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This paper sets out to explore the modulational (or Benjamin-Feir) instability of a monochromatic
wave propagating in the presence of damping such as that induced by sea-ice on the ocean surface.
The fundamental wave motion is modelled using the spatial Zakharov equation, to which either
uniform or non-uniform (frequency dependent) damping is added. By means of mode truncation the
spatial analogue of the classical Benjamin-Feir instability can be studied analytically using dynamical
systems techniques. The formulation readily yields the free surface and its envelope, giving insight
into the physical implications of damping on the modulational instability. The evolution of an
initially unstable mode is also studied numerically by integrating the damped, spatial Zakharov
equation, in order to complement the analytical theory. This sheds light on the effects of damping
on spectral broadening arising from this instability.

I. INTRODUCTION

Water waves on the open sea are typically characterised by their permanence. This remarkable fact can be attested
by any surfer on Hawai’i’s North Shore waiting for the swell from an Alaskan storm. Attenuation due to viscous
effects is sufficiently minor that the starting point of the vast majority of studies on water waves are the inviscid,
incompressible Euler equations. These equations give rise to a variety of PDE model equations, many of them
possessing extraordinary mathematical structure [1], much of which has been elucidated only in recent decades.

The history of the water wave problem goes back more than two centuries, and the first approaches to the problem
assumed small wave amplitudes and an essentially linearised system of equations. These equations can be seen to
have solutions in the form of monochromatic waves, which consist of a single Fourier mode. Throughout the course
of the 19th and early 20th centuries periodic, travelling waves of permanent form (sometimes called Stokes waves)
were shown to exist mathematically, not just within the linear problem, but also for a series of ever more general
formulations of the governing equations (see [2] and references therein).

Despite these mathematical existence proofs, which go back to work by Levi-Civita [3], it is remarkably difficult
to generate monochromatic waves experimentally, or to observe them in nature. One of the principle reasons for
this difficulty was established by T. B. Benjamin and J. E. Feir [4]: monochromatic waves are unstable to small
disturbances for a rather large range of relevant parameters. Once generated in a wave flume, one Fourier mode
transfers energy to its neighbours in a so-called degenerate quartet interaction, provided the modes satisfy (at least
up to small disturbances) a resonance condition. This so-called modulational instability is ubiquitous in many natural
contexts [5], and in water waves is commonly referred to as the Benjamin-Feir instability.

This raises an obvious question: if water waves are susceptible to instabilities, how do surfers catch the swell from
storms that occurred thousands of kilometres away, and how do oceanographers track such swell across entire ocean
basins [6]? In a series of papers Segur, Henderson and collaborators [7, 8] studied this phenomenon, and showed that
even small amounts of damping can stabilise the Benjamin-Feir instability. Thus, while it seems that damping has a
small effect on the propagation of waves per se, it can play a subtle yet critical role in governing wave instabilities on
the open sea. In other physically important settings damping plays a more immediately visible role – such is the case
when waves propagate into sea-ice, which case provides the impetus for the present study. A noteworthy feature of
damping due to sea-ice is its nonuniform (frequency-dependent) nature, see [9].

Segur and collaborators considered the Benjamin-Feir instability from the perspective of a nonlinear Schrödinger
equation (NLS) with uniform damping. Such dissipative NLS equations go back to early work of Lake et al [10] (see
also the more recent derivation by Dias et al [11]). As the NLS has restrictions on spectral bandwidth, attempts have
been made to extend this formulation by considering a uniformly damped Dysthe (or higher-order NLS) equation.
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Due to the mathematical similarities between damping and forcing, studies of either phenomenon are generally
complementary. Thus we find early work on the initial growth as well as long time evolution of narrowbanded surface
waves under wind forcing by Hara & Mei [12], who derived a Dysthe equation with forcing. Subsequent studies by
Carter & Govan [13] and Armaroli et al [14] likewise focused on forced and damped Dysthe-equations.

In the present work we shall use the Zakharov equation as our point of departure. This has the advantage that
NLS, Dysthe and modified Dysthe equations can be derived directly from it [15], so that it generalises previous work.
In addition, we shall use a spatial formulation of this equation due to Shemer and co-workers [16], which will allow us
to naturally consider the propagation of waves into sea-ice (or any other medium that can be modelled as nonuniform
dissipation) which occupies a defined spatial domain.

The role of realistic, nonuniform dissipation on the modulational instability has only recently been explored by
Alberello et al [17, 18] who employed numerical solutions of the NLS, and subsequently focused on the modulational
instability with side-bands exhibiting the largest linear growth rate. We aim to explore the entire modulational
instability domain from the perspective of the spatial Zakharov equation, and investigate the role of carrier steepness,
mode separation, as well as damping strength in a significant generalisation of prior results. We will show for the
first time how frequency-dependent damping leads to a qualitatively and quantitatively different free surface than the
simpler, uniformly damped scenario, and explore the ramifications for spectral broadening with many modes. Using
conserved quantities we are able to reduce the problem to a simple dynamical system which readily yields new insights
both analytically and numerically.

In Section II we provide some background for the temporal Zakharov equation, and introduce the allied spatial
equation with damping. We demonstrate how this can be used to derive the damped, spatial nonlinear Schrödinger
equation. Subsequently we restrict our attention to the three modes involved in modulational instability, and in
Section III analyse the simpler case of uniform damping from a dynamical systems perspective. The more realistic
case of frequency dependent damping, where the symmetry between the side bands is broken, is explored in Section
IV. We apply the foregoing theory to some examples in Section V, and also go beyond the classical modulational
instability to explore the effect of damping on spectral broadening. Finally we provide some concluding remarks and
perspectives for future work in Section VI.

