δ and γ from their joint distribution evaluated

using the currently sampled value of v⋆. Otherwise, we propose v⋆ using the informed

5



proposal v⋆ ∼ N(µ⋆, .52), where exp(µ⋆) = 1
K

∑K
k=1

ysimk

exp(λs+uimk)
and propose c1, . . . , cK , δ

and γ from their joint distribution evaluated using this proposed value.

Using the notation δ⋆, γ⋆ and c⋆ for the proposed value, the Metropolis-Hastings acceptance

ratio are as follows. If δ = γ = 0, the MH ratio takes the form

min
{
1,

p(y1,...,yK |δ⋆=0,γ⋆=0,c⋆1,...,c
⋆
K)p(δ⋆=0,γ⋆=0,c⋆1,...,c

⋆
K)q(δ=0,γ=0,c1,...,cK)

p(y1,...,yK |δ=0,γ=0,c1,...,cK)p(δ=0,γ=0,c1,...,cK)q(δ⋆=0,γ⋆=0,c⋆1,...,c
⋆
K)

}
if δ⋆ = γ⋆ = 0

min
{
1,

p(y1,...,yK |δ⋆=1,γ⋆=1,c⋆1,...,c
⋆
K ,v⋆)p(δ⋆=1,γ⋆=1,c⋆1,...,c

⋆
K)q(δ=0,γ=0,c1,...,cK)p(v⋆)

p(y1,...,yK |δ=0,γ=0,c1,...,cK)p(δ=0,γ=0,c1,...,cK)q(δ⋆=1,γ⋆=1,c⋆1,...,c
⋆
K ,v⋆)

}
if δ⋆ + γ⋆ = 1

or, if δ + γ = 1

min
{
1,

p(y1,...,yK |δ⋆=1,γ⋆=1,c⋆1,...,c
⋆
K ,v)p(δ⋆=1,γ⋆=1,c⋆1,...,c

⋆
K)p(v)q(δ=1,γ=1,c1,...,cK ,v)

p(y1,...,yK |δ=1,γ=1,c1,...,cK ,v)p(δ=1,γ=1,c1,...,cK)p(v)q(δ⋆=1,γ⋆=1,c⋆1,...,c
⋆
K ,v)

}
if δ⋆ + γ⋆ = 1

min
{
1,

p(y1,...,yK |δ⋆=0,γ⋆=0,c⋆1,...,c
⋆
K)p(δ⋆=0,γ⋆=0,c⋆1,...,c

⋆
K)q(δ=1,γ=1,c1,...,cK ,v)

p(y1,...,yK |δ=1,γ=1,c1,...,cK ,v)p(v⋆)p(δ=1,γ=1,c1,...,cK)q(δ⋆=0,γ⋆=0,c⋆1,...,c
⋆
K)

}
if δ⋆ = γ⋆ = 0

Given a proposal q(v), the algorithm can be made into a Gibbs sampler by choosing the

proposals

q(δ = 1, γ = 1, c1, . . . , cK |v) ∝
p(y1, . . . , yK |δ = 1, γ = 1, v)p(v)p(δ = 1, γ = 1, c1, . . . , cK)

q(v)

q(δ = 0, γ = 0, c1, . . . , cK |v) ∝ p(y1, . . . , yK |δ = 0, γ = 0, v)p(δ = 0, γ = 0, c1, . . . , cK).

After the burn-in phase, we do not perform a full Gibbs sampler by computing the prob-

ability of every state but propose a new state (δ⋆, γ⋆, c⋆1, . . . , c
⋆
K) from the approximation

p̂(δsim, γ
s
im, c

s
imk) described in the main text, which is accepted using the MH ratio defined

above.

• Update T

The precision matrix can be updated following the approach described by Li et al. (2019)

and Wang (2012). Briefly, we introduce the variables νij and ξ as in Makalic and Schmidt
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(2015) as 

ωii ∝ Exp(λ
2
)

ωij:i<j ∼ N(0, λ2ijτ
2)

λ2ij:i<j ∼ IG
(

1
2
, 1
νij

)
νij:i<j ∼ IG(1

2
, 1)

τ 2 ∼ IG
(

1
2
, 1
ξ

)
ξ ∼ IG(1

2
, 1)

.

The rest of the parameters can be updated straightforwardly.

• Update ps

ps ∼ Beta(ap + nps , bp +mps − nps)

where nps =
∑

i,m,k 1δsim+γs
im=1,csimk=1 and mps =

∑
i,m,k 1δsim+γs

im=1

• Update qs

qs ∼ Beta(aq + nqs , bq +mqs − nqs)

where nqs =
∑

i,m,k 1δsim=0,γs
im=0,csimk=2 and mqs =

∑
i,m,k 1δsim=0,γs

im=0

• Update µ̃

This parameter is update using a MH with random walk proposal

• Update ζs

ζs ∼ Beta(aζ + nζ , bζ +mζ − nζ) where nζ =
∑

i,m 1δsi,m=0,γs
i,m=1 and mζ =

∑
i,m 1δsi,m=0.

• Update π, µ0, n0

π ∼ Beta(aπ +N0, bπ +M0 −N0)

where M0 =
∑

s,i,m,k 1csimk=0 and N0 =
∑

s,i,m,k 1csimk=0,ysimk=0.

