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ABSTRACT As grasping behaviors in real packaging scenarios are apt to be influenced by various 

disturbances, visual grasping prediction systems have suffered from the poor robustness and low detection 

accuracy. In this study, an intelligent robotic grasp framework (RTnet) underpinned by a linear global 

attention mechanism has been proposed to achieve the highly robust robot grasp prediction in real packaging 

factory scenarios. First, to reduce the computational resources, an optimized linear attention mechanism has 

been developed in the robotic grasping process. Then, a local window shifting algorithm has been adapted to 

collect feature information and then integrate global features through the hierarchical design of up and down 

sampling. To further improve the developed framework with the capability of mitigating noise interference, 

a self-normalizing feature architecture has been established to empower its robust learning capabilities. 

Moreover, a grasping dataset in the real operational environment (RealCornell) has been generated to realize 

a transition to real grasping scenarios. To evaluate the performance of the proposed model, its grasp prediction 

has been experimentally examined on the Cornell dataset, the RealCornell dataset, and the real scenarios. 

Results have shown that RTnet has achieved a maximum accuracy of 98.31% on the Cornell dataset and 

93.87% on complex RealCornell dataset. Under the consideration of real packaging situations, the proposed 

model have also demonstrated the high levels of accuracy and robustness in terms of grasping detection. 

Summarily, RTnet has provided a valuable insight into the advanced deployment and implementation of 

robotic grasping in the packaging industry. 

INDEX TERMS Attention Mechanism, Packaging Factory, Robot Grasping, Stylistic Reconstruction.

I. INTRODUCTION 

Packaging factory, as a typical discrete manufacturing 

industry, has been an indispensable part of industrial 

development. With the introduction of industrial automation, 

intelligent grasping robots are widely used in packaging 

factories due to their high efficiency and ease of management, 

enabling the grasping robots to replace traditional human 

hands for daily packaging and handling work [1][1]. 

However, due to the limitations of perception, robots are 

not able to recognize objects and understand the spatial 

layout of the target in the same way as people perform. That 

is the reason why robots do not work well and precisely 

when complex scenarios such as packaging factory, must 

be considered or when the grasping unknown objects is 

required. Deep learning enables robots to intelligently 

learn, allowing grasping robots to predict grasping points 

autonomously without human assistance [2]. The popular 

method for representing grasping points is achieving the 

rectangle representation grasp [3]. For grasping tasks, an 

accurate point cloud segmentation is essential. Techniques to 

achieve this goal are categorized into deep learning-based or 

clustering-based approaches [4]. The existing methods for 

robot grasping include the parallel grasping method and 6D 

pose estimation [5]. However, in the packaging factory 
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environment, parallel grasping methods are more efficient. 

Most existing deep learning-based grasping detection methods 

rely on convolutional neural networks to extract features and 

map them between the object being grasped and the predicted 

grasping rectangle [6]. Recently initially proposed 

SSDResNet, a composite network for object detection. 

Subsequently, the identified targets were utilized to utilized 

four-dimensional grasp predictions [7]. To tackle the issue of 

the inefficient computation caused by candidate bounding 

boxes extraction, GGCNN [8], a typical closed-loop single-

stage grasp prediction network, was developed to directly 

generate grasp poses on pixels and achieved a lightweight 

representation of grasp predictions. Cheng et al. [9] 

regarded the grasp pose as a rotating enclosing frame in the 

image plane and proposed a single-stage fully 

convolutional grasp generation network, which eliminate 

the intermediate grasp candidate stage and achieves 

accurate pixel-level grasp directly. 

Research on robotic grasp prediction belongs to the field of 

computer vision, and the above methods have achieved 

excellent performance. Nevertheless, determining an 

appropriate grasping posture for a captured object entails a 

process of extensive information search. CNN, while suitable 

for target detection and object recognition, lack the ability to 

achieve remote modeling and extract global features. As a 

result, these networks cannot effectively utilize the continuity 

and correlation of grasping posture for feature extraction. The 

attention mechanism with its global interaction capability 

provides a solution to this issue. 

The attention mechanism was initially introduced in the 

transformer [10]. The powerful global interaction and remote 

modeling capabilities have garnered significant attention in 

the field of natural language processing and image processing. 