II. BACKGROUND

A. The temporal Zakharov equation

In the inviscid, incompressible water wave problem, the reduced Hamiltonian formulation due to Zakharov [19] and
Krasitskii [20] captures resonant and near-resonant interactions which occur with cubic nonlinearity in deep water.
This Hamiltonian is [20, Eq. (2.22)]

H =

∫
ω0b

∗
0b0dk0 +

1

2

∫
T0123b

∗
0b

∗
1b2b3δ0+1−2−3dk0dk1dk2dk3,

where bi = b(ki, t) are canonical variables related to the Fourier transforms of the free surface and potential at the free
surface, ω0 is the linear frequency, T0123 = T (k0, k1, k2, k3) is the interaction kernel and δ the Dirac delta distribution.
Subscripts are used to denote wavenumber, so that, for example, ω0 = ω(k0) and δ0+1−2−3 = δ(k0 + k1 − k2 − k3).
The complex conjugate is denoted by a ∗ superscript.
The corresponding equation of motion, called the Zakharov equation after [19] is

i
∂b0
∂t

=
δH

δb∗0
= ω0b0 +

∫
T0123b

∗
1b2b3δ0+1−2−3dk1dk2dk3. (1)

The version of the Zakharov equation shown here is restricted to third-order in nonlinearity, and is derived by suitable
elimination of non-resonant terms. It gives rise to a number of useful model equations, chief among them the nonlinear
Schrödinger (NLS) family of equations, which we shall explore in greater depth below. In fact, the form of the equation
(1) is generic in any dispersive medium where four-wave – but not three-wave – interactions are allowed [21]. The
physics of the water wave problem are encoded entirely in the kernel function T . More details and further references
to the Zakharov equation in the context of water waves can be found in the recent review [22].

B. The Spatial Zakharov equation and inclusion of damping

While the Zakharov equation is an integro-differential equation for the time-evolution of the complex amplitudes,
in many situations of practical interest it is necessary to consider the converse situation. Spatial evolution of waves
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is the situation encountered in flume experiments, and is also the appropriate viewpoint for waves propagating into
a confined region with significant dissipation, e.g. an area of sea-ice. In such cases the temporal Zakharov equation
(1) must be replaced by a corresponding spatial evolution equation first derived by Shemer and co-workers [16]. It is
written

icg
∂B(x, ω)

∂x
=

∫∫∫
T (k, k1, k2, k3)B

∗(x, ω1)B(x, ω2)B(x, ω3)

· exp(−i(k + k1 − k2 − k3)x)δ(ω + ω1 − ω2 − ω3)dω1dω2dω3. (2)

in one spatial dimension. The main difference between the spatial and temporal cases is the appearance of a group
velocity coefficient cg in the former as well as the (near) resonance condition now being expressed as ω+ω1−ω2−ω3 = 0.
While the temporal form of the Zakharov equation can be obtained by an expansion and truncation of the Hamil-

tonian formulation of the water wave problem (more background can be found in the recent review [22] and references
therein), the spatial equation is obtained directly from the temporal equation. The spatial Zakharov equation contains
the spatial NLS and spatial Dysthe equations, both of which can be derived from it in the limit of narrow bandwidth
[23]. In a series of experiments spanning several years and different facilities, Shemer and coworkers have verified the
spatial equation for broad, Gaussian spectra [16], wave groups [24] and bimodal spectra [25], underscoring its utility
in modelling the evolution of experimentally generated waves in a flume.

This equation can be transformed into autonomous form by writing Bi = bi exp(−ikix) :

cg,j

(
i
dbj(x)

dx
+ kjbj

)
=

∫∫∫
Tjlmnb

∗
l bmbnδ(ωj + ωl − ωm − ωn)dωldωmdωn. (3)

It is important to recall that subscripts in (3) now denote frequency rather than wavenumber, although the kernel
Tjlmn remains T (k(ωj), k(ωl), k(ωm), k(ωn)).
Adding a spatial damping term can be accomplished by writing (kj + iγj) in place of kj in the second term on the

left-hand side. This modification of wavenumber is analogous to the inclusion of damping by modifying the frequency
in the temporal Zakharov equation (1), see Shrira et al [26]. In our study, we shall consider both the simpler case
of uniform damping, as well as the more general case of frequency dependent damping, which typically occurs when
waves propagate in sea ice [17, 18].

The particular frequency-dependence of the damping depends strongly on characteristics of the medium itself, and
analytical as well as experimental work [9, 27] suggests a sea-ice damping of the form

γ = s× ωn, (4)

which is the form of damping parameter we will employ in what follows. Uniform damping can be achieved by
using the parameter γ corresponding to the carrier mode for all other modes. Alternatively, each mode ωi may have a
distinct damping coefficient γi for a given value of s. The majority of cases we discuss will employ a moderate damping
γ = O(10−4) [m−1], which by taking n = 3 will give s = O(10−6), [s3m−1], as described in [18]. The dissipation length
scale for the carrier is expressed by the ratio k/γ, and is approximately 2300 wavelengths in this case. In the absence
of energy transfer, this corresponds to approximately a loss of 1% of the carrier amplitude over four wavelengths.

C. Derivation of the damped spatial NLS

The Zakharov equation is a powerful yet underutilised tool for studying the evolution of water waves, particularly
the present damped, spatial formulation. In order to put it into the context of a larger literature focused on the
damped spatial nonlinear Schrödinger equation (see [17, 18, 28]) we demonstrate how the latter can be derived.