µ0 and n0 are updated using a MH with random walk proposal.
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1.1 Full conditional of matrix normal distributions

Proposition 1.1. Given x ∼ MN(µ, U, V ), the full conditional distribution xi,j|x−(i,j) has

the form N(µ̃(i,j), σ̃
2
(i,j)), where µ̃(i,j) and σ̃2

(i,j) can be computed according to the following

algorithm:

1. Compute x1 by solving U−i,−ix1 = U−i,i.

2. Compute σ̃i,j
2 as Vj,jUi,i − (Vj,j ⊗ U−i,i)x1 + Ui,iṼ − (Ui,−i · x1)Ṽ , where Ṽ = (Vj,−j ·

V −1
−j,−j · V−j,j)

3. Compute y1 by solving U−i,−iy1 =
µ(−i,j)−µ(−i,−j)Ṽ2

Vj,j−Ṽ
, where Ṽ2 = (V1,−1 · V −1

−1,−1).

4. Compute µ̃i,j as µ(i,j) + (Vj,j ⊗ U−i,i)y1 + µ(i,−j) · Ṽ2 − Ṽ · Ui,−i · y1.

1.2 Proof

µ̃(i,j) and σ̃
2
(i,j) satisfy the equations

µ̃(i,j) = µ(i,j) + Σ(i,j),−(i,j)Σ
−1
−(i,j),−(i,j)µ−(i,j),(i,j)

and

σ̃2
(i,j) = Σ(i,j),(i,j) − Σ(i,j),−(i,j)Σ

−1
−(i,j),−(i,j)Σ−(i,j),(i,j),

where Σ = V ⊗ U .

W.l.o.g. we set i = j = 1. Let us define

Σ−(1,1),−(1,1) =

V11 ⊗ U−1,−1 V1,−1 ⊗ U−1,·

V−1,1 ⊗ U·,−1 V−1,−1 ⊗ U

 =

Σ̃11 Σ̃12

Σ̃21 Σ̃22



Σ−(1,1),(1,1) =

V11 ⊗ U−1,1

V−1,1 ⊗ U·,1

 =

b̃1
b̃2

 = b̃

µ−(1,1),(1,1) =

µ(−1,1)

µ(·,−1)

 =

µ̃1

µ̃2


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To compute σ̃2
(1,1), we need to compute Σ(1,1),−(1,1)Σ

−1
−(1,1),−(1,1)Σ−(1,1),(1,1)︸ ︷︷ ︸

x

. Computing x

is equivalent to solving Σ−(1,1),−(1,1)x = b̃. Using Schur complement, this is equivalent to

solving (Σ̃11 − Σ̃12Σ̃
−1
22 Σ̃21)︸ ︷︷ ︸

A

x1 = b̃1 − Σ̃12Σ̃
−1
22 b̃2 and then Σ̃22x2 = b̃2 − Σ̃21x1.

Simplifications are available.

A = V1,1 ⊗ U−1,−1 − (V1,−1 · V −1
−1,−1 · V−1,1)︸ ︷︷ ︸
Ṽ

⊗(U−1,· · U−1 · U·,−1) =

V1,1 ⊗ U−1,−1 − Ṽ ⊗ (U−1,−1) = (V1,1 − Ṽ ) · U−1,−1

and

b̃1 − Σ̃12Σ̃
−1
22 b̃2 = V11 ⊗ U−1,1 − (V1,−1 · V −1

−1,−1 · V−1,1)⊗ U−1,1 = (V1,1 − Ṽ )U−1,1

and therefore x1 can be computed by solving U−1,−1x1 = U−1,1.

Next,

x2 = Σ̃−1
22 (b̃2 − Σ̃21x1) = (V −1

−1,−1 ⊗ U−1)(V−1,1 ⊗ U·,1 − (V−1,1 ⊗ U·,−1)x1) =

(V −1
−1,−1 · V−1,1)⊗ (U−1 · U·,1)− (V −1

−1,−1 · V−1,1)⊗ (U−1 · U·,−1)x1

and therefore b̃2x2 = (V−1,1 ⊗ U·,1)x2 = Ṽ ⊗ (U·,1 · U−1 · U·,1) − Ṽ ⊗ (U·,1 · U−1 · U·,−1)x1 =

U1,1Ṽ − (U1,−1 · x1)Ṽ .

To compute µ̃(1,1), we need to compute Σ(1,1),−(1,1)Σ
−1
−(1,1),−(1,1)µ−(1,1),(1,1)︸ ︷︷ ︸

y

. Therefore, we

have to solve Ay1 = µ̃1− (V1,−1 · V −1
−1,−1)︸ ︷︷ ︸

Ṽ2

⊗(U−1,· ·U−1)µ̃2 = µ̃1− (Ṽ2⊗ e1)µ̃2 = µ̃1− (µ̃2)1,·Ṽ2.

Since A = (V1,1 − Ṽ ) · U−1,−1, we can find y1 by solving U−1,−1y1 =
µ̃1−(µ̃2)1,·Ṽ2

V1,1−Ṽ

Next, y2 = Σ̃−1
22 (µ̃2 − Σ̃21y1) = (V −1

−1,−1 ⊗ U−1)(µ̃2 − (V−1,1 ⊗ U·,−1)y1) and therefore

Σ̃12Σ̃
−1
22 (µ̃2 − Σ̃21y1) = (V1,−1 · V −1

−1,−1)⊗ (U1,· · U−1)(µ̃2 − (V−1,1 ⊗ U·,−1)y1) =

(Ṽ2 ⊗ e1)µ̃2 − Ṽ · U1,−1 · y1 = (µ̃2)1,·Ṽ2 − Ṽ · U1,−1 · y1
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The last equation leads to the algorithm.