Compared to CNN, transformer captures more spatial and 

contextual information. The well-known transformer vision 

networks include VIT [11], and Swin Transformer [12]. Apart 

from the above research, many scholars have also applied 

attention mechanisms to robotic grasping tasks. With the 

development of point cloud segmentation technology, 6D pose 

estimation method has been widely applied in the field of robot 

grasping [13]. Zou et al. [14] proposed a transformer-based 6D 

vision transformer, primarily utilized for estimating target 

poses on RGB-D images to achieve high-precision robotic 

grasping. Wang et al. [15] applied the global attention 

mechanism to enhance robot grasping prediction task and 

utilized local window attention to extract local information, 

achieving a remarkable accuracy of 97.99% on the Cornell 

Grasp Dataset. 

In industrial settings, robots require visual grasping 

capabilities that exhibit high model accuracy and robustness 

to successfully execute a variety of complex grasping tasks 

[16]. Jiang et al. [17] converted the six degrees of freedom 

grasping attitude estimation task into a two-dimensional 

registration problem and achieved its application in industrial 

parts grasping with reflective surfaces through information 

coding and feature alignment. Ge et al. [17] improved the 

accuracy of grasping prediction by assigning categories to 

each pixel, and utilizes residual pyramid feature module to 

achieve accurate grasping prediction of medical devices in 

unstructured scenes. Wei et al. [19] proposed a robust, two- 

stage grasping attitude network that fine-tuned the low- quality 

grasping and reduced local noise to enhance the estimation of 

object grasping attitudes in complex settings. Niu et al. [20] 

proposed a visual enhanced grasping detection model 

(VERGNet) to improve the robustness of robot grasping in 

low light imaging scenes, in response to poor grasping 

prediction performance under low light conditions. 

Current research is focused on enhancing the performance 

and robustness of models in complex scenarios by improving 

algorithmic robustness. However, there has been limited 

investigation into samples across various scenarios. Since 

most of grasp detection methods on deep learning are trained 

and tested in the laboratory settings, their high accuracy during 

training using simulated data often fails to translate into 

effective performance in industrial settings. Therefore, the 

limited scope of the training dataset and the presence of 

various types of noise significantly compromise data quality, 

making it challenging to obtain high-resolution, single 

background images in real factory scenarios as those found in 

Cornell datasets. In this case, one possible solution is to 

enhance the diversity of the training dataset by introducing 

noise from the real industrial capture settings. This approach 

not only improve the performance of the model in the 

packaging factory grasping environment but also ensures its 

adaptability to various situations. 

In this paper, focusing on poor generalization and low 

accuracy of robot grasping under the environment of 

producing the real packaging production, especially in 

industrial packaging and grasping applications, a highly robust 

robot grasping detection model (RTnet) is proposed. The 

model not only inherits the Swin Transformer mechanism for 

extracting local features through window sliding, but also 

linearly reduces attention calculation while ensuring global 

feature extraction. With weight initialization assumed, scaled 

exponential linear units (selus) are applied to endow the model 

with self-normalization property, thereby, enhancing its 

robustness in complex settings. Subsequently, a U-shaped 

architecture is employed to endow the model with ability to 

learn detailed features. Additionally, a practical dataset 

(RealCornell) is generated through stylistic transfer of the 

original Cornell dataset, which captures real-world packaging 

factory grasping scenarios and enhances the robustness and 

generalization capability of RTnet. 

II. THE PROPOSED RTNET FRAMEWORK 

A. GRASP REPRESENTATION  

Accurate determination of the grasping position is a 

prerequisite for robotic manipulation. In the case of two-finger 

grasping, a five-dimensional formulation [3] is defined to 
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transform robot grasp into representative rectangles as shown 

in (1). 

 ( ), , , ,g x y w h =  (1) 

where ( , )x y is the center of the grasping rectangle, ( , )w h is the 

grasping width and the parallel grippers width,  indicates the 

angle of the grasping rectangle for the horizontal axis. 

For a 2D image, the rectangular grasp of each pixel points 

( , )x y for a known width of the parallel fixture as ( , )G x y is 

formulated in (2).  

 
( ) ( ),

, , n W H

x y
G Q w R  =    (2) 

where Q , the grasp quality, indicates the success rate of 

capturing per pixel, with a value range of [0,1]. The closer the 

value is to 1, the higher the success rate of grabbing. w is the 

width of each pixel location at the time of capture. In real 

scenarios, width is defined within a range of [0,150] pixels. 

is the orientation angle within the range of -90 to 90. 

B. RTNET FRAMEWORK 

To achieve effective grasping in real packaging industrial 

settings, an efficient and robust robot grasping detection 

framework (RTnet) is proposed in this section. Based on 

Swin-transformer, the developed framework comprises four 

modules including Linear Embedding, Encoder, Decoder, and 

Linear Project. The Encoder and Decoder are connected by a 

skip-connection and Robust Transformer Block (RT Block) as 

shown in Fig. 1. Skip-connections facilitate the direct transfer 

of multi-scale feature information extracted by the encoder to 

the decoder. By means of feature graph fusion, this connection 

approach effectively integrates the original encoder features 

with those obtained after up-sampling in the channel 

dimension, thereby compensating for information loss caused 

by down-sampling and restoring crucial spatial information. 

