Pedersen, Henriette L., Fangel, Jonatan U., McCleary, Barry, Ruzanski, Christian, Rydahl, Maja G., Ralet, Marie Christine, Farkas, Vladimir, Von Schantz, Laura, Marcus, Susan E., Andersen, Mathias C. F., Field, Rob ORCID: https://orcid.org/0000-0001-8574-0275, Ohlin, Mats, Knox, J. Paul, Clausen, Mads H. and Willats, William G. T. (2012) Versatile high resolution oligosaccharide microarrays for plant glycobiology and cell wall research. Journal of Biological Chemistry, 287 (47). pp. 39429-39438. ISSN 0021-9258
Full text not available from this repository. (Request a copy)Abstract
Microarrays are powerful tools for high throughput analysis, and hundreds or thousands of molecular interactions can be assessed simultaneously using very small amounts of analytes. Nucleotide microarrays are well established in plant research, but carbohydrate microarrays are much less established, and one reason for this is a lack of suitable glycans with which to populate arrays. Polysaccharide microarrays are relatively easy to produce because of the ease of immobilizing large polymers noncovalently onto a variety of microarray surfaces, but they lack analytical resolution because polysaccharides often contain multiple distinct carbohydrate substructures. Microarrays of defined oligosaccharides potentially overcome this problem but are harder to produce because oligosaccharides usually require coupling prior to immobilization. We have assembled a library of well characterized plant oligosaccharides produced either by partial hydrolysis from polysaccharides or by de novo chemical synthesis. Once coupled to protein, these neoglycoconjugates are versatile reagents that can be printed as microarrays onto a variety of slide types and membranes. We show that these microarrays are suitable for the high throughput characterization of the recognition capabilities of monoclonal antibodies, carbohydrate-binding modules, and other oligosaccharide-binding proteins of biological significance and also that they have potential for the characterization of carbohydrate-active enzymes.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | biochemistry,molecular biology,cell biology ,/dk/atira/pure/subjectarea/asjc/1300/1303 |
Faculty \ School: | Faculty of Science > School of Chemistry, Pharmacy and Pharmacology |
Related URLs: | |
Depositing User: | LivePure Connector |
Date Deposited: | 04 Sep 2024 13:36 |
Last Modified: | 08 Sep 2024 06:37 |
URI: | https://ueaeprints.uea.ac.uk/id/eprint/96551 |
DOI: | 10.1074/jbc.M112.396598 |
Actions (login required)
View Item |