2 Prior settings

We use the following prior settings:

• σ2
β = 1

• We set Σ such that the (i, j) element Σi,j = e

(
− 1

2lΣ
d(si,sj)

2
)
, where d(si, sj) is the distance

between site i and site j and lΣ is a scale parameter modeling the spatial autocorrelation.

We have set the scale parameters lΣ = .05.

• aζ = 1, bζ = 50

• σµ = 1, νs = 1

• ap = 20, bp = 1

• aq = 1, bq = 100

• µr = 100, σr = 100

3 Simulation study settings

3.1 Study design simulations

For the differences in DNA biomasses, we set:

• S = 40

• τ = .5, σ = .5, σu = 1

• β0 = 0

• λs ∼ N(7, 1)

• rs = 100

• ϕ0 ∼ N(−1.5, .001)
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• ζs = .02, νs = 1

• p = .95, q = .05

• µ0 = 5, n0 = 5, π = .9

• µ̃ = 100

We used the same settings for the covariate coefficients, but we also selected

βz
s =

1 i odd

0 i even.
.

3.2 Spike-in simulations

For the differences in DNA biomasses, we set:

• n = 100

• S = 10

• σu = 1

• λs ∼ N(7, 1)

• rs = 100

For the covariate coefficients, the settings were analogous but we set n = 300.
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4 Additional plots on sampling

Figure 1: Representation of the biomass analysis stage. The number of reads (on the log scale)
obtained for species s, in site i, sample m, and PCR k, is denoted by ysimk and is a function of the
amount of log-biomass of that species in the corresponding sample (usim), of the species effect, λs,
which is common across samples and PCR runs, and of PCR noise, uimk, which is common across
species.
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5 Additional plots on case study

1 Arachnida Araneae Anyphaenidae Anyphaena Anyphaena pacifica
2 Arachnida Opiliones Phalangiidae Leptobunus Leptobunus parvulus
3 Chromadorea Rhabditida Aphelenchoididae Bursaphelenchus Bursaphelenchus abruptus
4 Collembola Entomobryidae Family˙indet Genus˙indet Species˙indet
5 Insecta Blattodea Archotermopsidae Zootermopsis Zootermopsis angusticollis
6 Insecta Coleoptera Family˙indet Genus˙indet Species˙indet
7 Insecta Coleoptera Cerambycidae Leptura Leptura obliterata
8 Insecta Coleoptera Elateridae Hypoganus Species˙indet
9 Insecta Coleoptera Elateridae Megapenthes Megapenthes caprella
10 Insecta Coleoptera Scraptiidae Anaspis Anaspis rufa
11 Insecta Diptera Asilidae Genus˙indet Species˙indet
12 Insecta Diptera Tabanidae Hybomitra Species˙indet
13 Insecta Diptera Tabanidae Hybomitra Hybomitra liorhina
14 Insecta Diptera Tachinidae Eucelatoria Species˙indet
15 Insecta Diptera Scathophagidae Scathophaga Scathophaga furcata
16 Insecta Diptera Muscidae Phaonia Species˙indet
17 Insecta Diptera Family˙indet Genus˙indet Species˙indet
18 Insecta Diptera Syrphidae Hadromyia Hadromyia pulchra
19 Insecta Diptera Muscidae Spilogona Spilogona bifimbriata
20 Insecta Diptera Scathophagidae Microprosopa Species˙indet
21 Insecta Diptera Empididae Genus˙indet Species˙indet
22 Insecta Diptera Cecidomyiidae Genus˙indet Species˙indet
23 Insecta Diptera Anthomyiidae Genus˙indet Species˙indet
24 Insecta Diptera Mycetophilidae Cordyla Species˙indet
25 Insecta Diptera Phoridae Megaselia Species˙indet
26 Insecta Diptera Mycetophilidae Genus˙indet Species˙indet
27 Insecta Diptera Keroplatidae Genus˙indet Species˙indet
28 Insecta Diptera Sciaridae Genus˙indet Species˙indet
29 Insecta Diptera Rhagionidae Genus˙indet Species˙indet
30 Insecta Diptera Muscidae Helina Helina troene
31 Insecta Hemiptera Reduviidae Zelus Zelus tetracanthus
32 Insecta Hemiptera Cicadellidae Osbornellus Osbornellus borealis
33 Insecta Hymenoptera Formicidae Lasius Lasius pallitarsis
34 Insecta Hymenoptera Formicidae Camponotus Camponotus modoc
35 Insecta Hymenoptera Formicidae Leptothorax Species˙indet
36 Insecta Hymenoptera Vespidae Dolichovespula Dolichovespula maculata
37 Insecta Hymenoptera Vespidae Vespula Vespula alascensis
38 Insecta Hymenoptera Ichneumonidae Genus˙indet Species˙indet
39 Insecta Hymenoptera Vespidae Dolichovespula Dolichovespula alpicola
40 Insecta Hymenoptera Diapriidae Genus˙indet Species˙indet
41 Insecta Lepidoptera Geometridae Lambdina Lambdina fiscellaria
42 Insecta Lepidoptera Family˙indet Genus˙indet Species˙indet
43 Insecta Lepidoptera Geometridae Neoalcis Neoalcis californiaria
44 Insecta Lepidoptera Geometridae Ceratodalia Ceratodalia gueneata
45 Insecta Lepidoptera Geometridae Eulithis Eulithis destinata
46 Insecta Neuroptera Hemerobiidae Hemerobius Species˙indet
47 Insecta Orthoptera Rhaphidophoridae Pristoceuthophilus Pristoceuthophilus cercalis
48 Insecta Psocodea Caeciliusidae Valenzuela Species˙indet
49 Insecta Psocodea Dasydemellidae Teliapsocus Teliapsocus conterminus
50 Insecta Psocodea Psocidae Loensia Loensia maculosa