The incorporation of skip-connections not only enhances the 

model's ability to capture features across different scales, 

leading to the improvement of prediction accuracy, but also 

expedites both training and reasoning processes by alleviating 

computational burden on the decoder. A detailed exposition of 

the model is provided below. 

1) IMAGE SEGMENTATION AND LINEAR EMBEDDING 

The image information will be partitioned into numerous 

small blocks by RTnet and each block represents adjacent and 

non-repeating pixels. These blocks are then expanded based 

on the channel direction. Subsequently, the segmented small 

block images are inputted into a linear embedding layer for 

dimensionality conversion, ensuring efficient feature 

extraction and speeding up the process of subsequent data. 

2) ENCODING AND DECODING STAGE 

The encoding-decoding stage is the core component of the 

entire model and an important phase for feature extraction. 

Referring to the U-shaped network architecture, there are two 

parts contained in the encoding and decoding stages of the 

RTnet, respectively. The encoding stage include a Robust 

Transformer Block (RT Block) and a Feature Merging Block 

(Patch Merging). In the decoding stage, there is also a Robust 

Transformer Block to improve the robustness of model. In 

addition, Feature Expansion Block (Patch Expanding) is also 

implemented. 

Linear Embedding divides the input image into non-

overlapping Patches of size 4 4 . Taking RGB image as an 

example, each Patch with a feature dimension of 4 4 3  is 

linearly mapped to a linear vector of size 96. The encoder 

section employs RT block to perform attention and shift 

window mechanism, which are introduced in the following 

Section C. Additionally, the Patch Merging section gradually 

expands channel size to achieve downsampling functionality. 

With the synergy of these two modules, RTnet achieves multi-

scale feature extractions. The decoder section is upsampled 

and comprises a RT block and Patch Expanding, which 

reshape the feature map into a high-resolution one while 

halving the feature dimension accordingly. 

To generate the feature map extracted from each 

downsampling with the new feature map obtained from the 

upsampling in channel dimension, the entire framework 

employs a skip-connection module to combine the features 

together by adding a stitching layer. Through integrating the 

underlying features with the higher-level characters, RTnet 

can recover spatial information while restoring high image 

resolution simultaneously. Ultimately, the feature information 

is delivered throughout Linear Projection to obtain the output 

information including the grasping point, angle, and grasping 

success rate. 

FIGURE 1. RTnet network architecture. 

C. RT BLOCK 

RT block is a crucial component of RTnet, enabling highly 

robust and accurate grasp prediction. The attention mechanism 

typically involves complex computation for each patch, 

leading to significant increases in computational complexity 

when dealing with numerous patches or large size image. To 
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enhance the robustness and computational efficiency of the 

model, a RT block is developed to leverage the powerful shift 

window modeling and self-normalization capability. 

Typically, RT block uses a global attention mechanism to 

facilitate information interaction across all regions. Its 

working mechanism which optimizes both attention 

computation and MLP processing is based on the Swin-

transformer. This process is formulated by (3). Fig. 2 is the 

flowchart of RT block, Robust Multilayer Perceptron (R-

MLP), and Robust Linear Attention (RLAttention). 

 

1 1

1

1 1 1

ˆ ˆW MRLA(LN( ))

ˆ ˆR MLP( )

ˆ SW MRLA(LN( ))

ˆ ˆR MLP( ))

l l l

l l l

l l l

l l l

z z z

z z z

z z z

z z z

− −

+

+ + +

= − +

= − +

= − +

= − +

  (3) 

where W-MRLA and SW-MRLA denote robust multi-headed 

attention mechanism modules based on the window and shift 

window partitioning, respectively. R-MLP denotes the robust 

multilayer perceptron module. 
l 1z −

denotes the input, ˆlz and
1ˆlz +
denote the output feature variables of the W-MRLA and

SW-MRLA modules, respectively. The
lz  denotes the output 

of the R-MLP module. 

R-MLP module is one of the key components in established 

model. It enhances the robustness of the network through the 

utilization of self-normalizing functions, for example, Selu 

and Layer Normalization. The Relu activation function is 

generally utilized in the standard transformer block, however, 

the negative gradient of Relu causes the feature information 

masking and ultimately lead to the suboptimal network 

performance when tackling complex tasks. With the 

implementation of self-normalization (SN) in the RTnet 

framework, the output of each layer can converge to zero mean 

and unit variance during training. This reduces turbulence in 

the training output and makes the network less susceptible to 

disorder while highly robust against noise disturbances [21]. 