The central assumption needed to derive the NLS is that all interacting waves are clustered about a single wavenum-
ber, say k0, an assumption usually referred to as “narrow-bandwidth”. Such an assumption can be imposed when
deriving the equation via perturbation theory [29], as well as when starting from the Zakharov formulation. In the
latter case, the Zakharov kernel is replaced by the kernel T (k0,k0,k0,k0), and the frequency ω(k) is expanded in
a Taylor series about ω(k0). These two steps allow the inverse Fourier transform to be carried out, and lead to the
NLS in much the same way that Zakharov [19, Eq. (2.7)ff] first outlined. Our derivation below closely follows Kit &
Shemer’s [23] derivation of the Dysthe equation, but includes a damping term.

Because the NLS is an equation for the free surface envelope, we first relate the complex amplitudes B of the
Zakharov formulation to the free surface ζ at lowest order (i.e. without bound modes) by

ζ(x, t) =
1

2π

∫ ∞

−∞

(
ω

2g

) 1
2

[B(ω, x) exp(i(k(ω)x− ωt)) + c.c.] dω, (5)
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where c.c. denotes the complex conjugate of the preceding expression, and we write k(ω) for clarity, invoking the
linear dispersion relation.

As a first step we write all frequencies ωi in terms of a central (carrier) frequency ω0 and a small perturbation ω′
i

with ω′
i ≪ ω0, i.e. ωi = ω0 + ω′

i. Introducing a new variable A

A(ω′, x) = B(ω, x) exp(i(k(ω0 + ω′)− k0)x),

and substituting into (3) yields

i
∂A

∂x
+ (k(ω0 + ω′)− k0)A+ iγA =

k30
2gπ2

(ω0 + ω′)

∫
R3

A∗(ω′
1, x)A(ω

′
2, x)A(ω

′
3, x)δ

2,3
0,1dω

′,

where T = T (ω0 + ω′, ω0 + ω′
1, ω0 + ω′

2, ω0 + ω′
3) ∼ k30/4π

2, dω′ = dω′
1dω

′
2dω

′
3 and δ2,30,1 = δ(ω′ + ω′

1 − ω′
2 − ω′

3) . The
group velocity cg can be expanded in terms of the small perturbation as

k(ω0 + ω′)− k0 =
2k0
ω0

ω′ +
k0
ω2
0

ω′2 +O(ϵ4),

and using the deep water dispersion relation c−1
g = 2

√
gk/g yields

i
∂A

∂x
+ (k(ω0 + ω′)− k0)A+ iγA =

k30
gπ2

(ω0 + ω′)

∫
R3

A∗
1A2A3δ

2,3
0,1 dω

′, (6)

where Aj = A(ω′
j , x). Now, the free surface ζ(x, t) can be related to an envelope amplitude a(x, t) through

ζ(x, t) = a(x, t) exp(i(k0x− ω0t)),

and the relation between A and the complex amplitude a is given as

a(x, t) =
1

2π

(
2ω0

g

) 1
2
∫ ∞

−∞

((
1 +

ω′

2ω0

)
A(ω′, x) exp(−iω′t)

)
dω′.

where the factor 1 + ω′/2ω0 comes from expansion of
√
ω/(2g).

Multiplying (6) by a factor of
√
2ω0/g(1 + ω′/2ω0) and taking the inverse Fourier transform yields the left-hand

side

i

(
ax +

2k0
ω0

at

)
− k0
ω2
0

att + iγa.

The right-hand side is handled using the substitution(
1 +

ω′
2 + ω′

3 − ω′
1

2ω0

)
≈

(
1 +

ω′
2

2ω0

)(
1 +

ω′
3

2ω0

)(
1− ω′

1

2ω0

)
,

which gives the term k30a|a|2.
The equation can be rewritten in dimensionless form and in a moving coordinate frame by introducing new variables

a = a0ψ, ϵω0

(
2k0
ω0

x− t

)
= τ, ϵ2k0x = ξ, γ = ϵ2k0Γ,

where ϵ = a0k0 is the wave-steepness for a wave of amplitude a0 and wavenumber k0 as

ψξ + iψττ + i|ψ|2ψ = −Γψ. (7)

This is the form of the NLS used in numerous studies of damped and forced water waves. The classical theory of
modulational instability can then be approached by inserting a monochromatic wave into (7) and performing a linear
stability analysis by perturbing this wave with two small “sidebands”.
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D. Discretisation and the damped spatial Zakharov equation

Our aim is primarily an analytical study of the damped, spatial Benjamin-Feir instability without the restrictions
made in the preceding section, which lead to the NLS. To study this instability, which arises from the interaction
of three frequencies, we first discretise the autonomous, spatial Zakharov equation (3) with damping by substituting
b =

∑
i biδ(ω − ωi), where δ is a Dirac delta distribution, and integrating over frequency, to yield

i
dbj(x)

dx
+ (kj + iγj)bj =

1

cg,j

∑
l,m,n

Tjlmnb
∗
l bmbnδ(ωj + ωl − ωm − ωn). (8)

The resonant set of waves which seeds the modulational instability is one which satisfies the degenerate resonance
condition 2ωa = ωb+ωc, where we interpret ωa as the frequency of the carrier and ωb, ωc as the two side bands. This
restriction results in a system of coupled differential equations for the three complex amplitudes:

i
dba
dx

+ ba(ka + iγa) =
1

cg,a

Ta|ba|2ba + 2
∑
j ̸=a

Taj |bj |2ba + 2Taabcb
∗
abbbc

 ,

i
dbb
dx

+ bb(kb + iγb) =
1

cg,b

Tb|bb|2bb + 2
∑
j ̸=b

Tbj |bj |2bb + Taabcb
∗
cbaba

 ,

i
dbc
dx

+ bc(kc + iγc) =
1

cg,c

Tc|bc|2bc + 2
∑
j ̸=c

Tcj |bj |2bc + Taabcb
∗
bbaba

 .