Table 1: Species used in the case study
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Figure 2: Biodiversity map with sampling points.

6 Comparison with existing methods

We compare our model with two existing approaches, a jSDM using the package gllvm and

the two-stage occupancy model of Griffin et al. (2020).

6.1 gllvm

We use the gllvm package to fit a jSDM model based on a factor representation of the form

Y s
i ∼ Pois(exp(Xiβs + Ui·Λ·s))

where Y s
i are the counts of species s in sample i aggregated over the 3 PCRs, βs are species-

specific covariate coefficients and an estimate of the between-species covariance matrix is

given by ΛΛT .

We use the same covariates as the case study: log-elevation and log-distance to road and

summarise the estimated coefficients in In Fig. 8, while in Fig. 9 we report the residual

covariance matrix of the observations.
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Figure 3: Maps of posterior mean log-biomass for species 1 to 12.
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Figure 4: Maps of posterior mean log-biomass for species 13 to 24.

16



Figure 5: Maps of posterior mean log-biomass for species 25 to 36.
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Figure 6: Maps of posterior mean log-biomass for species 37 to 48.
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Figure 7: Maps of posterior mean log-biomass for species 49 to 50.

Figure 8: Results from gllvm: 95% PCI of the species-specific coefficients of log elevation (left)
and distance to road (right) in the model for log-biomass. Species are grouped taxonomically.

6.2 Two stage occupancy model

We fit the two-stage occupancy model of Griffin et al. (2020):



zsi ∼ Be(ψs
i )

logit(ψs
i ) = Xiβs

δsim ∼ Be(zsi θ
s
im + (1− zsi )θ0)

logit(θsi ) = βθ
s

ysimk ∼ Be(δsimps + (1− δijm)qs)

where:
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Figure 9: Results from gllvm: Correlation plot of all species. Red represents positive correlations
while blue represents negative correlations. Species are grouped taxonomically.

• ψ is the occupancy probability;

• θ is the true positive probability at Stage 1;

• θ0 is the false positive probability at Stage 1;

• p is the true positive probability at Stage 2;

• q is the false positive probability at Stage 2;

As before, we used as covariates the log-elevation and log-distance to road and summarise

the estimated coeffiecients in Fig. 10.

7 Proof of study design results

7.1 Lemmas

We are going to denote by In the identity matrix of dimension n, the n×k matrix filled with

1’s by An,k and as 1n,k the n×nk matrix having 1’s in the positions (i, k(i−1)+1, . . . , k(i−

1) + k), i = 1, . . . , n and 0 everywhere else.

Lemma 7.1.

(a1In + a2An,n)
−1 =

1

a1
In −

a2
a1(a1 + na2)

An,n
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Figure 10: Results from the two-stage occupancy model: 95% PCI of the species-specific coeffi-
cients of log elevation (left) and distance to road (right) in the model for log-biomass. Species are
grouped taxonomically.

Figure 11: Results from the two-stage occupancy model: false positives and false negatives rate
at the lab stage. Species are grouped taxonomically.

Lemma 7.2. Let yi ∼ N(x, σ2) i = 1, . . . , n

x ∼ N(µ, τ 2)

Then (y1, . . . , yn) ∼ N(µ,Q−1), where Q = aQI + bQAn, with aQ = 1
σ2 , bQ = − τ2

σ2(τ2n+σ2)
.

Lemma 7.3. Let yi be a k vector and x a scalar andyi ∼ N(1x,Σ) i = 1, . . . , n

x ∼ N(µ, τ 2)

Then (y1, . . . , yn) ∼ N(µ,Q−1), where Q = In ⊗ Σ−1 − An,n ⊗ Σ−1aτAk,kΣ
−1, where aτ =
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1
n
∑

l,k Σ−1
l,k+

1
τ2

.

Lemma 7.4. Let Σi be a k × k matrix and x a k vector, ifyi ∼ N(x,Σi)

x ∼ N(µ, τ 2I)

then (y1, . . . , yn) ∼ N(µ,Q−1), where Q =


Σ−1

1 · · · 0
...

. . .
...

0 · · · Σ−1
n

−

Σ−1

1 ΛτΣ
−1
1 · · · Σ−1

n ΛτΣ
−1
1

...
. . .

...