Therefore, the RTnet framework incorporates a self-

normalization capability to enhance network robustness and 

generality. The Self-normalization is realized by the Selu 

activation function defined in (4), which prevent gradient 

explosion and disappearance by stabilizing variance. As a 

result, all parameters including weights, biases and activation 

values have a mean value of 0 and standard deviation of 1. 

  
if 

Selu( )
if x

x x 0
x

e x 0


= 

 − 
  (4) 

where 1.67326324235 and 1.050700987= are 

determined by numerical tests. 

Furthermore, weight normalization and alpha dropout are 

crucial factors that impact self-normalization. The Lecun 

Norm is employed as weight normalization technique to 

maintain zero mean and unit variance of the weights. Alpha 

Dropout is utilized to maintain the self-normalizing property 

by randomly setting certain elements to zero based on 

Bernoulli distribution, which reduces output variance. During 

each forward call, the remaining elements are randomly scaled 

and shifted to preserve the same mean and variance as that of 

the input. Thus, Alpha Dropout-assisted Selu enables the 

RTnet with self-normalization capabilities. To further improve 

the robustness of the network, R-MLP in Fig. 2 is proposed 

by eliminating the Layer Norm operation of the MLP and 

introducing the self-normalization operation in the  

MLP of each RT block. The R-MLP is defined by (5). 

  ˆ̂ ˆAD(Selu(Linear(LNorm( ))))z z=   (5) 

where LNorm is an abbreviation for Lecun Norm, indicating 

the weights normalization. Linear means the fully connected 

layer and means the Alpha Dropout operation. The input ẑ is 

passed through the first four modules to generate the output ˆ̂z . 

RLAttention module is designed to enhance the 

computational efficiency of the attention mechanism. In 

contrast to the traditional softmax attention, RLAttention 

combine L2
normalization with Relu activation function to 

reduce computational complexity while improving prediction 

accuracy effectively. Due to the unique Self-Attention 

mechanism, the Transformer module that focusing on the 

global attention mechanism has garnered significant attention 

in various fields such as natural language processing and 

computer vision. To enhance the fitting capability of 

developed framework, input features are transformed using 

linear matrices to generate three equal-size vectors including 

the query, key and value. The attention is then calculated by 

(6). 

 Attention( , , ) SoftMax
TQK

Q K V V
d

 
=  

 
  (6) 

where , , n dQ K V R  , n is the number of patches and d  

refers to the dimension of patches. 

The vector dimension in the standard transformer attention  

mechanism is defined as n d , and the complexity of the 

calculation step is estimated as ( )2O n d . However, due to its 

quadratic complexity, this attention calculation requires 

expensive computation resources, making it challenging to 

apply in real-world scenarios beyond laboratory environment. 

In this study, a novel linear attention called RLAttention is 

proposed for computing attention in the RT Block design, as 

presented in (7-8). 

 ˆ ˆ  ,
d d

2 2

Q K
Q K

Q K
= =   (7) 

FIGURE 2. RT BLOCK. 
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ˆˆ

RLAttention( , , ) (ReLu )
TK Q

Q K V V
d

 
=   

 
  (8) 

where Q̂ is the L
2

normalization of Q along the direction of 

dimension d , and K̂ is the same. 

The RLAttention applies L
2

normalization to the Q and K  

vectors along the patch dimensionality, constraining attention 

output within a fixed range and demonstrating superior 

performance compared to standard attention calculation. The 

rationale behind this modification is to use Relu activation to 

ensure the relative independence of each mask window in 

attention calculation through the non-negativity of L2
 

normalization, address the redundant and complex SoftMax of 

the standard attention calculation, achieving a lightweight 

effect. Additionally, RLAttention reduces the computation 

order of , ,Q K V in the attention mechanism from ( )2
n dO to 

( )2
ndO , resulting in a significantly reduced computational 

complexity for RTnet. To prevent overfitting, the sets of WQ, 

WK, Wv are applied to the Multi-Heads RLAttention 

calculations (MRLA).  