Here we have used the abbreviation Ti for the self-interaction kernel Tiiii, and the abbreviation Tij for the two-wave
interaction kernel Tijij , noting that due to symmetry Tij = Tji [20].
It is convenient to separate the real and imaginary parts of the above system by writing bi =

√
Ii exp(iϕi) where

Ii := |bi|2 :

cg,a
dIa
dx

= −2cg,aγaIa − 4TaabcIa
√
Ib
√
Ic sin(θ), (9a)

cg,b
dIb
dx

= −2cg,bγbIb + 2TaabcIa
√
Ib
√
Ic sin(θ), (9b)

cg,c
dIc
dx

= −2cg,cγcIc + 2TaabcIa
√
Ib
√
Ic sin(θ), (9c)

2
dϕa
dx

= 2ka −
2

cg,a
TaIa −

4

cg,a
TabIb −

4

cg,a
TacIc −

4

cg,a
Taabc

√
Ib
√
Ic cos(θ), (9d)

−dϕb
dx

= −kb +
1

cg,b
TbIb +

2

cg,b
TabIa +

2

cg,b
TbcIc +

1

cg,b
Taabc

Ia
√
Ic√
Ib

cos(θ), (9e)

−dϕc
dx

= −kc +
1

cg,c
TcIc +

2

cg,c
TacIa +

2

cg,c
TbcIb +

1

cg,c
Taabc

Ia
√
Ib√
Ic

cos(θ). (9f)

Here we have defined θ := 2ϕa − ϕb − ϕc. While the presence of the damping term means that we lack conservation
of energy (see Krasitskii [20] or Andrade & Stuhlmeier [30]), there are nevertheless simplifications to be made which
provide insight into the behaviour of this system. Chief among these is the identification of the dynamic phase θ as
the sole phase variable of interest in the problem. In the next section we shall find the simplest three-dimensional
dynamical system which encapsulates the dynamics of the spatial Benjamin-Feir instability in the case of uniform
damping.

III. A DYNAMICAL SYSTEM FOR UNIFORM DAMPING

In analogy with the temporal evolution of conservative systems of three and four waves, as studied by Capellini &
Trillo [31] or Andrade & Stuhlmeier [30, 32], and following the conservative treatment in [33], we now aim to introduce
new variables to reduce the dimension of the system (9a)–(9f).
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We define the following two quantities:

A = cg,aIa + cg,bIb + cg,cIc, (10)

α =
cg,bIb
A

− cg,cIc
A

. (11)

A is akin to a measure of total energy, while α is the side-band energy fraction. Under the assumption of uniform
damping γa = γb = γc = γ, we easily find

dA

dx
= −2γA, (12)

dα

dx
= 0. (13)

Thus A (which we think of as a measure of the energy of the three-wave system) decreases monotonically, while the
side-band energy fraction α remains constant.

The substitution of

Ia =
A

cg,a
η, (14)

Ib =
A

2cg,b
(1− η), (15)

Ic =
A

2cg,c
(1− η), (16)

into (9a)–(9f), in which η is the energy exchange parameter, results in the pair of evolution equations

dη

dx
= −AΩ2η(1− η) sin(θ), (17)

dθ

dx
= ∆+AΩ0 +AΩ1η −AΩ2(1− 2η) cos(θ), (18)

in the dynamic phase θ and energy exchange parameter η, where

Ω0 =
1

2
(T̄c + T̄b) + 2(T̄bc − T̄ab − T̄ac),

Ω1 = 4(T̄ab + T̄ac)− 2

(
T̄a + T̄bc +

1

4

(
T̄b + T̄c

))
,

Ω2 =
2Taabc

cg,a
√
cg,bcg,c

,

and we denote T̄ij = Tij/cg,icg,j and ∆ = 2ka − kb − kc for brevity. Note that when η = 0 only modes ωb and
ωc are present, while when η = 1 we have the monochromatic wave ωa only. For this reason we conceive of η as
measuring the extent of energy exchange between the monochromatic and bichromatic sea states. It is useful to
note that monochromatic and bichromatic seas are both explicit solutions to the spatial Zakharov equation (see
[33, 34]) – the monochromatic sea coincides with the Stokes’ wave solution of the NLS, but the bichromatic sea
has no counterpart in the NLS. Together, this gives a rather simple dynamical system for the interaction of three
waves with uniform damping consisting of equations (12), (17)–(18), defined in the three dimensional phase space
{(A, θ, η) | A ∈ R≥0, θ ∈ [−π, π], η ∈ [0, 1]}.

A. Phase plane analysis

The undamped system (17)–(18) with γ = 0 is Hamiltonian, therefore the only fixed points are saddles and centres.
This setting has been recently explored by Heffernan et al [33], and is formally similar to the temporal evolution
scenario described by Andrade & Stuhlmeier [32]. Together with the simple, cylindrical phase space, this makes the
dynamics rather straightforward to describe and classify.

The addition of uniform damping changes these dynamics, and the system (12), (17)–(18) no longer has fixed-points.
Rather trajectories tend towards A = 0, which means that all three modes Ia, Ib and Ic decay in amplitude. One
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consequence of this is that separatrices connecting fixed-points of the conservative system can be traversed – solutions
otherwise confined to a restricted portion of phase space may take on other values of η and θ, and periodic orbits
around centre points of the conservative system generally lose their periodicity.

Some examples of trajectories in the three-dimensional phase space of (12), (17)–(18) are shown in Figure 1. An
illustrative uniform damping parameter (see the discussion in Alberello et al [18]) is chosen, and the trajectories are
plotted as solid lines starting at different initial conditions (η0, θ0) but with an identical initial value of A (this value
is fixed by a choice of the carrier wave frequency fa and steepness ϵa, as well as the side-band separation p, see Section
V).