Σ−1
n ΛτΣ

−1
n · · · Σ−1

n ΛτΣ
−1
n


and Λ−1

τ = (
∑

i Σ
−1
i + 1

τ2
Ik)

Lemma 7.5. Let λ be a 1× n vector and Σ a nk × nk matrix. Ify ∼ N(λ1n,nk,Σ)

λ ∼ N(µ, τ 2I)

then y ∼ N(0, Q−1), where Q = Σ−1 − Σ−11TΛ−1
τ 1Σ−1, with Λτ = (1Σ−11T + 1

τ2
In).

Lemma 7.6. Let

A =


a1 In1 0 0

0 a2 In2 0

0 0 a3 In3

−


b11An1,n1 b12An1,n2 b13An1,n3

b21An2,n1 b22An2,n2 b23An2,n3

b31An3,n1 b32An3,n2 b33An3,n3

 ,

Then,

A−1 =


c1 In1 0 0

0 c2 In2 0

0 0 c3 In3

−


d11An1,n1 d12An1,n2 d13An1,n3

d21An2,n1 d22An2,n2 d23An2,n3

d31An3,n1 d32An3,n2 d33An3,n3

 ,
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7.2 Proof

In this subsection 6.1, we prove result (5) and (6) of the paper. First, we state the result.

Proposition. Consider the model



vsim ∼ N(lsi , σ
2) i = 1, . . . , n m = 1, . . . ,M s = 1, . . . , S

vsim = 0 i = 1, . . . , n m = 1, . . . ,M s = S + 1, . . . , S + S⋆

uimk ∼ N(0, σ2
u) i = 1, . . . , n m = 1, . . . ,M k = 1, . . . , K

λs ∼ N(0, σ2
λ) s = 1, . . . , S + S⋆

ysimk ∼ N(uimk + λs + vsim, σ
2
y) i = 1, . . . , n k = 1, . . . , K s = 1, . . . , S + S⋆

Then

Var(ls1 − ls2|y) =
1

M

σ2 +
σ2
y

K

1 +

σ2
u

σ2
y

σ2
u

σ2
y
S⋆ + 1

 . (1)

If we assume that

lsi ∼ N(Xiβ, τ
2) i = 1, . . . , n s = 1, . . . , S

and σ2
λ ≫ max{σ2

u, σ
2, σ2

y}, to obtain

Var(β|y) = 1

n− 1

(
τ 2 +

1

M

(
σ2 +

σ2
y

K

))1 +
σ2
u

σ2
y + (Mτ 2 + σ2)K(1 + S⋆ σ

2
u

σ2
y
) + σ2

u(S + S⋆ − 1)

 .

(2)

7.3 Proof

First, we prove result (1). Given λ = (λ1, . . . , λS), u = (uimk), l
S
· = (lS1 , . . . , l

S
n), we have p(y|lS· ) =

∫
p(λ)

∫
p(u)

∫ S−1∏
s=1

p(lsi )

∫ S∏
s=1

p(vsim|lsi )
∏

i,m,k

p(ysimk|λs, v
s
imk, uimk)

 dvdl−S


︸ ︷︷ ︸

(a)

 S+S⋆∏
s=S+1

∏
i,m,k

p(ysimk|λs, uimk)


︸ ︷︷ ︸

(b)

du

︸ ︷︷ ︸
(c)

dλ
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We first focus on (a). Using Lemma 7.2∫
p(vsim|lsi )

∏
k

p(ysimk|uimk, λs, v
s
im) dvsim = N(ysim·|lsi + uim· + λs, Q

−1
1 )

where Q1 = aQ1IK + bQ1AK with aQ1 = 1
σ2
y
and bQ1 = − σ2

v

σ2
y(σ

2
vK+σ2

y)
, so that

(a) =

(
S−1∏
s=1

n∏
i=1

∫
p(lsi )

M∏
m=1

N(ysim·|lsi + uim· + λs, Q
−1
1 ) dlsi

)
n∏

i=1

M∏
m=1

N(ySim·|lSi + uim· + λs, IK)

Using Lemma 7.3,
∫
p(lsi )

∏M
m=1 N(ysim·|lsi + uim· + λs, Q

−1
1 ) dlsi = N(ysi··|ui·· + λs, Q

−1
2 ), where Q2 = IM ⊗

Q1 −AM,M ⊗ al(Q1AK,KQ1), with al defined in the Lemma. Therefore,

(a) =

(
S−1∏
s=1

n∏
i=1

N(ysi··|ui·· + λs, Q
−1
2 )

)
n∏

i=1

N(ySi··|lSi ui·· + λs, IM ⊗ IK︸ ︷︷ ︸
Q̂−1

2

)))

=

S−1∏
s=1

N(ys···|ui·· + λs, In ⊗Q−1
2︸ ︷︷ ︸

Q−1
3

)

N(yS···|lS· + ui·· + λs, In ⊗ Q̂−1
2︸ ︷︷ ︸

Q̂−1
3

)

while, (b) can be written as
∏S+S⋆

s=S+1

∏
i,m,k p(y

s
··|λs + uimk) = N(λs + u|In ⊗IM ⊗ (Q⋆

1)
−1︸ ︷︷ ︸

(Q⋆
2)

−1︸ ︷︷ ︸
(Q⋆

3)
−1

), with Q⋆
1 =

1
σ2
y
IK = aQ⋆

1
IK .

Therefore, (c) =

∫
p(u)