D. LOSS FUNCTION 

The developed RTnet for robotic grasping prediction achieves 

the conversion of flat object grasp detection to pixel-level 

identification. Additionally, a unique orientation angle is 

determined by ( ) ( )1/2 arcta on sin / c s  = , which is used 

to represent the unique grasp value of each pixel ( ), ,Q w  . To 

improve the robustness of RTnet processing discrete points, 

the loss regression function
1Lsmooth is designed to combine 

the
1L and

2L loss function synergizing the advantages 

including the smoothness of function for the small value of x

and the stability of function for the large value of x .  

For an object represented X ( , , , , )1 2 3 nx x x x=  and its 

corresponding grasp token L ( , , , , )1 2 3 nl l l l=  in the dataset, 

Equations (9-11) define four predicted values of the RTnet 

output for grasp prediction, as well as the difference between 

predicted and true values through a loss function. 

 ( , ,sin ,cos )n n n nG q w  =   (9) 

 
0.5 if | | 1

smooth
| | 0.5 otherwise1

2

L

x x

x

 
= 

−
  (10) 

 ( )
1

{ , ,sin ,cos }Loss( , ) smooth m m
i m q w L i iG L G L = −    (11) 

E. REPRESENTATION OF PACKAGING GRASP 
SCENARIOS 

Robotic grasping prediction in industrial settings requires high 

robustness to achieve precise grasping detection, given the 

presence of numerous complex distractions in the real- world 

environment. However, existing grasping datasets related to 

industrial packaging environments are generated under the 

assumption of neat and smooth scenarios, resulting in a 

significant discrepancy between RGB information of the 

target object and surrounding environmental data, as shown in 

Fig. 3. Moreover, the grasping data obtained from the factory 

scenarios is subject to various interference and noise. 

Therefore, a remarkable offset between these two 

representations is indispensable, causing the disagreement 

between the results based on the current dataset and those 

derived from real factory scenarios. 

FIGURE 3. Example of an idealized dataset. (a), (b) and (c) from 
Jacquard dataset; (d), (e), and (f) from Cornell dataset. 

As subtle interference or noise in the real-world scenarios 

affect the accuracy of predictions, high-quality images of 

inputs are crucial for neural networks. However, low quality 

and noisy data are often prevalent in such environment. 

Therefore, training a network on datasets with complex 

backgrounds will demonstrate higher robustness and better 

performance. With the incorporation of the dataset through 

style transfer into the original Cornell dataset, texture noise is 

successfully integrated, and new captured data information are 

generated to assess the performance of RTnet for robotic 

grasping in complex packaging scenarios. 

To accurately depict real packaging factory scenarios, the 

interference that occur in industrial capture scenarios are 

developed by the integration of different packaging products 

in the Cornell database with white background shown in (1) of 

Fig. 4(a-d) and four kinds of realistic factory environments, 

which include low-resolution grasping environment ((2) in 

Fig. 4(a)), colored grasping background ((2) in Fig. 4(b)), 

wooden grasping background ((2) in Fig. 4(c)) and blocky 

oiled background ((2) in Fig. 4(d)). The primary principle for 

the above combination is to ensure the representation 

separation of image style and content, thereby maximizing 

preservation while transforming styles during style migration.  

FIGURE 4. Data argumentation by style transfer. In (a-d), Packaging 
products in Cornell database with white background (1); Four realistic 
factory environments (2); Four transferred styles (3)
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Thus, four transferred styles in (3) of Fig. 4(a-d) are generated 

and called RealCornell (see Section 3.4). It is noted that data 

argumentation by style transfer enhances the generality and 

style transfer ability of the developed RTnet for the realization 

of various real grasping scenarios. 

III. EXPERIMENT AND RESULTS 

During the experimental phase, the accuracy and effectiveness 

of the RTnet model is evaluated through experimental 

validation on both the Cornell grasping dataset and the 

developed RealCornell dataset, as well as real grasping 

experiments conducted on physical robots. 

A. DATASETS 

The Cornell dataset consists of 885 RGB-D images of 240 

objects, while the RealCornell dataset contains 4 885 RGB- 

D images of 240 objects generated by style transfer in Section 

2.5. For each dataset, a random selection of 90% data is used 

for training the model and the remaining 10% is served as the 

validation set. 

B. EVALUATION INDICATORS AND IMPLEMENTATION 
DETAIL 

To enhance the realism of the grasp, the rectangle metric is 

accurate provided that certain conditions are satisfied. 

⚫ The difference between the predicted grasping angle and 

the actual grasping scenario is less than 30 degrees. 

⚫ The overlap area between the predicted rectangle and the 

correct rectangular grasp is greater than 0.25 and can be 

calculated according to (12). 
PG is the grasping data of 

prediction and
RG is the correct grasping value. 

 
| |

( , )
| |

P R
P R

P R

G G
Jac G G

G G


=


  (12) 

The model is constructed utilizing Pytorch on Ubuntu 20.04 

with an NVIDIA 3060 GPU, employing Adam as the 

optimizer and a default learning rate of 0.001 that is 

dynamically adjusted during training. 