The left panel ((a), blue curves) begins close to a bichromatic wave train ωb, ωc, with η(0) = 0.02; the middle
panel ((b), red curves) is a small perturbation of a monochromatic wave train ωa, with η(0) = 0.95; the right panel
((c), green curves) is a trichromatic initial condition η(0) = 0.5 where no mode is initially dominant. The projections
of the trajectories onto the planes (η, θ), (A, θ) and (A, η) are shown as dashed curves, and the phase portraits of
the corresponding conservative system (at x = 0) with constant A are shown in colour on the (η, θ)–plane. We can
observe both periodic dynamics in phase θ and amplitude scale η, as in panel (b), as well as the breaking of such
periodic dynamics in panels (a) and (c).

FIG. 1. Three indicative phase portraits for a configuration with a carrier fa = 1 Hz, ϵa = 0.1 and side band separation
p = 0.184. The path lines in (A, η, θ)-space are shown as solid curves, with different initial conditions η(0), θ(0). The undamped
phase portraits in the (η, θ) plane are shown in the (η, θ)-plane, along with the projections of the damped path curves (s =
9 · 10−6, γ = 0.002) which are depicted as dashed curves.

B. Spatial Benjamin-Feir instability with uniform damping

The famed Benjamin-Feir instability arises in the undamped system when a carrier wave ωa is perturbed by two
equally spaced side-bands ωa + p and ωa − p. In the current setting, we find that the monochromatic carrier wave
which makes up the nullcline η = 1 is unstable if there exists a fixed point of the dynamical system (17)–(18) thereon.

This means solving

cos(θ) = −∆+AΩ0 +AΩ1

AΩ2
,

which indicates that a necessary and sufficient condition for such a fixed point is that the right-hand side is of
magnitude less than or equal to one. The (linear) growth rate of disturbances is given by the eigenvalues of the

Jacobi matrix of the undamped Hamiltonian system, i.e. λ1,2 = ±
√
A2Ω2

2 sin
2 θ, evaluated at the fixed point, and is

plotted in Figure 2. This is the spatial version of the famed temporal instability diagram for Stokes waves. The NLS
instability threshold is shown as a dashed line, with all waves to the left being unstable; as expected, this matches
the Zakharov equation result for small mode separation p.
In the relatively simple uniform damping scenario, the ODE for A is decoupled from the equations governing the

energy exchange η and dynamic phase θ. In particular, this means that

A = A0 exp(−2γx)
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FIG. 2. Region of (ϵ, p) parameter space showing the domain of instability for a carrier wave with frequency fa = 1 Hz. Lighter
colours denote a larger linear growth rate. The dashed line shows the comparable instability threshold for the spatial NLS,
given by p/ωa <

√
2ϵ.

for A0 = cg,aIa(0) + cg,bIb(0) + cg,cIc(0). Thus waves which are initially unstable will stabilise after a certain propa-
gation distance, depending on the concrete interplay between the damping γ, the mode separation p and the initial
steepness. This can be observed in Figure 3, which demonstrates how the stability of waves with given ϵ, p changes
with propagation distance in the damped case. It can be observed that for a given mode separation progressively
steeper waves remain unstable as the waves propagate into the damped region. Conversely, the diminution of wave
steepness apparent in the propagation of damped waves means that disturbances far from the carrier in Fourier space
stabilise with propagation distance; for example, all disturbances p > 0.3ωa have stabilised after 100 carrier wave-
lengths λ. Those disturbances with the largest linear growth rates are among the first to stabilise. The consequences
of these effects will be particularly notable in our discussion of spectral broadening in Section VB.
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FIG. 3. Stability domain for a monochromatic wave with f = 1 Hz in terms of (initial) steepness ϵ and mode-separation p
(black region, see also Figure 2). The stability region after a propagation distance 100λ (blue region) and 200λ (red region) is
shown for uniform damping s = 7 · 10−6, s3m−1 γ = 1.7 · 10−3 m−1.
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IV. A DYNAMICAL SYSTEM FOR NON-UNIFORM DAMPING

Non-uniform damping complicates the situation somewhat, and ensures that we must retain an equation for the
side-band energy fraction α. Introducing the change of variables from Ii to A, η, α as in Section III, we find that our
equation for the evolution of the total energy becomes

dA

dx
= −2(cg,aγaIa + cg,bγbIb + cg,cγcIc).

Without the assumption of equal side-band energy fraction we must write

dα

dx
= −2 (cg,bγbIb − cg,cγcIc) .

The reformulation in terms of an energy-exchange parameter η must likewise be altered to

Ia =
A

cg,a
η, (19)

Ib =
A

2cg,b
(1− η + α), (20)

Ic =
A

2cg,c
(1− η − α). (21)

Then

dα

dx
= α2(γb − γc) + αη(2γa − γb − γc) + (η − 1)(γb − γc), (22)

and

dA

dx
= −2Aη(γa −

1

2
(γb + γc))−A(γb(1 + α) + γc(1− α)). (23)

In terms of this we write the evolution of η(x) as

dη

dx
= 2η2

(
γa −

1

2
(γb + γc)

)
+ η (γb(1 + α) + γc(1− α))− 2γaη −AΩ2η

√
(1− η)2 − α2 sin(θ). (24)

The evolution of the dynamic phase can be written

dθ

dx
= ∆+AΩ0 +AΩ1η −AΩ2

[
(1− η)(1− 2η)− α2√

(1− η)2 − α2
cos(θ)

]
, (25)

where the generalised expressions for Ω0, Ω1 are

Ω0 = 2

[
1

4

(
T̄c(1− α) + T̄b(1 + α)

)
+ T̄bc −

(
T̄ac(1− α) + T̄ab(1 + α)

)]
,

Ω1 = 4(T̄ab + T̄ac)− 2T̄bc − (2T̄a +
1

2
(T̄b + T̄c)).