(
S−1∏
s=1

N(ys···|ui·· + λs, Q
−1
3 )

)
N(yS···|lS· + ui·· + λs, Q̂

−1
3 )

(
S+S⋆∏
s=S+1

N(ys···|u+ λs, (Q
⋆
3)

−1)

)
du

Using Lemma 7.4, this is equal to N((0, lS· , 0) + λ,Q−1
4 ), where

Q4 =


IS−1 ⊗Q3 0 0

0 Q̂3 0

0 0 IS⋆ ⊗Q⋆
3

−


AS−1,S−1 ⊗ (Q3Λ

−1
u Q3) AS−1,1(Q3Λ

−1
u Q̂3) AS−1,S⋆ ⊗ (Q3Λ

−1
u Q⋆

3)

A1,S−1 ⊗ (Q̂3Λ
−1
u Q3) (Q̂3Λ

−1
u Q̂3) A1,S⋆ ⊗ (Q̂3Λ

−1
u Q⋆

3)

AS⋆,S−1 ⊗ (Q⋆
3Λ

−1
u Q3) AS⋆,1(Q̂3Λ

−1
u Q3) AS⋆,S⋆ ⊗ (Q⋆

3Λ
−1
u Q⋆

3)


and Λu = ((S − 1)Q3 + Q̂3 + S⋆Q⋆

3 +
1
σ2
u
InMK)−1. Therefore, p(y|lS· ) ∝∫

p(λ)N(y1··, . . . , yS+S⋆··|(0, lS· , 0) + λ,Q−1
4 )dλ
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and finally, using Lemma 7.5, p(y|lS· ) ∼ N((0,1T
n,nMK lS· , 0), Q

−1
5 ), where

Q5 = Q4 −Q41
T
(S+S⋆),nMK(S+S⋆)Λ

−1
λ 1(S+S⋆),nMK(S+S⋆)Q4,

and

Λλ = (1(S+S⋆),nMK(S+S⋆)Q41
T
(S+S⋆),nMK(S+S⋆) +

1

σ2
λ

I(S+S⋆))
−1.

Having derived an expression for p(y|lS· ), we can easily derive V ar(lS· |y) but it’s convenient to derive an

expression for Q5 in terms of M , K, n and S⋆.

We have Q2 = IM ⊗Q1 − AM,M ⊗ al(Q1AK,KQ1), which after expanding can be written as aQ2
(IM ⊗

IK) + bQ2
(IM ⊗AK,K) + cQ2

(AM,M ⊗AK,K) and similar relationship can be obtained for Q̂2 and Q⋆
2.

Next, since

Λu = In ⊗ ((S − 1)Q2 + Q̂2 + S⋆Q⋆
2 +

1

σ2
u

InMK)−1

=(S − 1) (aQ2
(IM ⊗ IK) + bQ2

(IM ⊗AK,K) + cQ2
(AM,M ⊗AK,K))

+
(
aQ̂2

(IM ⊗ IK) + bQ̂2
(IM ⊗AK,K) + cQ̂2

(AM,M ⊗AK,K)
)

+ S⋆
(
aQ⋆

2
(IM ⊗ IK) + bQ⋆

2
(IM ⊗AK,K) + cQ⋆

2
(AM,M ⊗AK,K)

)
+

1

σ2
u

IMK ,

we can write Λ−1
u as In ⊗ (au(IM ⊗ IK) + bu(IM ⊗AK) + cu(AM ⊗AK))︸ ︷︷ ︸

(Λ−1
u )0

.