C. CORNELL DATASET EXPERIMENTS  

In the experiments conducted on the Cornell dataset, two 

methods of partitioning the dataset are employed: image wise 

(Iw) and object wise (Ow). Table I presents the accuracy of 

grasping results. The end-to-end grasping prediction network 

[8] achieved accuracies of 73% and 69% using only Depth as 

the input. Subsequently, RGB information is incorporated into 

the prediction model [22]. When the input consists of multi-

source information including RGB and Depth, the accuracy 

can reach nearly 98%, as demonstrated in [15], [23]. 

The proposed RTnet achieves a superior accuracy of 

98.31% on the Cornell dataset when both RGB and Depth data 

are employed. As compared with the results by other 

researchers in Table I, RTnet achieves a better accuracy of 

96.61% when only RGB is utilized as the input. Overall, 

RTnet demonstrates a high level of performance in completing 

the capture task. 

TABLE I 

CORNELL DATASET TESTING RESULTS 

Model Input IW accuracy OW accuracy 

GGCNN[8] D 73.0% 69.0% 

GraspNet[22] RGB-D 90.2% 90.6% 

 
GR-ConvNet[23] 

D 
RGB 

RGB-D 

93.2% 
96.6% 

97.7% 

94.3% 
95.5% 

96.6% 

 
TF-Grasp[15] 

D 
RGB 

RGB-D 

95.2% 

96.6% 

97.99% 

94.9% 

95.0% 

96.7% 

 

RRnet 

D 

RGB 
RGB-D 

94.91% 

96.61% 

98.31% 

94.87% 

95.92% 

97.65% 

 

D. REALCORNELL DATASET EXPERIMENTS 

To assess the robustness of the models, GRnet and TF-Grasp 

are popular tools used to evaluate the accuracy of robot 

grasping prediction. In this study, only RGB-D as the input of 

the model is examined on the RealCornell dataset. It is noted 

in Table II that GRnet and TF-Grasp have the same level of 

accuracy, which is lower than 92%. The accuracy by RTnet’s 

has remarkably increased by over 2% than the results by 

GRnet and TF-Grasp, reaching a value of 93.878%. 

In order to visualize the accuracy of grasping prediction, it 

is necessary to generate grasping heat maps. In Fig. 5, typical 

packaging products from the RealCornell dataset are selected, 

including regular cylindrical can packaging and irregular 

packaging, e.g., toothpaste packaging, cosmetics packaging 

and wine bottle. Through heat map analysis on each pixel of 

the grasping points, the quality, deflection angle and grasping  

width are obtained. The blue rectangular boxes labeled in the 

first row of Fig. 5 illustrate the grasping locations predicted by 

the RTnet in the four scenarios. The closer to the object the 

graspable area (red zone in the second row in Fig. 5) is, the 

higher the grasping accuracy is. The Angle and Width 

diagrams show the best grasping angle and grasping width 

predicted by RTnet. Therefore, RTnet has the ability to 

effectively grasp the objects by identifying the graspable 

characteristics and its grasping accuracy is evaluated by the 

quality, angle, and width heat maps. Summarily, the results 

demonstrate that the proposed grasping network has superior 

grasp prediction performance in terms of accurate and robust 

feature extractions under the complex working scenarios. 

The robustness of RTnet is further validated on the 

RealCornell dataset by experimental tests with the Jacc 

indexes in range of 0.3 to 0.5 in terms of object grasping 

accuracy. Fig. 6 demonstrates that RTnet outperforms the 

other two models in terms of the increased accuracy in object 

grasping. It is noted that when the number of the sample batch 

reaches 100, the accuracy of grasping is slightly influenced if 

the batch number is further increased to 200. Therefore, it is 

recommended to set the batch number to 200 in the 

experiments from an efficient computation point of view. In 

summary, RTnet can achieve excellent accuracy and complete 

the task of grasping prediction.
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TABLE II 

REALCORNELL DATASET TESTING RESULTS 

Model GR-ConvNet[23] TF-Grasp[15] RTnet 

Accuracy 91.304% 91.836% 93.878% 

 

 

FIGURE 5.  Visualization of the results of the RealCornell dataset. 
Toothpaste packaging (a); Cylindrical cans (b); Cosmetics packaging 
(c); Wine bottle (d). 