Note that these reduce to the corresponding expressions in Section III for α = 0, and that Ω2 is unchanged.
The phase space of equations (22)–(25) is now four dimensional, and occupies

{(A,α, η, θ) | A ∈ R≥0, α ∈ R, 0 ≤ η ≤ min(1− α, 1 + α), θ ∈ [−π, π]}.

In particular, while η = 0 corresponds to the presence of modes ωb and ωc only (i.e. a bichromatic sea), for nonzero
α there is no monochromatic sea consisting of only wave ωa (since 1 − η + α and 1 − η − α are not simultaneously
zero for any value of η). It is still possible to study the Benjamin-Feir instability with an initial side-band imbalance
s.t. α ̸= 0, but we note that the energy transfer from carrier to side-bands captured by (19)–(21) remains symmetric.
The more interesting scenario, which we explore below, is how nonuniform damping generates side-band imbalances,
and how it differs from the simpler, uniformly damped dynamics.
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V. MODELLING OF DAMPED WAVES WITH APPLICATIONS TO SEA–ICE

To understand the evolution of surface gravity waves damped due to the presence of sea ice we must relate the
complex amplitudes and the conserved quantity A to physical properties of the waves. For a single wave, the free
surface elevation (5) can be written as

ζ(x, t) =
1

π

√
ωa

2g
|Ba| cos(ξa + ϕa),

where ξa = kax− ωat and ϕa is the phase of mode ka. The relation A = cg,a|Ba|2 allows us to rewrite

A =
a2aπ

2g

ka
=
ϵ2aπ

2g

k3a
,

where aa is the physical amplitude of the wave, and ϵa = aaka is the wave steepness. Therefore the specification of
the carrier wavenumber ka and steepness ϵa is sufficient to determine the initial energy value A.
For the three-mode system describing Benjamin-Feir instability, we can write the following amplitude function

A(x, t) =
1

π

(√
ωa

2g
Bae

i(kax−ωat) +

√
ωb

2g
Bbe

i(kbx−ωbt) +

√
ωc

2g
Bce

i(kcx−ωct)

)
.

Then the free surface elevation ζ(x, t) is obtained from ζ(x, t) = Re[A(x, t)], while the free-surface envelope is |A(x, t)|.
It is instructive to explore some cases through the lens of the three equivalent formulations, using the reduced

variables introduced in (22)–(25) and ultimately obtaining therefrom the free surface envelope. The point of departure
is the choice of an initially unstable carrier wave, which we take to be f = 1 Hz and have a steepness of ϵ = 0.15.
(In principle an initial, stable carrier could be chosen as shown in Figure 2, either with large steepness above the
restabilisation threshold [35] or very low steepness such that instability is confined to very small side-band separation
and growth rates are low. In both cases the waves are nearly linear except for a dispersion correction [36], and their
behaviour is dominated by the decay in energy (12), making these cases less interesting.)

Having chosen a carrier, we select side bands which form the small initial disturbance. To provide contrast, one pair
of side-bands is taken well within the unstable region, with mode-separation p = 0.4; the second pair, with lower linear
growth rate is selected at p = 1 (for reference the instability domain in Figure 2 at ϵ = 0.15 extends to p ≈ 1.2). An
equidistribution of side-band energy is originally imposed by setting η(0) = 0.98 and α(0) = 0, and the initial value of
the dynamic phase is set equal to θ(0) = π/2. These choices together determine the initial trajectory. An illustrative
moderate damping parameter of s = 7× 10−6 s3m−1 is employed, and frequency dependent damping implemented as
described in (4).

The evolution in three-dimensional phase space (A, η, θ) of these two configurations is shown in Figure 4. The
initial condition is the same in each case, yet the interaction between the modes is strongly dependent on the side-
band separation, and governed initially by the Hamiltonian of the conservative system whose phase portrait is shown
projected onto the (η, θ)-plane. Note that the phase portraits of the conservative system depend on A as well as p,
and are therefore not identical in right and left panels.

After nearly 256 carrier wavelengths (corresponding to 400 m of propagation distance), the total energy A(x) has
decreased to one third of its initial value in both cases. The more unstable case shown on the left (with p = 0.4)
shows the initial dominance of nonlinear interaction, as the trajectory winds around the centre located at θ = 0. By
contrast, the less unstable case in the right panel (with p = 1) is dominated by dissipation. The trajectory traverses
the separatrix of the conservative system almost immediately, and thereafter only small oscillations indicating energy
exchange among the modes are visible.

The consequences of this dissipative interaction are visualised for the complex magnitudes |Bi| individually in Figure
5. The solid curves depict the stronger interaction (p = 0.4) while the dashed curves depict the weaker interaction
(p = 1). The interplay between the carrier |Ba| in blue and the two side-bands |Bb|, |Bc| in yellow and red is also
traced out in the projection onto the (A, η)-plane in Figure 4, where η = 1 indicates only the carrier is present
(monochromatic sea), and η = 0 means only the side-bands are (bichromatic sea).
Finally, in Figure 6 we can observe how the modulational instability combined with damping influences the free

surface envelope |A(x, t)| in space and time. For clarity only the case p = 0.4 is presented, and we can clearly
distinguish the two cycles of energy exchange among the modes seen in Figure 5. It is helpful to recall that a
monochromatic wave has constant envelope, so that the absence of side-band energy observed at x = 0 and x = 128λa
manifests in a flattening of the envelope in Figure 6. We also note that the waves are periodic in time – at a given
spatial propagation distance we find a surface envelope time-series as given by one of the sections shown in the figure.
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FIG. 4. Phase portraits for two cases with intermediate, non-uniform damping. In both cases the carrier is initiated at f = 1
Hz, damping coefficient s = 7 × 10−6, ϵ = 0.15 and the initial conditions are η(0) = 0.98, θ(0) = π/2. Panel (a) shows the
evolution over x = 400 m (256 λa) of the initially unstable carrier to perturbations with p = 0.4, while panel (b) shows the
evolution when the perturbations are located at p = 1.
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FIG. 5. Evolution of the complex amplitudes shown in Figure 4. Solid curves correspond to p = 0.4, while dashed curves
correspond to p = 1. The carrier at f = 1 Hz is shown in blue, the two side-bands in red and yellow.