We can write Q4 as P −R, where

P =


IS−1 ⊗Q3 0 0

0 Q̂3 0

0 0 IS⋆ ⊗Q⋆
3

 ,

R =


AS−1,S−1 ⊗ In ⊗R11 AS−1,1 ⊗ In ⊗R12 AS−1,S⋆ ⊗ In ⊗R13

A1,S−1 ⊗ In ⊗R21 In ⊗R22 A1,S⋆ ⊗ In ⊗R23

AS⋆,S−1 ⊗ In ⊗R13 AS⋆,1 ⊗ In ⊗R32 AS⋆,S⋆ ⊗ In ⊗R33

 ,

and Rij = Gi(Λ
−1
u )0Gj (where G1 = Q2, G2 = Q̃2, G3 = Q⋆

2), which can be written as arijIMK + brij (IM ⊗

AK,K) + crijAMK,MK . Therefore,

1(S+S⋆),nMK(S+S⋆) P 1T
(S+S⋆),nMK(S+S⋆) =


(n
∑

Q2) IS 0 0

0 (n
∑

Q̂2) 0

0 0 (n
∑

Q⋆
2) IS⋆


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and

1(S+S⋆),nMK(S+S⋆) R 1T
(S+S⋆),nMK(S+S⋆) =


(n
∑

R11)AS−1,S−1 (n
∑

R12)AS−1,1 (n
∑

R13)AS−1,S⋆

(n
∑

R21)A1,S−1 n
∑

R22 (n
∑

R23)A1,S⋆

(n
∑

R13)AS⋆,S−1 (n
∑

R32)AS⋆,1 (n
∑

R33)AS⋆,S⋆


and hence Λλ can be written as


aλ1 IS 0 0

0 aλ2 0

0 0 aλ3 IS⋆

−


bλ11 AS−1,S−1 bλ12 AS−1,1 bλ13 AS−1,S⋆

bλ21 A1,S−1 bλ22 bλ23 A1,S⋆

bλ31 AS⋆,S−1 bλ32 AS⋆,1 bλ33 AS⋆,S⋆


with aλ1 = (n

∑
Q2 +

1
σ2
λ
), aλ2 = (n

∑
Q̂2 +

1
σ2
λ
), aλ3 = (n

∑
Q⋆

3 +
1
σ2
λ
), and bλij = n

∑
Rij . Therefore,

Λ−1
λ =


cλ1 IS 0 0

0 cλ2 0

0 0 cλ3 IS⋆


︸ ︷︷ ︸

K1

−


dλ11 AS−1,S−1 dλ12 AS−1,1 dλ13 AS−1,S⋆

dλ12 A1,S−1 dλ22 dλ23 A1,S⋆

dλ13 AS⋆,S−1 dλ32 AS⋆,1 dλ33 AS⋆,S⋆


︸ ︷︷ ︸

K2

with coefficients defined as in Lemma 7.6.

Next, Q4 1
T
(S+S⋆),nMK(S+S⋆) = P 1T

(S+S⋆),nMK(S+S⋆) −R 1T
(S+S⋆),nMK(S+S⋆), where

H1 := P 1T
(S+S⋆),nMK(S+S⋆) =


dQ2

1T
S−1,nMK(S−1) 0 0

0 dQ̃2
1T
1,nMK 0

0 0 dQ⋆
2
1T
S⋆,nMKS⋆


where dQ2

= aQ2
+KbQ2

+ cQ2
MK and similarly for dQ⋆

2
and dQ̃2

, and

H2 := R 1T
(S+S⋆),nMK(S+S⋆) =


dR11 AnMK(S−1),S−1 dR12 AnMKS,1 dR13 AnMKS,S⋆

dR21 AnMK,S dR22 AnMK,1 dR23 AnMK,S⋆

dR31 AnMKS⋆,S dR32 AnMKS⋆,1 dR33 AnMKS⋆,S⋆


where dRij

= aRij
+KbRij

+MKcRij
and similarly for the others. Therefore, Q4 1

T
(S+S⋆),nMK(S+S⋆) Λ

−1
λ =(

P 1T
(S+S⋆),nMK(S+S⋆) −R 1T

(S+S⋆),nMK(S+S⋆)

)
(K1 −K2) = (H1 −H2)(K1 −K2). We have

H1K1 =


cλ1 dQ2 1

T
S−1,nMKS 0 0

0 cλ2 dQ̃2
1T
1,nMK 0

0 0 cλ3 dQ⋆
2
1T
S⋆,nMKS⋆

 ,
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H1K2 =


cλ1 dR11

AnKS,S cλ2 dR12
AnKS,S⋆ cλ3 dR13

AnKS,S⋆

cλ1 dR21
AnKS⋆,S cλ2 dR22

AnKS⋆,S⋆ cλ3 dR23
AnKS⋆,S⋆

cλ1 dR31
AnKS⋆,S cλ2 dR32

AnKS⋆,S⋆ cλ3 dR33
AnKS⋆,S⋆

 ,

H2K1 =


dQ2

dλ11 AnK(S−1),S−1 dQ2
dλ12 AnK,S⋆ dQ2

dλ13 AnK(S−1),S⋆

dQ̃2
dλ11 AnK(S−1),S⋆ dQ̃2

dλ12 AnK,S⋆ dQ̃2
dλ13 AnK(S−1),S⋆

dQ⋆
1
dλ21 AnKS⋆,S dQ⋆

1
dλ22 AnKS⋆,S⋆ dQ⋆

1
dλ22 AnKS⋆,S⋆

 ,

and

H2K2 =


M⋆

S,1,1 M⋆
S⋆,1,2 M⋆

S⋆,1,3

M⋆
S,2,1 M⋆

S⋆,2,2 M⋆
S⋆,2,3

M⋆
S,3,1 M⋆

S⋆,3,3 M⋆
S⋆,3,3

 where M⋆
T,i,j = AnKS,T (dRi1

dλ1j S + dRi2
dλ2j + dRi3

dλ3j )S⋆.

Implying that

Q4 1
T
S,nKS Λ−1

λ =
1T
S,nKScη1

0 0

0 1T
S⋆,nKS⋆cη2

0

0 0 1T
S⋆,nKS⋆cη3


︸ ︷︷ ︸

J1

−


dη11

AnKS,S dη12
AnkS,S⋆ dη13

AnkS,S⋆

dη21
AnKS,S dη22

AnkS,S⋆ dη23
AnkS,S⋆

dη31
AnKS,S dη32

AnkS,S⋆ dη33
AnkS,S⋆


︸ ︷︷ ︸

J2

.