 

 

FIGURE 6.  Visualization of the results of the RealCornell dataset. 
Accuracy when the batch is 100 (a); Accuracy when the batch is 200 (b). 

E. ABLATION EXPERIMENT 

To explore the impact of the developed core modules, e.g., 

RLAttention and R-MLP, on the overall performance of the 

RTnet model, ablation experiments are conducted on the 

Cornell dataset and RealCornell dataset. A model equipped 

only with Swin transformer block is selected as the benchmark 

model for the ablation experiment. On this basis, RLAttention 

and R-MLP are sequentially added for the experiment. The 

experimental results are assessed by the accuracy index. 

Results of Ablation Experiment are presented in Table III. 

As compared to the baseline model using the Cornell dataset, 

the model implemented by RLAttention only has a slight 

improvement in accuracy, which is from 79.78% to 80.48%. 

Moreover, with the addition of R-MLP into the model, an 

accuracy of nearly 2% is further increased. The similar 

conclusion is drawn by the experimental results using 

RealCornell dataset. It is noted that the RealCornell dataset 

contains significant noise interference, therefore the 

implementation of R-MLP has a more significant impact on 

the model accuracy by the increase of 3.35% from 69.43% to 

72.78%. 

 
TABLE III 

RESULTS OF ABLATION EXPERIMENT ACCURACY 

Base RLAttention R-MLP Cornell RealCorell 

√  

√  

√  

- 

√  

√  

- 

- 

√  

79.78% 

80.48% 

82.23% 

68.86% 

69.43% 

72.78% 

Note: "√" indicates the adopted module in the model , "-" means there is 
no module adopted in the model . 
 

In summary, the implementations of RLAttention and R- 

MLP for enhanced self-normalized attributes improves the 

robustness of the model, enable the suppression of irrelevant 

features, prioritize target features, and make more accurate 

predictions of grasping posture in complex packaging factory 

grasping environment. 

F. REAL ROBOT GRASPING EXPERIMENTS 

Some advanced robotic grasp models have been developed in 

the grasping experiments by many researchers and provided 

useful guidance to accurate prediction for the solution to 

industrial problems. Nevertheless, these models could only 

work well under the flat color background, leading to the poor 

model generalization. Therefore, applications of the grasping 

models to solve the problems arising from the real production 

process are severely limited. 

To address the above issue, a robot grasping platform based 

on visual perception is established in this study. A depth 

camera with a measurement accuracy of 0.1mm and the 

resolution of 1920 1200 pixels, is installed in the KUKA 

KR10 robot, enabling the capability of solving the real 

grasping problems. The view field of the depth specified by 

the camera provides the measurement of 800mm 450mm, 

which aligns with the robot’s achievable range. The camera is 

also equipped with a blue LED light source and positioned at 

a distance of 1 meter from the desktop in Fig. 7. The repetitive 

positioning accuracy of the robot is 0.05 mm. The settings of 

these parameters effectively reflect the grasping environment 

of the factory. 

To validate the model, the prediction results of RTnet are 

compared with other models in real scenarios. The results are 

shown in Fig 8(a), where the prediction results for the eyeglass 

case by different models are provided. Results demonstrate 

that RTnet accurately predicts the grasping position aligned 

with the center of gravity of the target object, whereas TF-

Grasp exhibits a biased prediction. On the other hand, GRnet 

erroneously identifies the background as an object, leading to 

inaccurate predictions. In Fig. 8(b), it is noted that RTnet 

exhibits the superior capability in accurately recognizing the 

complete appearance contour of the toothpick box, while TF-

Grasp manifests a significant error and GRnet only captures a 
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partial object contour. Consequently, it can be inferred that as 

compared to other models, RTnet offers more precise 

predictions of grasping positions and possesses an enhanced 

accuracy in discerning object contours.  

FIGURE 7.  Execution process of grasping robot system. 

 

 

FIGURE 8. Prediction results in real grasp scenarios. Prediction results 
of eyeglass case(a); Prediction results of toothpick box(b).  

 

The depth camera captures an image of an object in each 

grasp and transmits the visual information to the computer, 

providing computers the grasping messages through model 

processing. The extracted information is then fed to robots end 

effector, which approaches the optimal target grasping pose by 

motion planning techniques till the completion of the grasp 

operation, as depicted in Fig. 9. 