A. Uniform versus nonuniform damping

One advantage of the reformulation in terms of energy scale η and dynamic phase θ is that it clearly demonstrates
that the full, nonlinear energy exchange in the modulational instability is naturally symmetric - a result that is also
found for the NLS [31] and the Dysthe equation [37]. Rewriting the mode amplitudes in terms of energy scale η
and side-band difference α as in (14)–(16) or (19)–(21) makes clear that when the carrier loses energy, that energy is
distributed equally among the higher and lower side-bands.

However, frequency dependent damping breaks this symmetry, even in the absence of additional modes, and leads
to spectral asymmetry. Indeed, when the damping is nonuniform, even initially equal side-bands, such as those which
initialise the classical Benjamin-Feir instability, eventually develop an imbalance, as previously shown by Alberello et
al [18] using a dissipative NLS framework. The most striking examples of how uniform and nonuniform damping differ
can be found in a synthetic situation in which the Fourier amplitudes of all three modes Ia, Ib and Ic are initially
taken to be equal. If such a triad is unstable, energy exchange means that mode Ia will transfer energy to modes Ib
and Ic and vice versa, in a recurrent fashion dependent on the initial value of the phase [33].

With uniform damping, modes Ib and Ic decay at the same rate, while nonuniform damping with positive exponent
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FIG. 6. Free surface envelope for the case p = 0.4 shown in Figures 4–5.

(as in our case) induces the shorter wave to decay faster. This situation is depicted in Figure 7, where the top two
panels show uniform damping in the amplitude spectrum (a) and the free surface at a fixed spatial location (b), while
the bottom panels depict the same for nonuniform damping proportional to ω3

i . It is seen that nonuniform damping
can dramatically change which modes are dominant after a given propagation distance.
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FIG. 7. Case initialised with f=1 Hz, ϵ = 0.3, p = 1.5, α ≈ 0.1622 and η(0) ≈ 0.3204, θ(0) = π, where α and η are chosen so
that initially Ia(0) = Ib(0) = Ic(0). (Panels (a) & (b)) Uniform damping with γ = 8× 10−6ω3

a m−1. Panel (a) shows the modal
amplitudes Ii with space; panel (b) shows the free surface at x = 800 m (512 λa) as a function of time. (Panels (c) & (d))
Nonuniform damping with γi = 8× 10−6ω3

i m−1. Panel (c) shows the modal amplitudes Ii with space; panel (d) shows the free
surface at 512 carrier wavelengths or x = 800 m. This illustrates clearly that non/uniform damping can change the dominant
wave and the character of the wave field at a given spatial location.

B. Spectral broadening, chaotisation and the damped Benjamin-Feir instability

The cases considered hitherto have been restricted to three modes, and are thus amenable to an analytical descrip-
tion. The textbook modulational instability only considers the initial exponential growth arising from linear stability
theory, while our description is able to capture both the instability and the subsequent behaviour in the presence
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of damping. However, experimental and theoretical work points to the fact that the Benjamin-Feir instability –
either with or without damping – may in many cases entrain higher harmonics, which marks a departure from our
description[35].

To this end it is instructive to consider the effect of including further modes, which makes it possible to obtain some
insight into the evolution of an initially unstable wave-train in more realistic conditions. One such case is shown in
Figure 8, where the same initial configuration is evolved by solving a spatial Zakharov equation with 41 modes with
and without frequency-dependent damping. The initial spectrum E(ω, x = 0) consists of the three Fourier modes
Ia, Ib and Ic in both cases. In the top panel (a) we observe the evolution of the spectrum in space without damping,
which shows a characteristic broadening. The bottom panel (b), in contrast, shows the effects of strong frequency-
dependent damping (with s = 5·10−5 s3m−1), which inhibits the spectral broadening and leads to a distinct downshift
in the peak frequency.

FIG. 8. Evolution of an initial unstable wave, with carrier frequency f = 1 Hz, p = 0.25, η = 0.9, θ = 0, ϵ = 0.15. The initial
triad is initialised among 41 equally spaced Fourier modes. Panel (a): depicts the evolution obtained from numerical integration
of the spatial Zakharov equation without damping. Panel (b): when a frequency dependent damping with s = 5× 10−5 s3m−1

is incorporated this arrests the spectral broadening completely, and leads only to a spectral downshift.

This spectral downshift is illustrated more clearly in Figure 9, which shows sections through Figure 8 at two
points in the evolution. The initial tri-modal spectrum at x = 0 is shown as a solid blue curve, and the undamped
spectrum after 160 peak wavelengths of propagation distance is shown as a blue, dashed curve. This clearly shows
how energy has spread among neighbouring Fourier modes. The spectrum with nonuniform damping (as in Figure
8, bottom panel) is shown at x = 160λa as a solid red curve, and makes clear the inhibition of spectral broadening.
For comparison the same spectrum is propagated with uniform damping – using the frequency of the carrier ωa to
determine the uniform damping parameter γ – and shown as a red, dash-dotted curve.
In fact, the interplay between energy exchange (which itself can lead to spectral broadening and a frequency

downshift in the absence of damping [38]) and damping is complex, as demonstrated in Figure 4. While frequency-
dependent damping will engender a narrower spectrum (as can be seen by comparing the solid and dash-dotted red
curves in Figure 9) due to stronger damping at the higher frequencies, the spectral evolution is also dependent on
the initial phases and the carrier amplitude. It is also important to emphasise that the spectra here considered are
amplitude spectra rather than energy spectra, i.e. no phase averaging has taken place.