And finally,

J1H
T
1 =


(cη1

dQ2
) IS−1 ⊗AnMK,nMK 0 0

0
(
cη2

dQ̂2

)
AnMK,nMK 0

0 0
(
cη3dQ⋆

2

)
IS⋆ ⊗AnMK,nMK

 ,

J1H
T
2 + J2H

T
1 =


N⋆

S−1,S−1,cη1 ,R11,dη11
,Q2

N⋆
S−1,1,cη1 ,R12,dη12

,Q̃2
N⋆

S−1,S⋆,cη1 ,R13,dη13
,Q⋆

2

N⋆
1,S−1,cη2 ,R21,dη21 ,Q2

N⋆
1,1,cη2 ,R22,dη22

,Q̃2
N⋆

1,S⋆,cη2 ,R23,dη23
,Q̃2

N⋆
S⋆,S−1,cη3 ,R31,dη31

,Q2
N⋆

S⋆,1,cη3 ,R32,dη22 ,Q̃2
N⋆

S⋆,S⋆,cη3 ,R33,dη33
,Q⋆

2


where N⋆

S1,S2,cη,R,dη,Q
= (cηdR + dηdQ) AnMKS1,nMKS2

,

JT
2 HT

2 =


AnMK(S−1,nMK(S−1)t11 AnMK(S−1),nMKt12 AnMK(S−1),nMKS⋆t13

AnMKS⋆,nMKSt21 AnMK⋆,nMK⋆t22 AnMK⋆,nMK⋆t23

AnMKS⋆,nMKS⋆t31 AnMKS⋆,nMKt32 AnMKS⋆,nMKS⋆t33


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where tij = (S − 1)dηi1
dR1j

+ dηi2
dR2j

+ S⋆dηi3
dR3j

. This implies that

Q4 1
T
S,nMKS Λ−1

λ 1S,nMKSQ4

=


(cη1

dQ2
) IS ⊗AnMK,nMK 0 0

0
(
cη2

dQ̃2

)
IS⋆ ⊗AnMK,nMK 0

0 0
(
cη3dQ⋆

2

)
IS⋆ ⊗AnMK,nMK



−


f11 AnMK(S−1),nMK(S−1) f12 AnMK(S−1),nMK f13 AnMK(S−1),nMKS⋆

f21 AnMK,nMK(S−1) f22 AnMK,nMK f23 AnMK,nMKS⋆

f31 AnMKS⋆,nMK(S−1) f32 AnMKS⋆,nMK f33 AnMKS⋆,nMKS⋆

 .

From the expression for p(y|lS· ), we obtain

V ar(lS· |y) = (1n,nMK (Q5)nMK(S−1)+1,...,nMK;nMK(S−1)+1,...,nMK 1T
n,nMK)−1

and, since

1n,nMK (Q5)nMK(S−1)+1,...,nMK;nMK(S−1)+1,...,nMK 1T
n,nMK

= In (MK(aQ̃2
− aR22

+MK2(bQ̃2
− bR22

) +M2K2(cQ̃2
− cR22

))︸ ︷︷ ︸
aQ3

+An,n (−M2K2(cη2
dQ̃2

− f22))︸ ︷︷ ︸
bQ3

,

we obtain V ar(lS· |y) = cQ3
In + dQ3

An,n, where cQ3
= 1

aQ3
and so

V ar(l1S − l2S) = 2(V ar(l1S)− Cov(l1S , l2S)) = 2cQ3 .

To prove result (2), we need to compute p(y|XβS). We have that

∫
p(λ)

∫
p(u)

∫ S−1∏
s=1

p(lsi )

∫ S∏
s=1

p(vsim)
∏

i,m,k

p(ysimk|λs, v
s
imk, uimk)

 dvdl−S


︸ ︷︷ ︸

(a)

 S+S⋆∏
s=S+1

∫ ∫ ∏
i,m,k

p(ysimk|λs, uimk)


︸ ︷︷ ︸

(b)

dλdu

With similar calculations to before, we obtain y|XβS ∼ N((0, (1T
n,nMKXβs)

T , 0)T , Q−1
5 ), where Q5 =

Q4 −Q4 1
T
S,nMKS Λ−1

λ 1S,nMKS Q4.

Now, Λ−1
u = In ⊗ (SQ2 + S⋆Q⋆

2 +
1
σ2
u
IMK)−1. We have

SQ2 + S⋆Q⋆
2 +

1

σ2
u

InMK =S (aQ2(IM ⊗ IK) + bQ2(IM ⊗AK,K) + cQ2(AM,M ⊗AK,K))

+ S⋆
(
aQ⋆

2
(IM ⊗ IK) + bQ⋆

2
(IM ⊗AK,K) + cQ⋆

2
(AM,M ⊗AK,K)

)
+

1

σ2
u

IMK
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and therefore Λ−1
u = In ⊗ (au(IM ⊗ IK) + bu(IM ⊗AK) + cu(AM ⊗AK))︸ ︷︷ ︸

(Λ−1
u )0

.

From the expression for p(y|β), we obtain

V ar(β|y) = (XT1n,nMK(Q5)nMK(S−1)+1,...,nMK;nMK(S−1)+1,...,nMK1T
n,nMKX)−1

and since, with similar derivations as before, we can write 1n,nMK(Q5)nMK(S−1)+1,...,nMK;nMK(S−1)+1,...,nMK1T
n,nMK

as aQ3
In,n + bQ3

An,n, we have V ar(β|y) = 1
(XTX)aQ3

+(
∑

X)2bQ3

. The final result can be obtained by noting

that if X1, . . . , Xn
i.i.d.∼ N(0, 1), then E[XTX] = E[(

∑
Xi)

2] = n.
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