To realistically mimic the factory environment, three 

representative interfaces in (2) of Fig. 4(b-d) (The colored 

grasping background, The wooden grasping background and 

the blocky oiled grasping background) are selected for 

conducting real robot grasping experiments, shown in (1) of 

Fig. 9(a-c). Three types of irregular shaped objects are used in 

grasping experiments, including the candy packaging, the 

cosmetic packaging and the toy packaging, as shown in (2) of 

Fig. 9(a-c). The entire process of robot grasping experiments 

are illustrated in (3) of Fig. 9(a-c). In the grasping experiments, 

each object is placed in the one of three interfaces and then 

grasped 9 times in one scenario. Therefore, a total number of 

81 grasps are determined. 

FIGURE 9. Real robot grasping experiments. Grasping background (1); 

The target object (2); Robot grasping process (3). 

 

The statistical analysis of all data is shown in Table IV, 

where indicates a successful rate of the grasping experiments 

in the different scenarios. In terms of the grasp accuracy, the 

highest success rate of 92.59% in the wooden background and 

the lowest success rate of 70.37% in the colored working  

environment are observed. The reason for this lies in that the 

more remarkable difference between the RGB information in 

the wooden grasping scenario and that in the colored working 

environment exists, the more successful grasping rates are 

distinguished. Thus, the higher success rate with the less the 

RGB information in the wooden background is achieved. 

Considering the grasped object, a highest success rate of 

88.89% is observed for the candy packaging product due to its 

regular shape and a successful rate of 77.78% for the toothpick 

packaging product is also acceptable. In general, the proposed 

RTnet has ultimately the ability to achieve a high average 

accuracy of 82.76% and demonstrates a testimony to the 

model’s superior capability of grasping. In summary, the 

designed experiments in this paper realize the real factory 

robot grasping and provide an environment setting that reflects 

the complex scenario of a factory, securing higher levels of 

model robustness and generalization. 

 
TABLE IV 

TEST RESULTS FOR THE REAL ROBOT GRASP 

Grasping 

Back ground 

Candy 

packaging 

Toy 

packaging 

Cosmetic 

packaging 

Total 

result 

Colored interface 

Wooden interface 
Oiled interface 

7/9 

9/9 
8/9 

6/9 

8/9 
7/9 

6/9 

8/9 
8/9 

19/27 

25/27 
23/27 

Total 88.89% 77.78% 81.48% 82.76% 

IV. CONCLUSION
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In this study, a novel robot grasping prediction model based 

on a linear global attention mechanism (RTnet) is proposed. 

RTnet linearly optimizes the quadratic complexity of 

traditional attention mechanisms. To accomplish the task of 

capturing in complex scenes, RTnet adopts a self- normalized 

combination of Lecun Norm, Selu and Alpha. Dropout to 

enhance the model filtering and adaptability to noise 

interference while improving the robustness of feature 

learning. An amplified dataset (RealCornell) is generated 

through style transfer to accurately mimic the packaging 

factory capture scenes. Experimental tests are evaluated by the 

Cornell dataset, the RealCornell dataset and real grasping 

scenarios. Compare with the existing results, the proposed 

RTnet achieves a better accuracy of grasping predictions 

(98.31% and 93.88%) on the Cornell and the RealCornell 

datasets, respectively. In this research, the ablation 

experiments are also carried out to demonstrate the R-MLP 

remarkable contributions to the enhancement of the model 

generalization and the effectiveness in handling complex 

capture scenarios. In conclusion, RTnet achieves an 

acceptable accuracy in real robot grasp experiments, 

demonstrating its generalization ability under variety of 

packaging scenarios. 

Although RTnet achieves precise and robust grasping in 

complex packaging factory scenarios, practical deployment 

and widespread applications of the developed model still need 

to be explored. Firstly, the capture priority can be adjusted to 

accommodate more complex environments, such as situations 

involving object overlaps. In scenarios where multiple targets 

are overlapped, the robot can determine the order of grasping 

by assessing factors like the difficulty level, importance, and 

urgency associated with each object. Secondly, in practical 

applications of robotic grasping, grasping scenarios such as 

the object inclined positioning is frequently encountered, the 

robot’s capability to execute grasps on slopes is necessary. 

Therefore, 6D pose estimation technique should be employed 

in the robotic slope grasping tasks in the future to acquire the 

precise object positioning and orientation information. 

Furthermore, to enhance the robustness and intelligence of 

grasping strategies, future research studies will include the 

effective integration of information from diverse sensors in the 

industrial environment, such as amalgamating visual data with 

force or touch data. Moreover, the RTnet framework has the 

potential to be extended for the applications beyond packaging 

factory environments, including medical surgical assistance, 

disaster relief, home service robots, and different sectors. 

These domains present distinct requirements and challenges 

related to grasping accuracy and robustness, which prove to be 

worth of further investigations. 
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