VI. DISCUSSION

Recent years have seen a great deal of interest in wave interactions in the presence of damping, particularly with
applications to wave propagation in sea ice. Many previous studies have focused on the use of partial differential
equations such as the NLS or the Dysthe equation, which are inherently restricted to narrow bandwidth as shown in
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FIG. 9. Fourier amplitude spectra for the configuration studied in Figure 8. The solid blue curve shows the initial, 3-mode
spectrum at x = 0. The undamped spectrum (blue dashed curve; on left scale) shows significant spectral broadening after
a propagation distance of x = 160 carrier wavelengths. By contrast, the damped spectra (solid curve: frequency-dependent
damping, dash-dotted curve: uniform damping; both on right scale) exhibit a downshift with nearly negligible broadening.

the derivation of the damped spatial NLS equation in Section IIC. Our first methodological novelty thus consists in
relaxing this assumption, and employing the Zakharov equation derived directly from the cubic reduced Hamiltonian
formulation, without further restrictions on the spectral width. The cubic nonlinearity is sufficient to capture the
leading-order energy exchange which gives rise to the modulational instability, and thus provides an ideal point of
departure.

While the Zakharov formulation has been successfully exploited in water wave modelling for theoretical and practical
purposes for the past three decades, the propagation of waves into ice-covered waters requires a reformulation of this
problem. Physically we envision undamped, periodic waves from the open sea encountering an area of sea ice (or any
other non uniformly dissipative medium) of fixed spatial extent. As these waves propagate into the sea ice, the effects
of damping are felt with propagation distance rather than time. This means that a spatial Zakharov formulation
with damping is required, which is developed in Section II B. The spatial Zakharov formulation is also appropriate for
flume experiments, and several papers testing its applicability in the absence of damping exist in that context [25, 39].

Modulational instability is triggered when a wave train of given frequency ωa is perturbed by the introduction of a
pair of low-amplitude satellites having a higher and a lower frequency, ωb and ωc, say. This is a type of near-resonant
interaction where 2ωa = ωb+ωc, and where we denote the separation between the carrier ωa and side-band harmonics
(or Fourier modes) ωb, ωc by p. Whether a given carrier is unstable depends on its steepness or energy, as well as the
side-band separation p, and the consequences of this instability have been extensively studied in the temporal evolution
scenario. In particular, comparisons with numerical simulations and experiments show that incorporating broader
bandwidth effects beyond NLS is key to accurately capturing this instability [40]. Rather surprisingly, few studies of
spatial evolution within the Zakharov equation context exist, with experimental work by Shemer & Chernyshova [25]
and theoretical work by Kachulin et al [41] and Dyachenko et al [42] being notable exceptions.

In fact, it is possible to make an analytical study of modulational instability when only the carrier and the two
side-bands are considered. This was undertaken in the context of the NLS by Capellini & Trillo [31], and more recently
by Stuhlmeier et al [30, 32, 33] and Leblanc [43] using the Zakharov formulation. The key to this reformulation of
the problem is the identification of a single dynamic phase variable, which combines the individual modal phases
according to the resonance condition. The individual phases are largely irrelevant for the dynamics, and this simple
identification immediately reduces the dimension of the system by two. In the conservative case the conservation
laws can be used to reduce the modulational instability to a planar dynamical system in terms of dynamic phase and
energy exchange variables.

This reduction is still useful when the system is nonconservative due to the effects of damping; indeed, the reformu-
lated system gives insight into the energy exchange processes, while stripping out physically irrelevant information.
Thus, while the total energy of the system decreases steadily, at each energy level the trajectories in the three-
dimensional phase space are directed by the associated conservative system, as shown in Section III. Damping means
that separatrices of the conservative system can be crossed, and fixed points disappear. A competition sets in between
the effects of damping and those of energy exchange, with the former dominating for small initial growth rates, while
the latter dominates when the modulational instability growth rate is high.

Damping may also have the effect of shifting the dominant wave, particularly when the damping depends on the
wave frequency, as is the case for propagation in sea-ice. The consequences of frequency dependent damping can thus
be observed in the modal amplitudes as well as in the appearance of the free surface, which we demonstrate in Section
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VA. It is also possible to allow many more modes to interact, and thus study how the modulational instability gives
rise to spectral broadening. While this case is no longer amenable to analytical insight, we can numerically integrate
the damped, spatial Zakharov equation starting with an initially unstable carrier and two small side-bands. We readily
observe that the effect of damping can induce a spectral downshift, as observed experimentally for waves propagating
in sea ice [44], as well as inhibit spectral broadening which occurs in the undamped configuration. Indeed, after
hundreds of wavelengths the damped amplitude spectrum remains remarkably narrow and confined, a scenario which
can be observed in when waves propagate into sea ice.

While we have sought to provide an elegant, analytical description of the damped modulational instability in
space, it may also be interesting to consider the statistics of damped waves and the propagation of wave energy
spectra (with random phases) in the presence of frequency-dependent damping using the Zakharov formulation, thus
extending previous work by Alberello & Păraŭ [17]. Further avenues of study might also explore the combined effects
of wind-forcing and damping on the Zakharov formulation, and compare this with recent work by Armaroli et al
[14] using the Dysthe equation formulation. Extensions to other physical scenarios such as internal waves [45] or
capillary-gravity waves [20, 46] could likewise present interesting avenues for future work.
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